perf tools: Improve aux_output not supported error
[linux-2.6-microblaze.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY         RPCDBG_SCHED
32 #endif
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36
37 /*
38  * RPC slabs and memory pools
39  */
40 #define RPC_BUFFER_MAXSIZE      (2048)
41 #define RPC_BUFFER_POOLSIZE     (8)
42 #define RPC_TASK_POOLSIZE       (8)
43 static struct kmem_cache        *rpc_task_slabp __read_mostly;
44 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
45 static mempool_t        *rpc_task_mempool __read_mostly;
46 static mempool_t        *rpc_buffer_mempool __read_mostly;
47
48 static void                     rpc_async_schedule(struct work_struct *);
49 static void                      rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51
52 /*
53  * RPC tasks sit here while waiting for conditions to improve.
54  */
55 static struct rpc_wait_queue delay_queue;
56
57 /*
58  * rpciod-related stuff
59  */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63
64 unsigned long
65 rpc_task_timeout(const struct rpc_task *task)
66 {
67         unsigned long timeout = READ_ONCE(task->tk_timeout);
68
69         if (timeout != 0) {
70                 unsigned long now = jiffies;
71                 if (time_before(now, timeout))
72                         return timeout - now;
73         }
74         return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77
78 /*
79  * Disable the timer for a given RPC task. Should be called with
80  * queue->lock and bh_disabled in order to avoid races within
81  * rpc_run_timer().
82  */
83 static void
84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86         if (list_empty(&task->u.tk_wait.timer_list))
87                 return;
88         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89         task->tk_timeout = 0;
90         list_del(&task->u.tk_wait.timer_list);
91         if (list_empty(&queue->timer_list.list))
92                 cancel_delayed_work(&queue->timer_list.dwork);
93 }
94
95 static void
96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98         unsigned long now = jiffies;
99         queue->timer_list.expires = expires;
100         if (time_before_eq(expires, now))
101                 expires = 0;
102         else
103                 expires -= now;
104         mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106
107 /*
108  * Set up a timer for the current task.
109  */
110 static void
111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112                 unsigned long timeout)
113 {
114         dprintk("RPC: %5u setting alarm for %u ms\n",
115                 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116
117         task->tk_timeout = timeout;
118         if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119                 rpc_set_queue_timer(queue, timeout);
120         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125         if (queue->priority != priority) {
126                 queue->priority = priority;
127                 queue->nr = 1U << priority;
128         }
129 }
130
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133         rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142         struct rpc_task *t;
143
144         list_for_each_entry(t, q, u.tk_wait.list) {
145                 if (t->tk_owner == task->tk_owner) {
146                         list_add_tail(&task->u.tk_wait.links,
147                                         &t->u.tk_wait.links);
148                         /* Cache the queue head in task->u.tk_wait.list */
149                         task->u.tk_wait.list.next = q;
150                         task->u.tk_wait.list.prev = NULL;
151                         return;
152                 }
153         }
154         INIT_LIST_HEAD(&task->u.tk_wait.links);
155         list_add_tail(&task->u.tk_wait.list, q);
156 }
157
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164         struct list_head *q;
165         struct rpc_task *t;
166
167         if (task->u.tk_wait.list.prev == NULL) {
168                 list_del(&task->u.tk_wait.links);
169                 return;
170         }
171         if (!list_empty(&task->u.tk_wait.links)) {
172                 t = list_first_entry(&task->u.tk_wait.links,
173                                 struct rpc_task,
174                                 u.tk_wait.links);
175                 /* Assume __rpc_list_enqueue_task() cached the queue head */
176                 q = t->u.tk_wait.list.next;
177                 list_add_tail(&t->u.tk_wait.list, q);
178                 list_del(&task->u.tk_wait.links);
179         }
180         list_del(&task->u.tk_wait.list);
181 }
182
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187                 struct rpc_task *task,
188                 unsigned char queue_priority)
189 {
190         if (unlikely(queue_priority > queue->maxpriority))
191                 queue_priority = queue->maxpriority;
192         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194
195 /*
196  * Add new request to wait queue.
197  *
198  * Swapper tasks always get inserted at the head of the queue.
199  * This should avoid many nasty memory deadlocks and hopefully
200  * improve overall performance.
201  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202  */
203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204                 struct rpc_task *task,
205                 unsigned char queue_priority)
206 {
207         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
208         if (RPC_IS_PRIORITY(queue))
209                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
210         else if (RPC_IS_SWAPPER(task))
211                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
212         else
213                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
214         task->tk_waitqueue = queue;
215         queue->qlen++;
216         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
217         smp_wmb();
218         rpc_set_queued(task);
219
220         dprintk("RPC: %5u added to queue %p \"%s\"\n",
221                         task->tk_pid, queue, rpc_qname(queue));
222 }
223
224 /*
225  * Remove request from a priority queue.
