Linux 6.9-rc1
[linux-2.6-microblaze.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56         TLSV4,
57         TLSV6,
58         TLS_NUM_PROTS,
59 };
60
61 #define CHECK_CIPHER_DESC(cipher,ci)                            \
62         static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);           \
63         static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);               \
64         static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
65         static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);             \
66         static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);       \
67         static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);     \
68         static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);   \
69         static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70
71 #define __CIPHER_DESC(ci) \
72         .iv_offset = offsetof(struct ci, iv), \
73         .key_offset = offsetof(struct ci, key), \
74         .salt_offset = offsetof(struct ci, salt), \
75         .rec_seq_offset = offsetof(struct ci, rec_seq), \
76         .crypto_info = sizeof(struct ci)
77
78 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {       \
79         .nonce = cipher ## _IV_SIZE, \
80         .iv = cipher ## _IV_SIZE, \
81         .key = cipher ## _KEY_SIZE, \
82         .salt = cipher ## _SALT_SIZE, \
83         .tag = cipher ## _TAG_SIZE, \
84         .rec_seq = cipher ## _REC_SEQ_SIZE, \
85         .cipher_name = algname, \
86         .offloadable = _offloadable, \
87         __CIPHER_DESC(ci), \
88 }
89
90 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91         .nonce = 0, \
92         .iv = cipher ## _IV_SIZE, \
93         .key = cipher ## _KEY_SIZE, \
94         .salt = cipher ## _SALT_SIZE, \
95         .tag = cipher ## _TAG_SIZE, \
96         .rec_seq = cipher ## _REC_SEQ_SIZE, \
97         .cipher_name = algname, \
98         .offloadable = _offloadable, \
99         __CIPHER_DESC(ci), \
100 }
101
102 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103         CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104         CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105         CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106         CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107         CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108         CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111 };
112
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121
122 static const struct proto *saved_tcpv6_prot;
123 static DEFINE_MUTEX(tcpv6_prot_mutex);
124 static const struct proto *saved_tcpv4_prot;
125 static DEFINE_MUTEX(tcpv4_prot_mutex);
126 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129                          const struct proto *base);
130
131 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132 {
133         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134
135         WRITE_ONCE(sk->sk_prot,
136                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137         WRITE_ONCE(sk->sk_socket->ops,
138                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139 }
140
141 int wait_on_pending_writer(struct sock *sk, long *timeo)
142 {
143         DEFINE_WAIT_FUNC(wait, woken_wake_function);
144         int ret, rc = 0;
145
146         add_wait_queue(sk_sleep(sk), &wait);
147         while (1) {
148                 if (!*timeo) {
149                         rc = -EAGAIN;
150                         break;
151                 }
152
153                 if (signal_pending(current)) {
154                         rc = sock_intr_errno(*timeo);
155                         break;
156                 }
157
158                 ret = sk_wait_event(sk, timeo,
159                                     !READ_ONCE(sk->sk_write_pending), &wait);
160                 if (ret) {
161                         if (ret < 0)
162                                 rc = ret;
163                         break;
164                 }
165         }
166         remove_wait_queue(sk_sleep(sk), &wait);
167         return rc;
168 }
169
170 int tls_push_sg(struct sock *sk,
171                 struct tls_context *ctx,
172                 struct scatterlist *sg,
173                 u16 first_offset,
174                 int flags)
175 {
176         struct bio_vec bvec;
177         struct msghdr msg = {
178                 .msg_flags = MSG_SPLICE_PAGES | flags,
179         };
180         int ret = 0;
181         struct page *p;
182         size_t size;
183         int offset = first_offset;
184
