Merge tag 'hyperv-next-signed-20211102' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54         TLSV4,
55         TLSV6,
56         TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          const struct proto *base);
67
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         WRITE_ONCE(sk->sk_prot,
73                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 }
75
76 int wait_on_pending_writer(struct sock *sk, long *timeo)
77 {
78         int rc = 0;
79         DEFINE_WAIT_FUNC(wait, woken_wake_function);
80
81         add_wait_queue(sk_sleep(sk), &wait);
82         while (1) {
83                 if (!*timeo) {
84                         rc = -EAGAIN;
85                         break;
86                 }
87
88                 if (signal_pending(current)) {
89                         rc = sock_intr_errno(*timeo);
90                         break;
91                 }
92
93                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94                         break;
95         }
96         remove_wait_queue(sk_sleep(sk), &wait);
97         return rc;
98 }
99
100 int tls_push_sg(struct sock *sk,
101                 struct tls_context *ctx,
102                 struct scatterlist *sg,
103                 u16 first_offset,
104                 int flags)
105 {
106         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107         int ret = 0;
108         struct page *p;
109         size_t size;
110         int offset = first_offset;
111
112         size = sg->length - offset;
113         offset += sg->offset;
114
115         ctx->in_tcp_sendpages = true;
116         while (1) {
117                 if (sg_is_last(sg))
118                         sendpage_flags = flags;
119
120                 /* is sending application-limited? */
121                 tcp_rate_check_app_limited(sk);
122                 p = sg_page(sg);
123 retry:
124                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126                 if (ret != size) {
127                         if (ret > 0) {
128                                 offset += ret;
129                                 size -= ret;
130                                 goto retry;
131                         }
132
133                         offset -= sg->offset;
134                         ctx->partially_sent_offset = offset;
135                         ctx->partially_sent_record = (void *)sg;
136                         ctx->in_tcp_sendpages = false;
137                         return ret;
138                 }
139
140                 put_page(p);
141                 sk_mem_uncharge(sk, sg->length);
142                 sg = sg_next(sg);
143                 if (!sg)
144                         break;
145
146                 offset = sg->offset;
147                 size = sg->length;
148         }
149
150         ctx->in_tcp_sendpages = false;
151
152         return 0;
153 }
154
155 static int tls_handle_open_record(struct sock *sk, int flags)
156 {
157         struct tls_context *ctx = tls_get_ctx(sk);
158
159         if (tls_is_pending_open_record(ctx))
160                 return ctx->push_pending_record(sk, flags);
161
162         return 0;
163 }
164
165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166                       unsigned char *record_type)
167 {
168         struct cmsghdr *cmsg;
169         int rc = -EINVAL;
170
171         for_each_cmsghdr(cmsg, msg) {
172                 if (!CMSG_OK(msg, cmsg))
173                         return -EINVAL;
174                 if (cmsg->cmsg_level != SOL_TLS)
175                         continue;
176
177                 switch (cmsg->cmsg_type) {
178                 case TLS_SET_RECORD_TYPE:
179                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180                                 return -EINVAL;
181
182                         if (msg->msg_flags & MSG_MORE)
183                                 return -EINVAL;
184
185                         rc = tls_handle_open_record(sk, msg->msg_flags);
186                         if (rc)
187                                 return rc;
188
189                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190                         rc = 0;
191                         break;
192                 default:
193                         return -EINVAL;
194                 }
195         }
196
197         return rc;
198 }
199
200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201                             int flags)
202 {
203         struct scatterlist *sg;
204         u16 offset;
205
206         sg = ctx->partially_sent_record;
207         offset = ctx->partially_sent_offset;
208
209         ctx->partially_sent_record = NULL;
210         return tls_push_sg(sk, ctx, sg, offset, flags);
211 }
212
213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214 {
215         struct scatterlist *sg;
216
217         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218                 put_page(sg_page(sg));
219                 sk_mem_uncharge(sk, sg->length);
220         }
221         ctx->partially_sent_record = NULL;
222 }
223
224 static void tls_write_space(struct sock *sk)
225 {
226         struct tls_context *ctx = tls_get_ctx(sk);
227
228         /* If in_tcp_sendpages call lower protocol write space handler
229          * to ensure we wake up any waiting operations there. For example
230          * if do_tcp_sendpages where to call sk_wait_event.
