Merge tag 'omap-for-v5.8/dt-missed-signed' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "trace.h"
42
43 /* device_offload_lock is used to synchronize tls_dev_add
44  * against NETDEV_DOWN notifications.
45  */
46 static DECLARE_RWSEM(device_offload_lock);
47
48 static void tls_device_gc_task(struct work_struct *work);
49
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54
55 static void tls_device_free_ctx(struct tls_context *ctx)
56 {
57         if (ctx->tx_conf == TLS_HW) {
58                 kfree(tls_offload_ctx_tx(ctx));
59                 kfree(ctx->tx.rec_seq);
60                 kfree(ctx->tx.iv);
61         }
62
63         if (ctx->rx_conf == TLS_HW)
64                 kfree(tls_offload_ctx_rx(ctx));
65
66         tls_ctx_free(NULL, ctx);
67 }
68
69 static void tls_device_gc_task(struct work_struct *work)
70 {
71         struct tls_context *ctx, *tmp;
72         unsigned long flags;
73         LIST_HEAD(gc_list);
74
75         spin_lock_irqsave(&tls_device_lock, flags);
76         list_splice_init(&tls_device_gc_list, &gc_list);
77         spin_unlock_irqrestore(&tls_device_lock, flags);
78
79         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
80                 struct net_device *netdev = ctx->netdev;
81
82                 if (netdev && ctx->tx_conf == TLS_HW) {
83                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
84                                                         TLS_OFFLOAD_CTX_DIR_TX);
85                         dev_put(netdev);
86                         ctx->netdev = NULL;
87                 }
88
89                 list_del(&ctx->list);
90                 tls_device_free_ctx(ctx);
91         }
92 }
93
94 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
95 {
96         unsigned long flags;
97
98         spin_lock_irqsave(&tls_device_lock, flags);
99         list_move_tail(&ctx->list, &tls_device_gc_list);
100
101         /* schedule_work inside the spinlock
102          * to make sure tls_device_down waits for that work.
103          */
104         schedule_work(&tls_device_gc_work);
105
106         spin_unlock_irqrestore(&tls_device_lock, flags);
107 }
108
109 /* We assume that the socket is already connected */
110 static struct net_device *get_netdev_for_sock(struct sock *sk)
111 {
112         struct dst_entry *dst = sk_dst_get(sk);
113         struct net_device *netdev = NULL;
114
115         if (likely(dst)) {
116                 netdev = dst->dev;
117                 dev_hold(netdev);
118         }
119
120         dst_release(dst);
121
122         return netdev;
123 }
124
125 static void destroy_record(struct tls_record_info *record)
126 {
127         int i;
128
129         for (i = 0; i < record->num_frags; i++)
130                 __skb_frag_unref(&record->frags[i]);
131         kfree(record);
132 }
133
134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
135 {
136         struct tls_record_info *info, *temp;
137
138         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
139                 list_del(&info->list);
140                 destroy_record(info);
141         }
142
143         offload_ctx->retransmit_hint = NULL;
144 }
145
146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
147 {
148         struct tls_context *tls_ctx = tls_get_ctx(sk);
149         struct tls_record_info *info, *temp;
150         struct tls_offload_context_tx *ctx;
151         u64 deleted_records = 0;
152         unsigned long flags;
153
154         if (!tls_ctx)
155                 return;
156
157         ctx = tls_offload_ctx_tx(tls_ctx);
158
159         spin_lock_irqsave(&ctx->lock, flags);
160         info = ctx->retransmit_hint;
161         if (info && !before(acked_seq, info->end_seq))
162                 ctx->retransmit_hint = NULL;
163
164         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
165                 if (before(acked_seq, info->end_seq))
166                         break;
167                 list_del(&info->list);
168
169                 destroy_record(info);
170                 deleted_records++;
171         }
172
173         ctx->unacked_record_sn += deleted_records;
174         spin_unlock_irqrestore(&ctx->lock, flags);
175 }
176
177 /* At this point, there should be no references on this
178  * socket and no in-flight SKBs associated with this
179  * socket, so it is safe to free all the resources.
