x86/platform/intel/iosf_mbi Rewrite locking
[linux-2.6-microblaze.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65                          struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76         int rc = 0;
77         DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79         add_wait_queue(sk_sleep(sk), &wait);
80         while (1) {
81                 if (!*timeo) {
82                         rc = -EAGAIN;
83                         break;
84                 }
85
86                 if (signal_pending(current)) {
87                         rc = sock_intr_errno(*timeo);
88                         break;
89                 }
90
91                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92                         break;
93         }
94         remove_wait_queue(sk_sleep(sk), &wait);
95         return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99                 struct tls_context *ctx,
100                 struct scatterlist *sg,
101                 u16 first_offset,
102                 int flags)
103 {
104         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105         int ret = 0;
106         struct page *p;
107         size_t size;
108         int offset = first_offset;
109
110         size = sg->length - offset;
111         offset += sg->offset;
112
113         ctx->in_tcp_sendpages = true;
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         ctx->in_tcp_sendpages = false;
135                         return ret;
136                 }
137
138                 put_page(p);
139                 sk_mem_uncharge(sk, sg->length);
140                 sg = sg_next(sg);
141                 if (!sg)
142                         break;
143
144                 offset = sg->offset;
145                 size = sg->length;
146         }
147
148         ctx->in_tcp_sendpages = false;
149
150         return 0;
151 }
152
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155         struct tls_context *ctx = tls_get_ctx(sk);
156
157         if (tls_is_pending_open_record(ctx))
158                 return ctx->push_pending_record(sk, flags);
159
160         return 0;
161 }
162
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164                       unsigned char *record_type)
165 {
166         struct cmsghdr *cmsg;
167         int rc = -EINVAL;
168
169         for_each_cmsghdr(cmsg, msg) {
170                 if (!CMSG_OK(msg, cmsg))
171                         return -EINVAL;
172                 if (cmsg->cmsg_level != SOL_TLS)
173                         continue;
174
175                 switch (cmsg->cmsg_type) {
176                 case TLS_SET_RECORD_TYPE:
177                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178                                 return -EINVAL;
179
180                         if (msg->msg_flags & MSG_MORE)
181                                 return -EINVAL;
182
183                         rc = tls_handle_open_record(sk, msg->msg_flags);
184                         if (rc)
185                                 return rc;
186
187                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
188                         rc = 0;
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return rc;
196 }
197
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199                             int flags)
200 {
201         struct scatterlist *sg;
202         u16 offset;
203
204         sg = ctx->partially_sent_record;
205         offset = ctx->partially_sent_offset;
206
207         ctx->partially_sent_record = NULL;
208         return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
212 {
213         struct scatterlist *sg;
214
215         sg = ctx->partially_sent_record;
216         if (!sg)
217                 return false;
218
219         while (1) {
220                 put_page(sg_page(sg));
221                 sk_mem_uncharge(sk, sg->length);
222
223                 if (sg_is_last(sg))
224                         break;
225                 sg++;
226         }
227         ctx->partially_sent_record = NULL;
228         return true;
229 }
230
231 static void tls_write_space(struct sock *sk)
232 {
233         struct tls_context *ctx = tls_get_ctx(sk);
234
235         /* If in_tcp_sendpages call lower protocol write space handler
236          * to ensure we wake up any waiting operations there. For example
237          * if do_tcp_sendpages where to call sk_wait_event.
