Merge tag 'for-5.7-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / net / sunrpc / xprtrdma / verbs.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 /*
67  * Globals/Macros
68  */
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY        RPCDBG_TRANS
72 #endif
73
74 /*
75  * internal functions
76  */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80                                        struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static int rpcrdma_ep_destroy(struct rpcrdma_ep *ep);
88 static struct rpcrdma_regbuf *
89 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
90                      gfp_t flags);
91 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
92 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
93
94 /* Wait for outstanding transport work to finish. ib_drain_qp
95  * handles the drains in the wrong order for us, so open code
96  * them here.
97  */
98 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
99 {
100         struct rdma_cm_id *id = r_xprt->rx_ep->re_id;
101
102         /* Flush Receives, then wait for deferred Reply work
103          * to complete.
104          */
105         ib_drain_rq(id->qp);
106
107         /* Deferred Reply processing might have scheduled
108          * local invalidations.
109          */
110         ib_drain_sq(id->qp);
111 }
112
113 /**
114  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
115  * @event: details of the event
116  * @context: ep that owns QP where event occurred
117  *
118  * Called from the RDMA provider (device driver) possibly in an interrupt
119  * context. The QP is always destroyed before the ID, so the ID will be
120  * reliably available when this handler is invoked.
121  */
122 static void rpcrdma_qp_event_handler(struct ib_event *event, void *context)
123 {
124         struct rpcrdma_ep *ep = context;
125
126         trace_xprtrdma_qp_event(ep, event);
127 }
128
129 /**
130  * rpcrdma_flush_disconnect - Disconnect on flushed completion
131  * @cq: completion queue
132  * @wc: work completion entry
133  *
134  * Must be called in process context.
135  */
136 void rpcrdma_flush_disconnect(struct ib_cq *cq, struct ib_wc *wc)
137 {
138         struct rpcrdma_xprt *r_xprt = cq->cq_context;
139         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
140
141         if (wc->status != IB_WC_SUCCESS &&
142             r_xprt->rx_ep->re_connect_status == 1) {
143                 r_xprt->rx_ep->re_connect_status = -ECONNABORTED;
144                 trace_xprtrdma_flush_dct(r_xprt, wc->status);
145                 xprt_force_disconnect(xprt);
146         }
147 }
148
149 /**
150  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
151  * @cq: completion queue
152  * @wc: WCE for a completed Send WR
153  *
154  */
155 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
156 {
157         struct ib_cqe *cqe = wc->wr_cqe;
158         struct rpcrdma_sendctx *sc =
159                 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
160
161         /* WARNING: Only wr_cqe and status are reliable at this point */
162         trace_xprtrdma_wc_send(sc, wc);
163         rpcrdma_sendctx_put_locked((struct rpcrdma_xprt *)cq->cq_context, sc);
164         rpcrdma_flush_disconnect(cq, wc);
165 }
166
167 /**
168  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
169  * @cq: completion queue
170  * @wc: WCE for a completed Receive WR
171  *
172  */
173 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
174 {
175         struct ib_cqe *cqe = wc->wr_cqe;
176         struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
177                                                rr_cqe);
178         struct rpcrdma_xprt *r_xprt = cq->cq_context;
179
180         /* WARNING: Only wr_cqe and status are reliable at this point */
181         trace_xprtrdma_wc_receive(wc);
182         --r_xprt->rx_ep->re_receive_count;
183         if (wc->status != IB_WC_SUCCESS)
184                 goto out_flushed;
185
186         /* status == SUCCESS means all fields in wc are trustworthy */
187         rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
188         rep->rr_wc_flags = wc->wc_flags;
189         rep->rr_inv_rkey = wc->ex.invalidate_rkey;
190
191         ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
192                                    rdmab_addr(rep->rr_rdmabuf),
193                                    wc->byte_len, DMA_FROM_DEVICE);
194
195         rpcrdma_reply_handler(rep);
196         return;
197
198 out_flushed:
199         rpcrdma_flush_disconnect(cq, wc);
200         rpcrdma_rep_destroy(rep);
201 }
202
203 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
204                                       struct rdma_conn_param *param)
205 {
206         const struct rpcrdma_connect_private *pmsg = param->private_data;
207         unsigned int rsize, wsize;
208
209         /* Default settings for RPC-over-RDMA Version One */
210         ep->re_implicit_roundup = xprt_rdma_pad_optimize;
211         rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
212         wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
213
214         if (pmsg &&
215             pmsg->cp_magic == rpcrdma_cmp_magic &&
216             pmsg->cp_version == RPCRDMA_CMP_VERSION) {
217                 ep->re_implicit_roundup = true;
218                 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
219                 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
220         }
221
222         if (rsize < ep->re_inline_recv)
223                 ep->re_inline_recv = rsize;
224         if (wsize < ep->re_inline_send)
225                 ep->re_inline_send = wsize;
226
227         rpcrdma_set_max_header_sizes(ep);
228 }
229
230 /**
231  * rpcrdma_cm_event_handler - Handle RDMA CM events
232  * @id: rdma_cm_id on which an event has occurred
233  * @event: details of the event
234  *
235  * Called with @id's mutex held. Returns 1 if caller should
236  * destroy @id, otherwise 0.
