x86/kvm: remove unused macro HV_CLOCK_SIZE
[linux-2.6-microblaze.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE      (2048)
37 #define RPC_BUFFER_POOLSIZE     (8)
38 #define RPC_TASK_POOLSIZE       (8)
39 static struct kmem_cache        *rpc_task_slabp __read_mostly;
40 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
41 static mempool_t        *rpc_task_mempool __read_mostly;
42 static mempool_t        *rpc_buffer_mempool __read_mostly;
43
44 static void                     rpc_async_schedule(struct work_struct *);
45 static void                      rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59
60 unsigned long
61 rpc_task_timeout(const struct rpc_task *task)
62 {
63         unsigned long timeout = READ_ONCE(task->tk_timeout);
64
65         if (timeout != 0) {
66                 unsigned long now = jiffies;
67                 if (time_before(now, timeout))
68                         return timeout - now;
69         }
70         return 0;
71 }
72 EXPORT_SYMBOL_GPL(rpc_task_timeout);
73
74 /*
75  * Disable the timer for a given RPC task. Should be called with
76  * queue->lock and bh_disabled in order to avoid races within
77  * rpc_run_timer().
78  */
79 static void
80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
81 {
82         if (list_empty(&task->u.tk_wait.timer_list))
83                 return;
84         task->tk_timeout = 0;
85         list_del(&task->u.tk_wait.timer_list);
86         if (list_empty(&queue->timer_list.list))
87                 cancel_delayed_work(&queue->timer_list.dwork);
88 }
89
90 static void
91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
92 {
93         unsigned long now = jiffies;
94         queue->timer_list.expires = expires;
95         if (time_before_eq(expires, now))
96                 expires = 0;
97         else
98                 expires -= now;
99         mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
100 }
101
102 /*
103  * Set up a timer for the current task.
104  */
105 static void
106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
107                 unsigned long timeout)
108 {
109         task->tk_timeout = timeout;
110         if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
111                 rpc_set_queue_timer(queue, timeout);
112         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
113 }
114
115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
116 {
117         if (queue->priority != priority) {
118                 queue->priority = priority;
119                 queue->nr = 1U << priority;
120         }
121 }
122
123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
124 {
125         rpc_set_waitqueue_priority(queue, queue->maxpriority);
126 }
127
128 /*
129  * Add a request to a queue list
130  */
131 static void
132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
133 {
134         struct rpc_task *t;
135
136         list_for_each_entry(t, q, u.tk_wait.list) {
137                 if (t->tk_owner == task->tk_owner) {
138                         list_add_tail(&task->u.tk_wait.links,
139                                         &t->u.tk_wait.links);
140                         /* Cache the queue head in task->u.tk_wait.list */
141                         task->u.tk_wait.list.next = q;
142                         task->u.tk_wait.list.prev = NULL;
143                         return;
144                 }
145         }
146         INIT_LIST_HEAD(&task->u.tk_wait.links);
147         list_add_tail(&task->u.tk_wait.list, q);
148 }
149
150 /*
151  * Remove request from a queue list
152  */
153 static void
154 __rpc_list_dequeue_task(struct rpc_task *task)
155 {
156         struct list_head *q;
157         struct rpc_task *t;
158
159         if (task->u.tk_wait.list.prev == NULL) {
160                 list_del(&task->u.tk_wait.links);
161                 return;
162         }
163         if (!list_empty(&task->u.tk_wait.links)) {
164                 t = list_first_entry(&task->u.tk_wait.links,
165                                 struct rpc_task,
166                                 u.tk_wait.links);
167                 /* Assume __rpc_list_enqueue_task() cached the queue head */
168                 q = t->u.tk_wait.list.next;
169                 list_add_tail(&t->u.tk_wait.list, q);
170                 list_del(&task->u.tk_wait.links);
171         }
172         list_del(&task->u.tk_wait.list);
173 }
174
175 /*
176  * Add new request to a priority queue.
177  */
178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
179                 struct rpc_task *task,
180                 unsigned char queue_priority)
181 {
182         if (unlikely(queue_priority > queue->maxpriority))
183                 queue_priority = queue->maxpriority;
184         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
185 }
186
187 /*
188  * Add new request to wait queue.
189  *
190  * Swapper tasks always get inserted at the head of the queue.
191  * This should avoid many nasty memory deadlocks and hopefully
192  * improve overall performance.