180  */
181 void tls_device_sk_destruct(struct sock *sk)
182 {
183         struct tls_context *tls_ctx = tls_get_ctx(sk);
184         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
185
186         tls_ctx->sk_destruct(sk);
187
188         if (tls_ctx->tx_conf == TLS_HW) {
189                 if (ctx->open_record)
190                         destroy_record(ctx->open_record);
191                 delete_all_records(ctx);
192                 crypto_free_aead(ctx->aead_send);
193                 clean_acked_data_disable(inet_csk(sk));
194         }
195
196         if (refcount_dec_and_test(&tls_ctx->refcount))
197                 tls_device_queue_ctx_destruction(tls_ctx);
198 }
199 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
200
201 void tls_device_free_resources_tx(struct sock *sk)
202 {
203         struct tls_context *tls_ctx = tls_get_ctx(sk);
204
205         tls_free_partial_record(sk, tls_ctx);
206 }
207
208 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
209 {
210         struct tls_context *tls_ctx = tls_get_ctx(sk);
211
212         trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
213         WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
214 }
215 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
216
217 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
218                                  u32 seq)
219 {
220         struct net_device *netdev;
221         struct sk_buff *skb;
222         int err = 0;
223         u8 *rcd_sn;
224
225         skb = tcp_write_queue_tail(sk);
226         if (skb)
227                 TCP_SKB_CB(skb)->eor = 1;
228
229         rcd_sn = tls_ctx->tx.rec_seq;
230
231         trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
232         down_read(&device_offload_lock);
233         netdev = tls_ctx->netdev;
234         if (netdev)
235                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
236                                                          rcd_sn,
237                                                          TLS_OFFLOAD_CTX_DIR_TX);
238         up_read(&device_offload_lock);
239         if (err)
240                 return;
241
242         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
243 }
244
245 static void tls_append_frag(struct tls_record_info *record,
246                             struct page_frag *pfrag,
247                             int size)
248 {
249         skb_frag_t *frag;
250
251         frag = &record->frags[record->num_frags - 1];
252         if (skb_frag_page(frag) == pfrag->page &&
253             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
254                 skb_frag_size_add(frag, size);
255         } else {
256                 ++frag;
257                 __skb_frag_set_page(frag, pfrag->page);
258                 skb_frag_off_set(frag, pfrag->offset);
259                 skb_frag_size_set(frag, size);
260                 ++record->num_frags;
261                 get_page(pfrag->page);
262         }
263
264         pfrag->offset += size;
265         record->len += size;
266 }
267
268 static int tls_push_record(struct sock *sk,
269                            struct tls_context *ctx,
270                            struct tls_offload_context_tx *offload_ctx,
271                            struct tls_record_info *record,
272                            int flags)
273 {
274         struct tls_prot_info *prot = &ctx->prot_info;
275         struct tcp_sock *tp = tcp_sk(sk);
276         skb_frag_t *frag;
277         int i;
278
279         record->end_seq = tp->write_seq + record->len;
280         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
281         offload_ctx->open_record = NULL;
282
283         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
284                 tls_device_resync_tx(sk, ctx, tp->write_seq);
285
286         tls_advance_record_sn(sk, prot, &ctx->tx);
287
288         for (i = 0; i < record->num_frags; i++) {
289                 frag = &record->frags[i];
290                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
291                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
292                             skb_frag_size(frag), skb_frag_off(frag));
293                 sk_mem_charge(sk, skb_frag_size(frag));
294                 get_page(skb_frag_page(frag));
295         }
296         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
297
298         /* all ready, send */
299         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
300 }
301
302 static int tls_device_record_close(struct sock *sk,
303                                    struct tls_context *ctx,
304                                    struct tls_record_info *record,
305                                    struct page_frag *pfrag,
306                                    unsigned char record_type)
307 {
308         struct tls_prot_info *prot = &ctx->prot_info;
309         int ret;
310
311         /* append tag
312          * device will fill in the tag, we just need to append a placeholder
313          * use socket memory to improve coalescing (re-using a single buffer
314          * increases frag count)
315          * if we can't allocate memory now, steal some back from data
316          */
317         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
318                                         sk->sk_allocation))) {
319                 ret = 0;
320                 tls_append_frag(record, pfrag, prot->tag_size);
321         } else {
322                 ret = prot->tag_size;
323                 if (record->len <= prot->overhead_size)
324                         return -ENOMEM;
325         }
326
327         /* fill prepend */
328         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
329                          record->len - prot->overhead_size,
330                          record_type, prot->version);
331         return ret;
332 }
333
334 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
335                                  struct page_frag *pfrag,
336                                  size_t prepend_size)
337 {
338         struct tls_record_info *record;
339         skb_frag_t *frag;
340
341         record = kmalloc(sizeof(*record), GFP_KERNEL);
342         if (!record)
343                 return -ENOMEM;
344
345         frag = &record->frags[0];
346         __skb_frag_set_page(frag, pfrag->page);
347         skb_frag_off_set(frag, pfrag->offset);
348         skb_frag_size_set(frag, prepend_size);
349
350         get_page(pfrag->page);
351         pfrag->offset += prepend_size;
352
