Merge tag 'for-5.7-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / net / sunrpc / xprtrdma / verbs.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 /*
67  * Globals/Macros
68  */
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY        RPCDBG_TRANS
72 #endif
73
74 /*
75  * internal functions
76  */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80                                        struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static int rpcrdma_ep_destroy(struct rpcrdma_ep *ep);
88 static struct rpcrdma_regbuf *
89 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
90                      gfp_t flags);
91 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
92 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
93
94 /* Wait for outstanding transport work to finish. ib_drain_qp
95  * handles the drains in the wrong order for us, so open code
96  * them here.
97  */
98 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
99 {
100         struct rdma_cm_id *id = r_xprt->rx_ep->re_id;
101
102         /* Flush Receives, then wait for deferred Reply work
103          * to complete.
104          */
105         ib_drain_rq(id->qp);
106
107         /* Deferred Reply processing might have scheduled
108          * local invalidations.
109          */
110         ib_drain_sq(id->qp);
111 }
112
113 /**
114  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
115  * @event: details of the event
116  * @context: ep that owns QP where event occurred
117  *
118  * Called from the RDMA provider (device driver) possibly in an interrupt
119  * context. The QP is always destroyed before the ID, so the ID will be
120  * reliably available when this handler is invoked.
121  */
122 static void rpcrdma_qp_event_handler(struct ib_event *event, void *context)
123 {
124         struct rpcrdma_ep *ep = context;
125
126         trace_xprtrdma_qp_event(ep, event);
127 }
128
129 /**
130  * rpcrdma_flush_disconnect - Disconnect on flushed completion
131  * @cq: completion queue
132  * @wc: work completion entry
133  *
134  * Must be called in process context.
135  */
136 void rpcrdma_flush_disconnect(struct ib_cq *cq, struct ib_wc *wc)
137 {
138         struct rpcrdma_xprt *r_xprt = cq->cq_context;
139         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
140
141         if (wc->status != IB_WC_SUCCESS &&
142             r_xprt->rx_ep->re_connect_status == 1) {
143                 r_xprt->rx_ep->re_connect_status = -ECONNABORTED;
144                 trace_xprtrdma_flush_dct(r_xprt, wc->status);
145                 xprt_force_disconnect(xprt);
146         }
147 }
148
149 /**
150  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
151  * @cq: completion queue
152  * @wc: WCE for a completed Send WR
153  *
154  */
155 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
156 {
157         struct ib_cqe *cqe = wc->wr_cqe;
158         struct rpcrdma_sendctx *sc =
159                 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
160
161         /* WARNING: Only wr_cqe and status are reliable at this point */
162         trace_xprtrdma_wc_send(sc, wc);
163         rpcrdma_sendctx_put_locked((struct rpcrdma_xprt *)cq->cq_context, sc);
164         rpcrdma_flush_disconnect(cq, wc);
165 }
166
167 /**
168  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
169  * @cq: completion queue
170  * @wc: WCE for a completed Receive WR
171  *
172  */
173 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
174 {
175         struct ib_cqe *cqe = wc->wr_cqe;
176         struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
177                                                rr_cqe);
178         struct rpcrdma_xprt *r_xprt = cq->cq_context;
179
180         /* WARNING: Only wr_cqe and status are reliable at this point */
181         trace_xprtrdma_wc_receive(wc);
182         --r_xprt->rx_ep->re_receive_count;
183         if (wc->status != IB_WC_SUCCESS)
184                 goto out_flushed;
185
186         /* status == SUCCESS means all fields in wc are trustworthy */
187         rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
188         rep->rr_wc_flags = wc->wc_flags;
189         rep->rr_inv_rkey = wc->ex.invalidate_rkey;
190
191         ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
192                                    rdmab_addr(rep->rr_rdmabuf),
193                                    wc->byte_len, DMA_FROM_DEVICE);
194
195         rpcrdma_reply_handler(rep);
196         return;
197
198 out_flushed:
199         rpcrdma_flush_disconnect(cq, wc);
200         rpcrdma_rep_destroy(rep);
201 }
202
203 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
204                                       struct rdma_conn_param *param)
205 {
206         const struct rpcrdma_connect_private *pmsg = param->private_data;
207         unsigned int rsize, wsize;
208
209         /* Default settings for RPC-over-RDMA Version One */
210         ep->re_implicit_roundup = xprt_rdma_pad_optimize;
211         rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
212         wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
213
214         if (pmsg &&
215             pmsg->cp_magic == rpcrdma_cmp_magic &&
216             pmsg->cp_version == RPCRDMA_CMP_VERSION) {
217                 ep->re_implicit_roundup = true;
218                 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
219                 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
220         }
221
222         if (rsize < ep->re_inline_recv)
223                 ep->re_inline_recv = rsize;
224         if (wsize < ep->re_inline_send)
225                 ep->re_inline_send = wsize;
226
227         rpcrdma_set_max_header_sizes(ep);
228 }
229
230 /**
231  * rpcrdma_cm_event_handler - Handle RDMA CM events
232  * @id: rdma_cm_id on which an event has occurred
233  * @event: details of the event
234  *
235  * Called with @id's mutex held. Returns 1 if caller should
236  * destroy @id, otherwise 0.