231          */
232         if (ctx->in_tcp_sendpages) {
233                 ctx->sk_write_space(sk);
234                 return;
235         }
236
237 #ifdef CONFIG_TLS_DEVICE
238         if (ctx->tx_conf == TLS_HW)
239                 tls_device_write_space(sk, ctx);
240         else
241 #endif
242                 tls_sw_write_space(sk, ctx);
243
244         ctx->sk_write_space(sk);
245 }
246
247 /**
248  * tls_ctx_free() - free TLS ULP context
249  * @sk:  socket to with @ctx is attached
250  * @ctx: TLS context structure
251  *
252  * Free TLS context. If @sk is %NULL caller guarantees that the socket
253  * to which @ctx was attached has no outstanding references.
254  */
255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256 {
257         if (!ctx)
258                 return;
259
260         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262         mutex_destroy(&ctx->tx_lock);
263
264         if (sk)
265                 kfree_rcu(ctx, rcu);
266         else
267                 kfree(ctx);
268 }
269
270 static void tls_sk_proto_cleanup(struct sock *sk,
271                                  struct tls_context *ctx, long timeo)
272 {
273         if (unlikely(sk->sk_write_pending) &&
274             !wait_on_pending_writer(sk, &timeo))
275                 tls_handle_open_record(sk, 0);
276
277         /* We need these for tls_sw_fallback handling of other packets */
278         if (ctx->tx_conf == TLS_SW) {
279                 kfree(ctx->tx.rec_seq);
280                 kfree(ctx->tx.iv);
281                 tls_sw_release_resources_tx(sk);
282                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283         } else if (ctx->tx_conf == TLS_HW) {
284                 tls_device_free_resources_tx(sk);
285                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286         }
287
288         if (ctx->rx_conf == TLS_SW) {
289                 tls_sw_release_resources_rx(sk);
290                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291         } else if (ctx->rx_conf == TLS_HW) {
292                 tls_device_offload_cleanup_rx(sk);
293                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294         }
295 }
296
297 static void tls_sk_proto_close(struct sock *sk, long timeout)
298 {
299         struct inet_connection_sock *icsk = inet_csk(sk);
300         struct tls_context *ctx = tls_get_ctx(sk);
301         long timeo = sock_sndtimeo(sk, 0);
302         bool free_ctx;
303
304         if (ctx->tx_conf == TLS_SW)
305                 tls_sw_cancel_work_tx(ctx);
306
307         lock_sock(sk);
308         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311                 tls_sk_proto_cleanup(sk, ctx, timeo);
312
313         write_lock_bh(&sk->sk_callback_lock);
314         if (free_ctx)
315                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317         if (sk->sk_write_space == tls_write_space)
318                 sk->sk_write_space = ctx->sk_write_space;
319         write_unlock_bh(&sk->sk_callback_lock);
320         release_sock(sk);
321         if (ctx->tx_conf == TLS_SW)
322                 tls_sw_free_ctx_tx(ctx);
323         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324                 tls_sw_strparser_done(ctx);
325         if (ctx->rx_conf == TLS_SW)
326                 tls_sw_free_ctx_rx(ctx);
327         ctx->sk_proto->close(sk, timeout);
328
329         if (free_ctx)
330                 tls_ctx_free(sk, ctx);
331 }
332
333 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
334                                   int __user *optlen, int tx)
335 {
336         int rc = 0;
337         struct tls_context *ctx = tls_get_ctx(sk);
338         struct tls_crypto_info *crypto_info;
339         struct cipher_context *cctx;
340         int len;
341
342         if (get_user(len, optlen))
343                 return -EFAULT;
344
345         if (!optval || (len < sizeof(*crypto_info))) {
346                 rc = -EINVAL;
347                 goto out;
348         }
349
350         if (!ctx) {
351                 rc = -EBUSY;
352                 goto out;
353         }
354
355         /* get user crypto info */
356         if (tx) {
357                 crypto_info = &ctx->crypto_send.info;
358                 cctx = &ctx->tx;
359         } else {
360                 crypto_info = &ctx->crypto_recv.info;
361                 cctx = &ctx->rx;
362         }
363
364         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
365                 rc = -EBUSY;
366                 goto out;
367         }
368
369         if (len == sizeof(*crypto_info)) {
370                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
371                         rc = -EFAULT;
372                 goto out;
373         }
374
375         switch (crypto_info->cipher_type) {
376         case TLS_CIPHER_AES_GCM_128: {
377                 struct tls12_crypto_info_aes_gcm_128 *
378                   crypto_info_aes_gcm_128 =
379                   container_of(crypto_info,
380                                struct tls12_crypto_info_aes_gcm_128,
381                                info);
382
383                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
384                         rc = -EINVAL;
385                         goto out;
386                 }
387                 lock_sock(sk);
388                 memcpy(crypto_info_aes_gcm_128->iv,
389                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
390                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
391                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
