xprtrdma: Clean up synopsis of rpcrdma_flush_disconnect()
[linux-2.6-microblaze.git] / net / sunrpc / xprtrdma / verbs.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 /*
67  * Globals/Macros
68  */
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY        RPCDBG_TRANS
72 #endif
73
74 /*
75  * internal functions
76  */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80                                        struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
89 static struct rpcrdma_regbuf *
90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
91                      gfp_t flags);
92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
94
95 /* Wait for outstanding transport work to finish. ib_drain_qp
96  * handles the drains in the wrong order for us, so open code
97  * them here.
98  */
99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
100 {
101         struct rpcrdma_ep *ep = r_xprt->rx_ep;
102         struct rdma_cm_id *id = ep->re_id;
103
104         /* Flush Receives, then wait for deferred Reply work
105          * to complete.
106          */
107         ib_drain_rq(id->qp);
108
109         /* Deferred Reply processing might have scheduled
110          * local invalidations.
111          */
112         ib_drain_sq(id->qp);
113
114         rpcrdma_ep_put(ep);
115 }
116
117 /**
118  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
119  * @event: details of the event
120  * @context: ep that owns QP where event occurred
121  *
122  * Called from the RDMA provider (device driver) possibly in an interrupt
123  * context. The QP is always destroyed before the ID, so the ID will be
124  * reliably available when this handler is invoked.
125  */
126 static void rpcrdma_qp_event_handler(struct ib_event *event, void *context)
127 {
128         struct rpcrdma_ep *ep = context;
129
130         trace_xprtrdma_qp_event(ep, event);
131 }
132
133 /**
134  * rpcrdma_flush_disconnect - Disconnect on flushed completion
135  * @r_xprt: transport to disconnect
136  * @wc: work completion entry
137  *
138  * Must be called in process context.
139  */
140 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
141 {
142         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
143
144         if (wc->status != IB_WC_SUCCESS &&
145             r_xprt->rx_ep->re_connect_status == 1) {
146                 r_xprt->rx_ep->re_connect_status = -ECONNABORTED;
147                 xprt_force_disconnect(xprt);
148         }
149 }
150
151 /**
152  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
153  * @cq: completion queue
154  * @wc: WCE for a completed Send WR
155  *
156  */
157 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
158 {
159         struct ib_cqe *cqe = wc->wr_cqe;
160         struct rpcrdma_sendctx *sc =
161                 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
162         struct rpcrdma_xprt *r_xprt = cq->cq_context;
163
164         /* WARNING: Only wr_cqe and status are reliable at this point */
165         trace_xprtrdma_wc_send(sc, wc);
166         rpcrdma_sendctx_put_locked(r_xprt, sc);
167         rpcrdma_flush_disconnect(r_xprt, wc);
168 }
169
170 /**
171  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
172  * @cq: completion queue
173  * @wc: WCE for a completed Receive WR
174  *
175  */
176 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
177 {
178         struct ib_cqe *cqe = wc->wr_cqe;
179         struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
180                                                rr_cqe);
181         struct rpcrdma_xprt *r_xprt = cq->cq_context;
182
183         /* WARNING: Only wr_cqe and status are reliable at this point */
184         trace_xprtrdma_wc_receive(wc);
185         --r_xprt->rx_ep->re_receive_count;
186         if (wc->status != IB_WC_SUCCESS)
187                 goto out_flushed;
188
189         /* status == SUCCESS means all fields in wc are trustworthy */
190         rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
191         rep->rr_wc_flags = wc->wc_flags;
192         rep->rr_inv_rkey = wc->ex.invalidate_rkey;
193
194         ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
195                                    rdmab_addr(rep->rr_rdmabuf),
196                                    wc->byte_len, DMA_FROM_DEVICE);
197
198         rpcrdma_reply_handler(rep);
199         return;
200
201 out_flushed:
202         rpcrdma_flush_disconnect(r_xprt, wc);
203         rpcrdma_rep_destroy(rep);
204 }
205
206 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
207                                       struct rdma_conn_param *param)
208 {
209         const struct rpcrdma_connect_private *pmsg = param->private_data;
210         unsigned int rsize, wsize;
211
212         /* Default settings for RPC-over-RDMA Version One */
213         ep->re_implicit_roundup = xprt_rdma_pad_optimize;
214         rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
215         wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
216
217         if (pmsg &&
218             pmsg->cp_magic == rpcrdma_cmp_magic &&
219             pmsg->cp_version == RPCRDMA_CMP_VERSION) {
220                 ep->re_implicit_roundup = true;
221                 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
222                 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
223         }
224
225         if (rsize < ep->re_inline_recv)
226                 ep->re_inline_recv = rsize;
227         if (wsize < ep->re_inline_send)
228                 ep->re_inline_send = wsize;
229
230         rpcrdma_set_max_header_sizes(ep);
231 }
232
233 /**
234  * rpcrdma_cm_event_handler - Handle RDMA CM events
235  * @id: rdma_cm_id on which an event has occurred
236  * @event: details of the event
237  *
238  * Called with @id's mutex held. Returns 1 if caller should
239  * destroy @id, otherwise 0.
