f8f2d2c3d627ce50171eec6db2e1f28053875323
[linux-2.6-microblaze.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65                          struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76         int rc = 0;
77         DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79         add_wait_queue(sk_sleep(sk), &wait);
80         while (1) {
81                 if (!*timeo) {
82                         rc = -EAGAIN;
83                         break;
84                 }
85
86                 if (signal_pending(current)) {
87                         rc = sock_intr_errno(*timeo);
88                         break;
89                 }
90
91                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92                         break;
93         }
94         remove_wait_queue(sk_sleep(sk), &wait);
95         return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99                 struct tls_context *ctx,
100                 struct scatterlist *sg,
101                 u16 first_offset,
102                 int flags)
103 {
104         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105         int ret = 0;
106         struct page *p;
107         size_t size;
108         int offset = first_offset;
109
110         size = sg->length - offset;
111         offset += sg->offset;
112
113         ctx->in_tcp_sendpages = true;
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         ctx->in_tcp_sendpages = false;
135                         return ret;
136                 }
137
138                 put_page(p);
139                 sk_mem_uncharge(sk, sg->length);
140                 sg = sg_next(sg);
141                 if (!sg)
142                         break;
143
144                 offset = sg->offset;
145                 size = sg->length;
146         }
147
148         ctx->in_tcp_sendpages = false;
149
150         return 0;
151 }
152
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155         struct tls_context *ctx = tls_get_ctx(sk);
156
157         if (tls_is_pending_open_record(ctx))
158                 return ctx->push_pending_record(sk, flags);
159
160         return 0;
161 }
162
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164                       unsigned char *record_type)
165 {
166         struct cmsghdr *cmsg;
167         int rc = -EINVAL;
168
169         for_each_cmsghdr(cmsg, msg) {
170                 if (!CMSG_OK(msg, cmsg))
171                         return -EINVAL;
172                 if (cmsg->cmsg_level != SOL_TLS)
173                         continue;
174
175                 switch (cmsg->cmsg_type) {
176                 case TLS_SET_RECORD_TYPE:
177                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178                                 return -EINVAL;
179
180                         if (msg->msg_flags & MSG_MORE)
181                                 return -EINVAL;
182
183                         rc = tls_handle_open_record(sk, msg->msg_flags);
184                         if (rc)
185                                 return rc;
186
187                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
188                         rc = 0;
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return rc;
196 }
197
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199                             int flags)
200 {
201         struct scatterlist *sg;
202         u16 offset;
203
204         sg = ctx->partially_sent_record;
205         offset = ctx->partially_sent_offset;
206
207         ctx->partially_sent_record = NULL;
208         return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
212 {
213         struct scatterlist *sg;
214
215         sg = ctx->partially_sent_record;
216         if (!sg)
217                 return false;
218
219         while (1) {
220                 put_page(sg_page(sg));
221                 sk_mem_uncharge(sk, sg->length);
222
223                 if (sg_is_last(sg))
224                         break;
225                 sg++;
226         }
227         ctx->partially_sent_record = NULL;
228         return true;
229 }
230
231 static void tls_write_space(struct sock *sk)
232 {
233         struct tls_context *ctx = tls_get_ctx(sk);
234
235         /* If in_tcp_sendpages call lower protocol write space handler
236          * to ensure we wake up any waiting operations there. For example
237          * if do_tcp_sendpages where to call sk_wait_event.
238          */
239         if (ctx->in_tcp_sendpages) {
240                 ctx->sk_write_space(sk);
241                 return;
242         }
243
244 #ifdef CONFIG_TLS_DEVICE
245         if (ctx->tx_conf == TLS_HW)
246                 tls_device_write_space(sk, ctx);
247         else
248 #endif
249                 tls_sw_write_space(sk, ctx);
250
251         ctx->sk_write_space(sk);
252 }
253
254 /**
255  * tls_ctx_free() - free TLS ULP context
256  * @sk:  socket to with @ctx is attached
257  * @ctx: TLS context structure
258  *
259  * Free TLS context. If @sk is %NULL caller guarantees that the socket
260  * to which @ctx was attached has no outstanding references.