353         record->num_frags = 1;
354         record->len = prepend_size;
355         offload_ctx->open_record = record;
356         return 0;
357 }
358
359 static int tls_do_allocation(struct sock *sk,
360                              struct tls_offload_context_tx *offload_ctx,
361                              struct page_frag *pfrag,
362                              size_t prepend_size)
363 {
364         int ret;
365
366         if (!offload_ctx->open_record) {
367                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
368                                                    sk->sk_allocation))) {
369                         READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
370                         sk_stream_moderate_sndbuf(sk);
371                         return -ENOMEM;
372                 }
373
374                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
375                 if (ret)
376                         return ret;
377
378                 if (pfrag->size > pfrag->offset)
379                         return 0;
380         }
381
382         if (!sk_page_frag_refill(sk, pfrag))
383                 return -ENOMEM;
384
385         return 0;
386 }
387
388 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
389 {
390         size_t pre_copy, nocache;
391
392         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
393         if (pre_copy) {
394                 pre_copy = min(pre_copy, bytes);
395                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
396                         return -EFAULT;
397                 bytes -= pre_copy;
398                 addr += pre_copy;
399         }
400
401         nocache = round_down(bytes, SMP_CACHE_BYTES);
402         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
403                 return -EFAULT;
404         bytes -= nocache;
405         addr += nocache;
406
407         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
408                 return -EFAULT;
409
410         return 0;
411 }
412
413 static int tls_push_data(struct sock *sk,
414                          struct iov_iter *msg_iter,
415                          size_t size, int flags,
416                          unsigned char record_type)
417 {
418         struct tls_context *tls_ctx = tls_get_ctx(sk);
419         struct tls_prot_info *prot = &tls_ctx->prot_info;
420         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
421         int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
422         struct tls_record_info *record = ctx->open_record;
423         int tls_push_record_flags;
424         struct page_frag *pfrag;
425         size_t orig_size = size;
426         u32 max_open_record_len;
427         int copy, rc = 0;
428         bool done = false;
429         long timeo;
430
431         if (flags &
432             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
433                 return -EOPNOTSUPP;
434
435         if (unlikely(sk->sk_err))
436                 return -sk->sk_err;
437
438         flags |= MSG_SENDPAGE_DECRYPTED;
439         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
440
441         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
442         if (tls_is_partially_sent_record(tls_ctx)) {
443                 rc = tls_push_partial_record(sk, tls_ctx, flags);
444                 if (rc < 0)
445                         return rc;
446         }
447
448         pfrag = sk_page_frag(sk);
449
450         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
451          * we need to leave room for an authentication tag.
452          */
453         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
454                               prot->prepend_size;
455         do {
456                 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
457                 if (unlikely(rc)) {
458                         rc = sk_stream_wait_memory(sk, &timeo);
459                         if (!rc)
460                                 continue;
461
462                         record = ctx->open_record;
463                         if (!record)
464                                 break;
465 handle_error:
466                         if (record_type != TLS_RECORD_TYPE_DATA) {
467                                 /* avoid sending partial
468                                  * record with type !=
469                                  * application_data
470                                  */
471                                 size = orig_size;
472                                 destroy_record(record);
473                                 ctx->open_record = NULL;
474                         } else if (record->len > prot->prepend_size) {
475                                 goto last_record;
476                         }
477
478                         break;
479                 }
480
481                 record = ctx->open_record;
482                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
483                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
484
485                 rc = tls_device_copy_data(page_address(pfrag->page) +
486                                           pfrag->offset, copy, msg_iter);
487                 if (rc)
488                         goto handle_error;
489                 tls_append_frag(record, pfrag, copy);
490
491                 size -= copy;
492                 if (!size) {
493 last_record:
494                         tls_push_record_flags = flags;
495                         if (more) {
496                                 tls_ctx->pending_open_record_frags =
497                                                 !!record->num_frags;
498                                 break;
499                         }
500
501                         done = true;
502                 }
503
504                 if (done || record->len >= max_open_record_len ||
505                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
506                         rc = tls_device_record_close(sk, tls_ctx, record,
507                                                      pfrag, record_type);
508                         if (rc) {
509                                 if (rc > 0) {
510                                         size += rc;
511                                 } else {
512                                         size = orig_size;
513                                         destroy_record(record);
514                                         ctx->open_record = NULL;
515                                         break;
516                                 }
