net: tls: export protocol version, cipher, tx_conf/rx_conf to socket diag
[linux-2.6-microblaze.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/tls.h>
45
46 MODULE_AUTHOR("Mellanox Technologies");
47 MODULE_DESCRIPTION("Transport Layer Security Support");
48 MODULE_LICENSE("Dual BSD/GPL");
49 MODULE_ALIAS_TCP_ULP("tls");
50
51 enum {
52         TLSV4,
53         TLSV6,
54         TLS_NUM_PROTS,
55 };
56
57 static struct proto *saved_tcpv6_prot;
58 static DEFINE_MUTEX(tcpv6_prot_mutex);
59 static struct proto *saved_tcpv4_prot;
60 static DEFINE_MUTEX(tcpv4_prot_mutex);
61 static LIST_HEAD(device_list);
62 static DEFINE_SPINLOCK(device_spinlock);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          struct proto *base);
67
68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73 }
74
75 int wait_on_pending_writer(struct sock *sk, long *timeo)
76 {
77         int rc = 0;
78         DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80         add_wait_queue(sk_sleep(sk), &wait);
81         while (1) {
82                 if (!*timeo) {
83                         rc = -EAGAIN;
84                         break;
85                 }
86
87                 if (signal_pending(current)) {
88                         rc = sock_intr_errno(*timeo);
89                         break;
90                 }
91
92                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93                         break;
94         }
95         remove_wait_queue(sk_sleep(sk), &wait);
96         return rc;
97 }
98
99 int tls_push_sg(struct sock *sk,
100                 struct tls_context *ctx,
101                 struct scatterlist *sg,
102                 u16 first_offset,
103                 int flags)
104 {
105         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106         int ret = 0;
107         struct page *p;
108         size_t size;
109         int offset = first_offset;
110
111         size = sg->length - offset;
112         offset += sg->offset;
113
114         ctx->in_tcp_sendpages = true;
115         while (1) {
116                 if (sg_is_last(sg))
117                         sendpage_flags = flags;
118
119                 /* is sending application-limited? */
120                 tcp_rate_check_app_limited(sk);
121                 p = sg_page(sg);
122 retry:
123                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125                 if (ret != size) {
126                         if (ret > 0) {
127                                 offset += ret;
128                                 size -= ret;
129                                 goto retry;
130                         }
131
132                         offset -= sg->offset;
133                         ctx->partially_sent_offset = offset;
134                         ctx->partially_sent_record = (void *)sg;
135                         ctx->in_tcp_sendpages = false;
136                         return ret;
137                 }
138
139                 put_page(p);
140                 sk_mem_uncharge(sk, sg->length);
141                 sg = sg_next(sg);
142                 if (!sg)
143                         break;
144
145                 offset = sg->offset;
146                 size = sg->length;
147         }
148
149         ctx->in_tcp_sendpages = false;
150
151         return 0;
152 }
153
154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156         struct tls_context *ctx = tls_get_ctx(sk);
157
158         if (tls_is_pending_open_record(ctx))
159                 return ctx->push_pending_record(sk, flags);
160
161         return 0;
162 }
163
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165                       unsigned char *record_type)
166 {
167         struct cmsghdr *cmsg;
168         int rc = -EINVAL;
169
170         for_each_cmsghdr(cmsg, msg) {
171                 if (!CMSG_OK(msg, cmsg))
172                         return -EINVAL;
173                 if (cmsg->cmsg_level != SOL_TLS)
174                         continue;
175
176                 switch (cmsg->cmsg_type) {
177                 case TLS_SET_RECORD_TYPE:
178                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179                                 return -EINVAL;
180
181                         if (msg->msg_flags & MSG_MORE)
182                                 return -EINVAL;
183
184                         rc = tls_handle_open_record(sk, msg->msg_flags);
185                         if (rc)
186                                 return rc;
187
188                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189                         rc = 0;
190                         break;
191                 default:
192                         return -EINVAL;
193                 }
194         }
195
196         return rc;
197 }
198
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200                             int flags)
201 {
202         struct scatterlist *sg;
203         u16 offset;
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213 {
214         struct scatterlist *sg;
215
216         sg = ctx->partially_sent_record;
217         if (!sg)
218                 return false;
219
220         while (1) {
221                 put_page(sg_page(sg));
222                 sk_mem_uncharge(sk, sg->length);
223
224                 if (sg_is_last(sg))
225                         break;
226                 sg++;
227         }
228         ctx->partially_sent_record = NULL;
229         return true;
230 }
231
232 static void tls_write_space(struct sock *sk)
233 {
234         struct tls_context *ctx = tls_get_ctx(sk);
235
236         /* If in_tcp_sendpages call lower protocol write space handler
237          * to ensure we wake up any waiting operations there. For example
238          * if do_tcp_sendpages where to call sk_wait_event.