240  */
241 static int
242 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
243 {
244         struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
245         struct rpcrdma_ep *ep = id->context;
246         struct rpc_xprt *xprt = ep->re_xprt;
247
248         might_sleep();
249
250         switch (event->event) {
251         case RDMA_CM_EVENT_ADDR_RESOLVED:
252         case RDMA_CM_EVENT_ROUTE_RESOLVED:
253                 ep->re_async_rc = 0;
254                 complete(&ep->re_done);
255                 return 0;
256         case RDMA_CM_EVENT_ADDR_ERROR:
257                 ep->re_async_rc = -EPROTO;
258                 complete(&ep->re_done);
259                 return 0;
260         case RDMA_CM_EVENT_ROUTE_ERROR:
261                 ep->re_async_rc = -ENETUNREACH;
262                 complete(&ep->re_done);
263                 return 0;
264         case RDMA_CM_EVENT_DEVICE_REMOVAL:
265                 pr_info("rpcrdma: removing device %s for %pISpc\n",
266                         ep->re_id->device->name, sap);
267                 /* fall through */
268         case RDMA_CM_EVENT_ADDR_CHANGE:
269                 ep->re_connect_status = -ENODEV;
270                 xprt_force_disconnect(xprt);
271                 goto disconnected;
272         case RDMA_CM_EVENT_ESTABLISHED:
273                 rpcrdma_ep_get(ep);
274                 ep->re_connect_status = 1;
275                 rpcrdma_update_cm_private(ep, &event->param.conn);
276                 trace_xprtrdma_inline_thresh(ep);
277                 wake_up_all(&ep->re_connect_wait);
278                 break;
279         case RDMA_CM_EVENT_CONNECT_ERROR:
280                 ep->re_connect_status = -ENOTCONN;
281                 goto disconnected;
282         case RDMA_CM_EVENT_UNREACHABLE:
283                 ep->re_connect_status = -ENETUNREACH;
284                 goto disconnected;
285         case RDMA_CM_EVENT_REJECTED:
286                 dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
287                         sap, rdma_reject_msg(id, event->status));
288                 ep->re_connect_status = -ECONNREFUSED;
289                 if (event->status == IB_CM_REJ_STALE_CONN)
290                         ep->re_connect_status = -EAGAIN;
291                 goto disconnected;
292         case RDMA_CM_EVENT_DISCONNECTED:
293                 ep->re_connect_status = -ECONNABORTED;
294 disconnected:
295                 xprt_force_disconnect(xprt);
296                 return rpcrdma_ep_put(ep);
297         default:
298                 break;
299         }
300
301         dprintk("RPC:       %s: %pISpc on %s/frwr: %s\n", __func__, sap,
302                 ep->re_id->device->name, rdma_event_msg(event->event));
303         return 0;
304 }
305
306 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
307                                             struct rpcrdma_ep *ep)
308 {
309         unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
310         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
311         struct rdma_cm_id *id;
312         int rc;
313
314         init_completion(&ep->re_done);
315
316         id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
317                             RDMA_PS_TCP, IB_QPT_RC);
318         if (IS_ERR(id))
319                 return id;
320
321         ep->re_async_rc = -ETIMEDOUT;
322         rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
323                                RDMA_RESOLVE_TIMEOUT);
324         if (rc)
325                 goto out;
326         rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
327         if (rc < 0)
328                 goto out;
329
330         rc = ep->re_async_rc;
331         if (rc)
332                 goto out;
333
334         ep->re_async_rc = -ETIMEDOUT;
335         rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
336         if (rc)
337                 goto out;
338         rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
339         if (rc < 0)
340                 goto out;
341         rc = ep->re_async_rc;
342         if (rc)
343                 goto out;
344
345         return id;
346
347 out:
348         rdma_destroy_id(id);
349         return ERR_PTR(rc);
350 }
351
352 static void rpcrdma_ep_destroy(struct kref *kref)
353 {
354         struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
355
356         if (ep->re_id->qp) {
357                 rdma_destroy_qp(ep->re_id);
358                 ep->re_id->qp = NULL;
359         }
360
361         if (ep->re_attr.recv_cq)
362                 ib_free_cq(ep->re_attr.recv_cq);
363         ep->re_attr.recv_cq = NULL;
364         if (ep->re_attr.send_cq)
365                 ib_free_cq(ep->re_attr.send_cq);
366         ep->re_attr.send_cq = NULL;
367
368         if (ep->re_pd)
369                 ib_dealloc_pd(ep->re_pd);
370         ep->re_pd = NULL;
371
372         kfree(ep);
373         module_put(THIS_MODULE);
374 }
375
376 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
377 {
378         kref_get(&ep->re_kref);
379 }
380
381 /* Returns:
382  *     %0 if @ep still has a positive kref count, or
383  *     %1 if @ep was destroyed successfully.