193  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
194  */
195 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
196                 struct rpc_task *task,
197                 unsigned char queue_priority)
198 {
199         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
200         if (RPC_IS_PRIORITY(queue))
201                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
202         else if (RPC_IS_SWAPPER(task))
203                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
204         else
205                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
206         task->tk_waitqueue = queue;
207         queue->qlen++;
208         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
209         smp_wmb();
210         rpc_set_queued(task);
211 }
212
213 /*
214  * Remove request from a priority queue.
215  */
216 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
217 {
218         __rpc_list_dequeue_task(task);
219 }
220
221 /*
222  * Remove request from queue.
223  * Note: must be called with spin lock held.
224  */
225 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
226 {
227         __rpc_disable_timer(queue, task);
228         if (RPC_IS_PRIORITY(queue))
229                 __rpc_remove_wait_queue_priority(task);
230         else
231                 list_del(&task->u.tk_wait.list);
232         queue->qlen--;
233 }
234
235 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
236 {
237         int i;
238
239         spin_lock_init(&queue->lock);
240         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
241                 INIT_LIST_HEAD(&queue->tasks[i]);
242         queue->maxpriority = nr_queues - 1;
243         rpc_reset_waitqueue_priority(queue);
244         queue->qlen = 0;
245         queue->timer_list.expires = 0;
246         INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
247         INIT_LIST_HEAD(&queue->timer_list.list);
248         rpc_assign_waitqueue_name(queue, qname);
249 }
250
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
256
257 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 {
259         __rpc_init_priority_wait_queue(queue, qname, 1);
260 }
261 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
262
263 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
264 {
265         cancel_delayed_work_sync(&queue->timer_list.dwork);
266 }
267 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
268
269 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
270 {
271         freezable_schedule_unsafe();
272         if (signal_pending_state(mode, current))
273                 return -ERESTARTSYS;
274         return 0;
275 }
276
277 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
278 static void rpc_task_set_debuginfo(struct rpc_task *task)
279 {
280         static atomic_t rpc_pid;
281
282         task->tk_pid = atomic_inc_return(&rpc_pid);
283 }
284 #else
285 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
286 {
287 }
288 #endif
289
290 static void rpc_set_active(struct rpc_task *task)
291 {
292         rpc_task_set_debuginfo(task);
293         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
294         trace_rpc_task_begin(task, NULL);
295 }
296
297 /*
298  * Mark an RPC call as having completed by clearing the 'active' bit
299  * and then waking up all tasks that were sleeping.
300  */
301 static int rpc_complete_task(struct rpc_task *task)
302 {
303         void *m = &task->tk_runstate;
304         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
305         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
306         unsigned long flags;
307         int ret;
308
309         trace_rpc_task_complete(task, NULL);
310
311         spin_lock_irqsave(&wq->lock, flags);
312         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
313         ret = atomic_dec_and_test(&task->tk_count);
314         if (waitqueue_active(wq))
315                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
316         spin_unlock_irqrestore(&wq->lock, flags);
317         return ret;
318 }
319
320 /*
321  * Allow callers to wait for completion of an RPC call
322  *
323  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
324  * to enforce taking of the wq->lock and hence avoid races with
325  * rpc_complete_task().
326  */
327 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
328 {
329         if (action == NULL)
330                 action = rpc_wait_bit_killable;
331         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
332                         action, TASK_KILLABLE);
333 }
334 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
335
336 /*
337  * Make an RPC task runnable.
338  *
339  * Note: If the task is ASYNC, and is being made runnable after sitting on an
340  * rpc_wait_queue, this must be called with the queue spinlock held to protect
341  * the wait queue operation.
342  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
343  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
344  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
345  * the RPC_TASK_RUNNING flag.
346  */
347 static void rpc_make_runnable(struct workqueue_struct *wq,
348                 struct rpc_task *task)
349 {
350         bool need_wakeup = !rpc_test_and_set_running(task);
351
352         rpc_clear_queued(task);
353         if (!need_wakeup)
354                 return;
355         if (RPC_IS_ASYNC(task)) {
356                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
357                 queue_work(wq, &task->u.tk_work);
358         } else
359                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
360 }
361
362 /*
363  * Prepare for sleeping on a wait queue.
364  * By always appending tasks to the list we ensure FIFO behavior.
365  * NB: An RPC task will only receive interrupt-driven events as long
366  * as it's on a wait queue.