517                         }
518
519                         rc = tls_push_record(sk,
520                                              tls_ctx,
521                                              ctx,
522                                              record,
523                                              tls_push_record_flags);
524                         if (rc < 0)
525                                 break;
526                 }
527         } while (!done);
528
529         if (orig_size - size > 0)
530                 rc = orig_size - size;
531
532         return rc;
533 }
534
535 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
536 {
537         unsigned char record_type = TLS_RECORD_TYPE_DATA;
538         struct tls_context *tls_ctx = tls_get_ctx(sk);
539         int rc;
540
541         mutex_lock(&tls_ctx->tx_lock);
542         lock_sock(sk);
543
544         if (unlikely(msg->msg_controllen)) {
545                 rc = tls_proccess_cmsg(sk, msg, &record_type);
546                 if (rc)
547                         goto out;
548         }
549
550         rc = tls_push_data(sk, &msg->msg_iter, size,
551                            msg->msg_flags, record_type);
552
553 out:
554         release_sock(sk);
555         mutex_unlock(&tls_ctx->tx_lock);
556         return rc;
557 }
558
559 int tls_device_sendpage(struct sock *sk, struct page *page,
560                         int offset, size_t size, int flags)
561 {
562         struct tls_context *tls_ctx = tls_get_ctx(sk);
563         struct iov_iter msg_iter;
564         char *kaddr = kmap(page);
565         struct kvec iov;
566         int rc;
567
568         if (flags & MSG_SENDPAGE_NOTLAST)
569                 flags |= MSG_MORE;
570
571         mutex_lock(&tls_ctx->tx_lock);
572         lock_sock(sk);
573
574         if (flags & MSG_OOB) {
575                 rc = -EOPNOTSUPP;
576                 goto out;
577         }
578
579         iov.iov_base = kaddr + offset;
580         iov.iov_len = size;
581         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
582         rc = tls_push_data(sk, &msg_iter, size,
583                            flags, TLS_RECORD_TYPE_DATA);
584         kunmap(page);
585
586 out:
587         release_sock(sk);
588         mutex_unlock(&tls_ctx->tx_lock);
589         return rc;
590 }
591
592 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
593                                        u32 seq, u64 *p_record_sn)
594 {
595         u64 record_sn = context->hint_record_sn;
596         struct tls_record_info *info, *last;
597
598         info = context->retransmit_hint;
599         if (!info ||
600             before(seq, info->end_seq - info->len)) {
601                 /* if retransmit_hint is irrelevant start
602                  * from the beggining of the list
603                  */
604                 info = list_first_entry_or_null(&context->records_list,
605                                                 struct tls_record_info, list);
606                 if (!info)
607                         return NULL;
608                 /* send the start_marker record if seq number is before the
609                  * tls offload start marker sequence number. This record is
610                  * required to handle TCP packets which are before TLS offload
611                  * started.
612                  *  And if it's not start marker, look if this seq number
613                  * belongs to the list.
614                  */
615                 if (likely(!tls_record_is_start_marker(info))) {
616                         /* we have the first record, get the last record to see
617                          * if this seq number belongs to the list.
618                          */
619                         last = list_last_entry(&context->records_list,
620                                                struct tls_record_info, list);
621
622                         if (!between(seq, tls_record_start_seq(info),
623                                      last->end_seq))
624                                 return NULL;
625                 }
626                 record_sn = context->unacked_record_sn;
627         }
628
629         /* We just need the _rcu for the READ_ONCE() */
630         rcu_read_lock();
631         list_for_each_entry_from_rcu(info, &context->records_list, list) {
632                 if (before(seq, info->end_seq)) {
633                         if (!context->retransmit_hint ||
634                             after(info->end_seq,
635                                   context->retransmit_hint->end_seq)) {
636                                 context->hint_record_sn = record_sn;
637                                 context->retransmit_hint = info;
638                         }
639                         *p_record_sn = record_sn;
640                         goto exit_rcu_unlock;
641                 }
642                 record_sn++;
643         }
644         info = NULL;
645
646 exit_rcu_unlock:
647         rcu_read_unlock();
648         return info;
649 }
650 EXPORT_SYMBOL(tls_get_record);
651
652 static int tls_device_push_pending_record(struct sock *sk, int flags)
653 {
654         struct iov_iter msg_iter;
655
656         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
657         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
658 }
659
660 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
661 {
662         if (tls_is_partially_sent_record(ctx)) {
663                 gfp_t sk_allocation = sk->sk_allocation;
664
665                 WARN_ON_ONCE(sk->sk_write_pending);
666
667                 sk->sk_allocation = GFP_ATOMIC;
668                 tls_push_partial_record(sk, ctx,
669                                         MSG_DONTWAIT | MSG_NOSIGNAL |
670                                         MSG_SENDPAGE_DECRYPTED);
671                 sk->sk_allocation = sk_allocation;
672         }
673 }
674
675 static void tls_device_resync_rx(struct tls_context *tls_ctx,
676                                  struct sock *sk, u32 seq, u8 *rcd_sn)
677 {
678         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
679         struct net_device *netdev;
680
681         if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
682                 return;
683
684         trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
685         netdev = READ_ONCE(tls_ctx->netdev);
686         if (netdev)
687                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
688                                                    TLS_OFFLOAD_CTX_DIR_RX);