237  */
238 static int
239 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
240 {
241         struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
242         struct rpcrdma_ep *ep = id->context;
243         struct rpc_xprt *xprt = ep->re_xprt;
244
245         might_sleep();
246
247         switch (event->event) {
248         case RDMA_CM_EVENT_ADDR_RESOLVED:
249         case RDMA_CM_EVENT_ROUTE_RESOLVED:
250                 ep->re_async_rc = 0;
251                 complete(&ep->re_done);
252                 return 0;
253         case RDMA_CM_EVENT_ADDR_ERROR:
254                 ep->re_async_rc = -EPROTO;
255                 complete(&ep->re_done);
256                 return 0;
257         case RDMA_CM_EVENT_ROUTE_ERROR:
258                 ep->re_async_rc = -ENETUNREACH;
259                 complete(&ep->re_done);
260                 return 0;
261         case RDMA_CM_EVENT_DEVICE_REMOVAL:
262                 pr_info("rpcrdma: removing device %s for %pISpc\n",
263                         ep->re_id->device->name, sap);
264                 /* fall through */
265         case RDMA_CM_EVENT_ADDR_CHANGE:
266                 ep->re_connect_status = -ENODEV;
267                 xprt_force_disconnect(xprt);
268                 goto disconnected;
269         case RDMA_CM_EVENT_ESTABLISHED:
270                 kref_get(&ep->re_kref);
271                 ep->re_connect_status = 1;
272                 rpcrdma_update_cm_private(ep, &event->param.conn);
273                 trace_xprtrdma_inline_thresh(ep);
274                 wake_up_all(&ep->re_connect_wait);
275                 break;
276         case RDMA_CM_EVENT_CONNECT_ERROR:
277                 ep->re_connect_status = -ENOTCONN;
278                 goto disconnected;
279         case RDMA_CM_EVENT_UNREACHABLE:
280                 ep->re_connect_status = -ENETUNREACH;
281                 goto disconnected;
282         case RDMA_CM_EVENT_REJECTED:
283                 dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
284                         sap, rdma_reject_msg(id, event->status));
285                 ep->re_connect_status = -ECONNREFUSED;
286                 if (event->status == IB_CM_REJ_STALE_CONN)
287                         ep->re_connect_status = -EAGAIN;
288                 goto disconnected;
289         case RDMA_CM_EVENT_DISCONNECTED:
290                 ep->re_connect_status = -ECONNABORTED;
291 disconnected:
292                 return rpcrdma_ep_destroy(ep);
293         default:
294                 break;
295         }
296
297         dprintk("RPC:       %s: %pISpc on %s/frwr: %s\n", __func__, sap,
298                 ep->re_id->device->name, rdma_event_msg(event->event));
299         return 0;
300 }
301
302 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
303                                             struct rpcrdma_ep *ep)
304 {
305         unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
306         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
307         struct rdma_cm_id *id;
308         int rc;
309
310         init_completion(&ep->re_done);
311
312         id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
313                             RDMA_PS_TCP, IB_QPT_RC);
314         if (IS_ERR(id))
315                 return id;
316
317         ep->re_async_rc = -ETIMEDOUT;
318         rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
319                                RDMA_RESOLVE_TIMEOUT);
320         if (rc)
321                 goto out;
322         rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
323         if (rc < 0)
324                 goto out;
325
326         rc = ep->re_async_rc;
327         if (rc)
328                 goto out;
329
330         ep->re_async_rc = -ETIMEDOUT;
331         rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
332         if (rc)
333                 goto out;
334         rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
335         if (rc < 0)
336                 goto out;
337         rc = ep->re_async_rc;
338         if (rc)
339                 goto out;
340
341         return id;
342
343 out:
344         rdma_destroy_id(id);
345         return ERR_PTR(rc);
346 }
347
348 static void rpcrdma_ep_put(struct kref *kref)
349 {
350         struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
351
352         if (ep->re_id->qp) {
353                 rdma_destroy_qp(ep->re_id);
354                 ep->re_id->qp = NULL;
355         }
356
357         if (ep->re_attr.recv_cq)
358                 ib_free_cq(ep->re_attr.recv_cq);
359         ep->re_attr.recv_cq = NULL;
360         if (ep->re_attr.send_cq)
361                 ib_free_cq(ep->re_attr.send_cq);
362         ep->re_attr.send_cq = NULL;
363
364         if (ep->re_pd)
365                 ib_dealloc_pd(ep->re_pd);
366         ep->re_pd = NULL;
367
368         kfree(ep);
369         module_put(THIS_MODULE);
370 }
371
372 /* Returns:
373  *     %0 if @ep still has a positive kref count, or
374  *     %1 if @ep was destroyed successfully.