237  */
238 static int
239 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
240 {
241         struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
242         struct rpcrdma_ep *ep = id->context;
243         struct rpc_xprt *xprt = ep->re_xprt;
244
245         might_sleep();
246
247         switch (event->event) {
248         case RDMA_CM_EVENT_ADDR_RESOLVED:
249         case RDMA_CM_EVENT_ROUTE_RESOLVED:
250                 ep->re_async_rc = 0;
251                 complete(&ep->re_done);
252                 return 0;
253         case RDMA_CM_EVENT_ADDR_ERROR:
254                 ep->re_async_rc = -EPROTO;
255                 complete(&ep->re_done);
256                 return 0;
257         case RDMA_CM_EVENT_ROUTE_ERROR:
258                 ep->re_async_rc = -ENETUNREACH;
259                 complete(&ep->re_done);
260                 return 0;
261         case RDMA_CM_EVENT_DEVICE_REMOVAL:
262                 pr_info("rpcrdma: removing device %s for %pISpc\n",
263                         ep->re_id->device->name, sap);
264                 /* fall through */
265         case RDMA_CM_EVENT_ADDR_CHANGE:
266                 ep->re_connect_status = -ENODEV;
267                 xprt_force_disconnect(xprt);
268                 goto disconnected;
269         case RDMA_CM_EVENT_ESTABLISHED:
270                 kref_get(&ep->re_kref);
271                 ep->re_connect_status = 1;
272                 rpcrdma_update_cm_private(ep, &event->param.conn);
273                 trace_xprtrdma_inline_thresh(ep);
274                 wake_up_all(&ep->re_connect_wait);
275                 break;
276         case RDMA_CM_EVENT_CONNECT_ERROR:
277                 ep->re_connect_status = -ENOTCONN;
278                 goto disconnected;
279         case RDMA_CM_EVENT_UNREACHABLE:
280                 ep->re_connect_status = -ENETUNREACH;
281                 goto disconnected;
282         case RDMA_CM_EVENT_REJECTED:
283                 dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
284                         sap, rdma_reject_msg(id, event->status));
285                 ep->re_connect_status = -ECONNREFUSED;
286                 if (event->status == IB_CM_REJ_STALE_CONN)
287                         ep->re_connect_status = -EAGAIN;
288                 goto disconnected;
289         case RDMA_CM_EVENT_DISCONNECTED:
290                 ep->re_connect_status = -ECONNABORTED;
291 disconnected:
292                 xprt_force_disconnect(xprt);
293                 return rpcrdma_ep_destroy(ep);
294         default:
295                 break;
296         }
297
298         dprintk("RPC:       %s: %pISpc on %s/frwr: %s\n", __func__, sap,
299                 ep->re_id->device->name, rdma_event_msg(event->event));
300         return 0;
301 }
302
303 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
304                                             struct rpcrdma_ep *ep)
305 {
306         unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
307         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
308         struct rdma_cm_id *id;
309         int rc;
310
311         init_completion(&ep->re_done);
312
313         id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
314                             RDMA_PS_TCP, IB_QPT_RC);
315         if (IS_ERR(id))
316                 return id;
317
318         ep->re_async_rc = -ETIMEDOUT;
319         rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
320                                RDMA_RESOLVE_TIMEOUT);
321         if (rc)
322                 goto out;
323         rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
324         if (rc < 0)
325                 goto out;
326
327         rc = ep->re_async_rc;
328         if (rc)
329                 goto out;
330
331         ep->re_async_rc = -ETIMEDOUT;
332         rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
333         if (rc)
334                 goto out;
335         rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
336         if (rc < 0)
337                 goto out;
338         rc = ep->re_async_rc;
339         if (rc)
340                 goto out;
341
342         return id;
343
344 out:
345         rdma_destroy_id(id);
346         return ERR_PTR(rc);
347 }
348
349 static void rpcrdma_ep_put(struct kref *kref)
350 {
351         struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
352
353         if (ep->re_id->qp) {
354                 rdma_destroy_qp(ep->re_id);
355                 ep->re_id->qp = NULL;
356         }
357
358         if (ep->re_attr.recv_cq)
359                 ib_free_cq(ep->re_attr.recv_cq);
360         ep->re_attr.recv_cq = NULL;
361         if (ep->re_attr.send_cq)
362                 ib_free_cq(ep->re_attr.send_cq);
363         ep->re_attr.send_cq = NULL;
364
365         if (ep->re_pd)
366                 ib_dealloc_pd(ep->re_pd);
367         ep->re_pd = NULL;
368
369         kfree(ep);
370         module_put(THIS_MODULE);
371 }
372
373 /* Returns:
374  *     %0 if @ep still has a positive kref count, or
375  *     %1 if @ep was destroyed successfully.