367  */
368 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
369                 struct rpc_task *task,
370                 unsigned char queue_priority)
371 {
372         trace_rpc_task_sleep(task, q);
373
374         __rpc_add_wait_queue(q, task, queue_priority);
375 }
376
377 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
378                 struct rpc_task *task,
379                 unsigned char queue_priority)
380 {
381         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
382                 return;
383         __rpc_do_sleep_on_priority(q, task, queue_priority);
384 }
385
386 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
387                 struct rpc_task *task, unsigned long timeout,
388                 unsigned char queue_priority)
389 {
390         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
391                 return;
392         if (time_is_after_jiffies(timeout)) {
393                 __rpc_do_sleep_on_priority(q, task, queue_priority);
394                 __rpc_add_timer(q, task, timeout);
395         } else
396                 task->tk_status = -ETIMEDOUT;
397 }
398
399 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
400 {
401         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
402                 task->tk_callback = action;
403 }
404
405 static bool rpc_sleep_check_activated(struct rpc_task *task)
406 {
407         /* We shouldn't ever put an inactive task to sleep */
408         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
409                 task->tk_status = -EIO;
410                 rpc_put_task_async(task);
411                 return false;
412         }
413         return true;
414 }
415
416 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
417                                 rpc_action action, unsigned long timeout)
418 {
419         if (!rpc_sleep_check_activated(task))
420                 return;
421
422         rpc_set_tk_callback(task, action);
423
424         /*
425          * Protect the queue operations.
426          */
427         spin_lock(&q->lock);
428         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
429         spin_unlock(&q->lock);
430 }
431 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
432
433 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
434                                 rpc_action action)
435 {
436         if (!rpc_sleep_check_activated(task))
437                 return;
438
439         rpc_set_tk_callback(task, action);
440
441         WARN_ON_ONCE(task->tk_timeout != 0);
442         /*
443          * Protect the queue operations.
444          */
445         spin_lock(&q->lock);
446         __rpc_sleep_on_priority(q, task, task->tk_priority);
447         spin_unlock(&q->lock);
448 }
449 EXPORT_SYMBOL_GPL(rpc_sleep_on);
450
451 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
452                 struct rpc_task *task, unsigned long timeout, int priority)
453 {
454         if (!rpc_sleep_check_activated(task))
455                 return;
456
457         priority -= RPC_PRIORITY_LOW;
458         /*
459          * Protect the queue operations.
460          */
461         spin_lock(&q->lock);
462         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
463         spin_unlock(&q->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
466
467 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
468                 int priority)
469 {
470         if (!rpc_sleep_check_activated(task))
471                 return;
472
473         WARN_ON_ONCE(task->tk_timeout != 0);
474         priority -= RPC_PRIORITY_LOW;
475         /*
476          * Protect the queue operations.
477          */
478         spin_lock(&q->lock);
479         __rpc_sleep_on_priority(q, task, priority);
480         spin_unlock(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
483
484 /**
485  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
486  * @wq: workqueue on which to run task
487  * @queue: wait queue
488  * @task: task to be woken up
489  *
490  * Caller must hold queue->lock, and have cleared the task queued flag.
491  */
492 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
493                 struct rpc_wait_queue *queue,
494                 struct rpc_task *task)
495 {
496         /* Has the task been executed yet? If not, we cannot wake it up! */
497         if (!RPC_IS_ACTIVATED(task)) {
498                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
499                 return;
500         }
501
502         trace_rpc_task_wakeup(task, queue);
503
504         __rpc_remove_wait_queue(queue, task);
505
506         rpc_make_runnable(wq, task);
507 }
508
509 /*
510  * Wake up a queued task while the queue lock is being held
511  */
512 static struct rpc_task *
513 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
514                 struct rpc_wait_queue *queue, struct rpc_task *task,
515                 bool (*action)(struct rpc_task *, void *), void *data)
516 {
517         if (RPC_IS_QUEUED(task)) {
518                 smp_rmb();
519                 if (task->tk_waitqueue == queue) {
520                         if (action == NULL || action(task, data)) {
521                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
522                                 return task;
523                         }
524                 }
525         }
526         return NULL;
527 }
528
529 /*
530  * Wake up a queued task while the queue lock is being held
531  */
532 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
533                                           struct rpc_task *task)
534 {
535         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
536                                                    task, NULL, NULL);
537 }
538
539 /*
540  * Wake up a task on a specific queue
541  */
542 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
543 {
544         if (!RPC_IS_QUEUED(task))
545                 return;
546         spin_lock(&queue->lock);
547         rpc_wake_up_task_queue_locked(queue, task);
548         spin_unlock(&queue->lock);
549 }
550 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
551
552 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
553 {
554         task->tk_status = *(int *)status;
555         return true;
556 }
557
558 static void
559 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
560                 struct rpc_task *task, int status)
561 {
562         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
563                         task, rpc_task_action_set_status, &status);
564 }
565
566 /**
567  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
568  * @queue: pointer to rpc_wait_queue
569  * @task: pointer to rpc_task
570  * @status: integer error value
571  *
572  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
573  * set to the value of @status.