384  */
385 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
386 {
387         return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
388 }
389
390 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
391 {
392         struct rpcrdma_connect_private *pmsg;
393         struct ib_device *device;
394         struct rdma_cm_id *id;
395         struct rpcrdma_ep *ep;
396         int rc;
397
398         ep = kzalloc(sizeof(*ep), GFP_NOFS);
399         if (!ep)
400                 return -EAGAIN;
401         ep->re_xprt = &r_xprt->rx_xprt;
402         kref_init(&ep->re_kref);
403
404         id = rpcrdma_create_id(r_xprt, ep);
405         if (IS_ERR(id)) {
406                 rc = PTR_ERR(id);
407                 goto out_free;
408         }
409         __module_get(THIS_MODULE);
410         device = id->device;
411         ep->re_id = id;
412
413         ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
414         ep->re_inline_send = xprt_rdma_max_inline_write;
415         ep->re_inline_recv = xprt_rdma_max_inline_read;
416         rc = frwr_query_device(ep, device);
417         if (rc)
418                 goto out_destroy;
419
420         r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
421
422         ep->re_attr.event_handler = rpcrdma_qp_event_handler;
423         ep->re_attr.qp_context = ep;
424         ep->re_attr.srq = NULL;
425         ep->re_attr.cap.max_inline_data = 0;
426         ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
427         ep->re_attr.qp_type = IB_QPT_RC;
428         ep->re_attr.port_num = ~0;
429
430         dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
431                 "iovs: send %d recv %d\n",
432                 __func__,
433                 ep->re_attr.cap.max_send_wr,
434                 ep->re_attr.cap.max_recv_wr,
435                 ep->re_attr.cap.max_send_sge,
436                 ep->re_attr.cap.max_recv_sge);
437
438         ep->re_send_batch = ep->re_max_requests >> 3;
439         ep->re_send_count = ep->re_send_batch;
440         init_waitqueue_head(&ep->re_connect_wait);
441
442         ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
443                                               ep->re_attr.cap.max_send_wr,
444                                               IB_POLL_WORKQUEUE);
445         if (IS_ERR(ep->re_attr.send_cq)) {
446                 rc = PTR_ERR(ep->re_attr.send_cq);
447                 goto out_destroy;
448         }
449
450         ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
451                                               ep->re_attr.cap.max_recv_wr,
452                                               IB_POLL_WORKQUEUE);
453         if (IS_ERR(ep->re_attr.recv_cq)) {
454                 rc = PTR_ERR(ep->re_attr.recv_cq);
455                 goto out_destroy;
456         }
457         ep->re_receive_count = 0;
458
459         /* Initialize cma parameters */
460         memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
461
462         /* Prepare RDMA-CM private message */
463         pmsg = &ep->re_cm_private;
464         pmsg->cp_magic = rpcrdma_cmp_magic;
465         pmsg->cp_version = RPCRDMA_CMP_VERSION;
466         pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
467         pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
468         pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
469         ep->re_remote_cma.private_data = pmsg;
470         ep->re_remote_cma.private_data_len = sizeof(*pmsg);
471
472         /* Client offers RDMA Read but does not initiate */
473         ep->re_remote_cma.initiator_depth = 0;
474         ep->re_remote_cma.responder_resources =
475                 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
476
477         /* Limit transport retries so client can detect server
478          * GID changes quickly. RPC layer handles re-establishing
479          * transport connection and retransmission.
480          */
481         ep->re_remote_cma.retry_count = 6;
482
483         /* RPC-over-RDMA handles its own flow control. In addition,
484          * make all RNR NAKs visible so we know that RPC-over-RDMA
485          * flow control is working correctly (no NAKs should be seen).
486          */
487         ep->re_remote_cma.flow_control = 0;
488         ep->re_remote_cma.rnr_retry_count = 0;
489
490         ep->re_pd = ib_alloc_pd(device, 0);
491         if (IS_ERR(ep->re_pd)) {
492                 rc = PTR_ERR(ep->re_pd);
493                 goto out_destroy;
494         }
495
496         rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
497         if (rc)
498                 goto out_destroy;
499
500         r_xprt->rx_ep = ep;
501         return 0;
502
503 out_destroy:
504         rpcrdma_ep_put(ep);
505         rdma_destroy_id(id);
506 out_free:
507         kfree(ep);
508         r_xprt->rx_ep = NULL;
509         return rc;
510 }
511
512 /**
513  * rpcrdma_xprt_connect - Connect an unconnected transport
514  * @r_xprt: controlling transport instance
515  *
516  * Returns 0 on success or a negative errno.
517  */
518 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
519 {
520         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
521         struct rpcrdma_ep *ep;
522         int rc;
523
524 retry:
525         rpcrdma_xprt_disconnect(r_xprt);
526         rc = rpcrdma_ep_create(r_xprt);
527         if (rc)
528                 return rc;
529         ep = r_xprt->rx_ep;
530
531         xprt_clear_connected(xprt);
532         rpcrdma_reset_cwnd(r_xprt);
533
534         /* Bump the ep's reference count while there are
535          * outstanding Receives.