185         size = sg->length - offset;
186         offset += sg->offset;
187
188         ctx->splicing_pages = true;
189         while (1) {
190                 /* is sending application-limited? */
191                 tcp_rate_check_app_limited(sk);
192                 p = sg_page(sg);
193 retry:
194                 bvec_set_page(&bvec, p, size, offset);
195                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196
197                 ret = tcp_sendmsg_locked(sk, &msg, size);
198
199                 if (ret != size) {
200                         if (ret > 0) {
201                                 offset += ret;
202                                 size -= ret;
203                                 goto retry;
204                         }
205
206                         offset -= sg->offset;
207                         ctx->partially_sent_offset = offset;
208                         ctx->partially_sent_record = (void *)sg;
209                         ctx->splicing_pages = false;
210                         return ret;
211                 }
212
213                 put_page(p);
214                 sk_mem_uncharge(sk, sg->length);
215                 sg = sg_next(sg);
216                 if (!sg)
217                         break;
218
219                 offset = sg->offset;
220                 size = sg->length;
221         }
222
223         ctx->splicing_pages = false;
224
225         return 0;
226 }
227
228 static int tls_handle_open_record(struct sock *sk, int flags)
229 {
230         struct tls_context *ctx = tls_get_ctx(sk);
231
232         if (tls_is_pending_open_record(ctx))
233                 return ctx->push_pending_record(sk, flags);
234
235         return 0;
236 }
237
238 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239                      unsigned char *record_type)
240 {
241         struct cmsghdr *cmsg;
242         int rc = -EINVAL;
243
244         for_each_cmsghdr(cmsg, msg) {
245                 if (!CMSG_OK(msg, cmsg))
246                         return -EINVAL;
247                 if (cmsg->cmsg_level != SOL_TLS)
248                         continue;
249
250                 switch (cmsg->cmsg_type) {
251                 case TLS_SET_RECORD_TYPE:
252                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253                                 return -EINVAL;
254
255                         if (msg->msg_flags & MSG_MORE)
256                                 return -EINVAL;
257
258                         rc = tls_handle_open_record(sk, msg->msg_flags);
259                         if (rc)
260                                 return rc;
261
262                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
263                         rc = 0;
264                         break;
265                 default:
266                         return -EINVAL;
267                 }
268         }
269
270         return rc;
271 }
272
273 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
274                             int flags)
275 {
276         struct scatterlist *sg;
277         u16 offset;
278
279         sg = ctx->partially_sent_record;
280         offset = ctx->partially_sent_offset;
281
282         ctx->partially_sent_record = NULL;
283         return tls_push_sg(sk, ctx, sg, offset, flags);
284 }
285
286 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
287 {
288         struct scatterlist *sg;
289
290         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291                 put_page(sg_page(sg));
292                 sk_mem_uncharge(sk, sg->length);
293         }
294         ctx->partially_sent_record = NULL;
295 }
296
297 static void tls_write_space(struct sock *sk)
298 {
299         struct tls_context *ctx = tls_get_ctx(sk);
300
301         /* If splicing_pages call lower protocol write space handler
302          * to ensure we wake up any waiting operations there. For example
303          * if splicing pages where to call sk_wait_event.
304          */
305         if (ctx->splicing_pages) {
306                 ctx->sk_write_space(sk);
307                 return;
308         }
309
310 #ifdef CONFIG_TLS_DEVICE
311         if (ctx->tx_conf == TLS_HW)
312                 tls_device_write_space(sk, ctx);
313         else
314 #endif
315                 tls_sw_write_space(sk, ctx);
316
317         ctx->sk_write_space(sk);
318 }
319
320 /**
321  * tls_ctx_free() - free TLS ULP context
322  * @sk:  socket to with @ctx is attached
323  * @ctx: TLS context structure
324  *
325  * Free TLS context. If @sk is %NULL caller guarantees that the socket
326  * to which @ctx was attached has no outstanding references.
