Merge tag 'asm-generic-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd...
[linux-2.6-microblaze.git] / net / tipc / crypto.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4  *
5  * Copyright (c) 2019, Ericsson AB
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the names of the copyright holders nor the names of its
17  *    contributors may be used to endorse or promote products derived from
18  *    this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") version 2 as published by the Free
22  * Software Foundation.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include <crypto/rng.h>
40 #include "crypto.h"
41 #include "msg.h"
42 #include "bcast.h"
43
44 #define TIPC_TX_GRACE_PERIOD    msecs_to_jiffies(5000) /* 5s */
45 #define TIPC_TX_LASTING_TIME    msecs_to_jiffies(10000) /* 10s */
46 #define TIPC_RX_ACTIVE_LIM      msecs_to_jiffies(3000) /* 3s */
47 #define TIPC_RX_PASSIVE_LIM     msecs_to_jiffies(15000) /* 15s */
48
49 #define TIPC_MAX_TFMS_DEF       10
50 #define TIPC_MAX_TFMS_LIM       1000
51
52 #define TIPC_REKEYING_INTV_DEF  (60 * 24) /* default: 1 day */
53
54 /*
55  * TIPC Key ids
56  */
57 enum {
58         KEY_MASTER = 0,
59         KEY_MIN = KEY_MASTER,
60         KEY_1 = 1,
61         KEY_2,
62         KEY_3,
63         KEY_MAX = KEY_3,
64 };
65
66 /*
67  * TIPC Crypto statistics
68  */
69 enum {
70         STAT_OK,
71         STAT_NOK,
72         STAT_ASYNC,
73         STAT_ASYNC_OK,
74         STAT_ASYNC_NOK,
75         STAT_BADKEYS, /* tx only */
76         STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77         STAT_NOKEYS,
78         STAT_SWITCHES,
79
80         MAX_STATS,
81 };
82
83 /* TIPC crypto statistics' header */
84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85                                         "async_nok", "badmsgs", "nokeys",
86                                         "switches"};
87
88 /* Max TFMs number per key */
89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 /* Key exchange switch, default: on */
91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92
93 /*
94  * struct tipc_key - TIPC keys' status indicator
95  *
96  *         7     6     5     4     3     2     1     0
97  *      +-----+-----+-----+-----+-----+-----+-----+-----+
98  * key: | (reserved)|passive idx| active idx|pending idx|
99  *      +-----+-----+-----+-----+-----+-----+-----+-----+
100  */
101 struct tipc_key {
102 #define KEY_BITS (2)
103 #define KEY_MASK ((1 << KEY_BITS) - 1)
104         union {
105                 struct {
106 #if defined(__LITTLE_ENDIAN_BITFIELD)
107                         u8 pending:2,
108                            active:2,
109                            passive:2, /* rx only */
110                            reserved:2;
111 #elif defined(__BIG_ENDIAN_BITFIELD)
112                         u8 reserved:2,
113                            passive:2, /* rx only */
114                            active:2,
115                            pending:2;
116 #else
117 #error  "Please fix <asm/byteorder.h>"
118 #endif
119                 } __packed;
120                 u8 keys;
121         };
122 };
123
124 /**
125  * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126  * @tfm: cipher handle/key
127  * @list: linked list of TFMs
128  */
129 struct tipc_tfm {
130         struct crypto_aead *tfm;
131         struct list_head list;
132 };
133
134 /**
135  * struct tipc_aead - TIPC AEAD key structure
136  * @tfm_entry: per-cpu pointer to one entry in TFM list
137  * @crypto: TIPC crypto owns this key
138  * @cloned: reference to the source key in case cloning
139  * @users: the number of the key users (TX/RX)
140  * @salt: the key's SALT value
141  * @authsize: authentication tag size (max = 16)
142  * @mode: crypto mode is applied to the key
143  * @hint: a hint for user key
144  * @rcu: struct rcu_head
145  * @key: the aead key
146  * @gen: the key's generation
147  * @seqno: the key seqno (cluster scope)
148  * @refcnt: the key reference counter
149  */
150 struct tipc_aead {
151 #define TIPC_AEAD_HINT_LEN (5)
152         struct tipc_tfm * __percpu *tfm_entry;
153         struct tipc_crypto *crypto;
154         struct tipc_aead *cloned;
155         atomic_t users;
156         u32 salt;
157         u8 authsize;
158         u8 mode;
159         char hint[2 * TIPC_AEAD_HINT_LEN + 1];
160         struct rcu_head rcu;
161         struct tipc_aead_key *key;
162         u16 gen;
163
164         atomic64_t seqno ____cacheline_aligned;
165         refcount_t refcnt ____cacheline_aligned;
166
167 } ____cacheline_aligned;
168
169 /**
170  * struct tipc_crypto_stats - TIPC Crypto statistics
171  * @stat: array of crypto statistics
172  */
173 struct tipc_crypto_stats {
174         unsigned int stat[MAX_STATS];
175 };
176
177 /**
178  * struct tipc_crypto - TIPC TX/RX crypto structure
179  * @net: struct net
180  * @node: TIPC node (RX)
181  * @aead: array of pointers to AEAD keys for encryption/decryption
182  * @peer_rx_active: replicated peer RX active key index
183  * @key_gen: TX/RX key generation
184  * @key: the key states
185  * @skey_mode: session key's mode
186  * @skey: received session key
187  * @wq: common workqueue on TX crypto
188  * @work: delayed work sched for TX/RX
189  * @key_distr: key distributing state
190  * @rekeying_intv: rekeying interval (in minutes)
191  * @stats: the crypto statistics
192  * @name: the crypto name
193  * @sndnxt: the per-peer sndnxt (TX)
194  * @timer1: general timer 1 (jiffies)
195  * @timer2: general timer 2 (jiffies)
196  * @working: the crypto is working or not
197  * @key_master: flag indicates if master key exists
198  * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
199  * @nokey: no key indication
200  * @flags: combined flags field
201  * @lock: tipc_key lock
202  */
203 struct tipc_crypto {
204         struct net *net;
205         struct tipc_node *node;
206         struct tipc_aead __rcu *aead[KEY_MAX + 1];
207         atomic_t peer_rx_active;
208         u16 key_gen;
209         struct tipc_key key;
210         u8 skey_mode;
211         struct tipc_aead_key *skey;
212         struct workqueue_struct *wq;
213         struct delayed_work work;
214 #define KEY_DISTR_SCHED         1
215 #define KEY_DISTR_COMPL         2
216         atomic_t key_distr;
217         u32 rekeying_intv;
218
219         struct tipc_crypto_stats __percpu *stats;
220         char name[48];
221
222         atomic64_t sndnxt ____cacheline_aligned;
223         unsigned long timer1;
224         unsigned long timer2;
225         union {
226                 struct {
227                         u8 working:1;
228                         u8 key_master:1;
229                         u8 legacy_user:1;
230                         u8 nokey: 1;
231                 };
232                 u8 flags;
233         };
234         spinlock_t lock; /* crypto lock */
235
236 } ____cacheline_aligned;
237
238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
239 struct tipc_crypto_tx_ctx {
240         struct tipc_aead *aead;
241         struct tipc_bearer *bearer;
242         struct tipc_media_addr dst;
243 };
244
245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
246 struct tipc_crypto_rx_ctx {
247         struct tipc_aead *aead;
248         struct tipc_bearer *bearer;
249 };
250
251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
252 static inline void tipc_aead_put(struct tipc_aead *aead);
253 static void tipc_aead_free(struct rcu_head *rp);
254 static int tipc_aead_users(struct tipc_aead __rcu *aead);
255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
260                           u8 mode);
261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
263                                  unsigned int crypto_ctx_size,
264                                  u8 **iv, struct aead_request **req,
265                                  struct scatterlist **sg, int nsg);
266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
267                              struct tipc_bearer *b,
268                              struct tipc_media_addr *dst,
269                              struct tipc_node *__dnode);
270 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
272                              struct sk_buff *skb, struct tipc_bearer *b);
273 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
276                            u8 tx_key, struct sk_buff *skb,
277                            struct tipc_crypto *__rx);
278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
279                                              u8 new_passive,
280                                              u8 new_active,
281                                              u8 new_pending);
282 static int tipc_crypto_key_attach(struct tipc_crypto *c,
283                                   struct tipc_aead *aead, u8 pos,
284                                   bool master_key);
285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
287                                                  struct tipc_crypto *rx,
288                                                  struct sk_buff *skb,
289                                                  u8 tx_key);
290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
293                                          struct tipc_bearer *b,
294                                          struct tipc_media_addr *dst,
295                                          struct tipc_node *__dnode, u8 type);
296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
297                                      struct tipc_bearer *b,
298                                      struct sk_buff **skb, int err);
299 static void tipc_crypto_do_cmd(struct net *net, int cmd);
300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
302                                   char *buf);
303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
304                                 u16 gen, u8 mode, u32 dnode);
305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
306 static void tipc_crypto_work_tx(struct work_struct *work);
307 static void tipc_crypto_work_rx(struct work_struct *work);
308 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
309
310 #define is_tx(crypto) (!(crypto)->node)
311 #define is_rx(crypto) (!is_tx(crypto))
312
313 #define key_next(cur) ((cur) % KEY_MAX + 1)
314
315 #define tipc_aead_rcu_ptr(rcu_ptr, lock)                                \
316         rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
317
318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)                       \