536          */
537         rpcrdma_ep_get(ep);
538         rpcrdma_post_recvs(r_xprt, true);
539
540         rc = rpcrdma_sendctxs_create(r_xprt);
541         if (rc)
542                 goto out;
543
544         rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
545         if (rc)
546                 goto out;
547
548         if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
549                 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
550         wait_event_interruptible(ep->re_connect_wait,
551                                  ep->re_connect_status != 0);
552         if (ep->re_connect_status <= 0) {
553                 if (ep->re_connect_status == -EAGAIN)
554                         goto retry;
555                 rc = ep->re_connect_status;
556                 goto out;
557         }
558
559         rc = rpcrdma_reqs_setup(r_xprt);
560         if (rc) {
561                 rpcrdma_xprt_disconnect(r_xprt);
562                 goto out;
563         }
564         rpcrdma_mrs_create(r_xprt);
565
566 out:
567         trace_xprtrdma_connect(r_xprt, rc);
568         return rc;
569 }
570
571 /**
572  * rpcrdma_xprt_disconnect - Disconnect underlying transport
573  * @r_xprt: controlling transport instance
574  *
575  * Caller serializes. Either the transport send lock is held,
576  * or we're being called to destroy the transport.
577  *
578  * On return, @r_xprt is completely divested of all hardware
579  * resources and prepared for the next ->connect operation.
580  */
581 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
582 {
583         struct rpcrdma_ep *ep = r_xprt->rx_ep;
584         struct rdma_cm_id *id;
585         int rc;
586
587         if (!ep)
588                 return;
589
590         id = ep->re_id;
591         rc = rdma_disconnect(id);
592         trace_xprtrdma_disconnect(r_xprt, rc);
593
594         rpcrdma_xprt_drain(r_xprt);
595         rpcrdma_reps_unmap(r_xprt);
596         rpcrdma_reqs_reset(r_xprt);
597         rpcrdma_mrs_destroy(r_xprt);
598         rpcrdma_sendctxs_destroy(r_xprt);
599
600         if (rpcrdma_ep_put(ep))
601                 rdma_destroy_id(id);
602
603         r_xprt->rx_ep = NULL;
604 }
605
606 /* Fixed-size circular FIFO queue. This implementation is wait-free and
607  * lock-free.
608  *
609  * Consumer is the code path that posts Sends. This path dequeues a
610  * sendctx for use by a Send operation. Multiple consumer threads
611  * are serialized by the RPC transport lock, which allows only one
612  * ->send_request call at a time.
613  *
614  * Producer is the code path that handles Send completions. This path
615  * enqueues a sendctx that has been completed. Multiple producer
616  * threads are serialized by the ib_poll_cq() function.
617  */
618
619 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
620  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
621  * Send requests.
622  */
623 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
624 {
625         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
626         unsigned long i;
627
628         if (!buf->rb_sc_ctxs)
629                 return;
630         for (i = 0; i <= buf->rb_sc_last; i++)
631                 kfree(buf->rb_sc_ctxs[i]);
632         kfree(buf->rb_sc_ctxs);
633         buf->rb_sc_ctxs = NULL;
634 }
635
636 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
637 {
638         struct rpcrdma_sendctx *sc;
639
640         sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
641                      GFP_KERNEL);
642         if (!sc)
643                 return NULL;
644
645         sc->sc_cqe.done = rpcrdma_wc_send;
646         return sc;
647 }
648
649 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
650 {
651         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
652         struct rpcrdma_sendctx *sc;
653         unsigned long i;
654
655         /* Maximum number of concurrent outstanding Send WRs. Capping
656          * the circular queue size stops Send Queue overflow by causing
657          * the ->send_request call to fail temporarily before too many
658          * Sends are posted.
659          */
660         i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
661         buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
662         if (!buf->rb_sc_ctxs)
663                 return -ENOMEM;
664
665         buf->rb_sc_last = i - 1;
666         for (i = 0; i <= buf->rb_sc_last; i++) {
667                 sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
668                 if (!sc)
669                         return -ENOMEM;
670
671                 buf->rb_sc_ctxs[i] = sc;
672         }
673
674         buf->rb_sc_head = 0;
675         buf->rb_sc_tail = 0;
676         return 0;
677 }
678
679 /* The sendctx queue is not guaranteed to have a size that is a
680  * power of two, thus the helpers in circ_buf.h cannot be used.
681  * The other option is to use modulus (%), which can be expensive.
682  */
683 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
684                                           unsigned long item)
685 {
686         return likely(item < buf->rb_sc_last) ? item + 1 : 0;
687 }
688
689 /**
690  * rpcrdma_sendctx_get_locked - Acquire a send context
691  * @r_xprt: controlling transport instance
692  *
693  * Returns pointer to a free send completion context; or NULL if
694  * the queue is empty.
695  *
696  * Usage: Called to acquire an SGE array before preparing a Send WR.
697  *
698  * The caller serializes calls to this function (per transport), and
699  * provides an effective memory barrier that flushes the new value
700  * of rb_sc_head.
701  */
702 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
703 {
704         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
705         struct rpcrdma_sendctx *sc;
706         unsigned long next_head;
707
708         next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
709
710         if (next_head == READ_ONCE(buf->rb_sc_tail))
711                 goto out_emptyq;
712
713         /* ORDER: item must be accessed _before_ head is updated */
714         sc = buf->rb_sc_ctxs[next_head];
715
716         /* Releasing the lock in the caller acts as a memory
717          * barrier that flushes rb_sc_head.
718          */
719         buf->rb_sc_head = next_head;
720
721         return sc;
722
723 out_emptyq:
724         /* The queue is "empty" if there have not been enough Send
725          * completions recently. This is a sign the Send Queue is
726          * backing up. Cause the caller to pause and try again.