238          */
239         if (ctx->in_tcp_sendpages) {
240                 ctx->sk_write_space(sk);
241                 return;
242         }
243
244 #ifdef CONFIG_TLS_DEVICE
245         if (ctx->tx_conf == TLS_HW)
246                 tls_device_write_space(sk, ctx);
247         else
248 #endif
249                 tls_sw_write_space(sk, ctx);
250
251         ctx->sk_write_space(sk);
252 }
253
254 void tls_ctx_free(struct tls_context *ctx)
255 {
256         if (!ctx)
257                 return;
258
259         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261         kfree(ctx);
262 }
263
264 static void tls_sk_proto_cleanup(struct sock *sk,
265                                  struct tls_context *ctx, long timeo)
266 {
267         if (unlikely(sk->sk_write_pending) &&
268             !wait_on_pending_writer(sk, &timeo))
269                 tls_handle_open_record(sk, 0);
270
271         /* We need these for tls_sw_fallback handling of other packets */
272         if (ctx->tx_conf == TLS_SW) {
273                 kfree(ctx->tx.rec_seq);
274                 kfree(ctx->tx.iv);
275                 tls_sw_release_resources_tx(sk);
276 #ifdef CONFIG_TLS_DEVICE
277         } else if (ctx->tx_conf == TLS_HW) {
278                 tls_device_free_resources_tx(sk);
279 #endif
280         }
281
282         if (ctx->rx_conf == TLS_SW)
283                 tls_sw_release_resources_rx(sk);
284
285 #ifdef CONFIG_TLS_DEVICE
286         if (ctx->rx_conf == TLS_HW)
287                 tls_device_offload_cleanup_rx(sk);
288 #endif
289 }
290
291 static void tls_sk_proto_close(struct sock *sk, long timeout)
292 {
293         struct inet_connection_sock *icsk = inet_csk(sk);
294         struct tls_context *ctx = tls_get_ctx(sk);
295         long timeo = sock_sndtimeo(sk, 0);
296         bool free_ctx;
297
298         if (ctx->tx_conf == TLS_SW)
299                 tls_sw_cancel_work_tx(ctx);
300
301         lock_sock(sk);
302         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
303
304         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
305                 tls_sk_proto_cleanup(sk, ctx, timeo);
306
307         write_lock_bh(&sk->sk_callback_lock);
308         if (free_ctx)
309                 icsk->icsk_ulp_data = NULL;
310         sk->sk_prot = ctx->sk_proto;
311         write_unlock_bh(&sk->sk_callback_lock);
312         release_sock(sk);
313         if (ctx->tx_conf == TLS_SW)
314                 tls_sw_free_ctx_tx(ctx);
315         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
316                 tls_sw_strparser_done(ctx);
317         if (ctx->rx_conf == TLS_SW)
318                 tls_sw_free_ctx_rx(ctx);
319         ctx->sk_proto_close(sk, timeout);
320
321         if (free_ctx)
322                 tls_ctx_free(ctx);
323 }
324
325 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
326                                 int __user *optlen)
327 {
328         int rc = 0;
329         struct tls_context *ctx = tls_get_ctx(sk);
330         struct tls_crypto_info *crypto_info;
331         int len;
332
333         if (get_user(len, optlen))
334                 return -EFAULT;
335
336         if (!optval || (len < sizeof(*crypto_info))) {
337                 rc = -EINVAL;
338                 goto out;
339         }
340
341         if (!ctx) {
342                 rc = -EBUSY;
343                 goto out;
344         }
345
346         /* get user crypto info */
347         crypto_info = &ctx->crypto_send.info;
348
349         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
350                 rc = -EBUSY;
351                 goto out;
352         }
353
354         if (len == sizeof(*crypto_info)) {
355                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
356                         rc = -EFAULT;
357                 goto out;
358         }
359
360         switch (crypto_info->cipher_type) {
361         case TLS_CIPHER_AES_GCM_128: {
362                 struct tls12_crypto_info_aes_gcm_128 *
363                   crypto_info_aes_gcm_128 =
364                   container_of(crypto_info,
365                                struct tls12_crypto_info_aes_gcm_128,
366                                info);
367
368                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
369                         rc = -EINVAL;
370                         goto out;
371                 }
372                 lock_sock(sk);
373                 memcpy(crypto_info_aes_gcm_128->iv,
374                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
375                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
376                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
377                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
378                 release_sock(sk);
379                 if (copy_to_user(optval,
380                                  crypto_info_aes_gcm_128,
381                                  sizeof(*crypto_info_aes_gcm_128)))
382                         rc = -EFAULT;
383                 break;
384         }
385         case TLS_CIPHER_AES_GCM_256: {
386                 struct tls12_crypto_info_aes_gcm_256 *
387                   crypto_info_aes_gcm_256 =
388                   container_of(crypto_info,
389                                struct tls12_crypto_info_aes_gcm_256,
390                                info);
391
392                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