392                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
393                 release_sock(sk);
394                 if (copy_to_user(optval,
395                                  crypto_info_aes_gcm_128,
396                                  sizeof(*crypto_info_aes_gcm_128)))
397                         rc = -EFAULT;
398                 break;
399         }
400         case TLS_CIPHER_AES_GCM_256: {
401                 struct tls12_crypto_info_aes_gcm_256 *
402                   crypto_info_aes_gcm_256 =
403                   container_of(crypto_info,
404                                struct tls12_crypto_info_aes_gcm_256,
405                                info);
406
407                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
408                         rc = -EINVAL;
409                         goto out;
410                 }
411                 lock_sock(sk);
412                 memcpy(crypto_info_aes_gcm_256->iv,
413                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
415                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417                 release_sock(sk);
418                 if (copy_to_user(optval,
419                                  crypto_info_aes_gcm_256,
420                                  sizeof(*crypto_info_aes_gcm_256)))
421                         rc = -EFAULT;
422                 break;
423         }
424         case TLS_CIPHER_AES_CCM_128: {
425                 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
426                         container_of(crypto_info,
427                                 struct tls12_crypto_info_aes_ccm_128, info);
428
429                 if (len != sizeof(*aes_ccm_128)) {
430                         rc = -EINVAL;
431                         goto out;
432                 }
433                 lock_sock(sk);
434                 memcpy(aes_ccm_128->iv,
435                        cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
436                        TLS_CIPHER_AES_CCM_128_IV_SIZE);
437                 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
438                        TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
439                 release_sock(sk);
440                 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
441                         rc = -EFAULT;
442                 break;
443         }
444         case TLS_CIPHER_CHACHA20_POLY1305: {
445                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
446                         container_of(crypto_info,
447                                 struct tls12_crypto_info_chacha20_poly1305,
448                                 info);
449
450                 if (len != sizeof(*chacha20_poly1305)) {
451                         rc = -EINVAL;
452                         goto out;
453                 }
454                 lock_sock(sk);
455                 memcpy(chacha20_poly1305->iv,
456                        cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
457                        TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
458                 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
459                        TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
460                 release_sock(sk);
461                 if (copy_to_user(optval, chacha20_poly1305,
462                                 sizeof(*chacha20_poly1305)))
463                         rc = -EFAULT;
464                 break;
465         }
466         case TLS_CIPHER_SM4_GCM: {
467                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
468                         container_of(crypto_info,
469                                 struct tls12_crypto_info_sm4_gcm, info);
470
471                 if (len != sizeof(*sm4_gcm_info)) {
472                         rc = -EINVAL;
473                         goto out;
474                 }
475                 lock_sock(sk);
476                 memcpy(sm4_gcm_info->iv,
477                        cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
478                        TLS_CIPHER_SM4_GCM_IV_SIZE);
479                 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
480                        TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
481                 release_sock(sk);
482                 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
483                         rc = -EFAULT;
484                 break;
485         }
486         case TLS_CIPHER_SM4_CCM: {
487                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
488                         container_of(crypto_info,
489                                 struct tls12_crypto_info_sm4_ccm, info);
490
491                 if (len != sizeof(*sm4_ccm_info)) {
492                         rc = -EINVAL;
493                         goto out;
494                 }
495                 lock_sock(sk);
496                 memcpy(sm4_ccm_info->iv,
497                        cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
498                        TLS_CIPHER_SM4_CCM_IV_SIZE);
499                 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
500                        TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
501                 release_sock(sk);
502                 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
503                         rc = -EFAULT;
504                 break;
505         }
506         default:
507                 rc = -EINVAL;
508         }
509
510 out:
511         return rc;
512 }
513
514 static int do_tls_getsockopt(struct sock *sk, int optname,
515                              char __user *optval, int __user *optlen)