375  */
376 static int rpcrdma_ep_destroy(struct rpcrdma_ep *ep)
377 {
378         return kref_put(&ep->re_kref, rpcrdma_ep_put);
379 }
380
381 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
382 {
383         struct rpcrdma_connect_private *pmsg;
384         struct ib_device *device;
385         struct rdma_cm_id *id;
386         struct rpcrdma_ep *ep;
387         int rc;
388
389         ep = kzalloc(sizeof(*ep), GFP_NOFS);
390         if (!ep)
391                 return -EAGAIN;
392         ep->re_xprt = &r_xprt->rx_xprt;
393         kref_init(&ep->re_kref);
394
395         id = rpcrdma_create_id(r_xprt, ep);
396         if (IS_ERR(id)) {
397                 rc = PTR_ERR(id);
398                 goto out_free;
399         }
400         __module_get(THIS_MODULE);
401         device = id->device;
402         ep->re_id = id;
403
404         ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
405         ep->re_inline_send = xprt_rdma_max_inline_write;
406         ep->re_inline_recv = xprt_rdma_max_inline_read;
407         rc = frwr_query_device(ep, device);
408         if (rc)
409                 goto out_destroy;
410
411         r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
412
413         ep->re_attr.event_handler = rpcrdma_qp_event_handler;
414         ep->re_attr.qp_context = ep;
415         ep->re_attr.srq = NULL;
416         ep->re_attr.cap.max_inline_data = 0;
417         ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
418         ep->re_attr.qp_type = IB_QPT_RC;
419         ep->re_attr.port_num = ~0;
420
421         dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
422                 "iovs: send %d recv %d\n",
423                 __func__,
424                 ep->re_attr.cap.max_send_wr,
425                 ep->re_attr.cap.max_recv_wr,
426                 ep->re_attr.cap.max_send_sge,
427                 ep->re_attr.cap.max_recv_sge);
428
429         ep->re_send_batch = ep->re_max_requests >> 3;
430         ep->re_send_count = ep->re_send_batch;
431         init_waitqueue_head(&ep->re_connect_wait);
432
433         ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
434                                               ep->re_attr.cap.max_send_wr,
435                                               IB_POLL_WORKQUEUE);
436         if (IS_ERR(ep->re_attr.send_cq)) {
437                 rc = PTR_ERR(ep->re_attr.send_cq);
438                 goto out_destroy;
439         }
440
441         ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
442                                               ep->re_attr.cap.max_recv_wr,
443                                               IB_POLL_WORKQUEUE);
444         if (IS_ERR(ep->re_attr.recv_cq)) {
445                 rc = PTR_ERR(ep->re_attr.recv_cq);
446                 goto out_destroy;
447         }
448         ep->re_receive_count = 0;
449
450         /* Initialize cma parameters */
451         memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
452
453         /* Prepare RDMA-CM private message */
454         pmsg = &ep->re_cm_private;
455         pmsg->cp_magic = rpcrdma_cmp_magic;
456         pmsg->cp_version = RPCRDMA_CMP_VERSION;
457         pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
458         pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
459         pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
460         ep->re_remote_cma.private_data = pmsg;
461         ep->re_remote_cma.private_data_len = sizeof(*pmsg);
462
463         /* Client offers RDMA Read but does not initiate */
464         ep->re_remote_cma.initiator_depth = 0;
465         ep->re_remote_cma.responder_resources =
466                 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
467
468         /* Limit transport retries so client can detect server
469          * GID changes quickly. RPC layer handles re-establishing
470          * transport connection and retransmission.
471          */
472         ep->re_remote_cma.retry_count = 6;
473
474         /* RPC-over-RDMA handles its own flow control. In addition,
475          * make all RNR NAKs visible so we know that RPC-over-RDMA
476          * flow control is working correctly (no NAKs should be seen).
477          */
478         ep->re_remote_cma.flow_control = 0;
479         ep->re_remote_cma.rnr_retry_count = 0;
480
481         ep->re_pd = ib_alloc_pd(device, 0);
482         if (IS_ERR(ep->re_pd)) {
483                 rc = PTR_ERR(ep->re_pd);
484                 goto out_destroy;
485         }
486
487         rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
488         if (rc)
489                 goto out_destroy;
490
491         r_xprt->rx_ep = ep;
492         return 0;
493
494 out_destroy:
495         rpcrdma_ep_destroy(ep);
496         rdma_destroy_id(id);
497 out_free:
498         kfree(ep);
499         r_xprt->rx_ep = NULL;
500         return rc;
501 }
502
503 /**
504  * rpcrdma_xprt_connect - Connect an unconnected transport
505  * @r_xprt: controlling transport instance
506  *
507  * Returns 0 on success or a negative errno.
508  */
509 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
510 {
511         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
512         struct rpcrdma_ep *ep;
513         int rc;
514
515 retry:
516         rpcrdma_xprt_disconnect(r_xprt);
517         rc = rpcrdma_ep_create(r_xprt);
518         if (rc)
519                 return rc;
520         ep = r_xprt->rx_ep;
521
522         ep->re_connect_status = 0;
523         xprt_clear_connected(xprt);
524
525         rpcrdma_reset_cwnd(r_xprt);
526         rpcrdma_post_recvs(r_xprt, true);
527
528         rc = rpcrdma_sendctxs_create(r_xprt);
529         if (rc)
530                 goto out;
531
532         rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
533         if (rc)
534                 goto out;
535
536         if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
537                 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
538         wait_event_interruptible(ep->re_connect_wait,
539                                  ep->re_connect_status != 0);
540         if (ep->re_connect_status <= 0) {
541                 if (ep->re_connect_status == -EAGAIN)
542                         goto retry;
543                 rc = ep->re_connect_status;
544                 goto out;
545         }
546
547         rc = rpcrdma_reqs_setup(r_xprt);
548         if (rc) {
549                 rpcrdma_xprt_disconnect(r_xprt);
550                 goto out;
551         }
552         rpcrdma_mrs_create(r_xprt);
553
554 out:
555         if (rc)
556                 ep->re_connect_status = rc;
557         trace_xprtrdma_connect(r_xprt, rc);
558         return rc;
559 }
560
561 /**
562  * rpcrdma_xprt_disconnect - Disconnect underlying transport
563  * @r_xprt: controlling transport instance
564  *
565  * Caller serializes. Either the transport send lock is held,
566  * or we're being called to destroy the transport.