574  */
575 void
576 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
577                 struct rpc_task *task, int status)
578 {
579         if (!RPC_IS_QUEUED(task))
580                 return;
581         spin_lock(&queue->lock);
582         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
583         spin_unlock(&queue->lock);
584 }
585
586 /*
587  * Wake up the next task on a priority queue.
588  */
589 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
590 {
591         struct list_head *q;
592         struct rpc_task *task;
593
594         /*
595          * Service a batch of tasks from a single owner.
596          */
597         q = &queue->tasks[queue->priority];
598         if (!list_empty(q) && --queue->nr) {
599                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
600                 goto out;
601         }
602
603         /*
604          * Service the next queue.
605          */
606         do {
607                 if (q == &queue->tasks[0])
608                         q = &queue->tasks[queue->maxpriority];
609                 else
610                         q = q - 1;
611                 if (!list_empty(q)) {
612                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
613                         goto new_queue;
614                 }
615         } while (q != &queue->tasks[queue->priority]);
616
617         rpc_reset_waitqueue_priority(queue);
618         return NULL;
619
620 new_queue:
621         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
622 out:
623         return task;
624 }
625
626 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
627 {
628         if (RPC_IS_PRIORITY(queue))
629                 return __rpc_find_next_queued_priority(queue);
630         if (!list_empty(&queue->tasks[0]))
631                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
632         return NULL;
633 }
634
635 /*
636  * Wake up the first task on the wait queue.
637  */
638 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
639                 struct rpc_wait_queue *queue,
640                 bool (*func)(struct rpc_task *, void *), void *data)
641 {
642         struct rpc_task *task = NULL;
643
644         spin_lock(&queue->lock);
645         task = __rpc_find_next_queued(queue);
646         if (task != NULL)
647                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
648                                 task, func, data);
649         spin_unlock(&queue->lock);
650
651         return task;
652 }
653
654 /*
655  * Wake up the first task on the wait queue.
656  */
657 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
658                 bool (*func)(struct rpc_task *, void *), void *data)
659 {
660         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
661 }
662 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
663
664 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
665 {
666         return true;
667 }
668
669 /*
670  * Wake up the next task on the wait queue.
671 */
672 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
673 {
674         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
675 }
676 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
677
678 /**
679  * rpc_wake_up - wake up all rpc_tasks
680  * @queue: rpc_wait_queue on which the tasks are sleeping
681  *
682  * Grabs queue->lock
683  */
684 void rpc_wake_up(struct rpc_wait_queue *queue)
685 {
686         struct list_head *head;
687
688         spin_lock(&queue->lock);
689         head = &queue->tasks[queue->maxpriority];
690         for (;;) {
691                 while (!list_empty(head)) {
692                         struct rpc_task *task;
693                         task = list_first_entry(head,
694                                         struct rpc_task,
695                                         u.tk_wait.list);
696                         rpc_wake_up_task_queue_locked(queue, task);
697                 }
698                 if (head == &queue->tasks[0])
699                         break;
700                 head--;
701         }
702         spin_unlock(&queue->lock);
703 }
704 EXPORT_SYMBOL_GPL(rpc_wake_up);
705
706 /**
707  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
708  * @queue: rpc_wait_queue on which the tasks are sleeping
709  * @status: status value to set
710  *
711  * Grabs queue->lock
712  */
713 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
714 {
715         struct list_head *head;
716
717         spin_lock(&queue->lock);
718         head = &queue->tasks[queue->maxpriority];
719         for (;;) {
720                 while (!list_empty(head)) {
721                         struct rpc_task *task;
722                         task = list_first_entry(head,
723                                         struct rpc_task,
724                                         u.tk_wait.list);
725                         task->tk_status = status;
726                         rpc_wake_up_task_queue_locked(queue, task);