689         clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
690         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
691 }
692
693 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
694 {
695         struct tls_context *tls_ctx = tls_get_ctx(sk);
696         struct tls_offload_context_rx *rx_ctx;
697         bool is_req_pending, is_force_resync;
698         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
699         struct tls_prot_info *prot;
700         s64 resync_req;
701         u32 sock_data;
702         u32 req_seq;
703
704         if (tls_ctx->rx_conf != TLS_HW)
705                 return;
706
707         prot = &tls_ctx->prot_info;
708         rx_ctx = tls_offload_ctx_rx(tls_ctx);
709         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
710
711         switch (rx_ctx->resync_type) {
712         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
713                 resync_req = atomic64_read(&rx_ctx->resync_req);
714                 req_seq = resync_req >> 32;
715                 seq += TLS_HEADER_SIZE - 1;
716                 is_req_pending = resync_req & RESYNC_REQ;
717                 is_force_resync = resync_req & RESYNC_REQ_FORCE;
718
719                 if (likely(!is_req_pending) ||
720                     (!is_force_resync && req_seq != seq) ||
721                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
722                         return;
723                 break;
724         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
725                 if (likely(!rx_ctx->resync_nh_do_now))
726                         return;
727
728                 /* head of next rec is already in, note that the sock_inq will
729                  * include the currently parsed message when called from parser
730                  */
731                 sock_data = tcp_inq(sk);
732                 if (sock_data > rcd_len) {
733                         trace_tls_device_rx_resync_nh_delay(sk, sock_data,
734                                                             rcd_len);
735                         return;
736                 }
737
738                 rx_ctx->resync_nh_do_now = 0;
739                 seq += rcd_len;
740                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
741                 break;
742         }
743
744         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
745 }
746
747 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
748                                            struct tls_offload_context_rx *ctx,
749                                            struct sock *sk, struct sk_buff *skb)
750 {
751         struct strp_msg *rxm;
752
753         /* device will request resyncs by itself based on stream scan */
754         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
755                 return;
756         /* already scheduled */
757         if (ctx->resync_nh_do_now)
758                 return;
759         /* seen decrypted fragments since last fully-failed record */
760         if (ctx->resync_nh_reset) {
761                 ctx->resync_nh_reset = 0;
762                 ctx->resync_nh.decrypted_failed = 1;
763                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
764                 return;
765         }
766
767         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
768                 return;
769
770         /* doing resync, bump the next target in case it fails */
771         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
772                 ctx->resync_nh.decrypted_tgt *= 2;
773         else
774                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
775
776         rxm = strp_msg(skb);
777
778         /* head of next rec is already in, parser will sync for us */
779         if (tcp_inq(sk) > rxm->full_len) {
780                 trace_tls_device_rx_resync_nh_schedule(sk);
781                 ctx->resync_nh_do_now = 1;
782         } else {
783                 struct tls_prot_info *prot = &tls_ctx->prot_info;
784                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
785
786                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
787                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
788
789                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
790                                      rcd_sn);
791         }
792 }
793
794 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
795 {
796         struct strp_msg *rxm = strp_msg(skb);
797         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
798         struct sk_buff *skb_iter, *unused;
799         struct scatterlist sg[1];
800         char *orig_buf, *buf;
801
802         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
803                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
804         if (!orig_buf)
805                 return -ENOMEM;
806         buf = orig_buf;
807
808         nsg = skb_cow_data(skb, 0, &unused);
809         if (unlikely(nsg < 0)) {
810                 err = nsg;
811                 goto free_buf;
812         }
813
814         sg_init_table(sg, 1);
815         sg_set_buf(&sg[0], buf,
816                    rxm->full_len + TLS_HEADER_SIZE +
817                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
818         err = skb_copy_bits(skb, offset, buf,
819                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
820         if (err)
821                 goto free_buf;
822
823         /* We are interested only in the decrypted data not the auth */
824         err = decrypt_skb(sk, skb, sg);
825         if (err != -EBADMSG)
826                 goto free_buf;
827         else
828                 err = 0;
829
830         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
831
832         if (skb_pagelen(skb) > offset) {
833                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
834
835                 if (skb->decrypted) {
836                         err = skb_store_bits(skb, offset, buf, copy);
837                         if (err)
838                                 goto free_buf;
839                 }
840
841                 offset += copy;
842                 buf += copy;
843         }
844
845         pos = skb_pagelen(skb);
846         skb_walk_frags(skb, skb_iter) {
847                 int frag_pos;
848
849                 /* Practically all frags must belong to msg if reencrypt
850                  * is needed with current strparser and coalescing logic,
851                  * but strparser may "get optimized", so let's be safe.