727          */
728         xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
729         r_xprt->rx_stats.empty_sendctx_q++;
730         return NULL;
731 }
732
733 /**
734  * rpcrdma_sendctx_put_locked - Release a send context
735  * @r_xprt: controlling transport instance
736  * @sc: send context to release
737  *
738  * Usage: Called from Send completion to return a sendctxt
739  * to the queue.
740  *
741  * The caller serializes calls to this function (per transport).
742  */
743 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
744                                        struct rpcrdma_sendctx *sc)
745 {
746         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
747         unsigned long next_tail;
748
749         /* Unmap SGEs of previously completed but unsignaled
750          * Sends by walking up the queue until @sc is found.
751          */
752         next_tail = buf->rb_sc_tail;
753         do {
754                 next_tail = rpcrdma_sendctx_next(buf, next_tail);
755
756                 /* ORDER: item must be accessed _before_ tail is updated */
757                 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
758
759         } while (buf->rb_sc_ctxs[next_tail] != sc);
760
761         /* Paired with READ_ONCE */
762         smp_store_release(&buf->rb_sc_tail, next_tail);
763
764         xprt_write_space(&r_xprt->rx_xprt);
765 }
766
767 static void
768 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
769 {
770         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
771         struct rpcrdma_ep *ep = r_xprt->rx_ep;
772         unsigned int count;
773
774         for (count = 0; count < ep->re_max_rdma_segs; count++) {
775                 struct rpcrdma_mr *mr;
776                 int rc;
777
778                 mr = kzalloc(sizeof(*mr), GFP_NOFS);
779                 if (!mr)
780                         break;
781
782                 rc = frwr_mr_init(r_xprt, mr);
783                 if (rc) {
784                         kfree(mr);
785                         break;
786                 }
787
788                 spin_lock(&buf->rb_lock);
789                 rpcrdma_mr_push(mr, &buf->rb_mrs);
790                 list_add(&mr->mr_all, &buf->rb_all_mrs);
791                 spin_unlock(&buf->rb_lock);
792         }
793
794         r_xprt->rx_stats.mrs_allocated += count;
795         trace_xprtrdma_createmrs(r_xprt, count);
796 }
797
798 static void
799 rpcrdma_mr_refresh_worker(struct work_struct *work)
800 {
801         struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
802                                                   rb_refresh_worker);
803         struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
804                                                    rx_buf);
805
806         rpcrdma_mrs_create(r_xprt);
807         xprt_write_space(&r_xprt->rx_xprt);
808 }
809
810 /**
811  * rpcrdma_mrs_refresh - Wake the MR refresh worker
812  * @r_xprt: controlling transport instance
813  *
814  */
815 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
816 {
817         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
818         struct rpcrdma_ep *ep = r_xprt->rx_ep;
819
820         /* If there is no underlying connection, it's no use
821          * to wake the refresh worker.
822          */
823         if (ep->re_connect_status == 1) {
824                 /* The work is scheduled on a WQ_MEM_RECLAIM
825                  * workqueue in order to prevent MR allocation
826                  * from recursing into NFS during direct reclaim.
827                  */
828                 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
829         }
830 }
831
832 /**
833  * rpcrdma_req_create - Allocate an rpcrdma_req object
834  * @r_xprt: controlling r_xprt
835  * @size: initial size, in bytes, of send and receive buffers
836  * @flags: GFP flags passed to memory allocators
837  *
838  * Returns an allocated and fully initialized rpcrdma_req or NULL.
839  */
840 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
841                                        gfp_t flags)
842 {
843         struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
844         struct rpcrdma_req *req;
845
846         req = kzalloc(sizeof(*req), flags);
847         if (req == NULL)
848                 goto out1;
849
850         req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
851         if (!req->rl_sendbuf)
852                 goto out2;
853
854         req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
855         if (!req->rl_recvbuf)
856                 goto out3;
857
858         INIT_LIST_HEAD(&req->rl_free_mrs);
859         INIT_LIST_HEAD(&req->rl_registered);
860         spin_lock(&buffer->rb_lock);
861         list_add(&req->rl_all, &buffer->rb_allreqs);
862         spin_unlock(&buffer->rb_lock);
863         return req;
864
865 out3:
866         kfree(req->rl_sendbuf);
867 out2:
868         kfree(req);
869 out1:
870         return NULL;
871 }
872
873 /**
874  * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
875  * @r_xprt: controlling transport instance
876  * @req: rpcrdma_req object to set up
877  *
878  * Returns zero on success, and a negative errno on failure.
879  */
880 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
881 {
882         struct rpcrdma_regbuf *rb;
883         size_t maxhdrsize;
884
885         /* Compute maximum header buffer size in bytes */
886         maxhdrsize = rpcrdma_fixed_maxsz + 3 +
887                      r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
888         maxhdrsize *= sizeof(__be32);
889         rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
890                                   DMA_TO_DEVICE, GFP_KERNEL);
891         if (!rb)
892                 goto out;
893
894         if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
895                 goto out_free;
896
897         req->rl_rdmabuf = rb;
898         xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
899         return 0;
900
901 out_free:
902         rpcrdma_regbuf_free(rb);
903 out:
904         return -ENOMEM;
905 }
906
907 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
908  * and thus can be walked without holding rb_lock. Eg. the
909  * caller is holding the transport send lock to exclude
910  * device removal or disconnection.