319 do {                                                                    \
320         struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),  \
321                                                 lockdep_is_held(lock)); \
322         rcu_assign_pointer((rcu_ptr), (ptr));                           \
323         tipc_aead_put(__tmp);                                           \
324 } while (0)
325
326 #define tipc_crypto_key_detach(rcu_ptr, lock)                           \
327         tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
328
329 /**
330  * tipc_aead_key_validate - Validate a AEAD user key
331  * @ukey: pointer to user key data
332  * @info: netlink info pointer
333  */
334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
335 {
336         int keylen;
337
338         /* Check if algorithm exists */
339         if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
340                 GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
341                 return -ENODEV;
342         }
343
344         /* Currently, we only support the "gcm(aes)" cipher algorithm */
345         if (strcmp(ukey->alg_name, "gcm(aes)")) {
346                 GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
347                 return -ENOTSUPP;
348         }
349
350         /* Check if key size is correct */
351         keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
352         if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
353                      keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
354                      keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
355                 GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
356                 return -EKEYREJECTED;
357         }
358
359         return 0;
360 }
361
362 /**
363  * tipc_aead_key_generate - Generate new session key
364  * @skey: input/output key with new content
365  *
366  * Return: 0 in case of success, otherwise < 0
367  */
368 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
369 {
370         int rc = 0;
371
372         /* Fill the key's content with a random value via RNG cipher */
373         rc = crypto_get_default_rng();
374         if (likely(!rc)) {
375                 rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
376                                           skey->keylen);
377                 crypto_put_default_rng();
378         }
379
380         return rc;
381 }
382
383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
384 {
385         struct tipc_aead *tmp;
386
387         rcu_read_lock();
388         tmp = rcu_dereference(aead);
389         if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
390                 tmp = NULL;
391         rcu_read_unlock();
392
393         return tmp;
394 }
395
396 static inline void tipc_aead_put(struct tipc_aead *aead)
397 {
398         if (aead && refcount_dec_and_test(&aead->refcnt))
399                 call_rcu(&aead->rcu, tipc_aead_free);
400 }
401
402 /**
403  * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
404  * @rp: rcu head pointer
405  */
406 static void tipc_aead_free(struct rcu_head *rp)
407 {
408         struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
409         struct tipc_tfm *tfm_entry, *head, *tmp;
410
411         if (aead->cloned) {
412                 tipc_aead_put(aead->cloned);
413         } else {
414                 head = *get_cpu_ptr(aead->tfm_entry);
415                 put_cpu_ptr(aead->tfm_entry);
416                 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
417                         crypto_free_aead(tfm_entry->tfm);
418                         list_del(&tfm_entry->list);
419                         kfree(tfm_entry);
420                 }
421                 /* Free the head */
422                 crypto_free_aead(head->tfm);
423                 list_del(&head->list);
424                 kfree(head);
425         }
426         free_percpu(aead->tfm_entry);
427         kfree_sensitive(aead->key);
428         kfree(aead);
429 }
430
431 static int tipc_aead_users(struct tipc_aead __rcu *aead)
432 {
433         struct tipc_aead *tmp;
434         int users = 0;
435
436         rcu_read_lock();
437         tmp = rcu_dereference(aead);
438         if (tmp)
439                 users = atomic_read(&tmp->users);
440         rcu_read_unlock();
441
442         return users;
443 }
444
445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
446 {
447         struct tipc_aead *tmp;
448
449         rcu_read_lock();
450         tmp = rcu_dereference(aead);
451         if (tmp)
452                 atomic_add_unless(&tmp->users, 1, lim);
453         rcu_read_unlock();
454 }
455
456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
457 {
458         struct tipc_aead *tmp;
459
460         rcu_read_lock();
461         tmp = rcu_dereference(aead);
462         if (tmp)
463                 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
464         rcu_read_unlock();
465 }
466
467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
468 {
469         struct tipc_aead *tmp;
470         int cur;
471
472         rcu_read_lock();
473         tmp = rcu_dereference(aead);
474         if (tmp) {
475                 do {
476                         cur = atomic_read(&tmp->users);
477                         if (cur == val)
478                                 break;
479                 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
480         }
481         rcu_read_unlock();
482 }
483
484 /**
485  * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
486  * @aead: the AEAD key pointer
487  */
488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
489 {
490         struct tipc_tfm **tfm_entry;
491         struct crypto_aead *tfm;
492
493         tfm_entry = get_cpu_ptr(aead->tfm_entry);
494         *tfm_entry = list_next_entry(*tfm_entry, list);
495         tfm = (*tfm_entry)->tfm;
496         put_cpu_ptr(tfm_entry);
497
498         return tfm;
499 }
500
501 /**
502  * tipc_aead_init - Initiate TIPC AEAD
503  * @aead: returned new TIPC AEAD key handle pointer
504  * @ukey: pointer to user key data
505  * @mode: the key mode
506  *
507  * Allocate a (list of) new cipher transformation (TFM) with the specific user
508  * key data if valid. The number of the allocated TFMs can be set via the sysfs
509  * "net/tipc/max_tfms" first.
510  * Also, all the other AEAD data are also initialized.
511  *
512  * Return: 0 if the initiation is successful, otherwise: < 0
513  */
514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
515                           u8 mode)
516 {
517         struct tipc_tfm *tfm_entry, *head;
518         struct crypto_aead *tfm;
519         struct tipc_aead *tmp;
520         int keylen, err, cpu;
521         int tfm_cnt = 0;
522
523         if (unlikely(*aead))
524                 return -EEXIST;
525
526         /* Allocate a new AEAD */
527         tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
528         if (unlikely(!tmp))
529                 return -ENOMEM;
530
531         /* The key consists of two parts: [AES-KEY][SALT] */
532         keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
533
534         /* Allocate per-cpu TFM entry pointer */
535         tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
536         if (!tmp->tfm_entry) {
537                 kfree_sensitive(tmp);
538                 return -ENOMEM;
539         }
540
541         /* Make a list of TFMs with the user key data */
542         do {
543                 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
544                 if (IS_ERR(tfm)) {
545                         err = PTR_ERR(tfm);
546                         break;
547                 }
548
549                 if (unlikely(!tfm_cnt &&
550                              crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
551                         crypto_free_aead(tfm);
552                         err = -ENOTSUPP;
553                         break;
554                 }
555
556                 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
557                 err |= crypto_aead_setkey(tfm, ukey->key, keylen);
558                 if (unlikely(err)) {
559                         crypto_free_aead(tfm);
560                         break;
561                 }
562
563                 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
564                 if (unlikely(!tfm_entry)) {
565                         crypto_free_aead(tfm);
566                         err = -ENOMEM;
567                         break;
568                 }
569                 INIT_LIST_HEAD(&tfm_entry->list);
570                 tfm_entry->tfm = tfm;
571
572                 /* First entry? */
573                 if (!tfm_cnt) {
574                         head = tfm_entry;
575                         for_each_possible_cpu(cpu) {
576                                 *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
577                         }
578                 } else {
579                         list_add_tail(&tfm_entry->list, &head->list);
580                 }
581
582         } while (++tfm_cnt < sysctl_tipc_max_tfms);
583
584         /* Not any TFM is allocated? */
585         if (!tfm_cnt) {
586                 free_percpu(tmp->tfm_entry);
587                 kfree_sensitive(tmp);
588                 return err;
589         }
590
591         /* Form a hex string of some last bytes as the key's hint */
592         bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
593                 TIPC_AEAD_HINT_LEN);
594
595         /* Initialize the other data */
596         tmp->mode = mode;
597         tmp->cloned = NULL;
598         tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
599         tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
600         memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
601         atomic_set(&tmp->users, 0);
602         atomic64_set(&tmp->seqno, 0);
603         refcount_set(&tmp->refcnt, 1);
604
605         *aead = tmp;
606         return 0;
607 }
608
609 /**
610  * tipc_aead_clone - Clone a TIPC AEAD key
611  * @dst: dest key for the cloning
612  * @src: source key to clone from
613  *
614  * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
615  * common for the keys.
616  * A reference to the source is hold in the "cloned" pointer for the later
617  * freeing purposes.
618  *
619  * Note: this must be done in cluster-key mode only!