852                  */
853                 if (pos + skb_iter->len <= offset)
854                         goto done_with_frag;
855                 if (pos >= data_len + rxm->offset)
856                         break;
857
858                 frag_pos = offset - pos;
859                 copy = min_t(int, skb_iter->len - frag_pos,
860                              data_len + rxm->offset - offset);
861
862                 if (skb_iter->decrypted) {
863                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
864                         if (err)
865                                 goto free_buf;
866                 }
867
868                 offset += copy;
869                 buf += copy;
870 done_with_frag:
871                 pos += skb_iter->len;
872         }
873
874 free_buf:
875         kfree(orig_buf);
876         return err;
877 }
878
879 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
880                          struct sk_buff *skb, struct strp_msg *rxm)
881 {
882         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
883         int is_decrypted = skb->decrypted;
884         int is_encrypted = !is_decrypted;
885         struct sk_buff *skb_iter;
886
887         /* Check if all the data is decrypted already */
888         skb_walk_frags(skb, skb_iter) {
889                 is_decrypted &= skb_iter->decrypted;
890                 is_encrypted &= !skb_iter->decrypted;
891         }
892
893         trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
894                                    tls_ctx->rx.rec_seq, rxm->full_len,
895                                    is_encrypted, is_decrypted);
896
897         ctx->sw.decrypted |= is_decrypted;
898
899         /* Return immediately if the record is either entirely plaintext or
900          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
901          * record.
902          */
903         if (is_decrypted) {
904                 ctx->resync_nh_reset = 1;
905                 return 0;
906         }
907         if (is_encrypted) {
908                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
909                 return 0;
910         }
911
912         ctx->resync_nh_reset = 1;
913         return tls_device_reencrypt(sk, skb);
914 }
915
916 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
917                               struct net_device *netdev)
918 {
919         if (sk->sk_destruct != tls_device_sk_destruct) {
920                 refcount_set(&ctx->refcount, 1);
921                 dev_hold(netdev);
922                 ctx->netdev = netdev;
923                 spin_lock_irq(&tls_device_lock);
924                 list_add_tail(&ctx->list, &tls_device_list);
925                 spin_unlock_irq(&tls_device_lock);
926
927                 ctx->sk_destruct = sk->sk_destruct;
928                 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
929         }
930 }
931
932 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
933 {
934         u16 nonce_size, tag_size, iv_size, rec_seq_size;
935         struct tls_context *tls_ctx = tls_get_ctx(sk);
936         struct tls_prot_info *prot = &tls_ctx->prot_info;
937         struct tls_record_info *start_marker_record;
938         struct tls_offload_context_tx *offload_ctx;
939         struct tls_crypto_info *crypto_info;
940         struct net_device *netdev;
941         char *iv, *rec_seq;
942         struct sk_buff *skb;
943         __be64 rcd_sn;
944         int rc;
945
946         if (!ctx)
947                 return -EINVAL;
948
949         if (ctx->priv_ctx_tx)
950                 return -EEXIST;
951
952         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
953         if (!start_marker_record)
954                 return -ENOMEM;
955
956         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
957         if (!offload_ctx) {
958                 rc = -ENOMEM;
959                 goto free_marker_record;
960         }
961
962         crypto_info = &ctx->crypto_send.info;
963         if (crypto_info->version != TLS_1_2_VERSION) {
964                 rc = -EOPNOTSUPP;
965                 goto free_offload_ctx;
966         }
967
968         switch (crypto_info->cipher_type) {
969         case TLS_CIPHER_AES_GCM_128:
970                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
971                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
972                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
973                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
974                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
975                 rec_seq =
976                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
977                 break;
978         default:
979                 rc = -EINVAL;
980                 goto free_offload_ctx;
981         }
982
983         /* Sanity-check the rec_seq_size for stack allocations */
984         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
985                 rc = -EINVAL;
986                 goto free_offload_ctx;
987         }
988
989         prot->version = crypto_info->version;
990         prot->cipher_type = crypto_info->cipher_type;
991         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
992         prot->tag_size = tag_size;
993         prot->overhead_size = prot->prepend_size + prot->tag_size;
994         prot->iv_size = iv_size;
995         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
996                              GFP_KERNEL);
997         if (!ctx->tx.iv) {
998                 rc = -ENOMEM;
999                 goto free_offload_ctx;
1000         }
1001
1002         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1003
1004         prot->rec_seq_size = rec_seq_size;
1005         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1006         if (!ctx->tx.rec_seq) {
1007                 rc = -ENOMEM;
1008                 goto free_iv;
1009         }
1010
1011         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1012         if (rc)
1013                 goto free_rec_seq;
1014
1015         /* start at rec_seq - 1 to account for the start marker record */
1016         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1017         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1018
1019         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1020         start_marker_record->len = 0;
1021         start_marker_record->num_frags = 0;
1022
1023         INIT_LIST_HEAD(&offload_ctx->records_list);
1024         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1025         spin_lock_init(&offload_ctx->lock);
1026         sg_init_table(offload_ctx->sg_tx_data,
1027                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1028
1029         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1030         ctx->push_pending_record = tls_device_push_pending_record;
1031
1032         /* TLS offload is greatly simplified if we don't send
1033          * SKBs where only part of the payload needs to be encrypted.