226  */
227 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
228 {
229         __rpc_list_dequeue_task(task);
230 }
231
232 /*
233  * Remove request from queue.
234  * Note: must be called with spin lock held.
235  */
236 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
237 {
238         __rpc_disable_timer(queue, task);
239         if (RPC_IS_PRIORITY(queue))
240                 __rpc_remove_wait_queue_priority(task);
241         else
242                 list_del(&task->u.tk_wait.list);
243         queue->qlen--;
244         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
245                         task->tk_pid, queue, rpc_qname(queue));
246 }
247
248 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
249 {
250         int i;
251
252         spin_lock_init(&queue->lock);
253         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
254                 INIT_LIST_HEAD(&queue->tasks[i]);
255         queue->maxpriority = nr_queues - 1;
256         rpc_reset_waitqueue_priority(queue);
257         queue->qlen = 0;
258         queue->timer_list.expires = 0;
259         INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
260         INIT_LIST_HEAD(&queue->timer_list.list);
261         rpc_assign_waitqueue_name(queue, qname);
262 }
263
264 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
265 {
266         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
267 }
268 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
269
270 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
271 {
272         __rpc_init_priority_wait_queue(queue, qname, 1);
273 }
274 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
275
276 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
277 {
278         cancel_delayed_work_sync(&queue->timer_list.dwork);
279 }
280 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
281
282 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
283 {
284         freezable_schedule_unsafe();
285         if (signal_pending_state(mode, current))
286                 return -ERESTARTSYS;
287         return 0;
288 }
289
290 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
291 static void rpc_task_set_debuginfo(struct rpc_task *task)
292 {
293         static atomic_t rpc_pid;
294
295         task->tk_pid = atomic_inc_return(&rpc_pid);
296 }
297 #else
298 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
299 {
300 }
301 #endif
302
303 static void rpc_set_active(struct rpc_task *task)
304 {
305         rpc_task_set_debuginfo(task);
306         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307         trace_rpc_task_begin(task, NULL);
308 }
309
310 /*
311  * Mark an RPC call as having completed by clearing the 'active' bit
312  * and then waking up all tasks that were sleeping.
313  */
314 static int rpc_complete_task(struct rpc_task *task)
315 {
316         void *m = &task->tk_runstate;
317         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
318         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
319         unsigned long flags;
320         int ret;
321
322         trace_rpc_task_complete(task, NULL);
323
324         spin_lock_irqsave(&wq->lock, flags);
325         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
326         ret = atomic_dec_and_test(&task->tk_count);
327         if (waitqueue_active(wq))
328                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
329         spin_unlock_irqrestore(&wq->lock, flags);
330         return ret;
331 }
332
333 /*
334  * Allow callers to wait for completion of an RPC call
335  *
336  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
337  * to enforce taking of the wq->lock and hence avoid races with
338  * rpc_complete_task().
339  */
340 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
341 {
342         if (action == NULL)
343                 action = rpc_wait_bit_killable;
344         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
345                         action, TASK_KILLABLE);
346 }
347 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
348
349 /*
350  * Make an RPC task runnable.
351  *
352  * Note: If the task is ASYNC, and is being made runnable after sitting on an
353  * rpc_wait_queue, this must be called with the queue spinlock held to protect
354  * the wait queue operation.
355  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
356  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
357  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
358  * the RPC_TASK_RUNNING flag.
359  */
360 static void rpc_make_runnable(struct workqueue_struct *wq,
361                 struct rpc_task *task)
362 {
363         bool need_wakeup = !rpc_test_and_set_running(task);
364
365         rpc_clear_queued(task);
366         if (!need_wakeup)
367                 return;
368         if (RPC_IS_ASYNC(task)) {
369                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
370                 queue_work(wq, &task->u.tk_work);
371         } else
372                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
373 }
374
375 /*
376  * Prepare for sleeping on a wait queue.
377  * By always appending tasks to the list we ensure FIFO behavior.
378  * NB: An RPC task will only receive interrupt-driven events as long
379  * as it's on a wait queue.