376  */
377 static int rpcrdma_ep_destroy(struct rpcrdma_ep *ep)
378 {
379         return kref_put(&ep->re_kref, rpcrdma_ep_put);
380 }
381
382 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
383 {
384         struct rpcrdma_connect_private *pmsg;
385         struct ib_device *device;
386         struct rdma_cm_id *id;
387         struct rpcrdma_ep *ep;
388         int rc;
389
390         ep = kzalloc(sizeof(*ep), GFP_NOFS);
391         if (!ep)
392                 return -EAGAIN;
393         ep->re_xprt = &r_xprt->rx_xprt;
394         kref_init(&ep->re_kref);
395
396         id = rpcrdma_create_id(r_xprt, ep);
397         if (IS_ERR(id)) {
398                 rc = PTR_ERR(id);
399                 goto out_free;
400         }
401         __module_get(THIS_MODULE);
402         device = id->device;
403         ep->re_id = id;
404
405         ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
406         ep->re_inline_send = xprt_rdma_max_inline_write;
407         ep->re_inline_recv = xprt_rdma_max_inline_read;
408         rc = frwr_query_device(ep, device);
409         if (rc)
410                 goto out_destroy;
411
412         r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
413
414         ep->re_attr.event_handler = rpcrdma_qp_event_handler;
415         ep->re_attr.qp_context = ep;
416         ep->re_attr.srq = NULL;
417         ep->re_attr.cap.max_inline_data = 0;
418         ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
419         ep->re_attr.qp_type = IB_QPT_RC;
420         ep->re_attr.port_num = ~0;
421
422         dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
423                 "iovs: send %d recv %d\n",
424                 __func__,
425                 ep->re_attr.cap.max_send_wr,
426                 ep->re_attr.cap.max_recv_wr,
427                 ep->re_attr.cap.max_send_sge,
428                 ep->re_attr.cap.max_recv_sge);
429
430         ep->re_send_batch = ep->re_max_requests >> 3;
431         ep->re_send_count = ep->re_send_batch;
432         init_waitqueue_head(&ep->re_connect_wait);
433
434         ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
435                                               ep->re_attr.cap.max_send_wr,
436                                               IB_POLL_WORKQUEUE);
437         if (IS_ERR(ep->re_attr.send_cq)) {
438                 rc = PTR_ERR(ep->re_attr.send_cq);
439                 goto out_destroy;
440         }
441
442         ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
443                                               ep->re_attr.cap.max_recv_wr,
444                                               IB_POLL_WORKQUEUE);
445         if (IS_ERR(ep->re_attr.recv_cq)) {
446                 rc = PTR_ERR(ep->re_attr.recv_cq);
447                 goto out_destroy;
448         }
449         ep->re_receive_count = 0;
450
451         /* Initialize cma parameters */
452         memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
453
454         /* Prepare RDMA-CM private message */
455         pmsg = &ep->re_cm_private;
456         pmsg->cp_magic = rpcrdma_cmp_magic;
457         pmsg->cp_version = RPCRDMA_CMP_VERSION;
458         pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
459         pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
460         pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
461         ep->re_remote_cma.private_data = pmsg;
462         ep->re_remote_cma.private_data_len = sizeof(*pmsg);
463
464         /* Client offers RDMA Read but does not initiate */
465         ep->re_remote_cma.initiator_depth = 0;
466         ep->re_remote_cma.responder_resources =
467                 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
468
469         /* Limit transport retries so client can detect server
470          * GID changes quickly. RPC layer handles re-establishing
471          * transport connection and retransmission.
472          */
473         ep->re_remote_cma.retry_count = 6;
474
475         /* RPC-over-RDMA handles its own flow control. In addition,
476          * make all RNR NAKs visible so we know that RPC-over-RDMA
477          * flow control is working correctly (no NAKs should be seen).
478          */
479         ep->re_remote_cma.flow_control = 0;
480         ep->re_remote_cma.rnr_retry_count = 0;
481
482         ep->re_pd = ib_alloc_pd(device, 0);
483         if (IS_ERR(ep->re_pd)) {
484                 rc = PTR_ERR(ep->re_pd);
485                 goto out_destroy;
486         }
487
488         rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
489         if (rc)
490                 goto out_destroy;
491
492         r_xprt->rx_ep = ep;
493         return 0;
494
495 out_destroy:
496         rpcrdma_ep_destroy(ep);
497         rdma_destroy_id(id);
498 out_free:
499         kfree(ep);
500         r_xprt->rx_ep = NULL;
501         return rc;
502 }
503
504 /**
505  * rpcrdma_xprt_connect - Connect an unconnected transport
506  * @r_xprt: controlling transport instance
507  *
508  * Returns 0 on success or a negative errno.
509  */
510 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
511 {
512         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
513         struct rpcrdma_ep *ep;
514         int rc;
515
516 retry:
517         rpcrdma_xprt_disconnect(r_xprt);
518         rc = rpcrdma_ep_create(r_xprt);
519         if (rc)
520                 return rc;
521         ep = r_xprt->rx_ep;
522
523         ep->re_connect_status = 0;
524         xprt_clear_connected(xprt);
525
526         rpcrdma_reset_cwnd(r_xprt);
527         rpcrdma_post_recvs(r_xprt, true);
528
529         rc = rpcrdma_sendctxs_create(r_xprt);
530         if (rc)
531                 goto out;
532
533         rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
534         if (rc)
535                 goto out;
536
537         if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
538                 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
539         wait_event_interruptible(ep->re_connect_wait,
540                                  ep->re_connect_status != 0);
541         if (ep->re_connect_status <= 0) {
542                 if (ep->re_connect_status == -EAGAIN)
543                         goto retry;
544                 rc = ep->re_connect_status;
545                 goto out;
546         }
547
548         rc = rpcrdma_reqs_setup(r_xprt);
549         if (rc) {
550                 rpcrdma_xprt_disconnect(r_xprt);
551                 goto out;
552         }
553         rpcrdma_mrs_create(r_xprt);
554
555 out:
556         if (rc)
557                 ep->re_connect_status = rc;
558         trace_xprtrdma_connect(r_xprt, rc);
559         return rc;
560 }
561
562 /**
563  * rpcrdma_xprt_disconnect - Disconnect underlying transport
564  * @r_xprt: controlling transport instance
565  *
566  * Caller serializes. Either the transport send lock is held,
567  * or we're being called to destroy the transport.