1034          * So mark the last skb in the write queue as end of record.
1035          */
1036         skb = tcp_write_queue_tail(sk);
1037         if (skb)
1038                 TCP_SKB_CB(skb)->eor = 1;
1039
1040         netdev = get_netdev_for_sock(sk);
1041         if (!netdev) {
1042                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1043                 rc = -EINVAL;
1044                 goto disable_cad;
1045         }
1046
1047         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1048                 rc = -EOPNOTSUPP;
1049                 goto release_netdev;
1050         }
1051
1052         /* Avoid offloading if the device is down
1053          * We don't want to offload new flows after
1054          * the NETDEV_DOWN event
1055          *
1056          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1057          * handler thus protecting from the device going down before
1058          * ctx was added to tls_device_list.
1059          */
1060         down_read(&device_offload_lock);
1061         if (!(netdev->flags & IFF_UP)) {
1062                 rc = -EINVAL;
1063                 goto release_lock;
1064         }
1065
1066         ctx->priv_ctx_tx = offload_ctx;
1067         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1068                                              &ctx->crypto_send.info,
1069                                              tcp_sk(sk)->write_seq);
1070         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1071                                      tcp_sk(sk)->write_seq, rec_seq, rc);
1072         if (rc)
1073                 goto release_lock;
1074
1075         tls_device_attach(ctx, sk, netdev);
1076         up_read(&device_offload_lock);
1077
1078         /* following this assignment tls_is_sk_tx_device_offloaded
1079          * will return true and the context might be accessed
1080          * by the netdev's xmit function.
1081          */
1082         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1083         dev_put(netdev);
1084
1085         return 0;
1086
1087 release_lock:
1088         up_read(&device_offload_lock);
1089 release_netdev:
1090         dev_put(netdev);
1091 disable_cad:
1092         clean_acked_data_disable(inet_csk(sk));
1093         crypto_free_aead(offload_ctx->aead_send);
1094 free_rec_seq:
1095         kfree(ctx->tx.rec_seq);
1096 free_iv:
1097         kfree(ctx->tx.iv);
1098 free_offload_ctx:
1099         kfree(offload_ctx);
1100         ctx->priv_ctx_tx = NULL;
1101 free_marker_record:
1102         kfree(start_marker_record);
1103         return rc;
1104 }
1105
1106 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1107 {
1108         struct tls12_crypto_info_aes_gcm_128 *info;
1109         struct tls_offload_context_rx *context;
1110         struct net_device *netdev;
1111         int rc = 0;
1112
1113         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1114                 return -EOPNOTSUPP;
1115
1116         netdev = get_netdev_for_sock(sk);
1117         if (!netdev) {
1118                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1119                 return -EINVAL;
1120         }
1121
1122         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1123                 rc = -EOPNOTSUPP;
1124                 goto release_netdev;
1125         }
1126
1127         /* Avoid offloading if the device is down
1128          * We don't want to offload new flows after
1129          * the NETDEV_DOWN event
1130          *
1131          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1132          * handler thus protecting from the device going down before
1133          * ctx was added to tls_device_list.