911  */
912 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
913 {
914         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
915         struct rpcrdma_req *req;
916         int rc;
917
918         list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
919                 rc = rpcrdma_req_setup(r_xprt, req);
920                 if (rc)
921                         return rc;
922         }
923         return 0;
924 }
925
926 static void rpcrdma_req_reset(struct rpcrdma_req *req)
927 {
928         /* Credits are valid for only one connection */
929         req->rl_slot.rq_cong = 0;
930
931         rpcrdma_regbuf_free(req->rl_rdmabuf);
932         req->rl_rdmabuf = NULL;
933
934         rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
935         rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
936 }
937
938 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
939  * and thus can be walked without holding rb_lock. Eg. the
940  * caller is holding the transport send lock to exclude
941  * device removal or disconnection.
942  */
943 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
944 {
945         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
946         struct rpcrdma_req *req;
947
948         list_for_each_entry(req, &buf->rb_allreqs, rl_all)
949                 rpcrdma_req_reset(req);
950 }
951
952 /* No locking needed here. This function is called only by the
953  * Receive completion handler.
954  */
955 static noinline
956 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
957                                        bool temp)
958 {
959         struct rpcrdma_rep *rep;
960
961         rep = kzalloc(sizeof(*rep), GFP_KERNEL);
962         if (rep == NULL)
963                 goto out;
964
965         rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
966                                                DMA_FROM_DEVICE, GFP_KERNEL);
967         if (!rep->rr_rdmabuf)
968                 goto out_free;
969
970         if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
971                 goto out_free_regbuf;
972
973         xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
974                      rdmab_length(rep->rr_rdmabuf));
975         rep->rr_cqe.done = rpcrdma_wc_receive;
976         rep->rr_rxprt = r_xprt;
977         rep->rr_recv_wr.next = NULL;
978         rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
979         rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
980         rep->rr_recv_wr.num_sge = 1;
981         rep->rr_temp = temp;
982         list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
983         return rep;
984
985 out_free_regbuf:
986         rpcrdma_regbuf_free(rep->rr_rdmabuf);
987 out_free:
988         kfree(rep);
989 out:
990         return NULL;
991 }
992
993 /* No locking needed here. This function is invoked only by the
994  * Receive completion handler, or during transport shutdown.
995  */
996 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
997 {
998         list_del(&rep->rr_all);
999         rpcrdma_regbuf_free(rep->rr_rdmabuf);
1000         kfree(rep);
1001 }
1002
1003 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1004 {
1005         struct llist_node *node;
1006
1007         /* Calls to llist_del_first are required to be serialized */
1008         node = llist_del_first(&buf->rb_free_reps);
1009         if (!node)
1010                 return NULL;
1011         return llist_entry(node, struct rpcrdma_rep, rr_node);
1012 }
1013
1014 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1015                             struct rpcrdma_rep *rep)
1016 {
1017         llist_add(&rep->rr_node, &buf->rb_free_reps);
1018 }
1019
1020 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1021 {
1022         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1023         struct rpcrdma_rep *rep;
1024
1025         list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1026                 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1027                 rep->rr_temp = true;
1028         }
1029 }
1030
1031 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1032 {
1033         struct rpcrdma_rep *rep;
1034
1035         while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1036                 rpcrdma_rep_destroy(rep);
1037 }
1038
1039 /**
1040  * rpcrdma_buffer_create - Create initial set of req/rep objects
1041  * @r_xprt: transport instance to (re)initialize
1042  *
1043  * Returns zero on success, otherwise a negative errno.
1044  */
1045 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1046 {
1047         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1048         int i, rc;
1049
1050         buf->rb_bc_srv_max_requests = 0;
1051         spin_lock_init(&buf->rb_lock);
1052         INIT_LIST_HEAD(&buf->rb_mrs);
1053         INIT_LIST_HEAD(&buf->rb_all_mrs);
1054         INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1055
1056         INIT_LIST_HEAD(&buf->rb_send_bufs);
1057         INIT_LIST_HEAD(&buf->rb_allreqs);
1058         INIT_LIST_HEAD(&buf->rb_all_reps);
1059
1060         rc = -ENOMEM;
1061         for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1062                 struct rpcrdma_req *req;
1063
1064                 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1065                                          GFP_KERNEL);
1066                 if (!req)
1067                         goto out;
1068                 list_add(&req->rl_list, &buf->rb_send_bufs);
1069         }
1070
1071         init_llist_head(&buf->rb_free_reps);
1072
1073         return 0;
1074 out:
1075         rpcrdma_buffer_destroy(buf);
1076         return rc;
1077 }
1078
1079 /**
1080  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1081  * @req: unused object to be destroyed
1082  *
1083  * Relies on caller holding the transport send lock to protect
1084  * removing req->rl_all from buf->rb_all_reqs safely.