727                 }
728                 if (head == &queue->tasks[0])
729                         break;
730                 head--;
731         }
732         spin_unlock(&queue->lock);
733 }
734 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
735
736 static void __rpc_queue_timer_fn(struct work_struct *work)
737 {
738         struct rpc_wait_queue *queue = container_of(work,
739                         struct rpc_wait_queue,
740                         timer_list.dwork.work);
741         struct rpc_task *task, *n;
742         unsigned long expires, now, timeo;
743
744         spin_lock(&queue->lock);
745         expires = now = jiffies;
746         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
747                 timeo = task->tk_timeout;
748                 if (time_after_eq(now, timeo)) {
749                         trace_rpc_task_timeout(task, task->tk_action);
750                         task->tk_status = -ETIMEDOUT;
751                         rpc_wake_up_task_queue_locked(queue, task);
752                         continue;
753                 }
754                 if (expires == now || time_after(expires, timeo))
755                         expires = timeo;
756         }
757         if (!list_empty(&queue->timer_list.list))
758                 rpc_set_queue_timer(queue, expires);
759         spin_unlock(&queue->lock);
760 }
761
762 static void __rpc_atrun(struct rpc_task *task)
763 {
764         if (task->tk_status == -ETIMEDOUT)
765                 task->tk_status = 0;
766 }
767
768 /*
769  * Run a task at a later time
770  */
771 void rpc_delay(struct rpc_task *task, unsigned long delay)
772 {
773         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
774 }
775 EXPORT_SYMBOL_GPL(rpc_delay);
776
777 /*
778  * Helper to call task->tk_ops->rpc_call_prepare
779  */
780 void rpc_prepare_task(struct rpc_task *task)
781 {
782         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
783 }
784
785 static void
786 rpc_init_task_statistics(struct rpc_task *task)
787 {
788         /* Initialize retry counters */
789         task->tk_garb_retry = 2;
790         task->tk_cred_retry = 2;
791         task->tk_rebind_retry = 2;
792
793         /* starting timestamp */
794         task->tk_start = ktime_get();
795 }
796
797 static void
798 rpc_reset_task_statistics(struct rpc_task *task)
799 {
800         task->tk_timeouts = 0;
801         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
802         rpc_init_task_statistics(task);
803 }
804
805 /*
806  * Helper that calls task->tk_ops->rpc_call_done if it exists
807  */
808 void rpc_exit_task(struct rpc_task *task)
809 {
810         trace_rpc_task_end(task, task->tk_action);
811         task->tk_action = NULL;
812         if (task->tk_ops->rpc_count_stats)
813                 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
814         else if (task->tk_client)
815                 rpc_count_iostats(task, task->tk_client->cl_metrics);
816         if (task->tk_ops->rpc_call_done != NULL) {
817                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
818                 if (task->tk_action != NULL) {
819                         /* Always release the RPC slot and buffer memory */
820                         xprt_release(task);
821                         rpc_reset_task_statistics(task);
822                 }
823         }
824 }
825
826 void rpc_signal_task(struct rpc_task *task)
827 {
828         struct rpc_wait_queue *queue;
829
830         if (!RPC_IS_ACTIVATED(task))
831                 return;
832
833         trace_rpc_task_signalled(task, task->tk_action);
834         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
835         smp_mb__after_atomic();
836         queue = READ_ONCE(task->tk_waitqueue);
837         if (queue)
838                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
839 }
840
841 void rpc_exit(struct rpc_task *task, int status)
842 {
843         task->tk_status = status;
844         task->tk_action = rpc_exit_task;
845         rpc_wake_up_queued_task(task->tk_waitqueue, task);
846 }
847 EXPORT_SYMBOL_GPL(rpc_exit);
848
849 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
850 {
851         if (ops->rpc_release != NULL)
852                 ops->rpc_release(calldata);
853 }
854
855 /*
856  * This is the RPC `scheduler' (or rather, the finite state machine).
857  */
858 static void __rpc_execute(struct rpc_task *task)
859 {
860         struct rpc_wait_queue *queue;
861         int task_is_async = RPC_IS_ASYNC(task);
862         int status = 0;
863
864         WARN_ON_ONCE(RPC_IS_QUEUED(task));
865         if (RPC_IS_QUEUED(task))
866                 return;
867
868         for (;;) {
869                 void (*do_action)(struct rpc_task *);
870
871                 /*
872                  * Perform the next FSM step or a pending callback.
873                  *
874                  * tk_action may be NULL if the task has been killed.