516 {
517         int rc = 0;
518
519         switch (optname) {
520         case TLS_TX:
521         case TLS_RX:
522                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
523                                             optname == TLS_TX);
524                 break;
525         default:
526                 rc = -ENOPROTOOPT;
527                 break;
528         }
529         return rc;
530 }
531
532 static int tls_getsockopt(struct sock *sk, int level, int optname,
533                           char __user *optval, int __user *optlen)
534 {
535         struct tls_context *ctx = tls_get_ctx(sk);
536
537         if (level != SOL_TLS)
538                 return ctx->sk_proto->getsockopt(sk, level,
539                                                  optname, optval, optlen);
540
541         return do_tls_getsockopt(sk, optname, optval, optlen);
542 }
543
544 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
545                                   unsigned int optlen, int tx)
546 {
547         struct tls_crypto_info *crypto_info;
548         struct tls_crypto_info *alt_crypto_info;
549         struct tls_context *ctx = tls_get_ctx(sk);
550         size_t optsize;
551         int rc = 0;
552         int conf;
553
554         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
555                 rc = -EINVAL;
556                 goto out;
557         }
558
559         if (tx) {
560                 crypto_info = &ctx->crypto_send.info;
561                 alt_crypto_info = &ctx->crypto_recv.info;
562         } else {
563                 crypto_info = &ctx->crypto_recv.info;
564                 alt_crypto_info = &ctx->crypto_send.info;
565         }
566
567         /* Currently we don't support set crypto info more than one time */
568         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
569                 rc = -EBUSY;
570                 goto out;
571         }
572
573         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
574         if (rc) {
575                 rc = -EFAULT;
576                 goto err_crypto_info;
577         }
578
579         /* check version */
580         if (crypto_info->version != TLS_1_2_VERSION &&
581             crypto_info->version != TLS_1_3_VERSION) {
582                 rc = -EINVAL;
583                 goto err_crypto_info;
584         }
585
586         /* Ensure that TLS version and ciphers are same in both directions */
587         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
588                 if (alt_crypto_info->version != crypto_info->version ||
589                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
590                         rc = -EINVAL;
591                         goto err_crypto_info;
592                 }
593         }
594
595         switch (crypto_info->cipher_type) {
596         case TLS_CIPHER_AES_GCM_128:
597                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
598                 break;
599         case TLS_CIPHER_AES_GCM_256: {
600                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
601                 break;
602         }
603         case TLS_CIPHER_AES_CCM_128:
604                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
605                 break;
606         case TLS_CIPHER_CHACHA20_POLY1305:
607                 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
608                 break;
609         case TLS_CIPHER_SM4_GCM:
610                 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
611                 break;
612         case TLS_CIPHER_SM4_CCM:
613                 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
614                 break;
615         default:
616                 rc = -EINVAL;
617                 goto err_crypto_info;
618         }
619
620         if (optlen != optsize) {
621                 rc = -EINVAL;
622                 goto err_crypto_info;
623         }
624
625         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
626                                       sizeof(*crypto_info),
627                                       optlen - sizeof(*crypto_info));
628         if (rc) {
629                 rc = -EFAULT;
630                 goto err_crypto_info;
631         }
632
633         if (tx) {
634                 rc = tls_set_device_offload(sk, ctx);
635                 conf = TLS_HW;
636                 if (!rc) {
637                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
638                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
639                 } else {
640                         rc = tls_set_sw_offload(sk, ctx, 1);
641                         if (rc)
642                                 goto err_crypto_info;
643                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
644                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
645                         conf = TLS_SW;
646                 }
647         } else {
648                 rc = tls_set_device_offload_rx(sk, ctx);
649                 conf = TLS_HW;
650                 if (!rc) {
651                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
652                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
653                 } else {
654                         rc = tls_set_sw_offload(sk, ctx, 0);
655                         if (rc)
656                                 goto err_crypto_info;
657                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
658                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
659                         conf = TLS_SW;
660                 }