327  */
328 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
329 {
330         if (!ctx)
331                 return;
332
333         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335         mutex_destroy(&ctx->tx_lock);
336
337         if (sk)
338                 kfree_rcu(ctx, rcu);
339         else
340                 kfree(ctx);
341 }
342
343 static void tls_sk_proto_cleanup(struct sock *sk,
344                                  struct tls_context *ctx, long timeo)
345 {
346         if (unlikely(sk->sk_write_pending) &&
347             !wait_on_pending_writer(sk, &timeo))
348                 tls_handle_open_record(sk, 0);
349
350         /* We need these for tls_sw_fallback handling of other packets */
351         if (ctx->tx_conf == TLS_SW) {
352                 tls_sw_release_resources_tx(sk);
353                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354         } else if (ctx->tx_conf == TLS_HW) {
355                 tls_device_free_resources_tx(sk);
356                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
357         }
358
359         if (ctx->rx_conf == TLS_SW) {
360                 tls_sw_release_resources_rx(sk);
361                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362         } else if (ctx->rx_conf == TLS_HW) {
363                 tls_device_offload_cleanup_rx(sk);
364                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
365         }
366 }
367
368 static void tls_sk_proto_close(struct sock *sk, long timeout)
369 {
370         struct inet_connection_sock *icsk = inet_csk(sk);
371         struct tls_context *ctx = tls_get_ctx(sk);
372         long timeo = sock_sndtimeo(sk, 0);
373         bool free_ctx;
374
375         if (ctx->tx_conf == TLS_SW)
376                 tls_sw_cancel_work_tx(ctx);
377
378         lock_sock(sk);
379         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
380
381         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382                 tls_sk_proto_cleanup(sk, ctx, timeo);
383
384         write_lock_bh(&sk->sk_callback_lock);
385         if (free_ctx)
386                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388         if (sk->sk_write_space == tls_write_space)
389                 sk->sk_write_space = ctx->sk_write_space;
390         write_unlock_bh(&sk->sk_callback_lock);
391         release_sock(sk);
392         if (ctx->tx_conf == TLS_SW)
393                 tls_sw_free_ctx_tx(ctx);
394         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395                 tls_sw_strparser_done(ctx);
396         if (ctx->rx_conf == TLS_SW)
397                 tls_sw_free_ctx_rx(ctx);
398         ctx->sk_proto->close(sk, timeout);
399
400         if (free_ctx)
401                 tls_ctx_free(sk, ctx);
402 }
403
404 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405                             struct poll_table_struct *wait)
406 {
407         struct tls_sw_context_rx *ctx;
408         struct tls_context *tls_ctx;
409         struct sock *sk = sock->sk;
410         struct sk_psock *psock;
411         __poll_t mask = 0;
412         u8 shutdown;
413         int state;
414
415         mask = tcp_poll(file, sock, wait);
416
417         state = inet_sk_state_load(sk);
418         shutdown = READ_ONCE(sk->sk_shutdown);
419         if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
420                 return mask;
421
422         tls_ctx = tls_get_ctx(sk);
423         ctx = tls_sw_ctx_rx(tls_ctx);
424         psock = sk_psock_get(sk);
425
426         if (skb_queue_empty_lockless(&ctx->rx_list) &&
427             !tls_strp_msg_ready(ctx) &&
428             sk_psock_queue_empty(psock))
429                 mask &= ~(EPOLLIN | EPOLLRDNORM);
430
431         if (psock)
432                 sk_psock_put(sk, psock);
433
434         return mask;
435 }
436
437 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
438                                   int __user *optlen, int tx)
439 {
440         int rc = 0;
441         const struct tls_cipher_desc *cipher_desc;
442         struct tls_context *ctx = tls_get_ctx(sk);
443         struct tls_crypto_info *crypto_info;
444         struct cipher_context *cctx;
445         int len;
446
447         if (get_user(len, optlen))
448                 return -EFAULT;
449
450         if (!optval || (len < sizeof(*crypto_info))) {
451                 rc = -EINVAL;
452                 goto out;
453         }
454
455         if (!ctx) {
456                 rc = -EBUSY;
457                 goto out;
458         }
459
460         /* get user crypto info */
461         if (tx) {
462                 crypto_info = &ctx->crypto_send.info;
463                 cctx = &ctx->tx;
464         } else {
465                 crypto_info = &ctx->crypto_recv.info;
466                 cctx = &ctx->rx;
467         }
468
469         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
470                 rc = -EBUSY;
471                 goto out;
472         }
473
474         if (len == sizeof(*crypto_info)) {
475                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
476                         rc = -EFAULT;
477                 goto out;
478         }
479
480         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
481         if (!cipher_desc || len != cipher_desc->crypto_info) {
482                 rc = -EINVAL;
483                 goto out;
484         }
485
486         memcpy(crypto_info_iv(crypto_info, cipher_desc),
487                cctx->iv + cipher_desc->salt, cipher_desc->iv);
488         memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