875                  * In particular, note that rpc_killall_tasks may
876                  * do this at any time, so beware when dereferencing.
877                  */
878                 do_action = task->tk_action;
879                 if (task->tk_callback) {
880                         do_action = task->tk_callback;
881                         task->tk_callback = NULL;
882                 }
883                 if (!do_action)
884                         break;
885                 trace_rpc_task_run_action(task, do_action);
886                 do_action(task);
887
888                 /*
889                  * Lockless check for whether task is sleeping or not.
890                  */
891                 if (!RPC_IS_QUEUED(task))
892                         continue;
893
894                 /*
895                  * Signalled tasks should exit rather than sleep.
896                  */
897                 if (RPC_SIGNALLED(task)) {
898                         task->tk_rpc_status = -ERESTARTSYS;
899                         rpc_exit(task, -ERESTARTSYS);
900                 }
901
902                 /*
903                  * The queue->lock protects against races with
904                  * rpc_make_runnable().
905                  *
906                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
907                  * rpc_task, rpc_make_runnable() can assign it to a
908                  * different workqueue. We therefore cannot assume that the
909                  * rpc_task pointer may still be dereferenced.
910                  */
911                 queue = task->tk_waitqueue;
912                 spin_lock(&queue->lock);
913                 if (!RPC_IS_QUEUED(task)) {
914                         spin_unlock(&queue->lock);
915                         continue;
916                 }
917                 rpc_clear_running(task);
918                 spin_unlock(&queue->lock);
919                 if (task_is_async)
920                         return;
921
922                 /* sync task: sleep here */
923                 trace_rpc_task_sync_sleep(task, task->tk_action);
924                 status = out_of_line_wait_on_bit(&task->tk_runstate,
925                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
926                                 TASK_KILLABLE);
927                 if (status < 0) {
928                         /*
929                          * When a sync task receives a signal, it exits with
930                          * -ERESTARTSYS. In order to catch any callbacks that
931                          * clean up after sleeping on some queue, we don't
932                          * break the loop here, but go around once more.
933                          */
934                         trace_rpc_task_signalled(task, task->tk_action);
935                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
936                         task->tk_rpc_status = -ERESTARTSYS;
937                         rpc_exit(task, -ERESTARTSYS);
938                 }
939                 trace_rpc_task_sync_wake(task, task->tk_action);
940         }
941
942         /* Release all resources associated with the task */
943         rpc_release_task(task);
944 }
945
946 /*
947  * User-visible entry point to the scheduler.
948  *
949  * This may be called recursively if e.g. an async NFS task updates
950  * the attributes and finds that dirty pages must be flushed.
951  * NOTE: Upon exit of this function the task is guaranteed to be
952  *       released. In particular note that tk_release() will have
953  *       been called, so your task memory may have been freed.
954  */
955 void rpc_execute(struct rpc_task *task)
956 {
957         bool is_async = RPC_IS_ASYNC(task);
958
959         rpc_set_active(task);
960         rpc_make_runnable(rpciod_workqueue, task);
961         if (!is_async)
962                 __rpc_execute(task);
963 }
964
965 static void rpc_async_schedule(struct work_struct *work)
966 {
967         unsigned int pflags = memalloc_nofs_save();
968
969         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
970         memalloc_nofs_restore(pflags);
971 }
972
973 /**
974  * rpc_malloc - allocate RPC buffer resources
975  * @task: RPC task
976  *
977  * A single memory region is allocated, which is split between the
978  * RPC call and RPC reply that this task is being used for. When
979  * this RPC is retired, the memory is released by calling rpc_free.
980  *
981  * To prevent rpciod from hanging, this allocator never sleeps,
982  * returning -ENOMEM and suppressing warning if the request cannot
983  * be serviced immediately. The caller can arrange to sleep in a
984  * way that is safe for rpciod.
985  *
986  * Most requests are 'small' (under 2KiB) and can be serviced from a
987  * mempool, ensuring that NFS reads and writes can always proceed,
988  * and that there is good locality of reference for these buffers.