239          */
240         if (ctx->in_tcp_sendpages) {
241                 ctx->sk_write_space(sk);
242                 return;
243         }
244
245 #ifdef CONFIG_TLS_DEVICE
246         if (ctx->tx_conf == TLS_HW)
247                 tls_device_write_space(sk, ctx);
248         else
249 #endif
250                 tls_sw_write_space(sk, ctx);
251
252         ctx->sk_write_space(sk);
253 }
254
255 /**
256  * tls_ctx_free() - free TLS ULP context
257  * @sk:  socket to with @ctx is attached
258  * @ctx: TLS context structure
259  *
260  * Free TLS context. If @sk is %NULL caller guarantees that the socket
261  * to which @ctx was attached has no outstanding references.
262  */
263 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264 {
265         if (!ctx)
266                 return;
267
268         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270
271         if (sk)
272                 kfree_rcu(ctx, rcu);
273         else
274                 kfree(ctx);
275 }
276
277 static void tls_sk_proto_cleanup(struct sock *sk,
278                                  struct tls_context *ctx, long timeo)
279 {
280         if (unlikely(sk->sk_write_pending) &&
281             !wait_on_pending_writer(sk, &timeo))
282                 tls_handle_open_record(sk, 0);
283
284         /* We need these for tls_sw_fallback handling of other packets */
285         if (ctx->tx_conf == TLS_SW) {
286                 kfree(ctx->tx.rec_seq);
287                 kfree(ctx->tx.iv);
288                 tls_sw_release_resources_tx(sk);
289 #ifdef CONFIG_TLS_DEVICE
290         } else if (ctx->tx_conf == TLS_HW) {
291                 tls_device_free_resources_tx(sk);
292 #endif
293         }
294
295         if (ctx->rx_conf == TLS_SW)
296                 tls_sw_release_resources_rx(sk);
297
298 #ifdef CONFIG_TLS_DEVICE
299         if (ctx->rx_conf == TLS_HW)
300                 tls_device_offload_cleanup_rx(sk);
301 #endif
302 }
303
304 static void tls_sk_proto_close(struct sock *sk, long timeout)
305 {
306         struct inet_connection_sock *icsk = inet_csk(sk);
307         struct tls_context *ctx = tls_get_ctx(sk);
308         long timeo = sock_sndtimeo(sk, 0);
309         bool free_ctx;
310
311         if (ctx->tx_conf == TLS_SW)
312                 tls_sw_cancel_work_tx(ctx);
313
314         lock_sock(sk);
315         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
316
317         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
318                 tls_sk_proto_cleanup(sk, ctx, timeo);
319
320         write_lock_bh(&sk->sk_callback_lock);
321         if (free_ctx)
322                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
323         sk->sk_prot = ctx->sk_proto;
324         if (sk->sk_write_space == tls_write_space)
325                 sk->sk_write_space = ctx->sk_write_space;
326         write_unlock_bh(&sk->sk_callback_lock);
327         release_sock(sk);
328         if (ctx->tx_conf == TLS_SW)
329                 tls_sw_free_ctx_tx(ctx);
330         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
331                 tls_sw_strparser_done(ctx);
332         if (ctx->rx_conf == TLS_SW)
333                 tls_sw_free_ctx_rx(ctx);
334         ctx->sk_proto_close(sk, timeout);
335
336         if (free_ctx)
337                 tls_ctx_free(sk, ctx);
338 }
339
340 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
341                                 int __user *optlen)
342 {
343         int rc = 0;
344         struct tls_context *ctx = tls_get_ctx(sk);
345         struct tls_crypto_info *crypto_info;
346         int len;
347
348         if (get_user(len, optlen))
349                 return -EFAULT;
350
351         if (!optval || (len < sizeof(*crypto_info))) {
352                 rc = -EINVAL;
353                 goto out;
354         }
355
356         if (!ctx) {
357                 rc = -EBUSY;
358                 goto out;
359         }
360
361         /* get user crypto info */
362         crypto_info = &ctx->crypto_send.info;
363
364         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
365                 rc = -EBUSY;
366                 goto out;
367         }
368
369         if (len == sizeof(*crypto_info)) {
370                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
371                         rc = -EFAULT;
372                 goto out;
373         }
374
375         switch (crypto_info->cipher_type) {
376         case TLS_CIPHER_AES_GCM_128: {
377                 struct tls12_crypto_info_aes_gcm_128 *
378                   crypto_info_aes_gcm_128 =
379                   container_of(crypto_info,
380                                struct tls12_crypto_info_aes_gcm_128,
381                                info);
382
383                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
384                         rc = -EINVAL;
385                         goto out;
386                 }
387                 lock_sock(sk);
388                 memcpy(crypto_info_aes_gcm_128->iv,
389                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