661                 tls_sw_strparser_arm(sk, ctx);
662         }
663
664         if (tx)
665                 ctx->tx_conf = conf;
666         else
667                 ctx->rx_conf = conf;
668         update_sk_prot(sk, ctx);
669         if (tx) {
670                 ctx->sk_write_space = sk->sk_write_space;
671                 sk->sk_write_space = tls_write_space;
672         } else {
673                 sk->sk_socket->ops = &tls_sw_proto_ops;
674         }
675         goto out;
676
677 err_crypto_info:
678         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
679 out:
680         return rc;
681 }
682
683 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
684                              unsigned int optlen)
685 {
686         int rc = 0;
687
688         switch (optname) {
689         case TLS_TX:
690         case TLS_RX:
691                 lock_sock(sk);
692                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
693                                             optname == TLS_TX);
694                 release_sock(sk);
695                 break;
696         default:
697                 rc = -ENOPROTOOPT;
698                 break;
699         }
700         return rc;
701 }
702
703 static int tls_setsockopt(struct sock *sk, int level, int optname,
704                           sockptr_t optval, unsigned int optlen)
705 {
706         struct tls_context *ctx = tls_get_ctx(sk);
707
708         if (level != SOL_TLS)
709                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
710                                                  optlen);
711
712         return do_tls_setsockopt(sk, optname, optval, optlen);
713 }
714
715 struct tls_context *tls_ctx_create(struct sock *sk)
716 {
717         struct inet_connection_sock *icsk = inet_csk(sk);
718         struct tls_context *ctx;
719
720         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
721         if (!ctx)
722                 return NULL;
723
724         mutex_init(&ctx->tx_lock);
725         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
726         ctx->sk_proto = READ_ONCE(sk->sk_prot);
727         ctx->sk = sk;
728         return ctx;
729 }
730
731 static void tls_build_proto(struct sock *sk)
732 {
733         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
734         struct proto *prot = READ_ONCE(sk->sk_prot);
735
736         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
737         if (ip_ver == TLSV6 &&
738             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
739                 mutex_lock(&tcpv6_prot_mutex);
740                 if (likely(prot != saved_tcpv6_prot)) {
741                         build_protos(tls_prots[TLSV6], prot);
742                         smp_store_release(&saved_tcpv6_prot, prot);
743                 }
744                 mutex_unlock(&tcpv6_prot_mutex);
745         }
746
747         if (ip_ver == TLSV4 &&
748             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
749                 mutex_lock(&tcpv4_prot_mutex);
750                 if (likely(prot != saved_tcpv4_prot)) {
751                         build_protos(tls_prots[TLSV4], prot);
752                         smp_store_release(&saved_tcpv4_prot, prot);
753                 }
754                 mutex_unlock(&tcpv4_prot_mutex);
755         }
756 }
757
758 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
759                          const struct proto *base)
760 {
761         prot[TLS_BASE][TLS_BASE] = *base;
762         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
763         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
764         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
765
766         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
767         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
768         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
769
770         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
771         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
772         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
773         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
774
775         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
776         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
777         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
778         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
779
780 #ifdef CONFIG_TLS_DEVICE
781         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
782         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
783         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
784
785         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
786         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
787         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
788
789         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
790
791         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
792
793         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
794 #endif
795 #ifdef CONFIG_TLS_TOE
796         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
797         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
798         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
799 #endif
800 }
801
802 static int tls_init(struct sock *sk)
803 {
804         struct tls_context *ctx;
805         int rc = 0;
806
807         tls_build_proto(sk);
808
809 #ifdef CONFIG_TLS_TOE
810         if (tls_toe_bypass(sk))
811                 return 0;
812 #endif
813
814         /* The TLS ulp is currently supported only for TCP sockets
815          * in ESTABLISHED state.