620  * Return: 0 in case of success, otherwise < 0
621  */
622 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
623 {
624         struct tipc_aead *aead;
625         int cpu;
626
627         if (!src)
628                 return -ENOKEY;
629
630         if (src->mode != CLUSTER_KEY)
631                 return -EINVAL;
632
633         if (unlikely(*dst))
634                 return -EEXIST;
635
636         aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
637         if (unlikely(!aead))
638                 return -ENOMEM;
639
640         aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
641         if (unlikely(!aead->tfm_entry)) {
642                 kfree_sensitive(aead);
643                 return -ENOMEM;
644         }
645
646         for_each_possible_cpu(cpu) {
647                 *per_cpu_ptr(aead->tfm_entry, cpu) =
648                                 *per_cpu_ptr(src->tfm_entry, cpu);
649         }
650
651         memcpy(aead->hint, src->hint, sizeof(src->hint));
652         aead->mode = src->mode;
653         aead->salt = src->salt;
654         aead->authsize = src->authsize;
655         atomic_set(&aead->users, 0);
656         atomic64_set(&aead->seqno, 0);
657         refcount_set(&aead->refcnt, 1);
658
659         WARN_ON(!refcount_inc_not_zero(&src->refcnt));
660         aead->cloned = src;
661
662         *dst = aead;
663         return 0;
664 }
665
666 /**
667  * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
668  * @tfm: cipher handle to be registered with the request
669  * @crypto_ctx_size: size of crypto context for callback
670  * @iv: returned pointer to IV data
671  * @req: returned pointer to AEAD request data
672  * @sg: returned pointer to SG lists
673  * @nsg: number of SG lists to be allocated
674  *
675  * Allocate memory to store the crypto context data, AEAD request, IV and SG
676  * lists, the memory layout is as follows:
677  * crypto_ctx || iv || aead_req || sg[]
678  *
679  * Return: the pointer to the memory areas in case of success, otherwise NULL
680  */
681 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
682                                  unsigned int crypto_ctx_size,
683                                  u8 **iv, struct aead_request **req,
684                                  struct scatterlist **sg, int nsg)
685 {
686         unsigned int iv_size, req_size;
687         unsigned int len;
688         u8 *mem;
689
690         iv_size = crypto_aead_ivsize(tfm);
691         req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
692
693         len = crypto_ctx_size;
694         len += iv_size;
695         len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
696         len = ALIGN(len, crypto_tfm_ctx_alignment());
697         len += req_size;
698         len = ALIGN(len, __alignof__(struct scatterlist));
699         len += nsg * sizeof(**sg);
700
701         mem = kmalloc(len, GFP_ATOMIC);
702         if (!mem)
703                 return NULL;
704
705         *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
706                               crypto_aead_alignmask(tfm) + 1);
707         *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
708                                                 crypto_tfm_ctx_alignment());
709         *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
710                                               __alignof__(struct scatterlist));
711
712         return (void *)mem;
713 }
714
715 /**
716  * tipc_aead_encrypt - Encrypt a message
717  * @aead: TIPC AEAD key for the message encryption
718  * @skb: the input/output skb
719  * @b: TIPC bearer where the message will be delivered after the encryption
720  * @dst: the destination media address
721  * @__dnode: TIPC dest node if "known"
722  *
723  * Return:
724  * * 0                   : if the encryption has completed
725  * * -EINPROGRESS/-EBUSY : if a callback will be performed
726  * * < 0                 : the encryption has failed
727  */
728 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
729                              struct tipc_bearer *b,
730                              struct tipc_media_addr *dst,
731                              struct tipc_node *__dnode)
732 {
733         struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
734         struct tipc_crypto_tx_ctx *tx_ctx;
735         struct aead_request *req;
736         struct sk_buff *trailer;
737         struct scatterlist *sg;
738         struct tipc_ehdr *ehdr;
739         int ehsz, len, tailen, nsg, rc;
740         void *ctx;
741         u32 salt;
742         u8 *iv;
743
744         /* Make sure message len at least 4-byte aligned */
745         len = ALIGN(skb->len, 4);
746         tailen = len - skb->len + aead->authsize;
747
748         /* Expand skb tail for authentication tag:
749          * As for simplicity, we'd have made sure skb having enough tailroom
750          * for authentication tag @skb allocation. Even when skb is nonlinear
751          * but there is no frag_list, it should be still fine!
752          * Otherwise, we must cow it to be a writable buffer with the tailroom.
753          */
754         SKB_LINEAR_ASSERT(skb);
755         if (tailen > skb_tailroom(skb)) {
756                 pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
757                          skb_tailroom(skb), tailen);
758         }
759
760         if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
761                 nsg = 1;
762                 trailer = skb;
763         } else {
764                 /* TODO: We could avoid skb_cow_data() if skb has no frag_list
765                  * e.g. by skb_fill_page_desc() to add another page to the skb
766                  * with the wanted tailen... However, page skbs look not often,
767                  * so take it easy now!
768                  * Cloned skbs e.g. from link_xmit() seems no choice though :(
769                  */
770                 nsg = skb_cow_data(skb, tailen, &trailer);
771                 if (unlikely(nsg < 0)) {
772                         pr_err("TX: skb_cow_data() returned %d\n", nsg);
773                         return nsg;
774                 }
775         }
776
777         pskb_put(skb, trailer, tailen);
778
779         /* Allocate memory for the AEAD operation */
780         ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
781         if (unlikely(!ctx))
782                 return -ENOMEM;
783         TIPC_SKB_CB(skb)->crypto_ctx = ctx;
784
785         /* Map skb to the sg lists */
786         sg_init_table(sg, nsg);
787         rc = skb_to_sgvec(skb, sg, 0, skb->len);
788         if (unlikely(rc < 0)) {
789                 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
790                 goto exit;
791         }
792
793         /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
794          * In case we're in cluster-key mode, SALT is varied by xor-ing with
795          * the source address (or w0 of id), otherwise with the dest address
796          * if dest is known.
797          */
798         ehdr = (struct tipc_ehdr *)skb->data;
799         salt = aead->salt;
800         if (aead->mode == CLUSTER_KEY)
801                 salt ^= __be32_to_cpu(ehdr->addr);
802         else if (__dnode)
803                 salt ^= tipc_node_get_addr(__dnode);
804         memcpy(iv, &salt, 4);
805         memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
806
807         /* Prepare request */
808         ehsz = tipc_ehdr_size(ehdr);
809         aead_request_set_tfm(req, tfm);
810         aead_request_set_ad(req, ehsz);
811         aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
812
813         /* Set callback function & data */
814         aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
815                                   tipc_aead_encrypt_done, skb);
816         tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
817         tx_ctx->aead = aead;
818         tx_ctx->bearer = b;
819         memcpy(&tx_ctx->dst, dst, sizeof(*dst));
820
821         /* Hold bearer */
822         if (unlikely(!tipc_bearer_hold(b))) {
823                 rc = -ENODEV;
824                 goto exit;
825         }
826
827         /* Now, do encrypt */
828         rc = crypto_aead_encrypt(req);
829         if (rc == -EINPROGRESS || rc == -EBUSY)
830                 return rc;
831
832         tipc_bearer_put(b);
833
834 exit:
835         kfree(ctx);
836         TIPC_SKB_CB(skb)->crypto_ctx = NULL;
837         return rc;
838 }
839
840 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
841 {
842         struct sk_buff *skb = base->data;
843         struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
844         struct tipc_bearer *b = tx_ctx->bearer;
845         struct tipc_aead *aead = tx_ctx->aead;
846         struct tipc_crypto *tx = aead->crypto;
847         struct net *net = tx->net;
848
849         switch (err) {
850         case 0:
851                 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
852                 rcu_read_lock();
853                 if (likely(test_bit(0, &b->up)))
854                         b->media->send_msg(net, skb, b, &tx_ctx->dst);
855                 else
856                         kfree_skb(skb);
857                 rcu_read_unlock();
858                 break;
859         case -EINPROGRESS:
860                 return;
861         default:
862                 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
863                 kfree_skb(skb);
864                 break;
865         }
866
867         kfree(tx_ctx);
868         tipc_bearer_put(b);
869         tipc_aead_put(aead);
870 }
871
872 /**
873  * tipc_aead_decrypt - Decrypt an encrypted message
874  * @net: struct net
875  * @aead: TIPC AEAD for the message decryption
876  * @skb: the input/output skb
877  * @b: TIPC bearer where the message has been received
878  *
879  * Return:
880  * * 0                   : if the decryption has completed
881  * * -EINPROGRESS/-EBUSY : if a callback will be performed
882  * * < 0                 : the decryption has failed
883  */
884 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
885                              struct sk_buff *skb, struct tipc_bearer *b)
886 {
887         struct tipc_crypto_rx_ctx *rx_ctx;
888         struct aead_request *req;
889         struct crypto_aead *tfm;
890         struct sk_buff *unused;
891         struct scatterlist *sg;
892         struct tipc_ehdr *ehdr;
893         int ehsz, nsg, rc;
894         void *ctx;
895         u32 salt;
896         u8 *iv;
897
898         if (unlikely(!aead))
899                 return -ENOKEY;
900
901         nsg = skb_cow_data(skb, 0, &unused);
902         if (unlikely(nsg < 0)) {
903                 pr_err("RX: skb_cow_data() returned %d\n", nsg);
904                 return nsg;
905         }
906
907         /* Allocate memory for the AEAD operation */
908         tfm = tipc_aead_tfm_next(aead);
909         ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
910         if (unlikely(!ctx))
911                 return -ENOMEM;
912         TIPC_SKB_CB(skb)->crypto_ctx = ctx;
913
914         /* Map skb to the sg lists */
915         sg_init_table(sg, nsg);
916         rc = skb_to_sgvec(skb, sg, 0, skb->len);
917         if (unlikely(rc < 0)) {
918                 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
919                 goto exit;
920         }
921
922         /* Reconstruct IV: */
923         ehdr = (struct tipc_ehdr *)skb->data;
924         salt = aead->salt;
925         if (aead->mode == CLUSTER_KEY)
926                 salt ^= __be32_to_cpu(ehdr->addr);
927         else if (ehdr->destined)
928                 salt ^= tipc_own_addr(net);
929         memcpy(iv, &salt, 4);
930         memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
931
932         /* Prepare request */
933         ehsz = tipc_ehdr_size(ehdr);
934         aead_request_set_tfm(req, tfm);
935         aead_request_set_ad(req, ehsz);
936         aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
937
938         /* Set callback function & data */
939         aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
940                                   tipc_aead_decrypt_done, skb);
941         rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
942         rx_ctx->aead = aead;
943         rx_ctx->bearer = b;
944
945         /* Hold bearer */
946         if (unlikely(!tipc_bearer_hold(b))) {
947                 rc = -ENODEV;
948                 goto exit;
949         }
950
951         /* Now, do decrypt */
952         rc = crypto_aead_decrypt(req);
953         if (rc == -EINPROGRESS || rc == -EBUSY)
954                 return rc;
955
956         tipc_bearer_put(b);
957
958 exit:
959         kfree(ctx);
960         TIPC_SKB_CB(skb)->crypto_ctx = NULL;
961         return rc;
962 }
963
964 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
965 {
966         struct sk_buff *skb = base->data;
967         struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
968         struct tipc_bearer *b = rx_ctx->bearer;
969         struct tipc_aead *aead = rx_ctx->aead;
970         struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
971         struct net *net = aead->crypto->net;
972
973         switch (err) {
974         case 0:
975                 this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
976                 break;
977         case -EINPROGRESS:
978                 return;
979         default:
980                 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
981                 break;
982         }
983
984         kfree(rx_ctx);
985         tipc_crypto_rcv_complete(net, aead, b, &skb, err);
986         if (likely(skb)) {
987                 if (likely(test_bit(0, &b->up)))
988                         tipc_rcv(net, skb, b);
989                 else
990                         kfree_skb(skb);
991         }
992
993         tipc_bearer_put(b);
994 }
995
996 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
997 {
998         return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
999 }
1000
1001 /**
1002  * tipc_ehdr_validate - Validate an encryption message
1003  * @skb: the message buffer
1004  *
1005  * Return: "true" if this is a valid encryption message, otherwise "false"
1006  */
1007 bool tipc_ehdr_validate(struct sk_buff *skb)
1008 {
1009         struct tipc_ehdr *ehdr;
1010         int ehsz;
1011
1012         if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1013                 return false;
1014
1015         ehdr = (struct tipc_ehdr *)skb->data;
1016         if (unlikely(ehdr->version != TIPC_EVERSION))
1017                 return false;
1018         ehsz = tipc_ehdr_size(ehdr);
1019         if (unlikely(!pskb_may_pull(skb, ehsz)))
1020                 return false;
1021         if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1022                 return false;
1023
1024         return true;
1025 }
1026
1027 /**
1028  * tipc_ehdr_build - Build TIPC encryption message header
1029  * @net: struct net
1030  * @aead: TX AEAD key to be used for the message encryption
1031  * @tx_key: key id used for the message encryption
1032  * @skb: input/output message skb
1033  * @__rx: RX crypto handle if dest is "known"
1034  *
1035  * Return: the header size if the building is successful, otherwise < 0
1036  */
1037 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1038                            u8 tx_key, struct sk_buff *skb,
1039                            struct tipc_crypto *__rx)
1040 {
1041         struct tipc_msg *hdr = buf_msg(skb);
1042         struct tipc_ehdr *ehdr;
1043         u32 user = msg_user(hdr);
1044         u64 seqno;
1045         int ehsz;
1046
1047         /* Make room for encryption header */
1048         ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1049         WARN_ON(skb_headroom(skb) < ehsz);
1050         ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1051
1052         /* Obtain a seqno first:
1053          * Use the key seqno (= cluster wise) if dest is unknown or we're in
1054          * cluster key mode, otherwise it's better for a per-peer seqno!