989  */
990 int rpc_malloc(struct rpc_task *task)
991 {
992         struct rpc_rqst *rqst = task->tk_rqstp;
993         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
994         struct rpc_buffer *buf;
995         gfp_t gfp = GFP_NOFS;
996
997         if (RPC_IS_SWAPPER(task))
998                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
999
1000         size += sizeof(struct rpc_buffer);
1001         if (size <= RPC_BUFFER_MAXSIZE)
1002                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1003         else
1004                 buf = kmalloc(size, gfp);
1005
1006         if (!buf)
1007                 return -ENOMEM;
1008
1009         buf->len = size;
1010         rqst->rq_buffer = buf->data;
1011         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1012         return 0;
1013 }
1014 EXPORT_SYMBOL_GPL(rpc_malloc);
1015
1016 /**
1017  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1018  * @task: RPC task
1019  *
1020  */
1021 void rpc_free(struct rpc_task *task)
1022 {
1023         void *buffer = task->tk_rqstp->rq_buffer;
1024         size_t size;
1025         struct rpc_buffer *buf;
1026
1027         buf = container_of(buffer, struct rpc_buffer, data);
1028         size = buf->len;
1029
1030         if (size <= RPC_BUFFER_MAXSIZE)
1031                 mempool_free(buf, rpc_buffer_mempool);
1032         else
1033                 kfree(buf);
1034 }
1035 EXPORT_SYMBOL_GPL(rpc_free);
1036
1037 /*
1038  * Creation and deletion of RPC task structures
1039  */
1040 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1041 {
1042         memset(task, 0, sizeof(*task));
1043         atomic_set(&task->tk_count, 1);
1044         task->tk_flags  = task_setup_data->flags;
1045         task->tk_ops = task_setup_data->callback_ops;
1046         task->tk_calldata = task_setup_data->callback_data;
1047         INIT_LIST_HEAD(&task->tk_task);
1048
1049         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1050         task->tk_owner = current->tgid;
1051
1052         /* Initialize workqueue for async tasks */
1053         task->tk_workqueue = task_setup_data->workqueue;
1054
1055         task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1056                         xprt_get(task_setup_data->rpc_xprt));
1057
1058         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1059
1060         if (task->tk_ops->rpc_call_prepare != NULL)
1061                 task->tk_action = rpc_prepare_task;
1062
1063         rpc_init_task_statistics(task);
1064 }
1065
1066 static struct rpc_task *
1067 rpc_alloc_task(void)
1068 {
1069         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1070 }
1071
1072 /*
1073  * Create a new task for the specified client.
1074  */
1075 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1076 {
1077         struct rpc_task *task = setup_data->task;
1078         unsigned short flags = 0;
1079
1080         if (task == NULL) {
1081                 task = rpc_alloc_task();
1082                 flags = RPC_TASK_DYNAMIC;
1083         }
1084
1085         rpc_init_task(task, setup_data);
1086         task->tk_flags |= flags;
1087         return task;
1088 }
1089
1090 /*
1091  * rpc_free_task - release rpc task and perform cleanups
1092  *
1093  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1094  * in order to work around a workqueue dependency issue.
1095  *
1096  * Tejun Heo states:
1097  * "Workqueue currently considers two work items to be the same if they're
1098  * on the same address and won't execute them concurrently - ie. it
1099  * makes a work item which is queued again while being executed wait
1100  * for the previous execution to complete.
1101  *
1102  * If a work function frees the work item, and then waits for an event
1103  * which should be performed by another work item and *that* work item
1104  * recycles the freed work item, it can create a false dependency loop.
1105  * There really is no reliable way to detect this short of verifying
1106  * every memory free."
1107  *
1108  */
1109 static void rpc_free_task(struct rpc_task *task)
1110 {
1111         unsigned short tk_flags = task->tk_flags;
1112
1113         put_rpccred(task->tk_op_cred);
1114         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1115
1116         if (tk_flags & RPC_TASK_DYNAMIC)
1117                 mempool_free(task, rpc_task_mempool);
1118 }
1119
1120 static void rpc_async_release(struct work_struct *work)
1121 {
1122         unsigned int pflags = memalloc_nofs_save();
1123
1124         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1125         memalloc_nofs_restore(pflags);
1126 }
1127
1128 static void rpc_release_resources_task(struct rpc_task *task)
1129 {
1130         xprt_release(task);
1131         if (task->tk_msg.rpc_cred) {
1132                 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1133                         put_cred(task->tk_msg.rpc_cred);
1134                 task->tk_msg.rpc_cred = NULL;
1135         }
1136         rpc_task_release_client(task);
1137 }
1138
1139 static void rpc_final_put_task(struct rpc_task *task,
1140                 struct workqueue_struct *q)
1141 {
1142         if (q != NULL) {
1143                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1144                 queue_work(q, &task->u.tk_work);
1145         } else
1146                 rpc_free_task(task);
1147 }
1148
1149 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1150 {
1151         if (atomic_dec_and_test(&task->tk_count)) {
1152                 rpc_release_resources_task(task);
1153                 rpc_final_put_task(task, q);
1154         }
1155 }
1156
1157 void rpc_put_task(struct rpc_task *task)
1158 {
1159         rpc_do_put_task(task, NULL);
1160 }
1161 EXPORT_SYMBOL_GPL(rpc_put_task);
1162
1163 void rpc_put_task_async(struct rpc_task *task)
1164 {
1165         rpc_do_put_task(task, task->tk_workqueue);
1166 }
1167 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1168
1169 static void rpc_release_task(struct rpc_task *task)
1170 {
1171         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1172
1173         rpc_release_resources_task(task);
1174
1175         /*
1176          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1177          * so it should be safe to use task->tk_count as a test for whether
1178          * or not any other processes still hold references to our rpc_task.