393                         rc = -EINVAL;
394                         goto out;
395                 }
396                 lock_sock(sk);
397                 memcpy(crypto_info_aes_gcm_256->iv,
398                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
399                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
400                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
401                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
402                 release_sock(sk);
403                 if (copy_to_user(optval,
404                                  crypto_info_aes_gcm_256,
405                                  sizeof(*crypto_info_aes_gcm_256)))
406                         rc = -EFAULT;
407                 break;
408         }
409         default:
410                 rc = -EINVAL;
411         }
412
413 out:
414         return rc;
415 }
416
417 static int do_tls_getsockopt(struct sock *sk, int optname,
418                              char __user *optval, int __user *optlen)
419 {
420         int rc = 0;
421
422         switch (optname) {
423         case TLS_TX:
424                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
425                 break;
426         default:
427                 rc = -ENOPROTOOPT;
428                 break;
429         }
430         return rc;
431 }
432
433 static int tls_getsockopt(struct sock *sk, int level, int optname,
434                           char __user *optval, int __user *optlen)
435 {
436         struct tls_context *ctx = tls_get_ctx(sk);
437
438         if (level != SOL_TLS)
439                 return ctx->getsockopt(sk, level, optname, optval, optlen);
440
441         return do_tls_getsockopt(sk, optname, optval, optlen);
442 }
443
444 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
445                                   unsigned int optlen, int tx)
446 {
447         struct tls_crypto_info *crypto_info;
448         struct tls_crypto_info *alt_crypto_info;
449         struct tls_context *ctx = tls_get_ctx(sk);
450         size_t optsize;
451         int rc = 0;
452         int conf;
453
454         if (!optval || (optlen < sizeof(*crypto_info))) {
455                 rc = -EINVAL;
456                 goto out;
457         }
458
459         if (tx) {
460                 crypto_info = &ctx->crypto_send.info;
461                 alt_crypto_info = &ctx->crypto_recv.info;
462         } else {
463                 crypto_info = &ctx->crypto_recv.info;
464                 alt_crypto_info = &ctx->crypto_send.info;
465         }
466
467         /* Currently we don't support set crypto info more than one time */
468         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
469                 rc = -EBUSY;
470                 goto out;
471         }
472
473         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
474         if (rc) {
475                 rc = -EFAULT;
476                 goto err_crypto_info;
477         }
478
479         /* check version */
480         if (crypto_info->version != TLS_1_2_VERSION &&
481             crypto_info->version != TLS_1_3_VERSION) {
482                 rc = -ENOTSUPP;
483                 goto err_crypto_info;
484         }
485
486         /* Ensure that TLS version and ciphers are same in both directions */
487         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
488                 if (alt_crypto_info->version != crypto_info->version ||
489                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
490                         rc = -EINVAL;
491                         goto err_crypto_info;
492                 }
493         }
494
495         switch (crypto_info->cipher_type) {
496         case TLS_CIPHER_AES_GCM_128:
497                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
498                 break;
499         case TLS_CIPHER_AES_GCM_256: {
500                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
501                 break;
502         }
503         case TLS_CIPHER_AES_CCM_128:
504                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
505                 break;
506         default:
507                 rc = -EINVAL;
508                 goto err_crypto_info;
509         }
510
511         if (optlen != optsize) {
512                 rc = -EINVAL;
513                 goto err_crypto_info;
514         }
515
516         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
517                             optlen - sizeof(*crypto_info));
518         if (rc) {
519                 rc = -EFAULT;
520                 goto err_crypto_info;
521         }
522
523         if (tx) {
524 #ifdef CONFIG_TLS_DEVICE
525                 rc = tls_set_device_offload(sk, ctx);
526                 conf = TLS_HW;
527                 if (rc) {
528 #else
529                 {
530 #endif
531                         rc = tls_set_sw_offload(sk, ctx, 1);
532                         if (rc)
533                                 goto err_crypto_info;
534                         conf = TLS_SW;
535                 }
536         } else {
537 #ifdef CONFIG_TLS_DEVICE
538                 rc = tls_set_device_offload_rx(sk, ctx);
539                 conf = TLS_HW;
540                 if (rc) {
541 #else
542                 {
543 #endif
544                         rc = tls_set_sw_offload(sk, ctx, 0);
545                         if (rc)