1055          */
1056         if (!__rx || aead->mode == CLUSTER_KEY)
1057                 seqno = atomic64_inc_return(&aead->seqno);
1058         else
1059                 seqno = atomic64_inc_return(&__rx->sndnxt);
1060
1061         /* Revoke the key if seqno is wrapped around */
1062         if (unlikely(!seqno))
1063                 return tipc_crypto_key_revoke(net, tx_key);
1064
1065         /* Word 1-2 */
1066         ehdr->seqno = cpu_to_be64(seqno);
1067
1068         /* Words 0, 3- */
1069         ehdr->version = TIPC_EVERSION;
1070         ehdr->user = 0;
1071         ehdr->keepalive = 0;
1072         ehdr->tx_key = tx_key;
1073         ehdr->destined = (__rx) ? 1 : 0;
1074         ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1075         ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1076         ehdr->master_key = aead->crypto->key_master;
1077         ehdr->reserved_1 = 0;
1078         ehdr->reserved_2 = 0;
1079
1080         switch (user) {
1081         case LINK_CONFIG:
1082                 ehdr->user = LINK_CONFIG;
1083                 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1084                 break;
1085         default:
1086                 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1087                         ehdr->user = LINK_PROTOCOL;
1088                         ehdr->keepalive = msg_is_keepalive(hdr);
1089                 }
1090                 ehdr->addr = hdr->hdr[3];
1091                 break;
1092         }
1093
1094         return ehsz;
1095 }
1096
1097 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1098                                              u8 new_passive,
1099                                              u8 new_active,
1100                                              u8 new_pending)
1101 {
1102         struct tipc_key old = c->key;
1103         char buf[32];
1104
1105         c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1106                       ((new_active  & KEY_MASK) << (KEY_BITS)) |
1107                       ((new_pending & KEY_MASK));
1108
1109         pr_debug("%s: key changing %s ::%pS\n", c->name,
1110                  tipc_key_change_dump(old, c->key, buf),
1111                  __builtin_return_address(0));
1112 }
1113
1114 /**
1115  * tipc_crypto_key_init - Initiate a new user / AEAD key
1116  * @c: TIPC crypto to which new key is attached
1117  * @ukey: the user key
1118  * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1119  * @master_key: specify this is a cluster master key
1120  *
1121  * A new TIPC AEAD key will be allocated and initiated with the specified user
1122  * key, then attached to the TIPC crypto.
1123  *
1124  * Return: new key id in case of success, otherwise: < 0
1125  */
1126 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1127                          u8 mode, bool master_key)
1128 {
1129         struct tipc_aead *aead = NULL;
1130         int rc = 0;
1131
1132         /* Initiate with the new user key */
1133         rc = tipc_aead_init(&aead, ukey, mode);
1134
1135         /* Attach it to the crypto */
1136         if (likely(!rc)) {
1137                 rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1138                 if (rc < 0)
1139                         tipc_aead_free(&aead->rcu);
1140         }
1141
1142         return rc;
1143 }
1144
1145 /**
1146  * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1147  * @c: TIPC crypto to which the new AEAD key is attached
1148  * @aead: the new AEAD key pointer
1149  * @pos: desired slot in the crypto key array, = 0 if any!
1150  * @master_key: specify this is a cluster master key
1151  *
1152  * Return: new key id in case of success, otherwise: -EBUSY
1153  */
1154 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1155                                   struct tipc_aead *aead, u8 pos,
1156                                   bool master_key)
1157 {
1158         struct tipc_key key;
1159         int rc = -EBUSY;
1160         u8 new_key;
1161
1162         spin_lock_bh(&c->lock);
1163         key = c->key;
1164         if (master_key) {
1165                 new_key = KEY_MASTER;
1166                 goto attach;
1167         }
1168         if (key.active && key.passive)
1169                 goto exit;
1170         if (key.pending) {
1171                 if (tipc_aead_users(c->aead[key.pending]) > 0)
1172                         goto exit;
1173                 /* if (pos): ok with replacing, will be aligned when needed */
1174                 /* Replace it */
1175                 new_key = key.pending;
1176         } else {
1177                 if (pos) {
1178                         if (key.active && pos != key_next(key.active)) {
1179                                 key.passive = pos;
1180                                 new_key = pos;
1181                                 goto attach;
1182                         } else if (!key.active && !key.passive) {
1183                                 key.pending = pos;
1184                                 new_key = pos;
1185                                 goto attach;
1186                         }
1187                 }
1188                 key.pending = key_next(key.active ?: key.passive);
1189                 new_key = key.pending;
1190         }
1191
1192 attach:
1193         aead->crypto = c;
1194         aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1195         tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1196         if (likely(c->key.keys != key.keys))
1197                 tipc_crypto_key_set_state(c, key.passive, key.active,
1198                                           key.pending);
1199         c->working = 1;
1200         c->nokey = 0;
1201         c->key_master |= master_key;
1202         rc = new_key;
1203
1204 exit:
1205         spin_unlock_bh(&c->lock);
1206         return rc;
1207 }
1208
1209 void tipc_crypto_key_flush(struct tipc_crypto *c)
1210 {
1211         struct tipc_crypto *tx, *rx;
1212         int k;
1213
1214         spin_lock_bh(&c->lock);
1215         if (is_rx(c)) {
1216                 /* Try to cancel pending work */
1217                 rx = c;
1218                 tx = tipc_net(rx->net)->crypto_tx;
1219                 if (cancel_delayed_work(&rx->work)) {
1220                         kfree(rx->skey);
1221                         rx->skey = NULL;
1222                         atomic_xchg(&rx->key_distr, 0);
1223                         tipc_node_put(rx->node);
1224                 }
1225                 /* RX stopping => decrease TX key users if any */
1226                 k = atomic_xchg(&rx->peer_rx_active, 0);
1227                 if (k) {
1228                         tipc_aead_users_dec(tx->aead[k], 0);
1229                         /* Mark the point TX key users changed */
1230                         tx->timer1 = jiffies;
1231                 }
1232         }
1233
1234         c->flags = 0;
1235         tipc_crypto_key_set_state(c, 0, 0, 0);
1236         for (k = KEY_MIN; k <= KEY_MAX; k++)
1237                 tipc_crypto_key_detach(c->aead[k], &c->lock);
1238         atomic64_set(&c->sndnxt, 0);
1239         spin_unlock_bh(&c->lock);
1240 }
1241
1242 /**
1243  * tipc_crypto_key_try_align - Align RX keys if possible
1244  * @rx: RX crypto handle
1245  * @new_pending: new pending slot if aligned (= TX key from peer)
1246  *
1247  * Peer has used an unknown key slot, this only happens when peer has left and
1248  * rejoned, or we are newcomer.
1249  * That means, there must be no active key but a pending key at unaligned slot.
1250  * If so, we try to move the pending key to the new slot.
1251  * Note: A potential passive key can exist, it will be shifted correspondingly!