380  */
381 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
382                 struct rpc_task *task,
383                 unsigned char queue_priority)
384 {
385         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
386                         task->tk_pid, rpc_qname(q), jiffies);
387
388         trace_rpc_task_sleep(task, q);
389
390         __rpc_add_wait_queue(q, task, queue_priority);
391
392 }
393
394 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
395                 struct rpc_task *task,
396                 unsigned char queue_priority)
397 {
398         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
399                 return;
400         __rpc_do_sleep_on_priority(q, task, queue_priority);
401 }
402
403 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
404                 struct rpc_task *task, unsigned long timeout,
405                 unsigned char queue_priority)
406 {
407         if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
408                 return;
409         if (time_is_after_jiffies(timeout)) {
410                 __rpc_do_sleep_on_priority(q, task, queue_priority);
411                 __rpc_add_timer(q, task, timeout);
412         } else
413                 task->tk_status = -ETIMEDOUT;
414 }
415
416 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
417 {
418         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
419                 task->tk_callback = action;
420 }
421
422 static bool rpc_sleep_check_activated(struct rpc_task *task)
423 {
424         /* We shouldn't ever put an inactive task to sleep */
425         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
426                 task->tk_status = -EIO;
427                 rpc_put_task_async(task);
428                 return false;
429         }
430         return true;
431 }
432
433 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
434                                 rpc_action action, unsigned long timeout)
435 {
436         if (!rpc_sleep_check_activated(task))
437                 return;
438
439         rpc_set_tk_callback(task, action);
440
441         /*
442          * Protect the queue operations.
443          */
444         spin_lock(&q->lock);
445         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
446         spin_unlock(&q->lock);
447 }
448 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
449
450 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
451                                 rpc_action action)
452 {
453         if (!rpc_sleep_check_activated(task))
454                 return;
455
456         rpc_set_tk_callback(task, action);
457
458         WARN_ON_ONCE(task->tk_timeout != 0);
459         /*
460          * Protect the queue operations.
461          */
462         spin_lock(&q->lock);
463         __rpc_sleep_on_priority(q, task, task->tk_priority);
464         spin_unlock(&q->lock);
465 }
466 EXPORT_SYMBOL_GPL(rpc_sleep_on);
467
468 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
469                 struct rpc_task *task, unsigned long timeout, int priority)
470 {
471         if (!rpc_sleep_check_activated(task))
472                 return;
473
474         priority -= RPC_PRIORITY_LOW;
475         /*
476          * Protect the queue operations.
477          */
478         spin_lock(&q->lock);
479         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
480         spin_unlock(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
483
484 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
485                 int priority)
486 {
487         if (!rpc_sleep_check_activated(task))
488                 return;
489
490         WARN_ON_ONCE(task->tk_timeout != 0);
491         priority -= RPC_PRIORITY_LOW;
492         /*
493          * Protect the queue operations.
494          */
495         spin_lock(&q->lock);
496         __rpc_sleep_on_priority(q, task, priority);
497         spin_unlock(&q->lock);
498 }
499 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
500
501 /**
502  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
503  * @wq: workqueue on which to run task
504  * @queue: wait queue
505  * @task: task to be woken up
506  *
507  * Caller must hold queue->lock, and have cleared the task queued flag.
508  */
509 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
510                 struct rpc_wait_queue *queue,
511                 struct rpc_task *task)
512 {
513         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
514                         task->tk_pid, jiffies);
515
516         /* Has the task been executed yet? If not, we cannot wake it up! */
517         if (!RPC_IS_ACTIVATED(task)) {
518                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
519                 return;
520         }
521
522         trace_rpc_task_wakeup(task, queue);
523
524         __rpc_remove_wait_queue(queue, task);
525
526         rpc_make_runnable(wq, task);
527
528         dprintk("RPC:       __rpc_wake_up_task done\n");
529 }
530
531 /*
532  * Wake up a queued task while the queue lock is being held
533  */
534 static struct rpc_task *
535 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
536                 struct rpc_wait_queue *queue, struct rpc_task *task,
537                 bool (*action)(struct rpc_task *, void *), void *data)
538 {
539         if (RPC_IS_QUEUED(task)) {
540                 smp_rmb();
541                 if (task->tk_waitqueue == queue) {
542                         if (action == NULL || action(task, data)) {
543                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
544                                 return task;
545                         }
546                 }
547         }
548         return NULL;
549 }
550
551 /*
552  * Wake up a queued task while the queue lock is being held
553  */
554 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
555                                           struct rpc_task *task)
556 {
557         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
558                                                    task, NULL, NULL);
559 }
560
561 /*
562  * Wake up a task on a specific queue
563  */
564 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
565 {
566         if (!RPC_IS_QUEUED(task))
567                 return;
568         spin_lock(&queue->lock);
569         rpc_wake_up_task_queue_locked(queue, task);
570         spin_unlock(&queue->lock);
571 }
572 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
573
574 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
575 {
576         task->tk_status = *(int *)status;
577         return true;
578 }
579
580 static void
581 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
582                 struct rpc_task *task, int status)
583 {
584         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
585                         task, rpc_task_action_set_status, &status);
586 }
587
588 /**
589  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
590  * @queue: pointer to rpc_wait_queue
591  * @task: pointer to rpc_task
592  * @status: integer error value
593  *
594  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
595  * set to the value of @status.