1085  */
1086 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1087 {
1088         struct rpcrdma_mr *mr;
1089
1090         list_del(&req->rl_all);
1091
1092         while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1093                 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1094
1095                 spin_lock(&buf->rb_lock);
1096                 list_del(&mr->mr_all);
1097                 spin_unlock(&buf->rb_lock);
1098
1099                 frwr_release_mr(mr);
1100         }
1101
1102         rpcrdma_regbuf_free(req->rl_recvbuf);
1103         rpcrdma_regbuf_free(req->rl_sendbuf);
1104         rpcrdma_regbuf_free(req->rl_rdmabuf);
1105         kfree(req);
1106 }
1107
1108 /**
1109  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1110  * @r_xprt: controlling transport instance
1111  *
1112  * Relies on caller holding the transport send lock to protect
1113  * removing mr->mr_list from req->rl_free_mrs safely.
1114  */
1115 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1116 {
1117         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1118         struct rpcrdma_mr *mr;
1119
1120         cancel_work_sync(&buf->rb_refresh_worker);
1121
1122         spin_lock(&buf->rb_lock);
1123         while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1124                                               struct rpcrdma_mr,
1125                                               mr_all)) != NULL) {
1126                 list_del(&mr->mr_list);
1127                 list_del(&mr->mr_all);
1128                 spin_unlock(&buf->rb_lock);
1129
1130                 frwr_release_mr(mr);
1131
1132                 spin_lock(&buf->rb_lock);
1133         }
1134         spin_unlock(&buf->rb_lock);
1135 }
1136
1137 /**
1138  * rpcrdma_buffer_destroy - Release all hw resources
1139  * @buf: root control block for resources
1140  *
1141  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1142  * - No more Send or Receive completions can occur
1143  * - All MRs, reps, and reqs are returned to their free lists
1144  */
1145 void
1146 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1147 {
1148         rpcrdma_reps_destroy(buf);
1149
1150         while (!list_empty(&buf->rb_send_bufs)) {
1151                 struct rpcrdma_req *req;
1152
1153                 req = list_first_entry(&buf->rb_send_bufs,
1154                                        struct rpcrdma_req, rl_list);
1155                 list_del(&req->rl_list);
1156                 rpcrdma_req_destroy(req);
1157         }
1158 }
1159
1160 /**
1161  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1162  * @r_xprt: controlling transport
1163  *
1164  * Returns an initialized rpcrdma_mr or NULL if no free
1165  * rpcrdma_mr objects are available.
1166  */
1167 struct rpcrdma_mr *
1168 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1169 {
1170         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1171         struct rpcrdma_mr *mr;
1172
1173         spin_lock(&buf->rb_lock);
1174         mr = rpcrdma_mr_pop(&buf->rb_mrs);
1175         spin_unlock(&buf->rb_lock);
1176         return mr;
1177 }
1178
1179 /**
1180  * rpcrdma_mr_put - DMA unmap an MR and release it
1181  * @mr: MR to release
1182  *
1183  */
1184 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1185 {
1186         struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1187
1188         if (mr->mr_dir != DMA_NONE) {
1189                 trace_xprtrdma_mr_unmap(mr);
1190                 ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
1191                                 mr->mr_sg, mr->mr_nents, mr->mr_dir);
1192                 mr->mr_dir = DMA_NONE;
1193         }
1194
1195         rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1196 }
1197
1198 /**
1199  * rpcrdma_buffer_get - Get a request buffer
1200  * @buffers: Buffer pool from which to obtain a buffer
1201  *
1202  * Returns a fresh rpcrdma_req, or NULL if none are available.
1203  */
1204 struct rpcrdma_req *
1205 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1206 {
1207         struct rpcrdma_req *req;
1208
1209         spin_lock(&buffers->rb_lock);
1210         req = list_first_entry_or_null(&buffers->rb_send_bufs,
1211                                        struct rpcrdma_req, rl_list);
1212         if (req)
1213                 list_del_init(&req->rl_list);
1214         spin_unlock(&buffers->rb_lock);
1215         return req;
1216 }
1217
1218 /**
1219  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1220  * @buffers: buffer pool
1221  * @req: object to return
1222  *
1223  */
1224 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1225 {
1226         if (req->rl_reply)
1227                 rpcrdma_rep_put(buffers, req->rl_reply);
1228         req->rl_reply = NULL;
1229
1230         spin_lock(&buffers->rb_lock);
1231         list_add(&req->rl_list, &buffers->rb_send_bufs);
1232         spin_unlock(&buffers->rb_lock);
1233 }
1234
1235 /**
1236  * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1237  * @rep: rep to release
1238  *
1239  * Used after error conditions.
1240  */
1241 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1242 {
1243         rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1244 }
1245
1246 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1247  *
1248  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1249  * receiving the payload of RDMA RECV operations. During Long Calls
1250  * or Replies they may be registered externally via frwr_map.