567  *
568  * On return, @r_xprt is completely divested of all hardware
569  * resources and prepared for the next ->connect operation.
570  */
571 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
572 {
573         struct rpcrdma_ep *ep = r_xprt->rx_ep;
574         struct rdma_cm_id *id;
575         int rc;
576
577         if (!ep)
578                 return;
579
580         id = ep->re_id;
581         rc = rdma_disconnect(id);
582         trace_xprtrdma_disconnect(r_xprt, rc);
583
584         rpcrdma_xprt_drain(r_xprt);
585         rpcrdma_reps_unmap(r_xprt);
586         rpcrdma_reqs_reset(r_xprt);
587         rpcrdma_mrs_destroy(r_xprt);
588         rpcrdma_sendctxs_destroy(r_xprt);
589
590         if (rpcrdma_ep_destroy(ep))
591                 rdma_destroy_id(id);
592
593         r_xprt->rx_ep = NULL;
594 }
595
596 /* Fixed-size circular FIFO queue. This implementation is wait-free and
597  * lock-free.
598  *
599  * Consumer is the code path that posts Sends. This path dequeues a
600  * sendctx for use by a Send operation. Multiple consumer threads
601  * are serialized by the RPC transport lock, which allows only one
602  * ->send_request call at a time.
603  *
604  * Producer is the code path that handles Send completions. This path
605  * enqueues a sendctx that has been completed. Multiple producer
606  * threads are serialized by the ib_poll_cq() function.
607  */
608
609 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
610  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
611  * Send requests.
612  */
613 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
614 {
615         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
616         unsigned long i;
617
618         if (!buf->rb_sc_ctxs)
619                 return;
620         for (i = 0; i <= buf->rb_sc_last; i++)
621                 kfree(buf->rb_sc_ctxs[i]);
622         kfree(buf->rb_sc_ctxs);
623         buf->rb_sc_ctxs = NULL;
624 }
625
626 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
627 {
628         struct rpcrdma_sendctx *sc;
629
630         sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
631                      GFP_KERNEL);
632         if (!sc)
633                 return NULL;
634
635         sc->sc_cqe.done = rpcrdma_wc_send;
636         return sc;
637 }
638
639 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
640 {
641         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
642         struct rpcrdma_sendctx *sc;
643         unsigned long i;
644
645         /* Maximum number of concurrent outstanding Send WRs. Capping
646          * the circular queue size stops Send Queue overflow by causing
647          * the ->send_request call to fail temporarily before too many
648          * Sends are posted.
649          */
650         i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
651         buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
652         if (!buf->rb_sc_ctxs)
653                 return -ENOMEM;
654
655         buf->rb_sc_last = i - 1;
656         for (i = 0; i <= buf->rb_sc_last; i++) {
657                 sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
658                 if (!sc)
659                         return -ENOMEM;
660
661                 buf->rb_sc_ctxs[i] = sc;
662         }
663
664         buf->rb_sc_head = 0;
665         buf->rb_sc_tail = 0;
666         return 0;
667 }
668
669 /* The sendctx queue is not guaranteed to have a size that is a
670  * power of two, thus the helpers in circ_buf.h cannot be used.
671  * The other option is to use modulus (%), which can be expensive.
672  */
673 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
674                                           unsigned long item)
675 {
676         return likely(item < buf->rb_sc_last) ? item + 1 : 0;
677 }
678
679 /**
680  * rpcrdma_sendctx_get_locked - Acquire a send context
681  * @r_xprt: controlling transport instance
682  *
683  * Returns pointer to a free send completion context; or NULL if
684  * the queue is empty.
685  *
686  * Usage: Called to acquire an SGE array before preparing a Send WR.
687  *
688  * The caller serializes calls to this function (per transport), and
689  * provides an effective memory barrier that flushes the new value
690  * of rb_sc_head.
691  */
692 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
693 {
694         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
695         struct rpcrdma_sendctx *sc;
696         unsigned long next_head;
697
698         next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
699
700         if (next_head == READ_ONCE(buf->rb_sc_tail))
701                 goto out_emptyq;
702
703         /* ORDER: item must be accessed _before_ head is updated */
704         sc = buf->rb_sc_ctxs[next_head];
705
706         /* Releasing the lock in the caller acts as a memory
707          * barrier that flushes rb_sc_head.