596  */
597 void
598 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
599                 struct rpc_task *task, int status)
600 {
601         if (!RPC_IS_QUEUED(task))
602                 return;
603         spin_lock(&queue->lock);
604         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
605         spin_unlock(&queue->lock);
606 }
607
608 /*
609  * Wake up the next task on a priority queue.
610  */
611 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
612 {
613         struct list_head *q;
614         struct rpc_task *task;
615
616         /*
617          * Service a batch of tasks from a single owner.
618          */
619         q = &queue->tasks[queue->priority];
620         if (!list_empty(q) && --queue->nr) {
621                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
622                 goto out;
623         }
624
625         /*
626          * Service the next queue.
627          */
628         do {
629                 if (q == &queue->tasks[0])
630                         q = &queue->tasks[queue->maxpriority];
631                 else
632                         q = q - 1;
633                 if (!list_empty(q)) {
634                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
635                         goto new_queue;
636                 }
637         } while (q != &queue->tasks[queue->priority]);
638
639         rpc_reset_waitqueue_priority(queue);
640         return NULL;
641
642 new_queue:
643         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
644 out:
645         return task;
646 }
647
648 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
649 {
650         if (RPC_IS_PRIORITY(queue))
651                 return __rpc_find_next_queued_priority(queue);
652         if (!list_empty(&queue->tasks[0]))
653                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
654         return NULL;
655 }
656
657 /*
658  * Wake up the first task on the wait queue.
659  */
660 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
661                 struct rpc_wait_queue *queue,
662                 bool (*func)(struct rpc_task *, void *), void *data)
663 {
664         struct rpc_task *task = NULL;
665
666         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
667                         queue, rpc_qname(queue));
668         spin_lock(&queue->lock);
669         task = __rpc_find_next_queued(queue);
670         if (task != NULL)
671                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
672                                 task, func, data);
673         spin_unlock(&queue->lock);
674
675         return task;
676 }
677
678 /*
679  * Wake up the first task on the wait queue.
680  */
681 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
682                 bool (*func)(struct rpc_task *, void *), void *data)
683 {
684         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
685 }
686 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
687
688 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
689 {
690         return true;
691 }
692
693 /*
694  * Wake up the next task on the wait queue.
695 */
696 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
697 {
698         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
699 }
700 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
701
702 /**
703  * rpc_wake_up - wake up all rpc_tasks
704  * @queue: rpc_wait_queue on which the tasks are sleeping
705  *
706  * Grabs queue->lock
707  */
708 void rpc_wake_up(struct rpc_wait_queue *queue)
709 {
710         struct list_head *head;
711
712         spin_lock(&queue->lock);
713         head = &queue->tasks[queue->maxpriority];
714         for (;;) {
715                 while (!list_empty(head)) {
716                         struct rpc_task *task;
717                         task = list_first_entry(head,
718                                         struct rpc_task,
719                                         u.tk_wait.list);
720                         rpc_wake_up_task_queue_locked(queue, task);
721                 }
722                 if (head == &queue->tasks[0])
723                         break;
724                 head--;
725         }
726         spin_unlock(&queue->lock);
727 }
728 EXPORT_SYMBOL_GPL(rpc_wake_up);
729
730 /**
731  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
732  * @queue: rpc_wait_queue on which the tasks are sleeping
733  * @status: status value to set
734  *
735  * Grabs queue->lock
736  */
737 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
738 {
739         struct list_head *head;
740
741         spin_lock(&queue->lock);
742         head = &queue->tasks[queue->maxpriority];
743         for (;;) {
744                 while (!list_empty(head)) {
745                         struct rpc_task *task;
746                         task = list_first_entry(head,
747                                         struct rpc_task,
748                                         u.tk_wait.list);
749                         task->tk_status = status;
750                         rpc_wake_up_task_queue_locked(queue, task);
751                 }
752                 if (head == &queue->tasks[0])