816          * Supporting sockets in LISTEN state will require us
817          * to modify the accept implementation to clone rather then
818          * share the ulp context.
819          */
820         if (sk->sk_state != TCP_ESTABLISHED)
821                 return -ENOTCONN;
822
823         /* allocate tls context */
824         write_lock_bh(&sk->sk_callback_lock);
825         ctx = tls_ctx_create(sk);
826         if (!ctx) {
827                 rc = -ENOMEM;
828                 goto out;
829         }
830
831         ctx->tx_conf = TLS_BASE;
832         ctx->rx_conf = TLS_BASE;
833         update_sk_prot(sk, ctx);
834 out:
835         write_unlock_bh(&sk->sk_callback_lock);
836         return rc;
837 }
838
839 static void tls_update(struct sock *sk, struct proto *p,
840                        void (*write_space)(struct sock *sk))
841 {
842         struct tls_context *ctx;
843
844         ctx = tls_get_ctx(sk);
845         if (likely(ctx)) {
846                 ctx->sk_write_space = write_space;
847                 ctx->sk_proto = p;
848         } else {
849                 /* Pairs with lockless read in sk_clone_lock(). */
850                 WRITE_ONCE(sk->sk_prot, p);
851                 sk->sk_write_space = write_space;
852         }
853 }
854
855 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
856 {
857         u16 version, cipher_type;
858         struct tls_context *ctx;
859         struct nlattr *start;
860         int err;
861
862         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
863         if (!start)
864                 return -EMSGSIZE;
865
866         rcu_read_lock();
867         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
868         if (!ctx) {
869                 err = 0;
870                 goto nla_failure;
871         }
872         version = ctx->prot_info.version;
873         if (version) {
874                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
875                 if (err)
876                         goto nla_failure;
877         }
878         cipher_type = ctx->prot_info.cipher_type;
879         if (cipher_type) {
880                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
881                 if (err)
882                         goto nla_failure;
883         }
884         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
885         if (err)
886                 goto nla_failure;
887
888         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
889         if (err)
890                 goto nla_failure;
891
892         rcu_read_unlock();
893         nla_nest_end(skb, start);
894         return 0;
895
896 nla_failure:
897         rcu_read_unlock();
898         nla_nest_cancel(skb, start);
899         return err;
900 }
901
902 static size_t tls_get_info_size(const struct sock *sk)
903 {
904         size_t size = 0;
905
906         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
907                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
908                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
909                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
910                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
911                 0;
912
913         return size;
914 }
915
916 static int __net_init tls_init_net(struct net *net)
917 {
918         int err;
919
920         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
921         if (!net->mib.tls_statistics)
922                 return -ENOMEM;
923
924         err = tls_proc_init(net);
925         if (err)
926                 goto err_free_stats;
927
928         return 0;
929 err_free_stats:
930         free_percpu(net->mib.tls_statistics);
931         return err;
932 }
933
934 static void __net_exit tls_exit_net(struct net *net)
935 {
936         tls_proc_fini(net);
937         free_percpu(net->mib.tls_statistics);
938 }
939
940 static struct pernet_operations tls_proc_ops = {
941         .init = tls_init_net,
942         .exit = tls_exit_net,
943 };
944
945 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
946         .name                   = "tls",
947         .owner                  = THIS_MODULE,
948         .init                   = tls_init,
949         .update                 = tls_update,
950         .get_info               = tls_get_info,
951         .get_info_size          = tls_get_info_size,
952 };
953
954 static int __init tls_register(void)
955 {
956         int err;
957
958         err = register_pernet_subsys(&tls_proc_ops);
959         if (err)
960                 return err;
961
962         tls_sw_proto_ops = inet_stream_ops;
963         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
964         tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked;
965
966         tls_device_init();
967         tcp_register_ulp(&tcp_tls_ulp_ops);
968
969         return 0;
970 }
971
972 static void __exit tls_unregister(void)
973 {
974         tcp_unregister_ulp(&tcp_tls_ulp_ops);
975         tls_device_cleanup();
976         unregister_pernet_subsys(&tls_proc_ops);
977 }
978
979 module_init(tls_register);
980 module_exit(tls_unregister);