489                cctx->rec_seq, cipher_desc->rec_seq);
490
491         if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
492                 rc = -EFAULT;
493
494 out:
495         return rc;
496 }
497
498 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
499                                    int __user *optlen)
500 {
501         struct tls_context *ctx = tls_get_ctx(sk);
502         unsigned int value;
503         int len;
504
505         if (get_user(len, optlen))
506                 return -EFAULT;
507
508         if (len != sizeof(value))
509                 return -EINVAL;
510
511         value = ctx->zerocopy_sendfile;
512         if (copy_to_user(optval, &value, sizeof(value)))
513                 return -EFAULT;
514
515         return 0;
516 }
517
518 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
519                                     int __user *optlen)
520 {
521         struct tls_context *ctx = tls_get_ctx(sk);
522         int value, len;
523
524         if (ctx->prot_info.version != TLS_1_3_VERSION)
525                 return -EINVAL;
526
527         if (get_user(len, optlen))
528                 return -EFAULT;
529         if (len < sizeof(value))
530                 return -EINVAL;
531
532         value = -EINVAL;
533         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
534                 value = ctx->rx_no_pad;
535         if (value < 0)
536                 return value;
537
538         if (put_user(sizeof(value), optlen))
539                 return -EFAULT;
540         if (copy_to_user(optval, &value, sizeof(value)))
541                 return -EFAULT;
542
543         return 0;
544 }
545
546 static int do_tls_getsockopt(struct sock *sk, int optname,
547                              char __user *optval, int __user *optlen)
548 {
549         int rc = 0;
550
551         lock_sock(sk);
552
553         switch (optname) {
554         case TLS_TX:
555         case TLS_RX:
556                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
557                                             optname == TLS_TX);
558                 break;
559         case TLS_TX_ZEROCOPY_RO:
560                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
561                 break;
562         case TLS_RX_EXPECT_NO_PAD:
563                 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
564                 break;
565         default:
566                 rc = -ENOPROTOOPT;
567                 break;
568         }
569
570         release_sock(sk);
571
572         return rc;
573 }
574
575 static int tls_getsockopt(struct sock *sk, int level, int optname,
576                           char __user *optval, int __user *optlen)
577 {
578         struct tls_context *ctx = tls_get_ctx(sk);
579
580         if (level != SOL_TLS)
581                 return ctx->sk_proto->getsockopt(sk, level,
582                                                  optname, optval, optlen);
583
584         return do_tls_getsockopt(sk, optname, optval, optlen);
585 }
586
587 static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
588                                 const struct tls_crypto_info *alt_crypto_info)
589 {
590         if (crypto_info->version != TLS_1_2_VERSION &&
591             crypto_info->version != TLS_1_3_VERSION)
592                 return -EINVAL;
593
594         switch (crypto_info->cipher_type) {
595         case TLS_CIPHER_ARIA_GCM_128:
596         case TLS_CIPHER_ARIA_GCM_256:
597                 if (crypto_info->version != TLS_1_2_VERSION)
598                         return -EINVAL;
599                 break;
600         }
601
602         /* Ensure that TLS version and ciphers are same in both directions */
603         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
604                 if (alt_crypto_info->version != crypto_info->version ||
605                     alt_crypto_info->cipher_type != crypto_info->cipher_type)
606                         return -EINVAL;
607         }
608
609         return 0;
610 }
611
612 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
613                                   unsigned int optlen, int tx)
614 {
615         struct tls_crypto_info *crypto_info;
616         struct tls_crypto_info *alt_crypto_info;
617         struct tls_context *ctx = tls_get_ctx(sk);
618         const struct tls_cipher_desc *cipher_desc;
619         int rc = 0;
620         int conf;
621
622         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
623                 return -EINVAL;
624
625         if (tx) {
626                 crypto_info = &ctx->crypto_send.info;
627                 alt_crypto_info = &ctx->crypto_recv.info;
628         } else {
629                 crypto_info = &ctx->crypto_recv.info;
630                 alt_crypto_info = &ctx->crypto_send.info;
631         }
632
633         /* Currently we don't support set crypto info more than one time */
634         if (TLS_CRYPTO_INFO_READY(crypto_info))
635                 return -EBUSY;
636
637         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
638         if (rc) {
639                 rc = -EFAULT;
640                 goto err_crypto_info;
641         }
642
643         rc = validate_crypto_info(crypto_info, alt_crypto_info);
644         if (rc)
645                 goto err_crypto_info;
646
647         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
648         if (!cipher_desc) {
649                 rc = -EINVAL;
650                 goto err_crypto_info;
651         }
652
653         if (optlen != cipher_desc->crypto_info) {
654                 rc = -EINVAL;
655                 goto err_crypto_info;