261  */
262 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
263 {
264         if (!ctx)
265                 return;
266
267         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
268         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
269
270         if (sk)
271                 kfree_rcu(ctx, rcu);
272         else
273                 kfree(ctx);
274 }
275
276 static void tls_sk_proto_cleanup(struct sock *sk,
277                                  struct tls_context *ctx, long timeo)
278 {
279         if (unlikely(sk->sk_write_pending) &&
280             !wait_on_pending_writer(sk, &timeo))
281                 tls_handle_open_record(sk, 0);
282
283         /* We need these for tls_sw_fallback handling of other packets */
284         if (ctx->tx_conf == TLS_SW) {
285                 kfree(ctx->tx.rec_seq);
286                 kfree(ctx->tx.iv);
287                 tls_sw_release_resources_tx(sk);
288 #ifdef CONFIG_TLS_DEVICE
289         } else if (ctx->tx_conf == TLS_HW) {
290                 tls_device_free_resources_tx(sk);
291 #endif
292         }
293
294         if (ctx->rx_conf == TLS_SW)
295                 tls_sw_release_resources_rx(sk);
296
297 #ifdef CONFIG_TLS_DEVICE
298         if (ctx->rx_conf == TLS_HW)
299                 tls_device_offload_cleanup_rx(sk);
300 #endif
301 }
302
303 static void tls_sk_proto_close(struct sock *sk, long timeout)
304 {
305         struct inet_connection_sock *icsk = inet_csk(sk);
306         struct tls_context *ctx = tls_get_ctx(sk);
307         long timeo = sock_sndtimeo(sk, 0);
308         bool free_ctx;
309
310         if (ctx->tx_conf == TLS_SW)
311                 tls_sw_cancel_work_tx(ctx);
312
313         lock_sock(sk);
314         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
315
316         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
317                 tls_sk_proto_cleanup(sk, ctx, timeo);
318
319         write_lock_bh(&sk->sk_callback_lock);
320         if (free_ctx)
321                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
322         sk->sk_prot = ctx->sk_proto;
323         if (sk->sk_write_space == tls_write_space)
324                 sk->sk_write_space = ctx->sk_write_space;
325         write_unlock_bh(&sk->sk_callback_lock);
326         release_sock(sk);
327         if (ctx->tx_conf == TLS_SW)
328                 tls_sw_free_ctx_tx(ctx);
329         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
330                 tls_sw_strparser_done(ctx);
331         if (ctx->rx_conf == TLS_SW)
332                 tls_sw_free_ctx_rx(ctx);
333         ctx->sk_proto_close(sk, timeout);
334
335         if (free_ctx)
336                 tls_ctx_free(sk, ctx);
337 }
338
339 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
340                                 int __user *optlen)
341 {
342         int rc = 0;
343         struct tls_context *ctx = tls_get_ctx(sk);
344         struct tls_crypto_info *crypto_info;
345         int len;
346
347         if (get_user(len, optlen))
348                 return -EFAULT;
349
350         if (!optval || (len < sizeof(*crypto_info))) {
351                 rc = -EINVAL;
352                 goto out;
353         }
354
355         if (!ctx) {
356                 rc = -EBUSY;
357                 goto out;
358         }
359
360         /* get user crypto info */
361         crypto_info = &ctx->crypto_send.info;
362
363         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
364                 rc = -EBUSY;
365                 goto out;
366         }
367
368         if (len == sizeof(*crypto_info)) {
369                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
370                         rc = -EFAULT;
371                 goto out;
372         }
373
374         switch (crypto_info->cipher_type) {
375         case TLS_CIPHER_AES_GCM_128: {
376                 struct tls12_crypto_info_aes_gcm_128 *
377                   crypto_info_aes_gcm_128 =
378                   container_of(crypto_info,
379                                struct tls12_crypto_info_aes_gcm_128,
380                                info);
381
382                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
383                         rc = -EINVAL;
384                         goto out;
385                 }
386                 lock_sock(sk);
387                 memcpy(crypto_info_aes_gcm_128->iv,
388                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
389                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
390                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
391                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
392                 release_sock(sk);
393                 if (copy_to_user(optval,
394                                  crypto_info_aes_gcm_128,
395                                  sizeof(*crypto_info_aes_gcm_128)))
396                         rc = -EFAULT;
397                 break;
398         }
399         case TLS_CIPHER_AES_GCM_256: {
400                 struct tls12_crypto_info_aes_gcm_256 *
401                   crypto_info_aes_gcm_256 =
402                   container_of(crypto_info,
403                                struct tls12_crypto_info_aes_gcm_256,
404                                info);
405
406                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
407                         rc = -EINVAL;
408                         goto out;
409                 }
410                 lock_sock(sk);
411                 memcpy(crypto_info_aes_gcm_256->iv,