708          */
709         buf->rb_sc_head = next_head;
710
711         return sc;
712
713 out_emptyq:
714         /* The queue is "empty" if there have not been enough Send
715          * completions recently. This is a sign the Send Queue is
716          * backing up. Cause the caller to pause and try again.
717          */
718         xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
719         r_xprt->rx_stats.empty_sendctx_q++;
720         return NULL;
721 }
722
723 /**
724  * rpcrdma_sendctx_put_locked - Release a send context
725  * @r_xprt: controlling transport instance
726  * @sc: send context to release
727  *
728  * Usage: Called from Send completion to return a sendctxt
729  * to the queue.
730  *
731  * The caller serializes calls to this function (per transport).
732  */
733 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
734                                        struct rpcrdma_sendctx *sc)
735 {
736         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
737         unsigned long next_tail;
738
739         /* Unmap SGEs of previously completed but unsignaled
740          * Sends by walking up the queue until @sc is found.
741          */
742         next_tail = buf->rb_sc_tail;
743         do {
744                 next_tail = rpcrdma_sendctx_next(buf, next_tail);
745
746                 /* ORDER: item must be accessed _before_ tail is updated */
747                 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
748
749         } while (buf->rb_sc_ctxs[next_tail] != sc);
750
751         /* Paired with READ_ONCE */
752         smp_store_release(&buf->rb_sc_tail, next_tail);
753
754         xprt_write_space(&r_xprt->rx_xprt);
755 }
756
757 static void
758 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
759 {
760         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
761         struct rpcrdma_ep *ep = r_xprt->rx_ep;
762         unsigned int count;
763
764         for (count = 0; count < ep->re_max_rdma_segs; count++) {
765                 struct rpcrdma_mr *mr;
766                 int rc;
767
768                 mr = kzalloc(sizeof(*mr), GFP_NOFS);
769                 if (!mr)
770                         break;
771
772                 rc = frwr_mr_init(r_xprt, mr);
773                 if (rc) {
774                         kfree(mr);
775                         break;
776                 }
777
778                 spin_lock(&buf->rb_lock);
779                 rpcrdma_mr_push(mr, &buf->rb_mrs);
780                 list_add(&mr->mr_all, &buf->rb_all_mrs);
781                 spin_unlock(&buf->rb_lock);
782         }
783
784         r_xprt->rx_stats.mrs_allocated += count;
785         trace_xprtrdma_createmrs(r_xprt, count);
786 }
787
788 static void
789 rpcrdma_mr_refresh_worker(struct work_struct *work)
790 {
791         struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
792                                                   rb_refresh_worker);
793         struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
794                                                    rx_buf);
795
796         rpcrdma_mrs_create(r_xprt);
797         xprt_write_space(&r_xprt->rx_xprt);
798 }
799
800 /**
801  * rpcrdma_mrs_refresh - Wake the MR refresh worker
802  * @r_xprt: controlling transport instance
803  *
804  */
805 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
806 {
807         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
808         struct rpcrdma_ep *ep = r_xprt->rx_ep;
809
810         /* If there is no underlying connection, it's no use
811          * to wake the refresh worker.
812          */
813         if (ep->re_connect_status == 1) {
814                 /* The work is scheduled on a WQ_MEM_RECLAIM
815                  * workqueue in order to prevent MR allocation
816                  * from recursing into NFS during direct reclaim.
817                  */
818                 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
819         }
820 }
821
822 /**
823  * rpcrdma_req_create - Allocate an rpcrdma_req object
824  * @r_xprt: controlling r_xprt
825  * @size: initial size, in bytes, of send and receive buffers
826  * @flags: GFP flags passed to memory allocators
827  *
828  * Returns an allocated and fully initialized rpcrdma_req or NULL.
829  */
830 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
831                                        gfp_t flags)
832 {
833         struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
834         struct rpcrdma_req *req;
835
836         req = kzalloc(sizeof(*req), flags);
837         if (req == NULL)
838                 goto out1;
839
840         req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
841         if (!req->rl_sendbuf)
842                 goto out2;
843
844         req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
845         if (!req->rl_recvbuf)
846                 goto out3;
847
848         INIT_LIST_HEAD(&req->rl_free_mrs);
849         INIT_LIST_HEAD(&req->rl_registered);
850         spin_lock(&buffer->rb_lock);
851         list_add(&req->rl_all, &buffer->rb_allreqs);
852         spin_unlock(&buffer->rb_lock);
853         return req;
854
855 out3:
856         kfree(req->rl_sendbuf);
857 out2:
858         kfree(req);
859 out1:
860         return NULL;
861 }
862
863 /**
864  * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
865  * @r_xprt: controlling transport instance
866  * @req: rpcrdma_req object to set up
867  *
868  * Returns zero on success, and a negative errno on failure.
869  */
870 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
871 {
872         struct rpcrdma_regbuf *rb;
873         size_t maxhdrsize;
874
875         /* Compute maximum header buffer size in bytes */
876         maxhdrsize = rpcrdma_fixed_maxsz + 3 +
877                      r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
878         maxhdrsize *= sizeof(__be32);
879         rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
880                                   DMA_TO_DEVICE, GFP_KERNEL);
881         if (!rb)
882                 goto out;
883
884         if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
885                 goto out_free;
886
887         req->rl_rdmabuf = rb;
888         xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
889         return 0;
890
891 out_free:
892         rpcrdma_regbuf_free(rb);
893 out:
894         return -ENOMEM;
895 }
896
897 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
898  * and thus can be walked without holding rb_lock. Eg. the
899  * caller is holding the transport send lock to exclude
900  * device removal or disconnection.