1252  *
1253  * Return: "true" if key is successfully aligned, otherwise "false"
1254  */
1255 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1256 {
1257         struct tipc_aead *tmp1, *tmp2 = NULL;
1258         struct tipc_key key;
1259         bool aligned = false;
1260         u8 new_passive = 0;
1261         int x;
1262
1263         spin_lock(&rx->lock);
1264         key = rx->key;
1265         if (key.pending == new_pending) {
1266                 aligned = true;
1267                 goto exit;
1268         }
1269         if (key.active)
1270                 goto exit;
1271         if (!key.pending)
1272                 goto exit;
1273         if (tipc_aead_users(rx->aead[key.pending]) > 0)
1274                 goto exit;
1275
1276         /* Try to "isolate" this pending key first */
1277         tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1278         if (!refcount_dec_if_one(&tmp1->refcnt))
1279                 goto exit;
1280         rcu_assign_pointer(rx->aead[key.pending], NULL);
1281
1282         /* Move passive key if any */
1283         if (key.passive) {
1284                 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1285                 x = (key.passive - key.pending + new_pending) % KEY_MAX;
1286                 new_passive = (x <= 0) ? x + KEY_MAX : x;
1287         }
1288
1289         /* Re-allocate the key(s) */
1290         tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1291         rcu_assign_pointer(rx->aead[new_pending], tmp1);
1292         if (new_passive)
1293                 rcu_assign_pointer(rx->aead[new_passive], tmp2);
1294         refcount_set(&tmp1->refcnt, 1);
1295         aligned = true;
1296         pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1297                             new_pending);
1298
1299 exit:
1300         spin_unlock(&rx->lock);
1301         return aligned;
1302 }
1303
1304 /**
1305  * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1306  * @tx: TX crypto handle
1307  * @rx: RX crypto handle (can be NULL)
1308  * @skb: the message skb which will be decrypted later
1309  * @tx_key: peer TX key id
1310  *
1311  * This function looks up the existing TX keys and pick one which is suitable
1312  * for the message decryption, that must be a cluster key and not used before
1313  * on the same message (i.e. recursive).
1314  *
1315  * Return: the TX AEAD key handle in case of success, otherwise NULL
1316  */
1317 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1318                                                  struct tipc_crypto *rx,
1319                                                  struct sk_buff *skb,
1320                                                  u8 tx_key)
1321 {
1322         struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1323         struct tipc_aead *aead = NULL;
1324         struct tipc_key key = tx->key;
1325         u8 k, i = 0;
1326
1327         /* Initialize data if not yet */
1328         if (!skb_cb->tx_clone_deferred) {
1329                 skb_cb->tx_clone_deferred = 1;
1330                 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1331         }
1332
1333         skb_cb->tx_clone_ctx.rx = rx;
1334         if (++skb_cb->tx_clone_ctx.recurs > 2)
1335                 return NULL;
1336
1337         /* Pick one TX key */
1338         spin_lock(&tx->lock);
1339         if (tx_key == KEY_MASTER) {
1340                 aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1341                 goto done;
1342         }
1343         do {
1344                 k = (i == 0) ? key.pending :
1345                         ((i == 1) ? key.active : key.passive);
1346                 if (!k)
1347                         continue;
1348                 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1349                 if (!aead)
1350                         continue;
1351                 if (aead->mode != CLUSTER_KEY ||
1352                     aead == skb_cb->tx_clone_ctx.last) {
1353                         aead = NULL;
1354                         continue;
1355                 }
1356                 /* Ok, found one cluster key */
1357                 skb_cb->tx_clone_ctx.last = aead;
1358                 WARN_ON(skb->next);
1359                 skb->next = skb_clone(skb, GFP_ATOMIC);
1360                 if (unlikely(!skb->next))
1361                         pr_warn("Failed to clone skb for next round if any\n");
1362                 break;
1363         } while (++i < 3);
1364
1365 done:
1366         if (likely(aead))
1367                 WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1368         spin_unlock(&tx->lock);
1369
1370         return aead;
1371 }
1372
1373 /**
1374  * tipc_crypto_key_synch: Synch own key data according to peer key status
1375  * @rx: RX crypto handle
1376  * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1377  *
1378  * This function updates the peer node related data as the peer RX active key
1379  * has changed, so the number of TX keys' users on this node are increased and
1380  * decreased correspondingly.
1381  *
1382  * It also considers if peer has no key, then we need to make own master key
1383  * (if any) taking over i.e. starting grace period and also trigger key
1384  * distributing process.
1385  *
1386  * The "per-peer" sndnxt is also reset when the peer key has switched.
1387  */
1388 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1389 {
1390         struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1391         struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1392         struct tipc_msg *hdr = buf_msg(skb);
1393         u32 self = tipc_own_addr(rx->net);
1394         u8 cur, new;
1395         unsigned long delay;
1396
1397         /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1398          * a peer has no master key.
1399          */
1400         rx->key_master = ehdr->master_key;
1401         if (!rx->key_master)
1402                 tx->legacy_user = 1;
1403
1404         /* For later cases, apply only if message is destined to this node */
1405         if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1406                 return;
1407
1408         /* Case 1: Peer has no keys, let's make master key take over */
1409         if (ehdr->rx_nokey) {
1410                 /* Set or extend grace period */
1411                 tx->timer2 = jiffies;
1412                 /* Schedule key distributing for the peer if not yet */
1413                 if (tx->key.keys &&
1414                     !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1415                         get_random_bytes(&delay, 2);
1416                         delay %= 5;
1417                         delay = msecs_to_jiffies(500 * ++delay);
1418                         if (queue_delayed_work(tx->wq, &rx->work, delay))
1419                                 tipc_node_get(rx->node);
1420                 }
1421         } else {
1422                 /* Cancel a pending key distributing if any */
1423                 atomic_xchg(&rx->key_distr, 0);
1424         }
1425
1426         /* Case 2: Peer RX active key has changed, let's update own TX users */
1427         cur = atomic_read(&rx->peer_rx_active);
1428         new = ehdr->rx_key_active;
1429         if (tx->key.keys &&
1430             cur != new &&
1431             atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1432                 if (new)
1433                         tipc_aead_users_inc(tx->aead[new], INT_MAX);
1434                 if (cur)
1435                         tipc_aead_users_dec(tx->aead[cur], 0);
1436
1437                 atomic64_set(&rx->sndnxt, 0);
1438                 /* Mark the point TX key users changed */
1439                 tx->timer1 = jiffies;
1440
1441                 pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1442                          tx->name, cur, new, rx->name);
1443         }
1444 }
1445
1446 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1447 {
1448         struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1449         struct tipc_key key;
1450
1451         spin_lock(&tx->lock);
1452         key = tx->key;
1453         WARN_ON(!key.active || tx_key != key.active);
1454
1455         /* Free the active key */
1456         tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1457         tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1458         spin_unlock(&tx->lock);
1459
1460         pr_warn("%s: key is revoked\n", tx->name);
1461         return -EKEYREVOKED;
1462 }
1463
1464 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1465                       struct tipc_node *node)
1466 {
1467         struct tipc_crypto *c;
1468
1469         if (*crypto)
1470                 return -EEXIST;
1471
1472         /* Allocate crypto */
1473         c = kzalloc(sizeof(*c), GFP_ATOMIC);
1474         if (!c)
1475                 return -ENOMEM;
1476
1477         /* Allocate workqueue on TX */
1478         if (!node) {
1479                 c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1480                 if (!c->wq) {
1481                         kfree(c);
1482                         return -ENOMEM;
1483                 }
1484         }
1485
1486         /* Allocate statistic structure */
1487         c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1488         if (!c->stats) {
1489                 if (c->wq)
1490                         destroy_workqueue(c->wq);
1491                 kfree_sensitive(c);
1492                 return -ENOMEM;
1493         }
1494
1495         c->flags = 0;
1496         c->net = net;
1497         c->node = node;
1498         get_random_bytes(&c->key_gen, 2);
1499         tipc_crypto_key_set_state(c, 0, 0, 0);
1500         atomic_set(&c->key_distr, 0);
1501         atomic_set(&c->peer_rx_active, 0);
1502         atomic64_set(&c->sndnxt, 0);
1503         c->timer1 = jiffies;
1504         c->timer2 = jiffies;
1505         c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1506         spin_lock_init(&c->lock);
1507         scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1508                   (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1509                                tipc_own_id_string(c->net));
1510
1511         if (is_rx(c))
1512                 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1513         else
1514                 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1515
1516         *crypto = c;
1517         return 0;
1518 }
1519
1520 void tipc_crypto_stop(struct tipc_crypto **crypto)
1521 {
1522         struct tipc_crypto *c = *crypto;
1523         u8 k;
1524
1525         if (!c)
1526                 return;
1527
1528         /* Flush any queued works & destroy wq */
1529         if (is_tx(c)) {
1530                 c->rekeying_intv = 0;
1531                 cancel_delayed_work_sync(&c->work);
1532                 destroy_workqueue(c->wq);
1533         }
1534
1535         /* Release AEAD keys */
1536         rcu_read_lock();
1537         for (k = KEY_MIN; k <= KEY_MAX; k++)
1538                 tipc_aead_put(rcu_dereference(c->aead[k]));
1539         rcu_read_unlock();
1540         pr_debug("%s: has been stopped\n", c->name);
1541
1542         /* Free this crypto statistics */
1543         free_percpu(c->stats);
1544
1545         *crypto = NULL;
1546         kfree_sensitive(c);
1547 }
1548
1549 void tipc_crypto_timeout(struct tipc_crypto *rx)
1550 {
1551         struct tipc_net *tn = tipc_net(rx->net);
1552         struct tipc_crypto *tx = tn->crypto_tx;
1553         struct tipc_key key;
1554         int cmd;
1555
1556         /* TX pending: taking all users & stable -> active */
1557         spin_lock(&tx->lock);
1558         key = tx->key;
1559         if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1560                 goto s1;
1561         if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1562                 goto s1;
1563         if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1564                 goto s1;
1565
1566         tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1567         if (key.active)
1568                 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1569         this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1570         pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1571
1572 s1:
1573         spin_unlock(&tx->lock);
1574
1575         /* RX pending: having user -> active */
1576         spin_lock(&rx->lock);
1577         key = rx->key;
1578         if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1579                 goto s2;
1580
1581         if (key.active)
1582                 key.passive = key.active;
1583         key.active = key.pending;
1584         rx->timer2 = jiffies;
1585         tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1586         this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1587         pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1588         goto s5;
1589
1590 s2:
1591         /* RX pending: not working -> remove */
1592         if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1593                 goto s3;
1594
1595         tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1596         tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1597         pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1598         goto s5;
1599
1600 s3:
1601         /* RX active: timed out or no user -> pending */
1602         if (!key.active)
1603                 goto s4;
1604         if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1605             tipc_aead_users(rx->aead[key.active]) > 0)
1606                 goto s4;
1607
1608         if (key.pending)
1609                 key.passive = key.active;
1610         else
1611                 key.pending = key.active;
1612         rx->timer2 = jiffies;
1613         tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1614         tipc_aead_users_set(rx->aead[key.pending], 0);
1615         pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1616         goto s5;
1617
1618 s4:
1619         /* RX passive: outdated or not working -> free */
1620         if (!key.passive)
1621                 goto s5;
1622         if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1623             tipc_aead_users(rx->aead[key.passive]) > -10)
1624                 goto s5;
1625
1626         tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1627         tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1628         pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1629
1630 s5:
1631         spin_unlock(&rx->lock);
1632
1633         /* Relax it here, the flag will be set again if it really is, but only
1634          * when we are not in grace period for safety!