753                         break;
754                 head--;
755         }
756         spin_unlock(&queue->lock);
757 }
758 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
759
760 static void __rpc_queue_timer_fn(struct work_struct *work)
761 {
762         struct rpc_wait_queue *queue = container_of(work,
763                         struct rpc_wait_queue,
764                         timer_list.dwork.work);
765         struct rpc_task *task, *n;
766         unsigned long expires, now, timeo;
767
768         spin_lock(&queue->lock);
769         expires = now = jiffies;
770         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
771                 timeo = task->tk_timeout;
772                 if (time_after_eq(now, timeo)) {
773                         dprintk("RPC: %5u timeout\n", task->tk_pid);
774                         task->tk_status = -ETIMEDOUT;
775                         rpc_wake_up_task_queue_locked(queue, task);
776                         continue;
777                 }
778                 if (expires == now || time_after(expires, timeo))
779                         expires = timeo;
780         }
781         if (!list_empty(&queue->timer_list.list))
782                 rpc_set_queue_timer(queue, expires);
783         spin_unlock(&queue->lock);
784 }
785
786 static void __rpc_atrun(struct rpc_task *task)
787 {
788         if (task->tk_status == -ETIMEDOUT)
789                 task->tk_status = 0;
790 }
791
792 /*
793  * Run a task at a later time
794  */
795 void rpc_delay(struct rpc_task *task, unsigned long delay)
796 {
797         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
798 }
799 EXPORT_SYMBOL_GPL(rpc_delay);
800
801 /*
802  * Helper to call task->tk_ops->rpc_call_prepare
803  */
804 void rpc_prepare_task(struct rpc_task *task)
805 {
806         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
807 }
808
809 static void
810 rpc_init_task_statistics(struct rpc_task *task)
811 {
812         /* Initialize retry counters */
813         task->tk_garb_retry = 2;
814         task->tk_cred_retry = 2;
815         task->tk_rebind_retry = 2;
816
817         /* starting timestamp */
818         task->tk_start = ktime_get();
819 }
820
821 static void
822 rpc_reset_task_statistics(struct rpc_task *task)
823 {
824         task->tk_timeouts = 0;
825         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
826         rpc_init_task_statistics(task);
827 }
828
829 /*
830  * Helper that calls task->tk_ops->rpc_call_done if it exists
831  */
832 void rpc_exit_task(struct rpc_task *task)
833 {
834         trace_rpc_task_end(task, task->tk_action);
835         task->tk_action = NULL;
836         if (task->tk_ops->rpc_count_stats)
837                 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
838         else if (task->tk_client)
839                 rpc_count_iostats(task, task->tk_client->cl_metrics);
840         if (task->tk_ops->rpc_call_done != NULL) {
841                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
842                 if (task->tk_action != NULL) {
843                         /* Always release the RPC slot and buffer memory */
844                         xprt_release(task);
845                         rpc_reset_task_statistics(task);
846                 }
847         }
848 }
849
850 void rpc_signal_task(struct rpc_task *task)
851 {
852         struct rpc_wait_queue *queue;
853
854         if (!RPC_IS_ACTIVATED(task))
855                 return;
856
857         trace_rpc_task_signalled(task, task->tk_action);
858         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
859         smp_mb__after_atomic();
860         queue = READ_ONCE(task->tk_waitqueue);
861         if (queue)
862                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
863 }
864
865 void rpc_exit(struct rpc_task *task, int status)
866 {
867         task->tk_status = status;
868         task->tk_action = rpc_exit_task;
869         rpc_wake_up_queued_task(task->tk_waitqueue, task);
870 }
871 EXPORT_SYMBOL_GPL(rpc_exit);
872
873 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
874 {
875         if (ops->rpc_release != NULL)
876                 ops->rpc_release(calldata);
877 }
878
879 /*
880  * This is the RPC `scheduler' (or rather, the finite state machine).
881  */
882 static void __rpc_execute(struct rpc_task *task)
883 {
884         struct rpc_wait_queue *queue;
885         int task_is_async = RPC_IS_ASYNC(task);
886         int status = 0;
887
888         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
889                         task->tk_pid, task->tk_flags);
890
891         WARN_ON_ONCE(RPC_IS_QUEUED(task));
892         if (RPC_IS_QUEUED(task))
893                 return;
894
895         for (;;) {
896                 void (*do_action)(struct rpc_task *);
897
898                 /*
899                  * Perform the next FSM step or a pending callback.
900                  *
901                  * tk_action may be NULL if the task has been killed.
902                  * In particular, note that rpc_killall_tasks may
903                  * do this at any time, so beware when dereferencing.