1179          */
1180         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1181                 /* Wake up anyone who may be waiting for task completion */
1182                 if (!rpc_complete_task(task))
1183                         return;
1184         } else {
1185                 if (!atomic_dec_and_test(&task->tk_count))
1186                         return;
1187         }
1188         rpc_final_put_task(task, task->tk_workqueue);
1189 }
1190
1191 int rpciod_up(void)
1192 {
1193         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1194 }
1195
1196 void rpciod_down(void)
1197 {
1198         module_put(THIS_MODULE);
1199 }
1200
1201 /*
1202  * Start up the rpciod workqueue.
1203  */
1204 static int rpciod_start(void)
1205 {
1206         struct workqueue_struct *wq;
1207
1208         /*
1209          * Create the rpciod thread and wait for it to start.
1210          */
1211         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1212         if (!wq)
1213                 goto out_failed;
1214         rpciod_workqueue = wq;
1215         /* Note: highpri because network receive is latency sensitive */
1216         wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1217         if (!wq)
1218                 goto free_rpciod;
1219         xprtiod_workqueue = wq;
1220         return 1;
1221 free_rpciod:
1222         wq = rpciod_workqueue;
1223         rpciod_workqueue = NULL;
1224         destroy_workqueue(wq);
1225 out_failed:
1226         return 0;
1227 }
1228
1229 static void rpciod_stop(void)
1230 {
1231         struct workqueue_struct *wq = NULL;
1232
1233         if (rpciod_workqueue == NULL)
1234                 return;
1235
1236         wq = rpciod_workqueue;
1237         rpciod_workqueue = NULL;
1238         destroy_workqueue(wq);
1239         wq = xprtiod_workqueue;
1240         xprtiod_workqueue = NULL;
1241         destroy_workqueue(wq);
1242 }
1243
1244 void
1245 rpc_destroy_mempool(void)
1246 {
1247         rpciod_stop();
1248         mempool_destroy(rpc_buffer_mempool);
1249         mempool_destroy(rpc_task_mempool);
1250         kmem_cache_destroy(rpc_task_slabp);
1251         kmem_cache_destroy(rpc_buffer_slabp);
1252         rpc_destroy_wait_queue(&delay_queue);
1253 }
1254
1255 int
1256 rpc_init_mempool(void)
1257 {
1258         /*
1259          * The following is not strictly a mempool initialisation,
1260          * but there is no harm in doing it here
1261          */
1262         rpc_init_wait_queue(&delay_queue, "delayq");
1263         if (!rpciod_start())
1264                 goto err_nomem;
1265
1266         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1267                                              sizeof(struct rpc_task),
1268                                              0, SLAB_HWCACHE_ALIGN,
1269                                              NULL);
1270         if (!rpc_task_slabp)
1271                 goto err_nomem;
1272         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1273                                              RPC_BUFFER_MAXSIZE,
1274                                              0, SLAB_HWCACHE_ALIGN,
1275                                              NULL);
1276         if (!rpc_buffer_slabp)
1277                 goto err_nomem;
1278         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1279                                                     rpc_task_slabp);
1280         if (!rpc_task_mempool)
1281                 goto err_nomem;
1282         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1283                                                       rpc_buffer_slabp);
1284         if (!rpc_buffer_mempool)
1285                 goto err_nomem;
1286         return 0;
1287 err_nomem:
1288         rpc_destroy_mempool();
1289         return -ENOMEM;
1290 }