1635          */
1636         if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1637                 tx->legacy_user = 0;
1638
1639         /* Limit max_tfms & do debug commands if needed */
1640         if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1641                 return;
1642
1643         cmd = sysctl_tipc_max_tfms;
1644         sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1645         tipc_crypto_do_cmd(rx->net, cmd);
1646 }
1647
1648 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1649                                          struct tipc_bearer *b,
1650                                          struct tipc_media_addr *dst,
1651                                          struct tipc_node *__dnode, u8 type)
1652 {
1653         struct sk_buff *skb;
1654
1655         skb = skb_clone(_skb, GFP_ATOMIC);
1656         if (skb) {
1657                 TIPC_SKB_CB(skb)->xmit_type = type;
1658                 tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1659                 if (skb)
1660                         b->media->send_msg(net, skb, b, dst);
1661         }
1662 }
1663
1664 /**
1665  * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1666  * @net: struct net
1667  * @skb: input/output message skb pointer
1668  * @b: bearer used for xmit later
1669  * @dst: destination media address
1670  * @__dnode: destination node for reference if any
1671  *
1672  * First, build an encryption message header on the top of the message, then
1673  * encrypt the original TIPC message by using the pending, master or active
1674  * key with this preference order.
1675  * If the encryption is successful, the encrypted skb is returned directly or
1676  * via the callback.
1677  * Otherwise, the skb is freed!
1678  *
1679  * Return:
1680  * * 0                   : the encryption has succeeded (or no encryption)
1681  * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1682  * * -ENOKEK             : the encryption has failed due to no key
1683  * * -EKEYREVOKED        : the encryption has failed due to key revoked
1684  * * -ENOMEM             : the encryption has failed due to no memory
1685  * * < 0                 : the encryption has failed due to other reasons
1686  */
1687 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1688                      struct tipc_bearer *b, struct tipc_media_addr *dst,
1689                      struct tipc_node *__dnode)
1690 {
1691         struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1692         struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1693         struct tipc_crypto_stats __percpu *stats = tx->stats;
1694         struct tipc_msg *hdr = buf_msg(*skb);
1695         struct tipc_key key = tx->key;
1696         struct tipc_aead *aead = NULL;
1697         u32 user = msg_user(hdr);
1698         u32 type = msg_type(hdr);
1699         int rc = -ENOKEY;
1700         u8 tx_key = 0;
1701
1702         /* No encryption? */
1703         if (!tx->working)
1704                 return 0;
1705
1706         /* Pending key if peer has active on it or probing time */
1707         if (unlikely(key.pending)) {
1708                 tx_key = key.pending;
1709                 if (!tx->key_master && !key.active)
1710                         goto encrypt;
1711                 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1712                         goto encrypt;
1713                 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1714                         pr_debug("%s: probing for key[%d]\n", tx->name,
1715                                  key.pending);
1716                         goto encrypt;
1717                 }
1718                 if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1719                         tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1720                                               SKB_PROBING);
1721         }
1722
1723         /* Master key if this is a *vital* message or in grace period */
1724         if (tx->key_master) {
1725                 tx_key = KEY_MASTER;
1726                 if (!key.active)
1727                         goto encrypt;
1728                 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1729                         pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1730                                  user, type);
1731                         goto encrypt;
1732                 }
1733                 if (user == LINK_CONFIG ||
1734                     (user == LINK_PROTOCOL && type == RESET_MSG) ||
1735                     (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1736                     time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1737                         if (__rx && __rx->key_master &&
1738                             !atomic_read(&__rx->peer_rx_active))
1739                                 goto encrypt;
1740                         if (!__rx) {
1741                                 if (likely(!tx->legacy_user))
1742                                         goto encrypt;
1743                                 tipc_crypto_clone_msg(net, *skb, b, dst,
1744                                                       __dnode, SKB_GRACING);
1745                         }
1746                 }
1747         }
1748
1749         /* Else, use the active key if any */
1750         if (likely(key.active)) {
1751                 tx_key = key.active;
1752                 goto encrypt;
1753         }
1754
1755         goto exit;
1756
1757 encrypt:
1758         aead = tipc_aead_get(tx->aead[tx_key]);
1759         if (unlikely(!aead))
1760                 goto exit;
1761         rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1762         if (likely(rc > 0))
1763                 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1764
1765 exit:
1766         switch (rc) {
1767         case 0:
1768                 this_cpu_inc(stats->stat[STAT_OK]);
1769                 break;
1770         case -EINPROGRESS:
1771         case -EBUSY:
1772                 this_cpu_inc(stats->stat[STAT_ASYNC]);
1773                 *skb = NULL;
1774                 return rc;
1775         default:
1776                 this_cpu_inc(stats->stat[STAT_NOK]);
1777                 if (rc == -ENOKEY)
1778                         this_cpu_inc(stats->stat[STAT_NOKEYS]);
1779                 else if (rc == -EKEYREVOKED)
1780                         this_cpu_inc(stats->stat[STAT_BADKEYS]);
1781                 kfree_skb(*skb);
1782                 *skb = NULL;
1783                 break;
1784         }
1785
1786         tipc_aead_put(aead);
1787         return rc;
1788 }
1789
1790 /**
1791  * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1792  * @net: struct net
1793  * @rx: RX crypto handle
1794  * @skb: input/output message skb pointer
1795  * @b: bearer where the message has been received
1796  *
1797  * If the decryption is successful, the decrypted skb is returned directly or
1798  * as the callback, the encryption header and auth tag will be trimed out
1799  * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1800  * Otherwise, the skb will be freed!
1801  * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1802  * cluster key(s) can be taken for decryption (- recursive).
1803  *
1804  * Return:
1805  * * 0                   : the decryption has successfully completed
1806  * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1807  * * -ENOKEY             : the decryption has failed due to no key
1808  * * -EBADMSG            : the decryption has failed due to bad message
1809  * * -ENOMEM             : the decryption has failed due to no memory
1810  * * < 0                 : the decryption has failed due to other reasons
1811  */
1812 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1813                     struct sk_buff **skb, struct tipc_bearer *b)
1814 {
1815         struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1816         struct tipc_crypto_stats __percpu *stats;
1817         struct tipc_aead *aead = NULL;
1818         struct tipc_key key;
1819         int rc = -ENOKEY;
1820         u8 tx_key, n;
1821
1822         tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1823
1824         /* New peer?
1825          * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1826          */
1827         if (unlikely(!rx || tx_key == KEY_MASTER))
1828                 goto pick_tx;
1829
1830         /* Pick RX key according to TX key if any */
1831         key = rx->key;
1832         if (tx_key == key.active || tx_key == key.pending ||
1833             tx_key == key.passive)
1834                 goto decrypt;
1835
1836         /* Unknown key, let's try to align RX key(s) */
1837         if (tipc_crypto_key_try_align(rx, tx_key))
1838                 goto decrypt;
1839
1840 pick_tx:
1841         /* No key suitable? Try to pick one from TX... */
1842         aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1843         if (aead)
1844                 goto decrypt;
1845         goto exit;
1846
1847 decrypt:
1848         rcu_read_lock();
1849         if (!aead)
1850                 aead = tipc_aead_get(rx->aead[tx_key]);
1851         rc = tipc_aead_decrypt(net, aead, *skb, b);
1852         rcu_read_unlock();
1853
1854 exit:
1855         stats = ((rx) ?: tx)->stats;
1856         switch (rc) {
1857         case 0:
1858                 this_cpu_inc(stats->stat[STAT_OK]);
1859                 break;
1860         case -EINPROGRESS:
1861         case -EBUSY:
1862                 this_cpu_inc(stats->stat[STAT_ASYNC]);
1863                 *skb = NULL;
1864                 return rc;
1865         default:
1866                 this_cpu_inc(stats->stat[STAT_NOK]);
1867                 if (rc == -ENOKEY) {
1868                         kfree_skb(*skb);
1869                         *skb = NULL;
1870                         if (rx) {
1871                                 /* Mark rx->nokey only if we dont have a
1872                                  * pending received session key, nor a newer
1873                                  * one i.e. in the next slot.