412                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
413                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
414                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
415                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
416                 release_sock(sk);
417                 if (copy_to_user(optval,
418                                  crypto_info_aes_gcm_256,
419                                  sizeof(*crypto_info_aes_gcm_256)))
420                         rc = -EFAULT;
421                 break;
422         }
423         default:
424                 rc = -EINVAL;
425         }
426
427 out:
428         return rc;
429 }
430
431 static int do_tls_getsockopt(struct sock *sk, int optname,
432                              char __user *optval, int __user *optlen)
433 {
434         int rc = 0;
435
436         switch (optname) {
437         case TLS_TX:
438                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
439                 break;
440         default:
441                 rc = -ENOPROTOOPT;
442                 break;
443         }
444         return rc;
445 }
446
447 static int tls_getsockopt(struct sock *sk, int level, int optname,
448                           char __user *optval, int __user *optlen)
449 {
450         struct tls_context *ctx = tls_get_ctx(sk);
451
452         if (level != SOL_TLS)
453                 return ctx->getsockopt(sk, level, optname, optval, optlen);
454
455         return do_tls_getsockopt(sk, optname, optval, optlen);
456 }
457
458 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
459                                   unsigned int optlen, int tx)
460 {
461         struct tls_crypto_info *crypto_info;
462         struct tls_crypto_info *alt_crypto_info;
463         struct tls_context *ctx = tls_get_ctx(sk);
464         size_t optsize;
465         int rc = 0;
466         int conf;
467
468         if (!optval || (optlen < sizeof(*crypto_info))) {
469                 rc = -EINVAL;
470                 goto out;
471         }
472
473         if (tx) {
474                 crypto_info = &ctx->crypto_send.info;
475                 alt_crypto_info = &ctx->crypto_recv.info;
476         } else {
477                 crypto_info = &ctx->crypto_recv.info;
478                 alt_crypto_info = &ctx->crypto_send.info;
479         }
480
481         /* Currently we don't support set crypto info more than one time */
482         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
483                 rc = -EBUSY;
484                 goto out;
485         }
486
487         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
488         if (rc) {
489                 rc = -EFAULT;
490                 goto err_crypto_info;
491         }
492
493         /* check version */
494         if (crypto_info->version != TLS_1_2_VERSION &&
495             crypto_info->version != TLS_1_3_VERSION) {
496                 rc = -ENOTSUPP;
497                 goto err_crypto_info;
498         }
499
500         /* Ensure that TLS version and ciphers are same in both directions */
501         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
502                 if (alt_crypto_info->version != crypto_info->version ||
503                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
504                         rc = -EINVAL;
505                         goto err_crypto_info;
506                 }
507         }
508
509         switch (crypto_info->cipher_type) {
510         case TLS_CIPHER_AES_GCM_128:
511                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
512                 break;
513         case TLS_CIPHER_AES_GCM_256: {
514                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
515                 break;
516         }
517         case TLS_CIPHER_AES_CCM_128:
518                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
519                 break;
520         default:
521                 rc = -EINVAL;
522                 goto err_crypto_info;
523         }
524
525         if (optlen != optsize) {
526                 rc = -EINVAL;
527                 goto err_crypto_info;
528         }
529
530         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
531                             optlen - sizeof(*crypto_info));
532         if (rc) {
533                 rc = -EFAULT;
534                 goto err_crypto_info;
535         }
536
537         if (tx) {
538 #ifdef CONFIG_TLS_DEVICE
539                 rc = tls_set_device_offload(sk, ctx);
540                 conf = TLS_HW;
541                 if (rc) {
542 #else
543                 {
544 #endif
545                         rc = tls_set_sw_offload(sk, ctx, 1);
546                         if (rc)
547                                 goto err_crypto_info;
548                         conf = TLS_SW;
549                 }
550         } else {
551 #ifdef CONFIG_TLS_DEVICE
552                 rc = tls_set_device_offload_rx(sk, ctx);
553                 conf = TLS_HW;
554                 if (rc) {
555 #else
556                 {
557 #endif
558                         rc = tls_set_sw_offload(sk, ctx, 0);
559                         if (rc)
560                                 goto err_crypto_info;
561                         conf = TLS_SW;
562                 }
563                 tls_sw_strparser_arm(sk, ctx);
564         }
565
566         if (tx)
567                 ctx->tx_conf = conf;
568         else
569                 ctx->rx_conf = conf;