904                  */
905                 do_action = task->tk_action;
906                 if (task->tk_callback) {
907                         do_action = task->tk_callback;
908                         task->tk_callback = NULL;
909                 }
910                 if (!do_action)
911                         break;
912                 trace_rpc_task_run_action(task, do_action);
913                 do_action(task);
914
915                 /*
916                  * Lockless check for whether task is sleeping or not.
917                  */
918                 if (!RPC_IS_QUEUED(task))
919                         continue;
920
921                 /*
922                  * Signalled tasks should exit rather than sleep.
923                  */
924                 if (RPC_SIGNALLED(task)) {
925                         task->tk_rpc_status = -ERESTARTSYS;
926                         rpc_exit(task, -ERESTARTSYS);
927                 }
928
929                 /*
930                  * The queue->lock protects against races with
931                  * rpc_make_runnable().
932                  *
933                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
934                  * rpc_task, rpc_make_runnable() can assign it to a
935                  * different workqueue. We therefore cannot assume that the
936                  * rpc_task pointer may still be dereferenced.
937                  */
938                 queue = task->tk_waitqueue;
939                 spin_lock(&queue->lock);
940                 if (!RPC_IS_QUEUED(task)) {
941                         spin_unlock(&queue->lock);
942                         continue;
943                 }
944                 rpc_clear_running(task);
945                 spin_unlock(&queue->lock);
946                 if (task_is_async)
947                         return;
948
949                 /* sync task: sleep here */
950                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
951                 status = out_of_line_wait_on_bit(&task->tk_runstate,
952                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
953                                 TASK_KILLABLE);
954                 if (status < 0) {
955                         /*
956                          * When a sync task receives a signal, it exits with
957                          * -ERESTARTSYS. In order to catch any callbacks that
958                          * clean up after sleeping on some queue, we don't
959                          * break the loop here, but go around once more.
960                          */
961                         trace_rpc_task_signalled(task, task->tk_action);
962                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
963                         task->tk_rpc_status = -ERESTARTSYS;
964                         rpc_exit(task, -ERESTARTSYS);
965                 }
966                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
967         }
968
969         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
970                         task->tk_status);
971         /* Release all resources associated with the task */
972         rpc_release_task(task);
973 }
974
975 /*
976  * User-visible entry point to the scheduler.
977  *
978  * This may be called recursively if e.g. an async NFS task updates
979  * the attributes and finds that dirty pages must be flushed.
980  * NOTE: Upon exit of this function the task is guaranteed to be
981  *       released. In particular note that tk_release() will have
982  *       been called, so your task memory may have been freed.
983  */
984 void rpc_execute(struct rpc_task *task)
985 {
986         bool is_async = RPC_IS_ASYNC(task);
987
988         rpc_set_active(task);
989         rpc_make_runnable(rpciod_workqueue, task);
990         if (!is_async)
991                 __rpc_execute(task);
992 }
993
994 static void rpc_async_schedule(struct work_struct *work)
995 {
996         unsigned int pflags = memalloc_nofs_save();
997
998         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
999         memalloc_nofs_restore(pflags);
1000 }
1001
1002 /**
1003  * rpc_malloc - allocate RPC buffer resources
1004  * @task: RPC task
1005  *
1006  * A single memory region is allocated, which is split between the
1007  * RPC call and RPC reply that this task is being used for. When
1008  * this RPC is retired, the memory is released by calling rpc_free.
1009  *
1010  * To prevent rpciod from hanging, this allocator never sleeps,
1011  * returning -ENOMEM and suppressing warning if the request cannot
1012  * be serviced immediately. The caller can arrange to sleep in a
1013  * way that is safe for rpciod.
1014  *
1015  * Most requests are 'small' (under 2KiB) and can be serviced from a
1016  * mempool, ensuring that NFS reads and writes can always proceed,
1017  * and that there is good locality of reference for these buffers.