901  */
902 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
903 {
904         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
905         struct rpcrdma_req *req;
906         int rc;
907
908         list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
909                 rc = rpcrdma_req_setup(r_xprt, req);
910                 if (rc)
911                         return rc;
912         }
913         return 0;
914 }
915
916 static void rpcrdma_req_reset(struct rpcrdma_req *req)
917 {
918         /* Credits are valid for only one connection */
919         req->rl_slot.rq_cong = 0;
920
921         rpcrdma_regbuf_free(req->rl_rdmabuf);
922         req->rl_rdmabuf = NULL;
923
924         rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
925         rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
926 }
927
928 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
929  * and thus can be walked without holding rb_lock. Eg. the
930  * caller is holding the transport send lock to exclude
931  * device removal or disconnection.
932  */
933 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
934 {
935         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
936         struct rpcrdma_req *req;
937
938         list_for_each_entry(req, &buf->rb_allreqs, rl_all)
939                 rpcrdma_req_reset(req);
940 }
941
942 /* No locking needed here. This function is called only by the
943  * Receive completion handler.
944  */
945 static noinline
946 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
947                                        bool temp)
948 {
949         struct rpcrdma_rep *rep;
950
951         rep = kzalloc(sizeof(*rep), GFP_KERNEL);
952         if (rep == NULL)
953                 goto out;
954
955         rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
956                                                DMA_FROM_DEVICE, GFP_KERNEL);
957         if (!rep->rr_rdmabuf)
958                 goto out_free;
959
960         if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
961                 goto out_free_regbuf;
962
963         xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
964                      rdmab_length(rep->rr_rdmabuf));
965         rep->rr_cqe.done = rpcrdma_wc_receive;
966         rep->rr_rxprt = r_xprt;
967         rep->rr_recv_wr.next = NULL;
968         rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
969         rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
970         rep->rr_recv_wr.num_sge = 1;
971         rep->rr_temp = temp;
972         list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
973         return rep;
974
975 out_free_regbuf:
976         rpcrdma_regbuf_free(rep->rr_rdmabuf);
977 out_free:
978         kfree(rep);
979 out:
980         return NULL;
981 }
982
983 /* No locking needed here. This function is invoked only by the
984  * Receive completion handler, or during transport shutdown.
985  */
986 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
987 {
988         list_del(&rep->rr_all);
989         rpcrdma_regbuf_free(rep->rr_rdmabuf);
990         kfree(rep);
991 }
992
993 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
994 {
995         struct llist_node *node;
996
997         /* Calls to llist_del_first are required to be serialized */
998         node = llist_del_first(&buf->rb_free_reps);
999         if (!node)
1000                 return NULL;
1001         return llist_entry(node, struct rpcrdma_rep, rr_node);
1002 }
1003
1004 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1005                             struct rpcrdma_rep *rep)
1006 {
1007         llist_add(&rep->rr_node, &buf->rb_free_reps);
1008 }
1009
1010 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1011 {
1012         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1013         struct rpcrdma_rep *rep;
1014
1015         list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1016                 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1017                 rep->rr_temp = true;
1018         }
1019 }
1020
1021 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1022 {
1023         struct rpcrdma_rep *rep;
1024
1025         while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1026                 rpcrdma_rep_destroy(rep);
1027 }
1028
1029 /**
1030  * rpcrdma_buffer_create - Create initial set of req/rep objects
1031  * @r_xprt: transport instance to (re)initialize
1032  *
1033  * Returns zero on success, otherwise a negative errno.
1034  */
1035 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1036 {
1037         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1038         int i, rc;
1039
1040         buf->rb_bc_srv_max_requests = 0;
1041         spin_lock_init(&buf->rb_lock);
1042         INIT_LIST_HEAD(&buf->rb_mrs);
1043         INIT_LIST_HEAD(&buf->rb_all_mrs);
1044         INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1045
1046         INIT_LIST_HEAD(&buf->rb_send_bufs);
1047         INIT_LIST_HEAD(&buf->rb_allreqs);
1048         INIT_LIST_HEAD(&buf->rb_all_reps);
1049
1050         rc = -ENOMEM;
1051         for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1052                 struct rpcrdma_req *req;
1053
1054                 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1055                                          GFP_KERNEL);
1056                 if (!req)
1057                         goto out;
1058                 list_add(&req->rl_list, &buf->rb_send_bufs);
1059         }
1060
1061         init_llist_head(&buf->rb_free_reps);
1062
1063         return 0;
1064 out:
1065         rpcrdma_buffer_destroy(buf);
1066         return rc;
1067 }
1068
1069 /**
1070  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1071  * @req: unused object to be destroyed
1072  *
1073  * Relies on caller holding the transport send lock to protect
1074  * removing req->rl_all from buf->rb_all_reqs safely.