1874                                  */
1875                                 n = key_next(tx_key);
1876                                 rx->nokey = !(rx->skey ||
1877                                               rcu_access_pointer(rx->aead[n]));
1878                                 pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1879                                                      rx->name, rx->nokey,
1880                                                      tx_key, rx->key.keys);
1881                                 tipc_node_put(rx->node);
1882                         }
1883                         this_cpu_inc(stats->stat[STAT_NOKEYS]);
1884                         return rc;
1885                 } else if (rc == -EBADMSG) {
1886                         this_cpu_inc(stats->stat[STAT_BADMSGS]);
1887                 }
1888                 break;
1889         }
1890
1891         tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1892         return rc;
1893 }
1894
1895 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1896                                      struct tipc_bearer *b,
1897                                      struct sk_buff **skb, int err)
1898 {
1899         struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1900         struct tipc_crypto *rx = aead->crypto;
1901         struct tipc_aead *tmp = NULL;
1902         struct tipc_ehdr *ehdr;
1903         struct tipc_node *n;
1904
1905         /* Is this completed by TX? */
1906         if (unlikely(is_tx(aead->crypto))) {
1907                 rx = skb_cb->tx_clone_ctx.rx;
1908                 pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1909                          (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1910                          (*skb)->next, skb_cb->flags);
1911                 pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1912                          skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1913                          aead->crypto->aead[1], aead->crypto->aead[2],
1914                          aead->crypto->aead[3]);
1915                 if (unlikely(err)) {
1916                         if (err == -EBADMSG && (*skb)->next)
1917                                 tipc_rcv(net, (*skb)->next, b);
1918                         goto free_skb;
1919                 }
1920
1921                 if (likely((*skb)->next)) {
1922                         kfree_skb((*skb)->next);
1923                         (*skb)->next = NULL;
1924                 }
1925                 ehdr = (struct tipc_ehdr *)(*skb)->data;
1926                 if (!rx) {
1927                         WARN_ON(ehdr->user != LINK_CONFIG);
1928                         n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1929                                              true);
1930                         rx = tipc_node_crypto_rx(n);
1931                         if (unlikely(!rx))
1932                                 goto free_skb;
1933                 }
1934
1935                 /* Ignore cloning if it was TX master key */
1936                 if (ehdr->tx_key == KEY_MASTER)
1937                         goto rcv;
1938                 if (tipc_aead_clone(&tmp, aead) < 0)
1939                         goto rcv;
1940                 WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1941                 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1942                         tipc_aead_free(&tmp->rcu);
1943                         goto rcv;
1944                 }
1945                 tipc_aead_put(aead);
1946                 aead = tmp;
1947         }
1948
1949         if (unlikely(err)) {
1950                 tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1951                 goto free_skb;
1952         }
1953
1954         /* Set the RX key's user */
1955         tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1956
1957         /* Mark this point, RX works */
1958         rx->timer1 = jiffies;
1959
1960 rcv:
1961         /* Remove ehdr & auth. tag prior to tipc_rcv() */
1962         ehdr = (struct tipc_ehdr *)(*skb)->data;
1963
1964         /* Mark this point, RX passive still works */
1965         if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1966                 rx->timer2 = jiffies;
1967
1968         skb_reset_network_header(*skb);
1969         skb_pull(*skb, tipc_ehdr_size(ehdr));
1970         pskb_trim(*skb, (*skb)->len - aead->authsize);
1971
1972         /* Validate TIPCv2 message */
1973         if (unlikely(!tipc_msg_validate(skb))) {
1974                 pr_err_ratelimited("Packet dropped after decryption!\n");
1975                 goto free_skb;
1976         }
1977
1978         /* Ok, everything's fine, try to synch own keys according to peers' */
1979         tipc_crypto_key_synch(rx, *skb);
1980
1981         /* Mark skb decrypted */
1982         skb_cb->decrypted = 1;
1983
1984         /* Clear clone cxt if any */
1985         if (likely(!skb_cb->tx_clone_deferred))
1986                 goto exit;
1987         skb_cb->tx_clone_deferred = 0;
1988         memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1989         goto exit;
1990
1991 free_skb:
1992         kfree_skb(*skb);
1993         *skb = NULL;
1994
1995 exit:
1996         tipc_aead_put(aead);
1997         if (rx)
1998                 tipc_node_put(rx->node);
1999 }
2000
2001 static void tipc_crypto_do_cmd(struct net *net, int cmd)
2002 {
2003         struct tipc_net *tn = tipc_net(net);
2004         struct tipc_crypto *tx = tn->crypto_tx, *rx;
2005         struct list_head *p;
2006         unsigned int stat;
2007         int i, j, cpu;
2008         char buf[200];
2009
2010         /* Currently only one command is supported */
2011         switch (cmd) {
2012         case 0xfff1:
2013                 goto print_stats;
2014         default:
2015                 return;
2016         }
2017
2018 print_stats:
2019         /* Print a header */
2020         pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2021
2022         /* Print key status */
2023         pr_info("Key status:\n");
2024         pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2025                 tipc_crypto_key_dump(tx, buf));
2026
2027         rcu_read_lock();
2028         for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2029                 rx = tipc_node_crypto_rx_by_list(p);
2030                 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2031                         tipc_crypto_key_dump(rx, buf));
2032         }
2033         rcu_read_unlock();
2034
2035         /* Print crypto statistics */
2036         for (i = 0, j = 0; i < MAX_STATS; i++)
2037                 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2038         pr_info("Counter     %s", buf);
2039
2040         memset(buf, '-', 115);
2041         buf[115] = '\0';
2042         pr_info("%s\n", buf);
2043
2044         j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2045         for_each_possible_cpu(cpu) {
2046                 for (i = 0; i < MAX_STATS; i++) {
2047                         stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2048                         j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2049                 }
2050                 pr_info("%s", buf);
2051                 j = scnprintf(buf, 200, "%12s", " ");
2052         }
2053
2054         rcu_read_lock();
2055         for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2056                 rx = tipc_node_crypto_rx_by_list(p);
2057                 j = scnprintf(buf, 200, "RX(%7.7s) ",
2058                               tipc_node_get_id_str(rx->node));
2059                 for_each_possible_cpu(cpu) {
2060                         for (i = 0; i < MAX_STATS; i++) {
2061                                 stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2062                                 j += scnprintf(buf + j, 200 - j, "|%11d ",
2063                                                stat);
2064                         }
2065                         pr_info("%s", buf);
2066                         j = scnprintf(buf, 200, "%12s", " ");
2067                 }
2068         }
2069         rcu_read_unlock();
2070
2071         pr_info("\n======================== Done ========================\n");
2072 }
2073
2074 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2075 {
2076         struct tipc_key key = c->key;
2077         struct tipc_aead *aead;
2078         int k, i = 0;
2079         char *s;
2080
2081         for (k = KEY_MIN; k <= KEY_MAX; k++) {
2082                 if (k == KEY_MASTER) {
2083                         if (is_rx(c))
2084                                 continue;
2085                         if (time_before(jiffies,
2086                                         c->timer2 + TIPC_TX_GRACE_PERIOD))
2087                                 s = "ACT";
2088                         else
2089                                 s = "PAS";
2090                 } else {
2091                         if (k == key.passive)
2092                                 s = "PAS";
2093                         else if (k == key.active)
2094                                 s = "ACT";
2095                         else if (k == key.pending)
2096                                 s = "PEN";
2097                         else
2098                                 s = "-";
2099                 }
2100                 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2101
2102                 rcu_read_lock();
2103                 aead = rcu_dereference(c->aead[k]);
2104                 if (aead)
2105                         i += scnprintf(buf + i, 200 - i,
2106                                        "{\"0x...%s\", \"%s\"}/%d:%d",
2107                                        aead->hint,
2108                                        (aead->mode == CLUSTER_KEY) ? "c" : "p",
2109                                        atomic_read(&aead->users),
2110                                        refcount_read(&aead->refcnt));
2111                 rcu_read_unlock();
2112                 i += scnprintf(buf + i, 200 - i, "\n");
2113         }
2114
2115         if (is_rx(c))
2116                 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2117                                atomic_read(&c->peer_rx_active));
2118
2119         return buf;
2120 }
2121
2122 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2123                                   char *buf)
2124 {
2125         struct tipc_key *key = &old;
2126         int k, i = 0;
2127         char *s;
2128
2129         /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2130 again:
2131         i += scnprintf(buf + i, 32 - i, "[");
2132         for (k = KEY_1; k <= KEY_3; k++) {
2133                 if (k == key->passive)
2134                         s = "pas";
2135                 else if (k == key->active)
2136                         s = "act";
2137                 else if (k == key->pending)
2138                         s = "pen";
2139                 else
2140                         s = "-";
2141                 i += scnprintf(buf + i, 32 - i,
2142                                (k != KEY_3) ? "%s " : "%s", s);
2143         }
2144         if (key != &new) {
2145                 i += scnprintf(buf + i, 32 - i, "] -> ");
2146                 key = &new;
2147                 goto again;
2148         }
2149         i += scnprintf(buf + i, 32 - i, "]");
2150         return buf;
2151 }
2152
2153 /**
2154  * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2155  * @net: the struct net
2156  * @skb: the receiving message buffer
2157  */
2158 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2159 {
2160         struct tipc_crypto *rx;
2161         struct tipc_msg *hdr;
2162
2163         if (unlikely(skb_linearize(skb)))
2164                 goto exit;
2165
2166         hdr = buf_msg(skb);
2167         rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2168         if (unlikely(!rx))
2169                 goto exit;
2170
2171         switch (msg_type(hdr)) {
2172         case KEY_DISTR_MSG:
2173                 if (tipc_crypto_key_rcv(rx, hdr))
2174                         goto exit;
2175                 break;
2176         default:
2177                 break;
2178         }
2179
2180         tipc_node_put(rx->node);
2181
2182 exit:
2183         kfree_skb(skb);
2184 }
2185
2186 /**
2187  * tipc_crypto_key_distr - Distribute a TX key
2188  * @tx: the TX crypto
2189  * @key: the key's index
2190  * @dest: the destination tipc node, = NULL if distributing to all nodes
2191  *
2192  * Return: 0 in case of success, otherwise < 0
2193  */
2194 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2195                           struct tipc_node *dest)
2196 {
2197         struct tipc_aead *aead;
2198         u32 dnode = tipc_node_get_addr(dest);
2199         int rc = -ENOKEY;
2200
2201         if (!sysctl_tipc_key_exchange_enabled)
2202                 return 0;
2203
2204         if (key) {
2205                 rcu_read_lock();
2206                 aead = tipc_aead_get(tx->aead[key]);
2207                 if (likely(aead)) {
2208                         rc = tipc_crypto_key_xmit(tx->net, aead->key,
2209                                                   aead->gen, aead->mode,
2210                                                   dnode);
2211                         tipc_aead_put(aead);
2212                 }
2213                 rcu_read_unlock();
2214         }
2215
2216         return rc;
2217 }
2218
2219 /**
2220  * tipc_crypto_key_xmit - Send a session key
2221  * @net: the struct net
2222  * @skey: the session key to be sent
2223  * @gen: the key's generation
2224  * @mode: the key's mode
2225  * @dnode: the destination node address, = 0 if broadcasting to all nodes
2226  *
2227  * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2228  * as its data section, then xmit-ed through the uc/bc link.