1018  */
1019 int rpc_malloc(struct rpc_task *task)
1020 {
1021         struct rpc_rqst *rqst = task->tk_rqstp;
1022         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1023         struct rpc_buffer *buf;
1024         gfp_t gfp = GFP_NOFS;
1025
1026         if (RPC_IS_SWAPPER(task))
1027                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1028
1029         size += sizeof(struct rpc_buffer);
1030         if (size <= RPC_BUFFER_MAXSIZE)
1031                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1032         else
1033                 buf = kmalloc(size, gfp);
1034
1035         if (!buf)
1036                 return -ENOMEM;
1037
1038         buf->len = size;
1039         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1040                         task->tk_pid, size, buf);
1041         rqst->rq_buffer = buf->data;
1042         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1043         return 0;
1044 }
1045 EXPORT_SYMBOL_GPL(rpc_malloc);
1046
1047 /**
1048  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1049  * @task: RPC task
1050  *
1051  */
1052 void rpc_free(struct rpc_task *task)
1053 {
1054         void *buffer = task->tk_rqstp->rq_buffer;
1055         size_t size;
1056         struct rpc_buffer *buf;
1057
1058         buf = container_of(buffer, struct rpc_buffer, data);
1059         size = buf->len;
1060
1061         dprintk("RPC:       freeing buffer of size %zu at %p\n",
1062                         size, buf);
1063
1064         if (size <= RPC_BUFFER_MAXSIZE)
1065                 mempool_free(buf, rpc_buffer_mempool);
1066         else
1067                 kfree(buf);
1068 }
1069 EXPORT_SYMBOL_GPL(rpc_free);
1070
1071 /*
1072  * Creation and deletion of RPC task structures
1073  */
1074 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1075 {
1076         memset(task, 0, sizeof(*task));
1077         atomic_set(&task->tk_count, 1);
1078         task->tk_flags  = task_setup_data->flags;
1079         task->tk_ops = task_setup_data->callback_ops;
1080         task->tk_calldata = task_setup_data->callback_data;
1081         INIT_LIST_HEAD(&task->tk_task);
1082
1083         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1084         task->tk_owner = current->tgid;
1085
1086         /* Initialize workqueue for async tasks */
1087         task->tk_workqueue = task_setup_data->workqueue;
1088
1089         task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1090                         xprt_get(task_setup_data->rpc_xprt));
1091
1092         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1093
1094         if (task->tk_ops->rpc_call_prepare != NULL)
1095                 task->tk_action = rpc_prepare_task;
1096
1097         rpc_init_task_statistics(task);
1098
1099         dprintk("RPC:       new task initialized, procpid %u\n",
1100                                 task_pid_nr(current));
1101 }
1102
1103 static struct rpc_task *
1104 rpc_alloc_task(void)
1105 {
1106         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1107 }
1108
1109 /*
1110  * Create a new task for the specified client.
1111  */
1112 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1113 {
1114         struct rpc_task *task = setup_data->task;
1115         unsigned short flags = 0;
1116
1117         if (task == NULL) {
1118                 task = rpc_alloc_task();
1119                 flags = RPC_TASK_DYNAMIC;
1120         }
1121
1122         rpc_init_task(task, setup_data);
1123         task->tk_flags |= flags;
1124         dprintk("RPC:       allocated task %p\n", task);
1125         return task;
1126 }
1127
1128 /*
1129  * rpc_free_task - release rpc task and perform cleanups
1130  *
1131  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1132  * in order to work around a workqueue dependency issue.
1133  *
1134  * Tejun Heo states:
1135  * "Workqueue currently considers two work items to be the same if they're
1136  * on the same address and won't execute them concurrently - ie. it
1137  * makes a work item which is queued again while being executed wait
1138  * for the previous execution to complete.
1139  *
1140  * If a work function frees the work item, and then waits for an event
1141  * which should be performed by another work item and *that* work item
1142  * recycles the freed work item, it can create a false dependency loop.
1143  * There really is no reliable way to detect this short of verifying
1144  * every memory free."
1145  *
1146  */
1147 static void rpc_free_task(struct rpc_task *task)
1148 {
1149         unsigned short tk_flags = task->tk_flags;
1150
1151         put_rpccred(task->tk_op_cred);
1152         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1153
1154         if (tk_flags & RPC_TASK_DYNAMIC) {
1155                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1156                 mempool_free(task, rpc_task_mempool);
1157         }
1158 }
1159
1160 static void rpc_async_release(struct work_struct *work)
1161 {
1162         unsigned int pflags = memalloc_nofs_save();
1163
1164         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1165         memalloc_nofs_restore(pflags);
1166 }
1167
1168 static void rpc_release_resources_task(struct rpc_task *task)
1169 {
1170         xprt_release(task);
1171         if (task->tk_msg.rpc_cred) {
1172                 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1173                         put_cred(task->tk_msg.rpc_cred);
1174                 task->tk_msg.rpc_cred = NULL;
1175         }
1176         rpc_task_release_client(task);
1177 }
1178
1179 static void rpc_final_put_task(struct rpc_task *task,
1180                 struct workqueue_struct *q)
1181 {
1182         if (q != NULL) {
1183                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1184                 queue_work(q, &task->u.tk_work);
1185         } else
1186                 rpc_free_task(task);
1187 }
1188
1189 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1190 {
1191         if (atomic_dec_and_test(&task->tk_count)) {
1192                 rpc_release_resources_task(task);
1193                 rpc_final_put_task(task, q);
1194         }
1195 }
1196
1197 void rpc_put_task(struct rpc_task *task)
1198 {
1199         rpc_do_put_task(task, NULL);
1200 }
1201 EXPORT_SYMBOL_GPL(rpc_put_task);
1202
1203 void rpc_put_task_async(struct rpc_task *task)
1204 {
1205         rpc_do_put_task(task, task->tk_workqueue);
1206 }
1207 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1208
1209 static void rpc_release_task(struct rpc_task *task)
1210 {
1211         dprintk("RPC: %5u release task\n", task->tk_pid);
1212
1213         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1214
1215         rpc_release_resources_task(task);
1216
1217         /*
1218          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1219          * so it should be safe to use task->tk_count as a test for whether
1220          * or not any other processes still hold references to our rpc_task.