568  *
569  * On return, @r_xprt is completely divested of all hardware
570  * resources and prepared for the next ->connect operation.
571  */
572 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
573 {
574         struct rpcrdma_ep *ep = r_xprt->rx_ep;
575         struct rdma_cm_id *id;
576         int rc;
577
578         if (!ep)
579                 return;
580
581         id = ep->re_id;
582         rc = rdma_disconnect(id);
583         trace_xprtrdma_disconnect(r_xprt, rc);
584
585         rpcrdma_xprt_drain(r_xprt);
586         rpcrdma_reps_unmap(r_xprt);
587         rpcrdma_reqs_reset(r_xprt);
588         rpcrdma_mrs_destroy(r_xprt);
589         rpcrdma_sendctxs_destroy(r_xprt);
590
591         if (rpcrdma_ep_destroy(ep))
592                 rdma_destroy_id(id);
593
594         r_xprt->rx_ep = NULL;
595 }
596
597 /* Fixed-size circular FIFO queue. This implementation is wait-free and
598  * lock-free.
599  *
600  * Consumer is the code path that posts Sends. This path dequeues a
601  * sendctx for use by a Send operation. Multiple consumer threads
602  * are serialized by the RPC transport lock, which allows only one
603  * ->send_request call at a time.
604  *
605  * Producer is the code path that handles Send completions. This path
606  * enqueues a sendctx that has been completed. Multiple producer
607  * threads are serialized by the ib_poll_cq() function.
608  */
609
610 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
611  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
612  * Send requests.
613  */
614 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
615 {
616         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
617         unsigned long i;
618
619         if (!buf->rb_sc_ctxs)
620                 return;
621         for (i = 0; i <= buf->rb_sc_last; i++)
622                 kfree(buf->rb_sc_ctxs[i]);
623         kfree(buf->rb_sc_ctxs);
624         buf->rb_sc_ctxs = NULL;
625 }
626
627 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
628 {
629         struct rpcrdma_sendctx *sc;
630
631         sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
632                      GFP_KERNEL);
633         if (!sc)
634                 return NULL;
635
636         sc->sc_cqe.done = rpcrdma_wc_send;
637         return sc;
638 }
639
640 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
641 {
642         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
643         struct rpcrdma_sendctx *sc;
644         unsigned long i;
645
646         /* Maximum number of concurrent outstanding Send WRs. Capping
647          * the circular queue size stops Send Queue overflow by causing
648          * the ->send_request call to fail temporarily before too many
649          * Sends are posted.
650          */
651         i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
652         buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
653         if (!buf->rb_sc_ctxs)
654                 return -ENOMEM;
655
656         buf->rb_sc_last = i - 1;
657         for (i = 0; i <= buf->rb_sc_last; i++) {
658                 sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
659                 if (!sc)
660                         return -ENOMEM;
661
662                 buf->rb_sc_ctxs[i] = sc;
663         }
664
665         buf->rb_sc_head = 0;
666         buf->rb_sc_tail = 0;
667         return 0;
668 }
669
670 /* The sendctx queue is not guaranteed to have a size that is a
671  * power of two, thus the helpers in circ_buf.h cannot be used.
672  * The other option is to use modulus (%), which can be expensive.
673  */
674 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
675                                           unsigned long item)
676 {
677         return likely(item < buf->rb_sc_last) ? item + 1 : 0;
678 }
679
680 /**
681  * rpcrdma_sendctx_get_locked - Acquire a send context
682  * @r_xprt: controlling transport instance
683  *
684  * Returns pointer to a free send completion context; or NULL if
685  * the queue is empty.
686  *
687  * Usage: Called to acquire an SGE array before preparing a Send WR.
688  *
689  * The caller serializes calls to this function (per transport), and
690  * provides an effective memory barrier that flushes the new value
691  * of rb_sc_head.
692  */
693 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
694 {
695         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
696         struct rpcrdma_sendctx *sc;
697         unsigned long next_head;
698
699         next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
700
701         if (next_head == READ_ONCE(buf->rb_sc_tail))
702                 goto out_emptyq;
703
704         /* ORDER: item must be accessed _before_ head is updated */
705         sc = buf->rb_sc_ctxs[next_head];
706
707         /* Releasing the lock in the caller acts as a memory
708          * barrier that flushes rb_sc_head.