390                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
391                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
392                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
393                 release_sock(sk);
394                 if (copy_to_user(optval,
395                                  crypto_info_aes_gcm_128,
396                                  sizeof(*crypto_info_aes_gcm_128)))
397                         rc = -EFAULT;
398                 break;
399         }
400         case TLS_CIPHER_AES_GCM_256: {
401                 struct tls12_crypto_info_aes_gcm_256 *
402                   crypto_info_aes_gcm_256 =
403                   container_of(crypto_info,
404                                struct tls12_crypto_info_aes_gcm_256,
405                                info);
406
407                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
408                         rc = -EINVAL;
409                         goto out;
410                 }
411                 lock_sock(sk);
412                 memcpy(crypto_info_aes_gcm_256->iv,
413                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
415                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
416                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417                 release_sock(sk);
418                 if (copy_to_user(optval,
419                                  crypto_info_aes_gcm_256,
420                                  sizeof(*crypto_info_aes_gcm_256)))
421                         rc = -EFAULT;
422                 break;
423         }
424         default:
425                 rc = -EINVAL;
426         }
427
428 out:
429         return rc;
430 }
431
432 static int do_tls_getsockopt(struct sock *sk, int optname,
433                              char __user *optval, int __user *optlen)
434 {
435         int rc = 0;
436
437         switch (optname) {
438         case TLS_TX:
439                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
440                 break;
441         default:
442                 rc = -ENOPROTOOPT;
443                 break;
444         }
445         return rc;
446 }
447
448 static int tls_getsockopt(struct sock *sk, int level, int optname,
449                           char __user *optval, int __user *optlen)
450 {
451         struct tls_context *ctx = tls_get_ctx(sk);
452
453         if (level != SOL_TLS)
454                 return ctx->getsockopt(sk, level, optname, optval, optlen);
455
456         return do_tls_getsockopt(sk, optname, optval, optlen);
457 }
458
459 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
460                                   unsigned int optlen, int tx)
461 {
462         struct tls_crypto_info *crypto_info;
463         struct tls_crypto_info *alt_crypto_info;
464         struct tls_context *ctx = tls_get_ctx(sk);
465         size_t optsize;
466         int rc = 0;
467         int conf;
468
469         if (!optval || (optlen < sizeof(*crypto_info))) {
470                 rc = -EINVAL;
471                 goto out;
472         }
473
474         if (tx) {
475                 crypto_info = &ctx->crypto_send.info;
476                 alt_crypto_info = &ctx->crypto_recv.info;
477         } else {
478                 crypto_info = &ctx->crypto_recv.info;
479                 alt_crypto_info = &ctx->crypto_send.info;
480         }
481
482         /* Currently we don't support set crypto info more than one time */
483         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
484                 rc = -EBUSY;
485                 goto out;
486         }
487
488         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
489         if (rc) {
490                 rc = -EFAULT;
491                 goto err_crypto_info;
492         }
493
494         /* check version */
495         if (crypto_info->version != TLS_1_2_VERSION &&
496             crypto_info->version != TLS_1_3_VERSION) {
497                 rc = -ENOTSUPP;
498                 goto err_crypto_info;
499         }
500
501         /* Ensure that TLS version and ciphers are same in both directions */
502         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
503                 if (alt_crypto_info->version != crypto_info->version ||
504                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
505                         rc = -EINVAL;
506                         goto err_crypto_info;
507                 }
508         }
509
510         switch (crypto_info->cipher_type) {
511         case TLS_CIPHER_AES_GCM_128:
512                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
513                 break;
514         case TLS_CIPHER_AES_GCM_256: {
515                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
516                 break;
517         }
518         case TLS_CIPHER_AES_CCM_128:
519                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
520                 break;
521         default:
522                 rc = -EINVAL;
523                 goto err_crypto_info;
524         }
525
526         if (optlen != optsize) {
527                 rc = -EINVAL;
528                 goto err_crypto_info;
529         }
530
531         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
532                             optlen - sizeof(*crypto_info));
533         if (rc) {
534                 rc = -EFAULT;
535                 goto err_crypto_info;
536         }
537
538         if (tx) {
539 #ifdef CONFIG_TLS_DEVICE
540                 rc = tls_set_device_offload(sk, ctx);
541                 conf = TLS_HW;
542                 if (rc) {
543 #else
544                 {
545 #endif
546                         rc = tls_set_sw_offload(sk, ctx, 1);
547                         if (rc)
548                                 goto err_crypto_info;
549                         conf = TLS_SW;
550                 }
551         } else {
552 #ifdef CONFIG_TLS_DEVICE
553                 rc = tls_set_device_offload_rx(sk, ctx);
554                 conf = TLS_HW;
555                 if (rc) {
556 #else
557                 {
558 #endif
559                         rc = tls_set_sw_offload(sk, ctx, 0);
560                         if (rc)
561                                 goto err_crypto_info;
562                         conf = TLS_SW;
563                 }
564                 tls_sw_strparser_arm(sk, ctx);
565         }
566
567         if (tx)
568                 ctx->tx_conf = conf;
569         else
570                 ctx->rx_conf = conf;
571         update_sk_prot(sk, ctx);
572         if (tx) {
573                 ctx->sk_write_space = sk->sk_write_space;
574                 sk->sk_write_space = tls_write_space;
575         } else {
576                 sk->sk_socket->ops = &tls_sw_proto_ops;
577         }
578         goto out;
579
580 err_crypto_info:
581         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
582 out:
583         return rc;
584 }
585
586 static int do_tls_setsockopt(struct sock *sk, int optname,
587                              char __user *optval, unsigned int optlen)
588 {
589         int rc = 0;
590
591         switch (optname) {
592         case TLS_TX:
593         case TLS_RX:
594                 lock_sock(sk);
595                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
596                                             optname == TLS_TX);
597                 release_sock(sk);
598                 break;
599         default:
600                 rc = -ENOPROTOOPT;
601                 break;
602         }
603         return rc;
604 }
605
606 static int tls_setsockopt(struct sock *sk, int level, int optname,
607                           char __user *optval, unsigned int optlen)
608 {
609         struct tls_context *ctx = tls_get_ctx(sk);
610
611         if (level != SOL_TLS)
612                 return ctx->setsockopt(sk, level, optname, optval, optlen);
613
614         return do_tls_setsockopt(sk, optname, optval, optlen);
615 }
616
617 static struct tls_context *create_ctx(struct sock *sk)
618 {
619         struct inet_connection_sock *icsk = inet_csk(sk);
620         struct tls_context *ctx;
621
622         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
623         if (!ctx)
624                 return NULL;
625
626         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
627         ctx->setsockopt = sk->sk_prot->setsockopt;
628         ctx->getsockopt = sk->sk_prot->getsockopt;
629         ctx->sk_proto_close = sk->sk_prot->close;
630         ctx->unhash = sk->sk_prot->unhash;
631         return ctx;
632 }
633
634 static void tls_build_proto(struct sock *sk)
635 {
636         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
637
638         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
639         if (ip_ver == TLSV6 &&
640             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
641                 mutex_lock(&tcpv6_prot_mutex);
642                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
643                         build_protos(tls_prots[TLSV6], sk->sk_prot);
644                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
645                 }
646                 mutex_unlock(&tcpv6_prot_mutex);
647         }
648
649         if (ip_ver == TLSV4 &&
650             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
651                 mutex_lock(&tcpv4_prot_mutex);
652                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
653                         build_protos(tls_prots[TLSV4], sk->sk_prot);
654                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
655                 }
656                 mutex_unlock(&tcpv4_prot_mutex);
657         }
658 }
659
660 static void tls_hw_sk_destruct(struct sock *sk)
661 {
662         struct tls_context *ctx = tls_get_ctx(sk);
663         struct inet_connection_sock *icsk = inet_csk(sk);
664
665         ctx->sk_destruct(sk);
666         /* Free ctx */
667         rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