656         }
657
658         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
659                                       sizeof(*crypto_info),
660                                       optlen - sizeof(*crypto_info));
661         if (rc) {
662                 rc = -EFAULT;
663                 goto err_crypto_info;
664         }
665
666         if (tx) {
667                 rc = tls_set_device_offload(sk);
668                 conf = TLS_HW;
669                 if (!rc) {
670                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
671                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
672                 } else {
673                         rc = tls_set_sw_offload(sk, 1);
674                         if (rc)
675                                 goto err_crypto_info;
676                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
677                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
678                         conf = TLS_SW;
679                 }
680         } else {
681                 rc = tls_set_device_offload_rx(sk, ctx);
682                 conf = TLS_HW;
683                 if (!rc) {
684                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
685                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
686                 } else {
687                         rc = tls_set_sw_offload(sk, 0);
688                         if (rc)
689                                 goto err_crypto_info;
690                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
691                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
692                         conf = TLS_SW;
693                 }
694                 tls_sw_strparser_arm(sk, ctx);
695         }
696
697         if (tx)
698                 ctx->tx_conf = conf;
699         else
700                 ctx->rx_conf = conf;
701         update_sk_prot(sk, ctx);
702         if (tx) {
703                 ctx->sk_write_space = sk->sk_write_space;
704                 sk->sk_write_space = tls_write_space;
705         } else {
706                 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
707
708                 tls_strp_check_rcv(&rx_ctx->strp);
709         }
710         return 0;
711
712 err_crypto_info:
713         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
714         return rc;
715 }
716
717 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
718                                    unsigned int optlen)
719 {
720         struct tls_context *ctx = tls_get_ctx(sk);
721         unsigned int value;
722
723         if (sockptr_is_null(optval) || optlen != sizeof(value))
724                 return -EINVAL;
725
726         if (copy_from_sockptr(&value, optval, sizeof(value)))
727                 return -EFAULT;
728
729         if (value > 1)
730                 return -EINVAL;
731
732         ctx->zerocopy_sendfile = value;
733
734         return 0;
735 }
736
737 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
738                                     unsigned int optlen)
739 {
740         struct tls_context *ctx = tls_get_ctx(sk);
741         u32 val;
742         int rc;
743
744         if (ctx->prot_info.version != TLS_1_3_VERSION ||
745             sockptr_is_null(optval) || optlen < sizeof(val))
746                 return -EINVAL;
747
748         rc = copy_from_sockptr(&val, optval, sizeof(val));
749         if (rc)
750                 return -EFAULT;
751         if (val > 1)
752                 return -EINVAL;
753         rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
754         if (rc < 1)
755                 return rc == 0 ? -EINVAL : rc;
756
757         lock_sock(sk);
758         rc = -EINVAL;
759         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
760                 ctx->rx_no_pad = val;
761                 tls_update_rx_zc_capable(ctx);
762                 rc = 0;
763         }
764         release_sock(sk);
765
766         return rc;
767 }
768
769 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
770                              unsigned int optlen)
771 {
772         int rc = 0;
773
774         switch (optname) {
775         case TLS_TX:
776         case TLS_RX:
777                 lock_sock(sk);
778                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
779                                             optname == TLS_TX);
780                 release_sock(sk);
781                 break;
782         case TLS_TX_ZEROCOPY_RO:
783                 lock_sock(sk);
784                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
785                 release_sock(sk);
786                 break;
787         case TLS_RX_EXPECT_NO_PAD:
788                 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
789                 break;
790         default:
791                 rc = -ENOPROTOOPT;
792                 break;
793         }
794         return rc;
795 }
796
797 static int tls_setsockopt(struct sock *sk, int level, int optname,
798                           sockptr_t optval, unsigned int optlen)
799 {
800         struct tls_context *ctx = tls_get_ctx(sk);
801
802         if (level != SOL_TLS)
803                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
804                                                  optlen);
805
806         return do_tls_setsockopt(sk, optname, optval, optlen);
807 }
808
809 struct tls_context *tls_ctx_create(struct sock *sk)
810 {
811         struct inet_connection_sock *icsk = inet_csk(sk);
812         struct tls_context *ctx;
813
814         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