709          */
710         buf->rb_sc_head = next_head;
711
712         return sc;
713
714 out_emptyq:
715         /* The queue is "empty" if there have not been enough Send
716          * completions recently. This is a sign the Send Queue is
717          * backing up. Cause the caller to pause and try again.
718          */
719         xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
720         r_xprt->rx_stats.empty_sendctx_q++;
721         return NULL;
722 }
723
724 /**
725  * rpcrdma_sendctx_put_locked - Release a send context
726  * @r_xprt: controlling transport instance
727  * @sc: send context to release
728  *
729  * Usage: Called from Send completion to return a sendctxt
730  * to the queue.
731  *
732  * The caller serializes calls to this function (per transport).
733  */
734 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
735                                        struct rpcrdma_sendctx *sc)
736 {
737         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
738         unsigned long next_tail;
739
740         /* Unmap SGEs of previously completed but unsignaled
741          * Sends by walking up the queue until @sc is found.
742          */
743         next_tail = buf->rb_sc_tail;
744         do {
745                 next_tail = rpcrdma_sendctx_next(buf, next_tail);
746
747                 /* ORDER: item must be accessed _before_ tail is updated */
748                 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
749
750         } while (buf->rb_sc_ctxs[next_tail] != sc);
751
752         /* Paired with READ_ONCE */
753         smp_store_release(&buf->rb_sc_tail, next_tail);
754
755         xprt_write_space(&r_xprt->rx_xprt);
756 }
757
758 static void
759 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
760 {
761         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
762         struct rpcrdma_ep *ep = r_xprt->rx_ep;
763         unsigned int count;
764
765         for (count = 0; count < ep->re_max_rdma_segs; count++) {
766                 struct rpcrdma_mr *mr;
767                 int rc;
768
769                 mr = kzalloc(sizeof(*mr), GFP_NOFS);
770                 if (!mr)
771                         break;
772
773                 rc = frwr_mr_init(r_xprt, mr);
774                 if (rc) {
775                         kfree(mr);
776                         break;
777                 }
778
779                 spin_lock(&buf->rb_lock);
780                 rpcrdma_mr_push(mr, &buf->rb_mrs);
781                 list_add(&mr->mr_all, &buf->rb_all_mrs);
782                 spin_unlock(&buf->rb_lock);
783         }
784
785         r_xprt->rx_stats.mrs_allocated += count;
786         trace_xprtrdma_createmrs(r_xprt, count);
787 }
788
789 static void
790 rpcrdma_mr_refresh_worker(struct work_struct *work)
791 {
792         struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
793                                                   rb_refresh_worker);
794         struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
795                                                    rx_buf);
796
797         rpcrdma_mrs_create(r_xprt);
798         xprt_write_space(&r_xprt->rx_xprt);
799 }
800
801 /**
802  * rpcrdma_mrs_refresh - Wake the MR refresh worker
803  * @r_xprt: controlling transport instance
804  *
805  */
806 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
807 {
808         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
809         struct rpcrdma_ep *ep = r_xprt->rx_ep;
810
811         /* If there is no underlying connection, it's no use
812          * to wake the refresh worker.
813          */
814         if (ep->re_connect_status == 1) {
815                 /* The work is scheduled on a WQ_MEM_RECLAIM
816                  * workqueue in order to prevent MR allocation
817                  * from recursing into NFS during direct reclaim.
818                  */
819                 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
820         }
821 }
822
823 /**
824  * rpcrdma_req_create - Allocate an rpcrdma_req object
825  * @r_xprt: controlling r_xprt
826  * @size: initial size, in bytes, of send and receive buffers
827  * @flags: GFP flags passed to memory allocators
828  *
829  * Returns an allocated and fully initialized rpcrdma_req or NULL.
830  */
831 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
832                                        gfp_t flags)
833 {
834         struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
835         struct rpcrdma_req *req;
836
837         req = kzalloc(sizeof(*req), flags);
838         if (req == NULL)
839                 goto out1;
840
841         req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
842         if (!req->rl_sendbuf)
843                 goto out2;
844
845         req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
846         if (!req->rl_recvbuf)
847                 goto out3;
848
849         INIT_LIST_HEAD(&req->rl_free_mrs);
850         INIT_LIST_HEAD(&req->rl_registered);
851         spin_lock(&buffer->rb_lock);
852         list_add(&req->rl_all, &buffer->rb_allreqs);
853         spin_unlock(&buffer->rb_lock);
854         return req;
855
856 out3:
857         kfree(req->rl_sendbuf);
858 out2:
859         kfree(req);
860 out1:
861         return NULL;
862 }
863
864 /**
865  * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
866  * @r_xprt: controlling transport instance
867  * @req: rpcrdma_req object to set up
868  *
869  * Returns zero on success, and a negative errno on failure.
870  */
871 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
872 {
873         struct rpcrdma_regbuf *rb;
874         size_t maxhdrsize;
875
876         /* Compute maximum header buffer size in bytes */
877         maxhdrsize = rpcrdma_fixed_maxsz + 3 +
878                      r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
879         maxhdrsize *= sizeof(__be32);
880         rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
881                                   DMA_TO_DEVICE, GFP_KERNEL);
882         if (!rb)
883                 goto out;
884
885         if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
886                 goto out_free;
887
888         req->rl_rdmabuf = rb;
889         xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
890         return 0;
891
892 out_free:
893         rpcrdma_regbuf_free(rb);
894 out:
895         return -ENOMEM;
896 }
897
898 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
899  * and thus can be walked without holding rb_lock. Eg. the
900  * caller is holding the transport send lock to exclude
901  * device removal or disconnection.