2229  *
2230  * Return: 0 in case of success, otherwise < 0
2231  */
2232 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2233                                 u16 gen, u8 mode, u32 dnode)
2234 {
2235         struct sk_buff_head pkts;
2236         struct tipc_msg *hdr;
2237         struct sk_buff *skb;
2238         u16 size, cong_link_cnt;
2239         u8 *data;
2240         int rc;
2241
2242         size = tipc_aead_key_size(skey);
2243         skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2244         if (!skb)
2245                 return -ENOMEM;
2246
2247         hdr = buf_msg(skb);
2248         tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2249                       INT_H_SIZE, dnode);
2250         msg_set_size(hdr, INT_H_SIZE + size);
2251         msg_set_key_gen(hdr, gen);
2252         msg_set_key_mode(hdr, mode);
2253
2254         data = msg_data(hdr);
2255         *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2256         memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2257         memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2258                skey->keylen);
2259
2260         __skb_queue_head_init(&pkts);
2261         __skb_queue_tail(&pkts, skb);
2262         if (dnode)
2263                 rc = tipc_node_xmit(net, &pkts, dnode, 0);
2264         else
2265                 rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2266
2267         return rc;
2268 }
2269
2270 /**
2271  * tipc_crypto_key_rcv - Receive a session key
2272  * @rx: the RX crypto
2273  * @hdr: the TIPC v2 message incl. the receiving session key in its data
2274  *
2275  * This function retrieves the session key in the message from peer, then
2276  * schedules a RX work to attach the key to the corresponding RX crypto.
2277  *
2278  * Return: "true" if the key has been scheduled for attaching, otherwise
2279  * "false".
2280  */
2281 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2282 {
2283         struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2284         struct tipc_aead_key *skey = NULL;
2285         u16 key_gen = msg_key_gen(hdr);
2286         u16 size = msg_data_sz(hdr);
2287         u8 *data = msg_data(hdr);
2288
2289         spin_lock(&rx->lock);
2290         if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2291                 pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2292                        rx->skey, key_gen, rx->key_gen);
2293                 goto exit;
2294         }
2295
2296         /* Allocate memory for the key */
2297         skey = kmalloc(size, GFP_ATOMIC);
2298         if (unlikely(!skey)) {
2299                 pr_err("%s: unable to allocate memory for skey\n", rx->name);
2300                 goto exit;
2301         }
2302
2303         /* Copy key from msg data */
2304         skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2305         memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2306         memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2307                skey->keylen);
2308
2309         /* Sanity check */
2310         if (unlikely(size != tipc_aead_key_size(skey))) {
2311                 kfree(skey);
2312                 skey = NULL;
2313                 goto exit;
2314         }
2315
2316         rx->key_gen = key_gen;
2317         rx->skey_mode = msg_key_mode(hdr);
2318         rx->skey = skey;
2319         rx->nokey = 0;
2320         mb(); /* for nokey flag */
2321
2322 exit:
2323         spin_unlock(&rx->lock);
2324
2325         /* Schedule the key attaching on this crypto */
2326         if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2327                 return true;
2328
2329         return false;
2330 }
2331
2332 /**
2333  * tipc_crypto_work_rx - Scheduled RX works handler
2334  * @work: the struct RX work
2335  *
2336  * The function processes the previous scheduled works i.e. distributing TX key
2337  * or attaching a received session key on RX crypto.
2338  */
2339 static void tipc_crypto_work_rx(struct work_struct *work)
2340 {
2341         struct delayed_work *dwork = to_delayed_work(work);
2342         struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2343         struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2344         unsigned long delay = msecs_to_jiffies(5000);
2345         bool resched = false;
2346         u8 key;
2347         int rc;
2348
2349         /* Case 1: Distribute TX key to peer if scheduled */
2350         if (atomic_cmpxchg(&rx->key_distr,
2351                            KEY_DISTR_SCHED,
2352                            KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2353                 /* Always pick the newest one for distributing */
2354                 key = tx->key.pending ?: tx->key.active;
2355                 rc = tipc_crypto_key_distr(tx, key, rx->node);
2356                 if (unlikely(rc))
2357                         pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2358                                 tx->name, key, tipc_node_get_id_str(rx->node),
2359                                 rc);
2360
2361                 /* Sched for key_distr releasing */
2362                 resched = true;
2363         } else {
2364                 atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2365         }
2366
2367         /* Case 2: Attach a pending received session key from peer if any */
2368         if (rx->skey) {
2369                 rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2370                 if (unlikely(rc < 0))
2371                         pr_warn("%s: unable to attach received skey, err %d\n",
2372                                 rx->name, rc);
2373                 switch (rc) {
2374                 case -EBUSY:
2375                 case -ENOMEM:
2376                         /* Resched the key attaching */
2377                         resched = true;
2378                         break;
2379                 default:
2380                         synchronize_rcu();
2381                         kfree(rx->skey);
2382                         rx->skey = NULL;
2383                         break;
2384                 }
2385         }
2386
2387         if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2388                 return;
2389
2390         tipc_node_put(rx->node);
2391 }
2392
2393 /**
2394  * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2395  * @tx: TX crypto
2396  * @changed: if the rekeying needs to be rescheduled with new interval
2397  * @new_intv: new rekeying interval (when "changed" = true)
2398  */
2399 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2400                                 u32 new_intv)
2401 {
2402         unsigned long delay;
2403         bool now = false;
2404
2405         if (changed) {
2406                 if (new_intv == TIPC_REKEYING_NOW)
2407                         now = true;
2408                 else
2409                         tx->rekeying_intv = new_intv;
2410                 cancel_delayed_work_sync(&tx->work);
2411         }
2412
2413         if (tx->rekeying_intv || now) {
2414                 delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2415                 queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2416         }
2417 }
2418
2419 /**
2420  * tipc_crypto_work_tx - Scheduled TX works handler
2421  * @work: the struct TX work
2422  *
2423  * The function processes the previous scheduled work, i.e. key rekeying, by
2424  * generating a new session key based on current one, then attaching it to the
2425  * TX crypto and finally distributing it to peers. It also re-schedules the
2426  * rekeying if needed.
2427  */
2428 static void tipc_crypto_work_tx(struct work_struct *work)
2429 {
2430         struct delayed_work *dwork = to_delayed_work(work);
2431         struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2432         struct tipc_aead_key *skey = NULL;
2433         struct tipc_key key = tx->key;
2434         struct tipc_aead *aead;
2435         int rc = -ENOMEM;
2436
2437         if (unlikely(key.pending))
2438                 goto resched;
2439
2440         /* Take current key as a template */
2441         rcu_read_lock();
2442         aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2443         if (unlikely(!aead)) {
2444                 rcu_read_unlock();
2445                 /* At least one key should exist for securing */
2446                 return;
2447         }
2448
2449         /* Lets duplicate it first */
2450         skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2451         rcu_read_unlock();
2452
2453         /* Now, generate new key, initiate & distribute it */
2454         if (likely(skey)) {
2455                 rc = tipc_aead_key_generate(skey) ?:
2456                      tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2457                 if (likely(rc > 0))
2458                         rc = tipc_crypto_key_distr(tx, rc, NULL);
2459                 kfree_sensitive(skey);
2460         }
2461
2462         if (unlikely(rc))
2463                 pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2464
2465 resched:
2466         /* Re-schedule rekeying if any */
2467         tipc_crypto_rekeying_sched(tx, false, 0);
2468 }