668         tls_ctx_free(sk, ctx);
669 }
670
671 static int tls_hw_prot(struct sock *sk)
672 {
673         struct tls_context *ctx;
674         struct tls_device *dev;
675         int rc = 0;
676
677         spin_lock_bh(&device_spinlock);
678         list_for_each_entry(dev, &device_list, dev_list) {
679                 if (dev->feature && dev->feature(dev)) {
680                         ctx = create_ctx(sk);
681                         if (!ctx)
682                                 goto out;
683
684                         spin_unlock_bh(&device_spinlock);
685                         tls_build_proto(sk);
686                         ctx->hash = sk->sk_prot->hash;
687                         ctx->unhash = sk->sk_prot->unhash;
688                         ctx->sk_proto_close = sk->sk_prot->close;
689                         ctx->sk_destruct = sk->sk_destruct;
690                         sk->sk_destruct = tls_hw_sk_destruct;
691                         ctx->rx_conf = TLS_HW_RECORD;
692                         ctx->tx_conf = TLS_HW_RECORD;
693                         update_sk_prot(sk, ctx);
694                         spin_lock_bh(&device_spinlock);
695                         rc = 1;
696                         break;
697                 }
698         }
699 out:
700         spin_unlock_bh(&device_spinlock);
701         return rc;
702 }
703
704 static void tls_hw_unhash(struct sock *sk)
705 {
706         struct tls_context *ctx = tls_get_ctx(sk);
707         struct tls_device *dev;
708
709         spin_lock_bh(&device_spinlock);
710         list_for_each_entry(dev, &device_list, dev_list) {
711                 if (dev->unhash) {
712                         kref_get(&dev->kref);
713                         spin_unlock_bh(&device_spinlock);
714                         dev->unhash(dev, sk);
715                         kref_put(&dev->kref, dev->release);
716                         spin_lock_bh(&device_spinlock);
717                 }
718         }
719         spin_unlock_bh(&device_spinlock);
720         ctx->unhash(sk);
721 }
722
723 static int tls_hw_hash(struct sock *sk)
724 {
725         struct tls_context *ctx = tls_get_ctx(sk);
726         struct tls_device *dev;
727         int err;
728
729         err = ctx->hash(sk);
730         spin_lock_bh(&device_spinlock);
731         list_for_each_entry(dev, &device_list, dev_list) {
732                 if (dev->hash) {
733                         kref_get(&dev->kref);
734                         spin_unlock_bh(&device_spinlock);
735                         err |= dev->hash(dev, sk);
736                         kref_put(&dev->kref, dev->release);
737                         spin_lock_bh(&device_spinlock);
738                 }
739         }
740         spin_unlock_bh(&device_spinlock);
741
742         if (err)
743                 tls_hw_unhash(sk);
744         return err;
745 }
746
747 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
748                          struct proto *base)
749 {
750         prot[TLS_BASE][TLS_BASE] = *base;
751         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
752         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
753         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
754
755         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
757         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
758
759         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
760         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
761         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
762         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
763
764         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
765         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
766         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
767         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
768
769 #ifdef CONFIG_TLS_DEVICE
770         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
771         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
772         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
773
774         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
775         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
776         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
777
778         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
779
780         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
781
782         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
783 #endif
784
785         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
786         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
787         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
788 }
789
790 static int tls_init(struct sock *sk)
791 {
792         struct tls_context *ctx;
793         int rc = 0;
794
795         if (tls_hw_prot(sk))
796                 return 0;
797
798         /* The TLS ulp is currently supported only for TCP sockets
799          * in ESTABLISHED state.