902  */
903 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
904 {
905         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
906         struct rpcrdma_req *req;
907         int rc;
908
909         list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
910                 rc = rpcrdma_req_setup(r_xprt, req);
911                 if (rc)
912                         return rc;
913         }
914         return 0;
915 }
916
917 static void rpcrdma_req_reset(struct rpcrdma_req *req)
918 {
919         /* Credits are valid for only one connection */
920         req->rl_slot.rq_cong = 0;
921
922         rpcrdma_regbuf_free(req->rl_rdmabuf);
923         req->rl_rdmabuf = NULL;
924
925         rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
926         rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
927 }
928
929 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
930  * and thus can be walked without holding rb_lock. Eg. the
931  * caller is holding the transport send lock to exclude
932  * device removal or disconnection.
933  */
934 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
935 {
936         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
937         struct rpcrdma_req *req;
938
939         list_for_each_entry(req, &buf->rb_allreqs, rl_all)
940                 rpcrdma_req_reset(req);
941 }
942
943 /* No locking needed here. This function is called only by the
944  * Receive completion handler.
945  */
946 static noinline
947 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
948                                        bool temp)
949 {
950         struct rpcrdma_rep *rep;
951
952         rep = kzalloc(sizeof(*rep), GFP_KERNEL);
953         if (rep == NULL)
954                 goto out;
955
956         rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
957                                                DMA_FROM_DEVICE, GFP_KERNEL);
958         if (!rep->rr_rdmabuf)
959                 goto out_free;
960
961         if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
962                 goto out_free_regbuf;
963
964         xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
965                      rdmab_length(rep->rr_rdmabuf));
966         rep->rr_cqe.done = rpcrdma_wc_receive;
967         rep->rr_rxprt = r_xprt;
968         rep->rr_recv_wr.next = NULL;
969         rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
970         rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
971         rep->rr_recv_wr.num_sge = 1;
972         rep->rr_temp = temp;
973         list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
974         return rep;
975
976 out_free_regbuf:
977         rpcrdma_regbuf_free(rep->rr_rdmabuf);
978 out_free:
979         kfree(rep);
980 out:
981         return NULL;
982 }
983
984 /* No locking needed here. This function is invoked only by the
985  * Receive completion handler, or during transport shutdown.
986  */
987 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
988 {
989         list_del(&rep->rr_all);
990         rpcrdma_regbuf_free(rep->rr_rdmabuf);
991         kfree(rep);
992 }
993
994 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
995 {
996         struct llist_node *node;
997
998         /* Calls to llist_del_first are required to be serialized */
999         node = llist_del_first(&buf->rb_free_reps);
1000         if (!node)
1001                 return NULL;
1002         return llist_entry(node, struct rpcrdma_rep, rr_node);
1003 }
1004
1005 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1006                             struct rpcrdma_rep *rep)
1007 {
1008         llist_add(&rep->rr_node, &buf->rb_free_reps);
1009 }
1010
1011 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1012 {
1013         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1014         struct rpcrdma_rep *rep;
1015
1016         list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1017                 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1018                 rep->rr_temp = true;
1019         }
1020 }
1021
1022 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1023 {
1024         struct rpcrdma_rep *rep;
1025
1026         while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1027                 rpcrdma_rep_destroy(rep);
1028 }
1029
1030 /**
1031  * rpcrdma_buffer_create - Create initial set of req/rep objects
1032  * @r_xprt: transport instance to (re)initialize
1033  *
1034  * Returns zero on success, otherwise a negative errno.
1035  */
1036 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1037 {
1038         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1039         int i, rc;
1040
1041         buf->rb_bc_srv_max_requests = 0;
1042         spin_lock_init(&buf->rb_lock);
1043         INIT_LIST_HEAD(&buf->rb_mrs);
1044         INIT_LIST_HEAD(&buf->rb_all_mrs);
1045         INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1046
1047         INIT_LIST_HEAD(&buf->rb_send_bufs);
1048         INIT_LIST_HEAD(&buf->rb_allreqs);
1049         INIT_LIST_HEAD(&buf->rb_all_reps);
1050
1051         rc = -ENOMEM;
1052         for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1053                 struct rpcrdma_req *req;
1054
1055                 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1056                                          GFP_KERNEL);
1057                 if (!req)
1058                         goto out;
1059                 list_add(&req->rl_list, &buf->rb_send_bufs);
1060         }
1061
1062         init_llist_head(&buf->rb_free_reps);
1063
1064         return 0;
1065 out:
1066         rpcrdma_buffer_destroy(buf);
1067         return rc;
1068 }
1069
1070 /**
1071  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1072  * @req: unused object to be destroyed
1073  *
1074  * Relies on caller holding the transport send lock to protect
1075  * removing req->rl_all from buf->rb_all_reqs safely.