1251  */
1252 static struct rpcrdma_regbuf *
1253 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1254                      gfp_t flags)
1255 {
1256         struct rpcrdma_regbuf *rb;
1257
1258         rb = kmalloc(sizeof(*rb), flags);
1259         if (!rb)
1260                 return NULL;
1261         rb->rg_data = kmalloc(size, flags);
1262         if (!rb->rg_data) {
1263                 kfree(rb);
1264                 return NULL;
1265         }
1266
1267         rb->rg_device = NULL;
1268         rb->rg_direction = direction;
1269         rb->rg_iov.length = size;
1270         return rb;
1271 }
1272
1273 /**
1274  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1275  * @rb: regbuf to reallocate
1276  * @size: size of buffer to be allocated, in bytes
1277  * @flags: GFP flags
1278  *
1279  * Returns true if reallocation was successful. If false is
1280  * returned, @rb is left untouched.
1281  */
1282 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1283 {
1284         void *buf;
1285
1286         buf = kmalloc(size, flags);
1287         if (!buf)
1288                 return false;
1289
1290         rpcrdma_regbuf_dma_unmap(rb);
1291         kfree(rb->rg_data);
1292
1293         rb->rg_data = buf;
1294         rb->rg_iov.length = size;
1295         return true;
1296 }
1297
1298 /**
1299  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1300  * @r_xprt: controlling transport instance
1301  * @rb: regbuf to be mapped
1302  *
1303  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1304  */
1305 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1306                               struct rpcrdma_regbuf *rb)
1307 {
1308         struct ib_device *device = r_xprt->rx_ep->re_id->device;
1309
1310         if (rb->rg_direction == DMA_NONE)
1311                 return false;
1312
1313         rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1314                                             rdmab_length(rb), rb->rg_direction);
1315         if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1316                 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1317                 return false;
1318         }
1319
1320         rb->rg_device = device;
1321         rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1322         return true;
1323 }
1324
1325 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1326 {
1327         if (!rb)
1328                 return;
1329
1330         if (!rpcrdma_regbuf_is_mapped(rb))
1331                 return;
1332
1333         ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1334                             rb->rg_direction);
1335         rb->rg_device = NULL;
1336 }
1337
1338 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1339 {
1340         rpcrdma_regbuf_dma_unmap(rb);
1341         if (rb)
1342                 kfree(rb->rg_data);
1343         kfree(rb);
1344 }
1345
1346 /**
1347  * rpcrdma_post_sends - Post WRs to a transport's Send Queue
1348  * @r_xprt: controlling transport instance
1349  * @req: rpcrdma_req containing the Send WR to post
1350  *
1351  * Returns 0 if the post was successful, otherwise -ENOTCONN
1352  * is returned.
1353  */
1354 int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1355 {
1356         struct ib_send_wr *send_wr = &req->rl_wr;
1357         struct rpcrdma_ep *ep = r_xprt->rx_ep;
1358         int rc;
1359
1360         if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) {
1361                 send_wr->send_flags |= IB_SEND_SIGNALED;
1362                 ep->re_send_count = ep->re_send_batch;
1363         } else {
1364                 send_wr->send_flags &= ~IB_SEND_SIGNALED;
1365                 --ep->re_send_count;
1366         }
1367
1368         trace_xprtrdma_post_send(req);
1369         rc = frwr_send(r_xprt, req);
1370         if (rc)
1371                 return -ENOTCONN;
1372         return 0;
1373 }
1374
1375 /**
1376  * rpcrdma_post_recvs - Refill the Receive Queue
1377  * @r_xprt: controlling transport instance
1378  * @temp: mark Receive buffers to be deleted after use
1379  *
1380  */
1381 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1382 {
1383         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1384         struct rpcrdma_ep *ep = r_xprt->rx_ep;
1385         struct ib_recv_wr *wr, *bad_wr;
1386         struct rpcrdma_rep *rep;
1387         int needed, count, rc;
1388
1389         rc = 0;
1390         count = 0;
1391
1392         needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1393         if (likely(ep->re_receive_count > needed))
1394                 goto out;
1395         needed -= ep->re_receive_count;
1396         if (!temp)
1397                 needed += RPCRDMA_MAX_RECV_BATCH;
1398
1399         /* fast path: all needed reps can be found on the free list */
1400         wr = NULL;
1401         while (needed) {
1402                 rep = rpcrdma_rep_get_locked(buf);
1403                 if (rep && rep->rr_temp) {
1404                         rpcrdma_rep_destroy(rep);
1405                         continue;
1406                 }
1407                 if (!rep)
1408                         rep = rpcrdma_rep_create(r_xprt, temp);
1409                 if (!rep)
1410                         break;
1411
1412                 trace_xprtrdma_post_recv(rep);
1413                 rep->rr_recv_wr.next = wr;
1414                 wr = &rep->rr_recv_wr;
1415                 --needed;
1416                 ++count;
1417         }
1418         if (!wr)
1419                 goto out;
1420
1421         rc = ib_post_recv(ep->re_id->qp, wr,
1422                           (const struct ib_recv_wr **)&bad_wr);
1423 out:
1424         trace_xprtrdma_post_recvs(r_xprt, count, rc);
1425         if (rc) {
1426                 for (wr = bad_wr; wr;) {
1427                         struct rpcrdma_rep *rep;
1428
1429                         rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1430                         wr = wr->next;
1431                         rpcrdma_recv_buffer_put(rep);
1432                         --count;
1433                 }
1434         }
1435         ep->re_receive_count += count;
1436         return;
1437 }