800          * Supporting sockets in LISTEN state will require us
801          * to modify the accept implementation to clone rather then
802          * share the ulp context.
803          */
804         if (sk->sk_state != TCP_ESTABLISHED)
805                 return -ENOTSUPP;
806
807         tls_build_proto(sk);
808
809         /* allocate tls context */
810         write_lock_bh(&sk->sk_callback_lock);
811         ctx = create_ctx(sk);
812         if (!ctx) {
813                 rc = -ENOMEM;
814                 goto out;
815         }
816
817         ctx->tx_conf = TLS_BASE;
818         ctx->rx_conf = TLS_BASE;
819         ctx->sk_proto = sk->sk_prot;
820         update_sk_prot(sk, ctx);
821 out:
822         write_unlock_bh(&sk->sk_callback_lock);
823         return rc;
824 }
825
826 static void tls_update(struct sock *sk, struct proto *p)
827 {
828         struct tls_context *ctx;
829
830         ctx = tls_get_ctx(sk);
831         if (likely(ctx)) {
832                 ctx->sk_proto_close = p->close;
833                 ctx->sk_proto = p;
834         } else {
835                 sk->sk_prot = p;
836         }
837 }
838
839 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
840 {
841         u16 version, cipher_type;
842         struct tls_context *ctx;
843         struct nlattr *start;
844         int err;
845
846         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
847         if (!start)
848                 return -EMSGSIZE;
849
850         rcu_read_lock();
851         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
852         if (!ctx) {
853                 err = 0;
854                 goto nla_failure;
855         }
856         version = ctx->prot_info.version;
857         if (version) {
858                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
859                 if (err)
860                         goto nla_failure;
861         }
862         cipher_type = ctx->prot_info.cipher_type;
863         if (cipher_type) {
864                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
865                 if (err)
866                         goto nla_failure;
867         }
868         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
869         if (err)
870                 goto nla_failure;
871
872         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
873         if (err)
874                 goto nla_failure;
875
876         rcu_read_unlock();
877         nla_nest_end(skb, start);
878         return 0;
879
880 nla_failure:
881         rcu_read_unlock();
882         nla_nest_cancel(skb, start);
883         return err;
884 }
885
886 static size_t tls_get_info_size(const struct sock *sk)
887 {
888         size_t size = 0;
889
890         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
891                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
892                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
893                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
894                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
895                 0;
896
897         return size;
898 }
899
900 void tls_register_device(struct tls_device *device)
901 {
902         spin_lock_bh(&device_spinlock);
903         list_add_tail(&device->dev_list, &device_list);
904         spin_unlock_bh(&device_spinlock);
905 }
906 EXPORT_SYMBOL(tls_register_device);
907
908 void tls_unregister_device(struct tls_device *device)
909 {
910         spin_lock_bh(&device_spinlock);
911         list_del(&device->dev_list);
912         spin_unlock_bh(&device_spinlock);
913 }
914 EXPORT_SYMBOL(tls_unregister_device);
915
916 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
917         .name                   = "tls",
918         .owner                  = THIS_MODULE,
919         .init                   = tls_init,
920         .update                 = tls_update,
921         .get_info               = tls_get_info,
922         .get_info_size          = tls_get_info_size,
923 };
924
925 static int __init tls_register(void)
926 {
927         tls_sw_proto_ops = inet_stream_ops;
928         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
929
930 #ifdef CONFIG_TLS_DEVICE
931         tls_device_init();
932 #endif
933         tcp_register_ulp(&tcp_tls_ulp_ops);
934
935         return 0;
936 }
937
938 static void __exit tls_unregister(void)
939 {
940         tcp_unregister_ulp(&tcp_tls_ulp_ops);
941 #ifdef CONFIG_TLS_DEVICE
942         tls_device_cleanup();
943 #endif
944 }
945
946 module_init(tls_register);
947 module_exit(tls_unregister);