546                                 goto err_crypto_info;
547                         conf = TLS_SW;
548                 }
549                 tls_sw_strparser_arm(sk, ctx);
550         }
551
552         if (tx)
553                 ctx->tx_conf = conf;
554         else
555                 ctx->rx_conf = conf;
556         update_sk_prot(sk, ctx);
557         if (tx) {
558                 ctx->sk_write_space = sk->sk_write_space;
559                 sk->sk_write_space = tls_write_space;
560         } else {
561                 sk->sk_socket->ops = &tls_sw_proto_ops;
562         }
563         goto out;
564
565 err_crypto_info:
566         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
567 out:
568         return rc;
569 }
570
571 static int do_tls_setsockopt(struct sock *sk, int optname,
572                              char __user *optval, unsigned int optlen)
573 {
574         int rc = 0;
575
576         switch (optname) {
577         case TLS_TX:
578         case TLS_RX:
579                 lock_sock(sk);
580                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
581                                             optname == TLS_TX);
582                 release_sock(sk);
583                 break;
584         default:
585                 rc = -ENOPROTOOPT;
586                 break;
587         }
588         return rc;
589 }
590
591 static int tls_setsockopt(struct sock *sk, int level, int optname,
592                           char __user *optval, unsigned int optlen)
593 {
594         struct tls_context *ctx = tls_get_ctx(sk);
595
596         if (level != SOL_TLS)
597                 return ctx->setsockopt(sk, level, optname, optval, optlen);
598
599         return do_tls_setsockopt(sk, optname, optval, optlen);
600 }
601
602 static struct tls_context *create_ctx(struct sock *sk)
603 {
604         struct inet_connection_sock *icsk = inet_csk(sk);
605         struct tls_context *ctx;
606
607         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
608         if (!ctx)
609                 return NULL;
610
611         icsk->icsk_ulp_data = ctx;
612         ctx->setsockopt = sk->sk_prot->setsockopt;
613         ctx->getsockopt = sk->sk_prot->getsockopt;
614         ctx->sk_proto_close = sk->sk_prot->close;
615         ctx->unhash = sk->sk_prot->unhash;
616         return ctx;
617 }
618
619 static void tls_build_proto(struct sock *sk)
620 {
621         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
622
623         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
624         if (ip_ver == TLSV6 &&
625             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
626                 mutex_lock(&tcpv6_prot_mutex);
627                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
628                         build_protos(tls_prots[TLSV6], sk->sk_prot);
629                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
630                 }
631                 mutex_unlock(&tcpv6_prot_mutex);
632         }
633
634         if (ip_ver == TLSV4 &&
635             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
636                 mutex_lock(&tcpv4_prot_mutex);
637                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
638                         build_protos(tls_prots[TLSV4], sk->sk_prot);
639                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
640                 }
641                 mutex_unlock(&tcpv4_prot_mutex);
642         }
643 }
644
645 static void tls_hw_sk_destruct(struct sock *sk)
646 {
647         struct tls_context *ctx = tls_get_ctx(sk);
648         struct inet_connection_sock *icsk = inet_csk(sk);
649
650         ctx->sk_destruct(sk);
651         /* Free ctx */
652         tls_ctx_free(ctx);
653         icsk->icsk_ulp_data = NULL;
654 }
655
656 static int tls_hw_prot(struct sock *sk)
657 {
658         struct tls_context *ctx;
659         struct tls_device *dev;
660         int rc = 0;
661
662         spin_lock_bh(&device_spinlock);
663         list_for_each_entry(dev, &device_list, dev_list) {
664                 if (dev->feature && dev->feature(dev)) {
665                         ctx = create_ctx(sk);
666                         if (!ctx)
667                                 goto out;
668
669                         spin_unlock_bh(&device_spinlock);
670                         tls_build_proto(sk);
671                         ctx->hash = sk->sk_prot->hash;
672                         ctx->unhash = sk->sk_prot->unhash;
673                         ctx->sk_proto_close = sk->sk_prot->close;
674                         ctx->sk_destruct = sk->sk_destruct;
675                         sk->sk_destruct = tls_hw_sk_destruct;
676                         ctx->rx_conf = TLS_HW_RECORD;
677                         ctx->tx_conf = TLS_HW_RECORD;
678                         update_sk_prot(sk, ctx);
679                         spin_lock_bh(&device_spinlock);
680                         rc = 1;
681                         break;
682                 }
683         }
684 out:
685         spin_unlock_bh(&device_spinlock);
686         return rc;
687 }
688
689 static void tls_hw_unhash(struct sock *sk)
690 {
691         struct tls_context *ctx = tls_get_ctx(sk);
692         struct tls_device *dev;
693
694         spin_lock_bh(&device_spinlock);
695         list_for_each_entry(dev, &device_list, dev_list) {
696                 if (dev->unhash) {
697                         kref_get(&dev->kref);