815         if (!ctx)
816                 return NULL;
817
818         mutex_init(&ctx->tx_lock);
819         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
820         ctx->sk_proto = READ_ONCE(sk->sk_prot);
821         ctx->sk = sk;
822         return ctx;
823 }
824
825 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
826                             const struct proto_ops *base)
827 {
828         ops[TLS_BASE][TLS_BASE] = *base;
829
830         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
831         ops[TLS_SW  ][TLS_BASE].splice_eof      = tls_sw_splice_eof;
832
833         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
834         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
835         ops[TLS_BASE][TLS_SW  ].poll            = tls_sk_poll;
836         ops[TLS_BASE][TLS_SW  ].read_sock       = tls_sw_read_sock;
837
838         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
839         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
840         ops[TLS_SW  ][TLS_SW  ].poll            = tls_sk_poll;
841         ops[TLS_SW  ][TLS_SW  ].read_sock       = tls_sw_read_sock;
842
843 #ifdef CONFIG_TLS_DEVICE
844         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
845
846         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
847
848         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
849
850         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
851
852         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
853 #endif
854 #ifdef CONFIG_TLS_TOE
855         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
856 #endif
857 }
858
859 static void tls_build_proto(struct sock *sk)
860 {
861         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
862         struct proto *prot = READ_ONCE(sk->sk_prot);
863
864         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
865         if (ip_ver == TLSV6 &&
866             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
867                 mutex_lock(&tcpv6_prot_mutex);
868                 if (likely(prot != saved_tcpv6_prot)) {
869                         build_protos(tls_prots[TLSV6], prot);
870                         build_proto_ops(tls_proto_ops[TLSV6],
871                                         sk->sk_socket->ops);
872                         smp_store_release(&saved_tcpv6_prot, prot);
873                 }
874                 mutex_unlock(&tcpv6_prot_mutex);
875         }
876
877         if (ip_ver == TLSV4 &&
878             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
879                 mutex_lock(&tcpv4_prot_mutex);
880                 if (likely(prot != saved_tcpv4_prot)) {
881                         build_protos(tls_prots[TLSV4], prot);
882                         build_proto_ops(tls_proto_ops[TLSV4],
883                                         sk->sk_socket->ops);
884                         smp_store_release(&saved_tcpv4_prot, prot);
885                 }
886                 mutex_unlock(&tcpv4_prot_mutex);
887         }
888 }
889
890 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
891                          const struct proto *base)
892 {
893         prot[TLS_BASE][TLS_BASE] = *base;
894         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
895         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
896         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
897
898         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
899         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
900         prot[TLS_SW][TLS_BASE].splice_eof       = tls_sw_splice_eof;
901
902         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
903         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
904         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
905         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
906
907         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
908         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
909         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
910         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
911
912 #ifdef CONFIG_TLS_DEVICE
913         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
914         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
915         prot[TLS_HW][TLS_BASE].splice_eof       = tls_device_splice_eof;
916
917         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
918         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
919         prot[TLS_HW][TLS_SW].splice_eof         = tls_device_splice_eof;
920
921         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
922
923         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
924
925         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
926 #endif
927 #ifdef CONFIG_TLS_TOE
928         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
929         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
930         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
931 #endif
932 }
933
934 static int tls_init(struct sock *sk)
935 {
936         struct tls_context *ctx;
937         int rc = 0;
938
939         tls_build_proto(sk);
940
941 #ifdef CONFIG_TLS_TOE
942         if (tls_toe_bypass(sk))
943                 return 0;
944 #endif
945
946         /* The TLS ulp is currently supported only for TCP sockets
947          * in ESTABLISHED state.
948          * Supporting sockets in LISTEN state will require us
949          * to modify the accept implementation to clone rather then
950          * share the ulp context.