1221          */
1222         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1223                 /* Wake up anyone who may be waiting for task completion */
1224                 if (!rpc_complete_task(task))
1225                         return;
1226         } else {
1227                 if (!atomic_dec_and_test(&task->tk_count))
1228                         return;
1229         }
1230         rpc_final_put_task(task, task->tk_workqueue);
1231 }
1232
1233 int rpciod_up(void)
1234 {
1235         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1236 }
1237
1238 void rpciod_down(void)
1239 {
1240         module_put(THIS_MODULE);
1241 }
1242
1243 /*
1244  * Start up the rpciod workqueue.
1245  */
1246 static int rpciod_start(void)
1247 {
1248         struct workqueue_struct *wq;
1249
1250         /*
1251          * Create the rpciod thread and wait for it to start.
1252          */
1253         dprintk("RPC:       creating workqueue rpciod\n");
1254         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1255         if (!wq)
1256                 goto out_failed;
1257         rpciod_workqueue = wq;
1258         /* Note: highpri because network receive is latency sensitive */
1259         wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1260         if (!wq)
1261                 goto free_rpciod;
1262         xprtiod_workqueue = wq;
1263         return 1;
1264 free_rpciod:
1265         wq = rpciod_workqueue;
1266         rpciod_workqueue = NULL;
1267         destroy_workqueue(wq);
1268 out_failed:
1269         return 0;
1270 }
1271
1272 static void rpciod_stop(void)
1273 {
1274         struct workqueue_struct *wq = NULL;
1275
1276         if (rpciod_workqueue == NULL)
1277                 return;
1278         dprintk("RPC:       destroying workqueue rpciod\n");
1279
1280         wq = rpciod_workqueue;
1281         rpciod_workqueue = NULL;
1282         destroy_workqueue(wq);
1283         wq = xprtiod_workqueue;
1284         xprtiod_workqueue = NULL;
1285         destroy_workqueue(wq);
1286 }
1287
1288 void
1289 rpc_destroy_mempool(void)
1290 {
1291         rpciod_stop();
1292         mempool_destroy(rpc_buffer_mempool);
1293         mempool_destroy(rpc_task_mempool);
1294         kmem_cache_destroy(rpc_task_slabp);
1295         kmem_cache_destroy(rpc_buffer_slabp);
1296         rpc_destroy_wait_queue(&delay_queue);
1297 }
1298
1299 int
1300 rpc_init_mempool(void)
1301 {
1302         /*
1303          * The following is not strictly a mempool initialisation,
1304          * but there is no harm in doing it here
1305          */
1306         rpc_init_wait_queue(&delay_queue, "delayq");
1307         if (!rpciod_start())
1308                 goto err_nomem;
1309
1310         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1311                                              sizeof(struct rpc_task),
1312                                              0, SLAB_HWCACHE_ALIGN,
1313                                              NULL);
1314         if (!rpc_task_slabp)
1315                 goto err_nomem;
1316         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1317                                              RPC_BUFFER_MAXSIZE,
1318                                              0, SLAB_HWCACHE_ALIGN,
1319                                              NULL);
1320         if (!rpc_buffer_slabp)
1321                 goto err_nomem;
1322         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1323                                                     rpc_task_slabp);
1324         if (!rpc_task_mempool)
1325                 goto err_nomem;
1326         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1327                                                       rpc_buffer_slabp);
1328         if (!rpc_buffer_mempool)
1329                 goto err_nomem;
1330         return 0;
1331 err_nomem:
1332         rpc_destroy_mempool();
1333         return -ENOMEM;
1334 }