1075  */
1076 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1077 {
1078         struct rpcrdma_mr *mr;
1079
1080         list_del(&req->rl_all);
1081
1082         while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1083                 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1084
1085                 spin_lock(&buf->rb_lock);
1086                 list_del(&mr->mr_all);
1087                 spin_unlock(&buf->rb_lock);
1088
1089                 frwr_release_mr(mr);
1090         }
1091
1092         rpcrdma_regbuf_free(req->rl_recvbuf);
1093         rpcrdma_regbuf_free(req->rl_sendbuf);
1094         rpcrdma_regbuf_free(req->rl_rdmabuf);
1095         kfree(req);
1096 }
1097
1098 /**
1099  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1100  * @r_xprt: controlling transport instance
1101  *
1102  * Relies on caller holding the transport send lock to protect
1103  * removing mr->mr_list from req->rl_free_mrs safely.
1104  */
1105 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1106 {
1107         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1108         struct rpcrdma_mr *mr;
1109
1110         cancel_work_sync(&buf->rb_refresh_worker);
1111
1112         spin_lock(&buf->rb_lock);
1113         while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1114                                               struct rpcrdma_mr,
1115                                               mr_all)) != NULL) {
1116                 list_del(&mr->mr_list);
1117                 list_del(&mr->mr_all);
1118                 spin_unlock(&buf->rb_lock);
1119
1120                 frwr_release_mr(mr);
1121
1122                 spin_lock(&buf->rb_lock);
1123         }
1124         spin_unlock(&buf->rb_lock);
1125 }
1126
1127 /**
1128  * rpcrdma_buffer_destroy - Release all hw resources
1129  * @buf: root control block for resources
1130  *
1131  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1132  * - No more Send or Receive completions can occur
1133  * - All MRs, reps, and reqs are returned to their free lists
1134  */
1135 void
1136 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1137 {
1138         rpcrdma_reps_destroy(buf);
1139
1140         while (!list_empty(&buf->rb_send_bufs)) {
1141                 struct rpcrdma_req *req;
1142
1143                 req = list_first_entry(&buf->rb_send_bufs,
1144                                        struct rpcrdma_req, rl_list);
1145                 list_del(&req->rl_list);
1146                 rpcrdma_req_destroy(req);
1147         }
1148 }
1149
1150 /**
1151  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1152  * @r_xprt: controlling transport
1153  *
1154  * Returns an initialized rpcrdma_mr or NULL if no free
1155  * rpcrdma_mr objects are available.
1156  */
1157 struct rpcrdma_mr *
1158 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1159 {
1160         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1161         struct rpcrdma_mr *mr;
1162
1163         spin_lock(&buf->rb_lock);
1164         mr = rpcrdma_mr_pop(&buf->rb_mrs);
1165         spin_unlock(&buf->rb_lock);
1166         return mr;
1167 }
1168
1169 /**
1170  * rpcrdma_mr_put - DMA unmap an MR and release it
1171  * @mr: MR to release
1172  *
1173  */
1174 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1175 {
1176         struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1177
1178         if (mr->mr_dir != DMA_NONE) {
1179                 trace_xprtrdma_mr_unmap(mr);
1180                 ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
1181                                 mr->mr_sg, mr->mr_nents, mr->mr_dir);
1182                 mr->mr_dir = DMA_NONE;
1183         }
1184
1185         rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1186 }
1187
1188 /**
1189  * rpcrdma_buffer_get - Get a request buffer
1190  * @buffers: Buffer pool from which to obtain a buffer
1191  *
1192  * Returns a fresh rpcrdma_req, or NULL if none are available.
1193  */
1194 struct rpcrdma_req *
1195 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1196 {
1197         struct rpcrdma_req *req;
1198
1199         spin_lock(&buffers->rb_lock);
1200         req = list_first_entry_or_null(&buffers->rb_send_bufs,
1201                                        struct rpcrdma_req, rl_list);
1202         if (req)
1203                 list_del_init(&req->rl_list);
1204         spin_unlock(&buffers->rb_lock);
1205         return req;
1206 }
1207
1208 /**
1209  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1210  * @buffers: buffer pool
1211  * @req: object to return
1212  *
1213  */
1214 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1215 {
1216         if (req->rl_reply)
1217                 rpcrdma_rep_put(buffers, req->rl_reply);
1218         req->rl_reply = NULL;
1219
1220         spin_lock(&buffers->rb_lock);
1221         list_add(&req->rl_list, &buffers->rb_send_bufs);
1222         spin_unlock(&buffers->rb_lock);
1223 }
1224
1225 /**
1226  * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1227  * @rep: rep to release
1228  *
1229  * Used after error conditions.
1230  */
1231 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1232 {
1233         rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1234 }
1235
1236 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1237  *
1238  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1239  * receiving the payload of RDMA RECV operations. During Long Calls
1240  * or Replies they may be registered externally via frwr_map.