1134          */
1135         down_read(&device_offload_lock);
1136         if (!(netdev->flags & IFF_UP)) {
1137                 rc = -EINVAL;
1138                 goto release_lock;
1139         }
1140
1141         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1142         if (!context) {
1143                 rc = -ENOMEM;
1144                 goto release_lock;
1145         }
1146         context->resync_nh_reset = 1;
1147
1148         ctx->priv_ctx_rx = context;
1149         rc = tls_set_sw_offload(sk, ctx, 0);
1150         if (rc)
1151                 goto release_ctx;
1152
1153         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1154                                              &ctx->crypto_recv.info,
1155                                              tcp_sk(sk)->copied_seq);
1156         info = (void *)&ctx->crypto_recv.info;
1157         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1158                                      tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1159         if (rc)
1160                 goto free_sw_resources;
1161
1162         tls_device_attach(ctx, sk, netdev);
1163         up_read(&device_offload_lock);
1164
1165         dev_put(netdev);
1166
1167         return 0;
1168
1169 free_sw_resources:
1170         up_read(&device_offload_lock);
1171         tls_sw_free_resources_rx(sk);
1172         down_read(&device_offload_lock);
1173 release_ctx:
1174         ctx->priv_ctx_rx = NULL;
1175 release_lock:
1176         up_read(&device_offload_lock);
1177 release_netdev:
1178         dev_put(netdev);
1179         return rc;
1180 }
1181
1182 void tls_device_offload_cleanup_rx(struct sock *sk)
1183 {
1184         struct tls_context *tls_ctx = tls_get_ctx(sk);
1185         struct net_device *netdev;
1186
1187         down_read(&device_offload_lock);
1188         netdev = tls_ctx->netdev;
1189         if (!netdev)
1190                 goto out;
1191
1192         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1193                                         TLS_OFFLOAD_CTX_DIR_RX);
1194
1195         if (tls_ctx->tx_conf != TLS_HW) {
1196                 dev_put(netdev);
1197                 tls_ctx->netdev = NULL;
1198         }
1199 out:
1200         up_read(&device_offload_lock);
1201         tls_sw_release_resources_rx(sk);
1202 }
1203
1204 static int tls_device_down(struct net_device *netdev)
1205 {
1206         struct tls_context *ctx, *tmp;
1207         unsigned long flags;
1208         LIST_HEAD(list);
1209
1210         /* Request a write lock to block new offload attempts */
1211         down_write(&device_offload_lock);
1212
1213         spin_lock_irqsave(&tls_device_lock, flags);
1214         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1215                 if (ctx->netdev != netdev ||
1216                     !refcount_inc_not_zero(&ctx->refcount))
1217                         continue;
1218
1219                 list_move(&ctx->list, &list);
1220         }
1221         spin_unlock_irqrestore(&tls_device_lock, flags);
1222
1223         list_for_each_entry_safe(ctx, tmp, &list, list) {
1224                 if (ctx->tx_conf == TLS_HW)
1225                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1226                                                         TLS_OFFLOAD_CTX_DIR_TX);
1227                 if (ctx->rx_conf == TLS_HW)
1228                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1229                                                         TLS_OFFLOAD_CTX_DIR_RX);
1230                 WRITE_ONCE(ctx->netdev, NULL);
1231                 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1232                 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1233                         usleep_range(10, 200);
1234                 dev_put(netdev);
1235                 list_del_init(&ctx->list);
1236
1237                 if (refcount_dec_and_test(&ctx->refcount))
1238                         tls_device_free_ctx(ctx);
1239         }
1240
1241         up_write(&device_offload_lock);
1242
1243         flush_work(&tls_device_gc_work);
1244
1245         return NOTIFY_DONE;
1246 }
1247
1248 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1249                          void *ptr)
1250 {
1251         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1252
1253         if (!dev->tlsdev_ops &&
1254             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1255                 return NOTIFY_DONE;
1256
1257         switch (event) {
1258         case NETDEV_REGISTER:
1259         case NETDEV_FEAT_CHANGE:
1260                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1261                     !dev->tlsdev_ops->tls_dev_resync)
1262                         return NOTIFY_BAD;
1263
1264                 if  (dev->tlsdev_ops &&
1265                      dev->tlsdev_ops->tls_dev_add &&
1266                      dev->tlsdev_ops->tls_dev_del)
1267                         return NOTIFY_DONE;
1268                 else
1269                         return NOTIFY_BAD;
1270         case NETDEV_DOWN:
1271                 return tls_device_down(dev);
1272         }
1273         return NOTIFY_DONE;
1274 }
1275
1276 static struct notifier_block tls_dev_notifier = {
1277         .notifier_call  = tls_dev_event,
1278 };
1279
1280 void __init tls_device_init(void)
1281 {
1282         register_netdevice_notifier(&tls_dev_notifier);
1283 }
1284
1285 void __exit tls_device_cleanup(void)
1286 {
1287         unregister_netdevice_notifier(&tls_dev_notifier);
1288         flush_work(&tls_device_gc_work);
1289         clean_acked_data_flush();
1290 }