698                         spin_unlock_bh(&device_spinlock);
699                         dev->unhash(dev, sk);
700                         kref_put(&dev->kref, dev->release);
701                         spin_lock_bh(&device_spinlock);
702                 }
703         }
704         spin_unlock_bh(&device_spinlock);
705         ctx->unhash(sk);
706 }
707
708 static int tls_hw_hash(struct sock *sk)
709 {
710         struct tls_context *ctx = tls_get_ctx(sk);
711         struct tls_device *dev;
712         int err;
713
714         err = ctx->hash(sk);
715         spin_lock_bh(&device_spinlock);
716         list_for_each_entry(dev, &device_list, dev_list) {
717                 if (dev->hash) {
718                         kref_get(&dev->kref);
719                         spin_unlock_bh(&device_spinlock);
720                         err |= dev->hash(dev, sk);
721                         kref_put(&dev->kref, dev->release);
722                         spin_lock_bh(&device_spinlock);
723                 }
724         }
725         spin_unlock_bh(&device_spinlock);
726
727         if (err)
728                 tls_hw_unhash(sk);
729         return err;
730 }
731
732 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733                          struct proto *base)
734 {
735         prot[TLS_BASE][TLS_BASE] = *base;
736         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
737         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
738         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
739
740         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
742         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
743
744         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
746         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
748
749         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
751         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
752         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
753
754 #ifdef CONFIG_TLS_DEVICE
755         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
757         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
758
759         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
761         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
762
763         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764
765         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766
767         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768 #endif
769
770         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
772         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
773 }
774
775 static int tls_init(struct sock *sk)
776 {
777         struct tls_context *ctx;
778         int rc = 0;
779
780         if (tls_hw_prot(sk))
781                 return 0;
782
783         /* The TLS ulp is currently supported only for TCP sockets
784          * in ESTABLISHED state.
785          * Supporting sockets in LISTEN state will require us
786          * to modify the accept implementation to clone rather then
787          * share the ulp context.
788          */
789         if (sk->sk_state != TCP_ESTABLISHED)
790                 return -ENOTSUPP;
791
792         tls_build_proto(sk);
793
794         /* allocate tls context */
795         write_lock_bh(&sk->sk_callback_lock);
796         ctx = create_ctx(sk);
797         if (!ctx) {
798                 rc = -ENOMEM;
799                 goto out;
800         }
801
802         ctx->tx_conf = TLS_BASE;
803         ctx->rx_conf = TLS_BASE;
804         ctx->sk_proto = sk->sk_prot;
805         update_sk_prot(sk, ctx);
806 out:
807         write_unlock_bh(&sk->sk_callback_lock);
808         return rc;
809 }
810
811 static void tls_update(struct sock *sk, struct proto *p)
812 {
813         struct tls_context *ctx;
814
815         ctx = tls_get_ctx(sk);
816         if (likely(ctx)) {
817                 ctx->sk_proto_close = p->close;
818                 ctx->sk_proto = p;
819         } else {
820                 sk->sk_prot = p;
821         }
822 }
823
824 void tls_register_device(struct tls_device *device)
825 {
826         spin_lock_bh(&device_spinlock);
827         list_add_tail(&device->dev_list, &device_list);
828         spin_unlock_bh(&device_spinlock);
829 }
830 EXPORT_SYMBOL(tls_register_device);
831
832 void tls_unregister_device(struct tls_device *device)
833 {
834         spin_lock_bh(&device_spinlock);
835         list_del(&device->dev_list);
836         spin_unlock_bh(&device_spinlock);
837 }
838 EXPORT_SYMBOL(tls_unregister_device);
839
840 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
841         .name                   = "tls",
842         .owner                  = THIS_MODULE,
843         .init                   = tls_init,
844         .update                 = tls_update,
845 };
846
847 static int __init tls_register(void)
848 {
849         tls_sw_proto_ops = inet_stream_ops;
850         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
851
852 #ifdef CONFIG_TLS_DEVICE
853         tls_device_init();
854 #endif
855         tcp_register_ulp(&tcp_tls_ulp_ops);
856
857         return 0;
858 }
859
860 static void __exit tls_unregister(void)
861 {
862         tcp_unregister_ulp(&tcp_tls_ulp_ops);
863 #ifdef CONFIG_TLS_DEVICE
864         tls_device_cleanup();
865 #endif
866 }
867
868 module_init(tls_register);
869 module_exit(tls_unregister);