1241  */
1242 static struct rpcrdma_regbuf *
1243 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1244                      gfp_t flags)
1245 {
1246         struct rpcrdma_regbuf *rb;
1247
1248         rb = kmalloc(sizeof(*rb), flags);
1249         if (!rb)
1250                 return NULL;
1251         rb->rg_data = kmalloc(size, flags);
1252         if (!rb->rg_data) {
1253                 kfree(rb);
1254                 return NULL;
1255         }
1256
1257         rb->rg_device = NULL;
1258         rb->rg_direction = direction;
1259         rb->rg_iov.length = size;
1260         return rb;
1261 }
1262
1263 /**
1264  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1265  * @rb: regbuf to reallocate
1266  * @size: size of buffer to be allocated, in bytes
1267  * @flags: GFP flags
1268  *
1269  * Returns true if reallocation was successful. If false is
1270  * returned, @rb is left untouched.
1271  */
1272 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1273 {
1274         void *buf;
1275
1276         buf = kmalloc(size, flags);
1277         if (!buf)
1278                 return false;
1279
1280         rpcrdma_regbuf_dma_unmap(rb);
1281         kfree(rb->rg_data);
1282
1283         rb->rg_data = buf;
1284         rb->rg_iov.length = size;
1285         return true;
1286 }
1287
1288 /**
1289  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1290  * @r_xprt: controlling transport instance
1291  * @rb: regbuf to be mapped
1292  *
1293  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1294  */
1295 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1296                               struct rpcrdma_regbuf *rb)
1297 {
1298         struct ib_device *device = r_xprt->rx_ep->re_id->device;
1299
1300         if (rb->rg_direction == DMA_NONE)
1301                 return false;
1302
1303         rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1304                                             rdmab_length(rb), rb->rg_direction);
1305         if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1306                 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1307                 return false;
1308         }
1309
1310         rb->rg_device = device;
1311         rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1312         return true;
1313 }
1314
1315 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1316 {
1317         if (!rb)
1318                 return;
1319
1320         if (!rpcrdma_regbuf_is_mapped(rb))
1321                 return;
1322
1323         ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1324                             rb->rg_direction);
1325         rb->rg_device = NULL;
1326 }
1327
1328 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1329 {
1330         rpcrdma_regbuf_dma_unmap(rb);
1331         if (rb)
1332                 kfree(rb->rg_data);
1333         kfree(rb);
1334 }
1335
1336 /**
1337  * rpcrdma_post_sends - Post WRs to a transport's Send Queue
1338  * @r_xprt: controlling transport instance
1339  * @req: rpcrdma_req containing the Send WR to post
1340  *
1341  * Returns 0 if the post was successful, otherwise -ENOTCONN
1342  * is returned.
1343  */
1344 int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1345 {
1346         struct ib_send_wr *send_wr = &req->rl_wr;
1347         struct rpcrdma_ep *ep = r_xprt->rx_ep;
1348         int rc;
1349
1350         if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) {
1351                 send_wr->send_flags |= IB_SEND_SIGNALED;
1352                 ep->re_send_count = ep->re_send_batch;
1353         } else {
1354                 send_wr->send_flags &= ~IB_SEND_SIGNALED;
1355                 --ep->re_send_count;
1356         }
1357
1358         rc = frwr_send(r_xprt, req);
1359         trace_xprtrdma_post_send(req, rc);
1360         if (rc)
1361                 return -ENOTCONN;
1362         return 0;
1363 }
1364
1365 /**
1366  * rpcrdma_post_recvs - Refill the Receive Queue
1367  * @r_xprt: controlling transport instance
1368  * @temp: mark Receive buffers to be deleted after use
1369  *
1370  */
1371 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1372 {
1373         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1374         struct rpcrdma_ep *ep = r_xprt->rx_ep;
1375         struct ib_recv_wr *wr, *bad_wr;
1376         struct rpcrdma_rep *rep;
1377         int needed, count, rc;
1378
1379         rc = 0;
1380         count = 0;
1381
1382         needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1383         if (likely(ep->re_receive_count > needed))
1384                 goto out;
1385         needed -= ep->re_receive_count;
1386         if (!temp)
1387                 needed += RPCRDMA_MAX_RECV_BATCH;
1388
1389         /* fast path: all needed reps can be found on the free list */
1390         wr = NULL;
1391         while (needed) {
1392                 rep = rpcrdma_rep_get_locked(buf);
1393                 if (rep && rep->rr_temp) {
1394                         rpcrdma_rep_destroy(rep);
1395                         continue;
1396                 }
1397                 if (!rep)
1398                         rep = rpcrdma_rep_create(r_xprt, temp);
1399                 if (!rep)
1400                         break;
1401
1402                 trace_xprtrdma_post_recv(rep);
1403                 rep->rr_recv_wr.next = wr;
1404                 wr = &rep->rr_recv_wr;
1405                 --needed;
1406                 ++count;
1407         }
1408         if (!wr)
1409                 goto out;
1410
1411         rc = ib_post_recv(ep->re_id->qp, wr,
1412                           (const struct ib_recv_wr **)&bad_wr);
1413 out:
1414         trace_xprtrdma_post_recvs(r_xprt, count, rc);
1415         if (rc) {
1416                 for (wr = bad_wr; wr;) {
1417                         struct rpcrdma_rep *rep;
1418
1419                         rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1420                         wr = wr->next;
1421                         rpcrdma_recv_buffer_put(rep);
1422                         --count;
1423                 }
1424         }
1425         ep->re_receive_count += count;
1426         return;
1427 }