570         update_sk_prot(sk, ctx);
571         if (tx) {
572                 ctx->sk_write_space = sk->sk_write_space;
573                 sk->sk_write_space = tls_write_space;
574         } else {
575                 sk->sk_socket->ops = &tls_sw_proto_ops;
576         }
577         goto out;
578
579 err_crypto_info:
580         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
581 out:
582         return rc;
583 }
584
585 static int do_tls_setsockopt(struct sock *sk, int optname,
586                              char __user *optval, unsigned int optlen)
587 {
588         int rc = 0;
589
590         switch (optname) {
591         case TLS_TX:
592         case TLS_RX:
593                 lock_sock(sk);
594                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
595                                             optname == TLS_TX);
596                 release_sock(sk);
597                 break;
598         default:
599                 rc = -ENOPROTOOPT;
600                 break;
601         }
602         return rc;
603 }
604
605 static int tls_setsockopt(struct sock *sk, int level, int optname,
606                           char __user *optval, unsigned int optlen)
607 {
608         struct tls_context *ctx = tls_get_ctx(sk);
609
610         if (level != SOL_TLS)
611                 return ctx->setsockopt(sk, level, optname, optval, optlen);
612
613         return do_tls_setsockopt(sk, optname, optval, optlen);
614 }
615
616 static struct tls_context *create_ctx(struct sock *sk)
617 {
618         struct inet_connection_sock *icsk = inet_csk(sk);
619         struct tls_context *ctx;
620
621         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
622         if (!ctx)
623                 return NULL;
624
625         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
626         ctx->setsockopt = sk->sk_prot->setsockopt;
627         ctx->getsockopt = sk->sk_prot->getsockopt;
628         ctx->sk_proto_close = sk->sk_prot->close;
629         ctx->unhash = sk->sk_prot->unhash;
630         return ctx;
631 }
632
633 static void tls_build_proto(struct sock *sk)
634 {
635         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
636
637         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
638         if (ip_ver == TLSV6 &&
639             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
640                 mutex_lock(&tcpv6_prot_mutex);
641                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
642                         build_protos(tls_prots[TLSV6], sk->sk_prot);
643                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
644                 }
645                 mutex_unlock(&tcpv6_prot_mutex);
646         }
647
648         if (ip_ver == TLSV4 &&
649             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
650                 mutex_lock(&tcpv4_prot_mutex);
651                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
652                         build_protos(tls_prots[TLSV4], sk->sk_prot);
653                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
654                 }
655                 mutex_unlock(&tcpv4_prot_mutex);
656         }
657 }
658
659 static void tls_hw_sk_destruct(struct sock *sk)
660 {
661         struct tls_context *ctx = tls_get_ctx(sk);
662         struct inet_connection_sock *icsk = inet_csk(sk);
663
664         ctx->sk_destruct(sk);
665         /* Free ctx */
666         rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
667         tls_ctx_free(sk, ctx);
668 }
669
670 static int tls_hw_prot(struct sock *sk)
671 {
672         struct tls_context *ctx;
673         struct tls_device *dev;
674         int rc = 0;
675
676         spin_lock_bh(&device_spinlock);
677         list_for_each_entry(dev, &device_list, dev_list) {
678                 if (dev->feature && dev->feature(dev)) {
679                         ctx = create_ctx(sk);
680                         if (!ctx)
681                                 goto out;
682
683                         spin_unlock_bh(&device_spinlock);
684                         tls_build_proto(sk);
685                         ctx->hash = sk->sk_prot->hash;
686                         ctx->unhash = sk->sk_prot->unhash;
687                         ctx->sk_proto_close = sk->sk_prot->close;
688                         ctx->sk_destruct = sk->sk_destruct;
689                         sk->sk_destruct = tls_hw_sk_destruct;
690                         ctx->rx_conf = TLS_HW_RECORD;
691                         ctx->tx_conf = TLS_HW_RECORD;
692                         update_sk_prot(sk, ctx);
693                         spin_lock_bh(&device_spinlock);
694                         rc = 1;
695                         break;
696                 }
697         }
698 out:
699         spin_unlock_bh(&device_spinlock);
700         return rc;
701 }
702
703 static void tls_hw_unhash(struct sock *sk)
704 {
705         struct tls_context *ctx = tls_get_ctx(sk);
706         struct tls_device *dev;
707
708         spin_lock_bh(&device_spinlock);
709         list_for_each_entry(dev, &device_list, dev_list) {
710                 if (dev->unhash) {
711                         kref_get(&dev->kref);
712                         spin_unlock_bh(&device_spinlock);
713                         dev->unhash(dev, sk);
714                         kref_put(&dev->kref, dev->release);
715                         spin_lock_bh(&device_spinlock);
716                 }
717         }
718         spin_unlock_bh(&device_spinlock);
719         ctx->unhash(sk);
720 }