1076  */
1077 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1078 {
1079         struct rpcrdma_mr *mr;
1080
1081         list_del(&req->rl_all);
1082
1083         while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1084                 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1085
1086                 spin_lock(&buf->rb_lock);
1087                 list_del(&mr->mr_all);
1088                 spin_unlock(&buf->rb_lock);
1089
1090                 frwr_release_mr(mr);
1091         }
1092
1093         rpcrdma_regbuf_free(req->rl_recvbuf);
1094         rpcrdma_regbuf_free(req->rl_sendbuf);
1095         rpcrdma_regbuf_free(req->rl_rdmabuf);
1096         kfree(req);
1097 }
1098
1099 /**
1100  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1101  * @r_xprt: controlling transport instance
1102  *
1103  * Relies on caller holding the transport send lock to protect
1104  * removing mr->mr_list from req->rl_free_mrs safely.
1105  */
1106 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1107 {
1108         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1109         struct rpcrdma_mr *mr;
1110
1111         cancel_work_sync(&buf->rb_refresh_worker);
1112
1113         spin_lock(&buf->rb_lock);
1114         while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1115                                               struct rpcrdma_mr,
1116                                               mr_all)) != NULL) {
1117                 list_del(&mr->mr_list);
1118                 list_del(&mr->mr_all);
1119                 spin_unlock(&buf->rb_lock);
1120
1121                 frwr_release_mr(mr);
1122
1123                 spin_lock(&buf->rb_lock);
1124         }
1125         spin_unlock(&buf->rb_lock);
1126 }
1127
1128 /**
1129  * rpcrdma_buffer_destroy - Release all hw resources
1130  * @buf: root control block for resources
1131  *
1132  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1133  * - No more Send or Receive completions can occur
1134  * - All MRs, reps, and reqs are returned to their free lists
1135  */
1136 void
1137 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1138 {
1139         rpcrdma_reps_destroy(buf);
1140
1141         while (!list_empty(&buf->rb_send_bufs)) {
1142                 struct rpcrdma_req *req;
1143
1144                 req = list_first_entry(&buf->rb_send_bufs,
1145                                        struct rpcrdma_req, rl_list);
1146                 list_del(&req->rl_list);
1147                 rpcrdma_req_destroy(req);
1148         }
1149 }
1150
1151 /**
1152  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1153  * @r_xprt: controlling transport
1154  *
1155  * Returns an initialized rpcrdma_mr or NULL if no free
1156  * rpcrdma_mr objects are available.
1157  */
1158 struct rpcrdma_mr *
1159 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1160 {
1161         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1162         struct rpcrdma_mr *mr;
1163
1164         spin_lock(&buf->rb_lock);
1165         mr = rpcrdma_mr_pop(&buf->rb_mrs);
1166         spin_unlock(&buf->rb_lock);
1167         return mr;
1168 }
1169
1170 /**
1171  * rpcrdma_mr_put - DMA unmap an MR and release it
1172  * @mr: MR to release
1173  *
1174  */
1175 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1176 {
1177         struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1178
1179         if (mr->mr_dir != DMA_NONE) {
1180                 trace_xprtrdma_mr_unmap(mr);
1181                 ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
1182                                 mr->mr_sg, mr->mr_nents, mr->mr_dir);
1183                 mr->mr_dir = DMA_NONE;
1184         }
1185
1186         rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1187 }
1188
1189 /**
1190  * rpcrdma_buffer_get - Get a request buffer
1191  * @buffers: Buffer pool from which to obtain a buffer
1192  *
1193  * Returns a fresh rpcrdma_req, or NULL if none are available.
1194  */
1195 struct rpcrdma_req *
1196 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1197 {
1198         struct rpcrdma_req *req;
1199
1200         spin_lock(&buffers->rb_lock);
1201         req = list_first_entry_or_null(&buffers->rb_send_bufs,
1202                                        struct rpcrdma_req, rl_list);
1203         if (req)
1204                 list_del_init(&req->rl_list);
1205         spin_unlock(&buffers->rb_lock);
1206         return req;
1207 }
1208
1209 /**
1210  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1211  * @buffers: buffer pool
1212  * @req: object to return
1213  *
1214  */
1215 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1216 {
1217         if (req->rl_reply)
1218                 rpcrdma_rep_put(buffers, req->rl_reply);
1219         req->rl_reply = NULL;
1220
1221         spin_lock(&buffers->rb_lock);
1222         list_add(&req->rl_list, &buffers->rb_send_bufs);
1223         spin_unlock(&buffers->rb_lock);
1224 }
1225
1226 /**
1227  * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1228  * @rep: rep to release
1229  *
1230  * Used after error conditions.
1231  */
1232 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1233 {
1234         rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1235 }
1236
1237 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1238  *
1239  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1240  * receiving the payload of RDMA RECV operations. During Long Calls
1241  * or Replies they may be registered externally via frwr_map.