951          */
952         if (sk->sk_state != TCP_ESTABLISHED)
953                 return -ENOTCONN;
954
955         /* allocate tls context */
956         write_lock_bh(&sk->sk_callback_lock);
957         ctx = tls_ctx_create(sk);
958         if (!ctx) {
959                 rc = -ENOMEM;
960                 goto out;
961         }
962
963         ctx->tx_conf = TLS_BASE;
964         ctx->rx_conf = TLS_BASE;
965         update_sk_prot(sk, ctx);
966 out:
967         write_unlock_bh(&sk->sk_callback_lock);
968         return rc;
969 }
970
971 static void tls_update(struct sock *sk, struct proto *p,
972                        void (*write_space)(struct sock *sk))
973 {
974         struct tls_context *ctx;
975
976         WARN_ON_ONCE(sk->sk_prot == p);
977
978         ctx = tls_get_ctx(sk);
979         if (likely(ctx)) {
980                 ctx->sk_write_space = write_space;
981                 ctx->sk_proto = p;
982         } else {
983                 /* Pairs with lockless read in sk_clone_lock(). */
984                 WRITE_ONCE(sk->sk_prot, p);
985                 sk->sk_write_space = write_space;
986         }
987 }
988
989 static u16 tls_user_config(struct tls_context *ctx, bool tx)
990 {
991         u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
992
993         switch (config) {
994         case TLS_BASE:
995                 return TLS_CONF_BASE;
996         case TLS_SW:
997                 return TLS_CONF_SW;
998         case TLS_HW:
999                 return TLS_CONF_HW;
1000         case TLS_HW_RECORD:
1001                 return TLS_CONF_HW_RECORD;
1002         }
1003         return 0;
1004 }
1005
1006 static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1007 {
1008         u16 version, cipher_type;
1009         struct tls_context *ctx;
1010         struct nlattr *start;
1011         int err;
1012
1013         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1014         if (!start)
1015                 return -EMSGSIZE;
1016
1017         rcu_read_lock();
1018         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1019         if (!ctx) {
1020                 err = 0;
1021                 goto nla_failure;
1022         }
1023         version = ctx->prot_info.version;
1024         if (version) {
1025                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1026                 if (err)
1027                         goto nla_failure;
1028         }
1029         cipher_type = ctx->prot_info.cipher_type;
1030         if (cipher_type) {
1031                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1032                 if (err)
1033                         goto nla_failure;
1034         }
1035         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1036         if (err)
1037                 goto nla_failure;
1038
1039         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1040         if (err)
1041                 goto nla_failure;
1042
1043         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1044                 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1045                 if (err)
1046                         goto nla_failure;
1047         }
1048         if (ctx->rx_no_pad) {
1049                 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1050                 if (err)
1051                         goto nla_failure;
1052         }
1053
1054         rcu_read_unlock();
1055         nla_nest_end(skb, start);
1056         return 0;
1057
1058 nla_failure:
1059         rcu_read_unlock();
1060         nla_nest_cancel(skb, start);
1061         return err;
1062 }
1063
1064 static size_t tls_get_info_size(const struct sock *sk)
1065 {
1066         size_t size = 0;
1067
1068         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
1069                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
1070                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
1071                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
1072                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
1073                 nla_total_size(0) +             /* TLS_INFO_ZC_RO_TX */
1074                 nla_total_size(0) +             /* TLS_INFO_RX_NO_PAD */
1075                 0;
1076
1077         return size;
1078 }
1079
1080 static int __net_init tls_init_net(struct net *net)
1081 {
1082         int err;
1083
1084         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1085         if (!net->mib.tls_statistics)
1086                 return -ENOMEM;
1087
1088         err = tls_proc_init(net);
1089         if (err)
1090                 goto err_free_stats;
1091
1092         return 0;
1093 err_free_stats:
1094         free_percpu(net->mib.tls_statistics);
1095         return err;
1096 }
1097
1098 static void __net_exit tls_exit_net(struct net *net)
1099 {
1100         tls_proc_fini(net);
1101         free_percpu(net->mib.tls_statistics);
1102 }
1103
1104 static struct pernet_operations tls_proc_ops = {
1105         .init = tls_init_net,
1106         .exit = tls_exit_net,
1107 };
1108
1109 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1110         .name                   = "tls",
1111         .owner                  = THIS_MODULE,
1112         .init                   = tls_init,
1113         .update                 = tls_update,
1114         .get_info               = tls_get_info,
1115         .get_info_size          = tls_get_info_size,
1116 };
1117
1118 static int __init tls_register(void)
1119 {
1120         int err;
1121
1122         err = register_pernet_subsys(&tls_proc_ops);
1123         if (err)
1124                 return err;
1125
1126         err = tls_strp_dev_init();
1127         if (err)
1128                 goto err_pernet;
1129
1130         err = tls_device_init();
1131         if (err)
1132                 goto err_strp;
1133
1134         tcp_register_ulp(&tcp_tls_ulp_ops);
1135
1136         return 0;
1137 err_strp:
1138         tls_strp_dev_exit();
1139 err_pernet:
1140         unregister_pernet_subsys(&tls_proc_ops);
1141         return err;
1142 }
1143
1144 static void __exit tls_unregister(void)
1145 {
1146         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1147         tls_strp_dev_exit();
1148         tls_device_cleanup();
1149         unregister_pernet_subsys(&tls_proc_ops);
1150 }
1151
1152 module_init(tls_register);
1153 module_exit(tls_unregister);