721
722 static int tls_hw_hash(struct sock *sk)
723 {
724         struct tls_context *ctx = tls_get_ctx(sk);
725         struct tls_device *dev;
726         int err;
727
728         err = ctx->hash(sk);
729         spin_lock_bh(&device_spinlock);
730         list_for_each_entry(dev, &device_list, dev_list) {
731                 if (dev->hash) {
732                         kref_get(&dev->kref);
733                         spin_unlock_bh(&device_spinlock);
734                         err |= dev->hash(dev, sk);
735                         kref_put(&dev->kref, dev->release);
736                         spin_lock_bh(&device_spinlock);
737                 }
738         }
739         spin_unlock_bh(&device_spinlock);
740
741         if (err)
742                 tls_hw_unhash(sk);
743         return err;
744 }
745
746 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
747                          struct proto *base)
748 {
749         prot[TLS_BASE][TLS_BASE] = *base;
750         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
751         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
752         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
753
754         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
755         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
756         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
757
758         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
759         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
760         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
761         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
762
763         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
764         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
765         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
766         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
767
768 #ifdef CONFIG_TLS_DEVICE
769         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
770         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
771         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
772
773         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
774         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
775         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
776
777         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
778
779         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
780
781         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
782 #endif
783
784         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
785         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
786         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
787 }
788
789 static int tls_init(struct sock *sk)
790 {
791         struct tls_context *ctx;
792         int rc = 0;
793
794         if (tls_hw_prot(sk))
795                 return 0;
796
797         /* The TLS ulp is currently supported only for TCP sockets
798          * in ESTABLISHED state.
799          * Supporting sockets in LISTEN state will require us
800          * to modify the accept implementation to clone rather then
801          * share the ulp context.
802          */
803         if (sk->sk_state != TCP_ESTABLISHED)
804                 return -ENOTSUPP;
805
806         tls_build_proto(sk);
807
808         /* allocate tls context */
809         write_lock_bh(&sk->sk_callback_lock);
810         ctx = create_ctx(sk);
811         if (!ctx) {
812                 rc = -ENOMEM;
813                 goto out;
814         }
815
816         ctx->tx_conf = TLS_BASE;
817         ctx->rx_conf = TLS_BASE;
818         ctx->sk_proto = sk->sk_prot;
819         update_sk_prot(sk, ctx);
820 out:
821         write_unlock_bh(&sk->sk_callback_lock);
822         return rc;
823 }
824
825 static void tls_update(struct sock *sk, struct proto *p)
826 {
827         struct tls_context *ctx;
828
829         ctx = tls_get_ctx(sk);
830         if (likely(ctx)) {
831                 ctx->sk_proto_close = p->close;
832                 ctx->sk_proto = p;
833         } else {
834                 sk->sk_prot = p;
835         }
836 }
837
838 void tls_register_device(struct tls_device *device)
839 {
840         spin_lock_bh(&device_spinlock);
841         list_add_tail(&device->dev_list, &device_list);
842         spin_unlock_bh(&device_spinlock);
843 }
844 EXPORT_SYMBOL(tls_register_device);
845
846 void tls_unregister_device(struct tls_device *device)
847 {
848         spin_lock_bh(&device_spinlock);
849         list_del(&device->dev_list);
850         spin_unlock_bh(&device_spinlock);
851 }
852 EXPORT_SYMBOL(tls_unregister_device);
853
854 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
855         .name                   = "tls",
856         .owner                  = THIS_MODULE,
857         .init                   = tls_init,
858         .update                 = tls_update,
859 };
860
861 static int __init tls_register(void)
862 {
863         tls_sw_proto_ops = inet_stream_ops;
864         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
865
866 #ifdef CONFIG_TLS_DEVICE
867         tls_device_init();
868 #endif
869         tcp_register_ulp(&tcp_tls_ulp_ops);
870
871         return 0;
872 }
873
874 static void __exit tls_unregister(void)
875 {
876         tcp_unregister_ulp(&tcp_tls_ulp_ops);
877 #ifdef CONFIG_TLS_DEVICE
878         tls_device_cleanup();
879 #endif
880 }
881
882 module_init(tls_register);
883 module_exit(tls_unregister);