1242  */
1243 static struct rpcrdma_regbuf *
1244 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1245                      gfp_t flags)
1246 {
1247         struct rpcrdma_regbuf *rb;
1248
1249         rb = kmalloc(sizeof(*rb), flags);
1250         if (!rb)
1251                 return NULL;
1252         rb->rg_data = kmalloc(size, flags);
1253         if (!rb->rg_data) {
1254                 kfree(rb);
1255                 return NULL;
1256         }
1257
1258         rb->rg_device = NULL;
1259         rb->rg_direction = direction;
1260         rb->rg_iov.length = size;
1261         return rb;
1262 }
1263
1264 /**
1265  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1266  * @rb: regbuf to reallocate
1267  * @size: size of buffer to be allocated, in bytes
1268  * @flags: GFP flags
1269  *
1270  * Returns true if reallocation was successful. If false is
1271  * returned, @rb is left untouched.
1272  */
1273 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1274 {
1275         void *buf;
1276
1277         buf = kmalloc(size, flags);
1278         if (!buf)
1279                 return false;
1280
1281         rpcrdma_regbuf_dma_unmap(rb);
1282         kfree(rb->rg_data);
1283
1284         rb->rg_data = buf;
1285         rb->rg_iov.length = size;
1286         return true;
1287 }
1288
1289 /**
1290  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1291  * @r_xprt: controlling transport instance
1292  * @rb: regbuf to be mapped
1293  *
1294  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1295  */
1296 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1297                               struct rpcrdma_regbuf *rb)
1298 {
1299         struct ib_device *device = r_xprt->rx_ep->re_id->device;
1300
1301         if (rb->rg_direction == DMA_NONE)
1302                 return false;
1303
1304         rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1305                                             rdmab_length(rb), rb->rg_direction);
1306         if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1307                 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1308                 return false;
1309         }
1310
1311         rb->rg_device = device;
1312         rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1313         return true;
1314 }
1315
1316 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1317 {
1318         if (!rb)
1319                 return;
1320
1321         if (!rpcrdma_regbuf_is_mapped(rb))
1322                 return;
1323
1324         ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1325                             rb->rg_direction);
1326         rb->rg_device = NULL;
1327 }
1328
1329 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1330 {
1331         rpcrdma_regbuf_dma_unmap(rb);
1332         if (rb)
1333                 kfree(rb->rg_data);
1334         kfree(rb);
1335 }
1336
1337 /**
1338  * rpcrdma_post_sends - Post WRs to a transport's Send Queue
1339  * @r_xprt: controlling transport instance
1340  * @req: rpcrdma_req containing the Send WR to post
1341  *
1342  * Returns 0 if the post was successful, otherwise -ENOTCONN
1343  * is returned.
1344  */
1345 int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1346 {
1347         struct ib_send_wr *send_wr = &req->rl_wr;
1348         struct rpcrdma_ep *ep = r_xprt->rx_ep;
1349         int rc;
1350
1351         if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) {
1352                 send_wr->send_flags |= IB_SEND_SIGNALED;
1353                 ep->re_send_count = ep->re_send_batch;
1354         } else {
1355                 send_wr->send_flags &= ~IB_SEND_SIGNALED;
1356                 --ep->re_send_count;
1357         }
1358
1359         trace_xprtrdma_post_send(req);
1360         rc = frwr_send(r_xprt, req);
1361         if (rc)
1362                 return -ENOTCONN;
1363         return 0;
1364 }
1365
1366 /**
1367  * rpcrdma_post_recvs - Refill the Receive Queue
1368  * @r_xprt: controlling transport instance
1369  * @temp: mark Receive buffers to be deleted after use
1370  *
1371  */
1372 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1373 {
1374         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1375         struct rpcrdma_ep *ep = r_xprt->rx_ep;
1376         struct ib_recv_wr *wr, *bad_wr;
1377         struct rpcrdma_rep *rep;
1378         int needed, count, rc;
1379
1380         rc = 0;
1381         count = 0;
1382
1383         needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1384         if (likely(ep->re_receive_count > needed))
1385                 goto out;
1386         needed -= ep->re_receive_count;
1387         if (!temp)
1388                 needed += RPCRDMA_MAX_RECV_BATCH;
1389
1390         /* fast path: all needed reps can be found on the free list */
1391         wr = NULL;
1392         while (needed) {
1393                 rep = rpcrdma_rep_get_locked(buf);
1394                 if (rep && rep->rr_temp) {
1395                         rpcrdma_rep_destroy(rep);
1396                         continue;
1397                 }
1398                 if (!rep)
1399                         rep = rpcrdma_rep_create(r_xprt, temp);
1400                 if (!rep)
1401                         break;
1402
1403                 trace_xprtrdma_post_recv(rep);
1404                 rep->rr_recv_wr.next = wr;
1405                 wr = &rep->rr_recv_wr;
1406                 --needed;
1407                 ++count;
1408         }
1409         if (!wr)
1410                 goto out;
1411
1412         rc = ib_post_recv(ep->re_id->qp, wr,
1413                           (const struct ib_recv_wr **)&bad_wr);
1414 out:
1415         trace_xprtrdma_post_recvs(r_xprt, count, rc);
1416         if (rc) {
1417                 for (wr = bad_wr; wr;) {
1418                         struct rpcrdma_rep *rep;
1419
1420                         rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1421                         wr = wr->next;
1422                         rpcrdma_recv_buffer_put(rep);
1423                         --count;
1424                 }
1425         }
1426         ep->re_receive_count += count;
1427         return;
1428 }