Merge branch 'for-5.11/i2c-hid' into for-linus
[linux-2.6-microblaze.git] / net / sunrpc / cache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 #include "netns.h"
37
38 #define  RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45         time64_t now = seconds_since_boot();
46         INIT_HLIST_NODE(&h->cache_list);
47         h->flags = 0;
48         kref_init(&h->ref);
49         h->expiry_time = now + CACHE_NEW_EXPIRY;
50         if (now <= detail->flush_time)
51                 /* ensure it isn't already expired */
52                 now = detail->flush_time + 1;
53         h->last_refresh = now;
54 }
55
56 static void cache_fresh_unlocked(struct cache_head *head,
57                                 struct cache_detail *detail);
58
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60                                                 struct cache_head *key,
61                                                 int hash)
62 {
63         struct hlist_head *head = &detail->hash_table[hash];
64         struct cache_head *tmp;
65
66         rcu_read_lock();
67         hlist_for_each_entry_rcu(tmp, head, cache_list) {
68                 if (!detail->match(tmp, key))
69                         continue;
70                 if (test_bit(CACHE_VALID, &tmp->flags) &&
71                     cache_is_expired(detail, tmp))
72                         continue;
73                 tmp = cache_get_rcu(tmp);
74                 rcu_read_unlock();
75                 return tmp;
76         }
77         rcu_read_unlock();
78         return NULL;
79 }
80
81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
82                                             struct cache_detail *cd)
83 {
84         /* Must be called under cd->hash_lock */
85         hlist_del_init_rcu(&ch->cache_list);
86         set_bit(CACHE_CLEANED, &ch->flags);
87         cd->entries --;
88 }
89
90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
91                                           struct cache_detail *cd)
92 {
93         cache_fresh_unlocked(ch, cd);
94         cache_put(ch, cd);
95 }
96
97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
98                                                  struct cache_head *key,
99                                                  int hash)
100 {
101         struct cache_head *new, *tmp, *freeme = NULL;
102         struct hlist_head *head = &detail->hash_table[hash];
103
104         new = detail->alloc();
105         if (!new)
106                 return NULL;
107         /* must fully initialise 'new', else
108          * we might get lose if we need to
109          * cache_put it soon.
110          */
111         cache_init(new, detail);
112         detail->init(new, key);
113
114         spin_lock(&detail->hash_lock);
115
116         /* check if entry appeared while we slept */
117         hlist_for_each_entry_rcu(tmp, head, cache_list,
118                                  lockdep_is_held(&detail->hash_lock)) {
119                 if (!detail->match(tmp, key))
120                         continue;
121                 if (test_bit(CACHE_VALID, &tmp->flags) &&
122                     cache_is_expired(detail, tmp)) {
123                         sunrpc_begin_cache_remove_entry(tmp, detail);
124                         trace_cache_entry_expired(detail, tmp);
125                         freeme = tmp;
126                         break;
127                 }
128                 cache_get(tmp);
129                 spin_unlock(&detail->hash_lock);
130                 cache_put(new, detail);
131                 return tmp;
132         }
133
134         hlist_add_head_rcu(&new->cache_list, head);
135         detail->entries++;
136         cache_get(new);
137         spin_unlock(&detail->hash_lock);
138
139         if (freeme)
140                 sunrpc_end_cache_remove_entry(freeme, detail);
141         return new;
142 }
143
144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
145                                            struct cache_head *key, int hash)
146 {
147         struct cache_head *ret;
148
149         ret = sunrpc_cache_find_rcu(detail, key, hash);
150         if (ret)
151                 return ret;
152         /* Didn't find anything, insert an empty entry */
153         return sunrpc_cache_add_entry(detail, key, hash);
154 }
155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
156
157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
158
159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
160                                struct cache_detail *detail)
161 {
162         time64_t now = seconds_since_boot();
163         if (now <= detail->flush_time)
164                 /* ensure it isn't immediately treated as expired */
165                 now = detail->flush_time + 1;
166         head->expiry_time = expiry;
167         head->last_refresh = now;
168         smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
169         set_bit(CACHE_VALID, &head->flags);
170 }
171
172 static void cache_fresh_unlocked(struct cache_head *head,
173                                  struct cache_detail *detail)
174 {
175         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
176                 cache_revisit_request(head);
177                 cache_dequeue(detail, head);
178         }
179 }
180
181 static void cache_make_negative(struct cache_detail *detail,
182                                 struct cache_head *h)
183 {
184         set_bit(CACHE_NEGATIVE, &h->flags);
185         trace_cache_entry_make_negative(detail, h);
186 }
187
188 static void cache_entry_update(struct cache_detail *detail,
189                                struct cache_head *h,
190                                struct cache_head *new)
191 {
192         if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
193                 detail->update(h, new);
194                 trace_cache_entry_update(detail, h);
195         } else {
196                 cache_make_negative(detail, h);
197         }
198 }
199
200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
201                                        struct cache_head *new, struct cache_head *old, int hash)
202 {
203         /* The 'old' entry is to be replaced by 'new'.
204          * If 'old' is not VALID, we update it directly,
205          * otherwise we need to replace it
206          */
207         struct cache_head *tmp;
208
209         if (!test_bit(CACHE_VALID, &old->flags)) {
210                 spin_lock(&detail->hash_lock);
211                 if (!test_bit(CACHE_VALID, &old->flags)) {
212                         cache_entry_update(detail, old, new);
213                         cache_fresh_locked(old, new->expiry_time, detail);
214                         spin_unlock(&detail->hash_lock);
215                         cache_fresh_unlocked(old, detail);
216                         return old;
217                 }
218                 spin_unlock(&detail->hash_lock);
219         }
220         /* We need to insert a new entry */
221         tmp = detail->alloc();
222         if (!tmp) {
223                 cache_put(old, detail);
224                 return NULL;
225         }
226         cache_init(tmp, detail);
227         detail->init(tmp, old);
228
229         spin_lock(&detail->hash_lock);
230         cache_entry_update(detail, tmp, new);
231         hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
232         detail->entries++;
233         cache_get(tmp);
234         cache_fresh_locked(tmp, new->expiry_time, detail);
235         cache_fresh_locked(old, 0, detail);
236         spin_unlock(&detail->hash_lock);
237         cache_fresh_unlocked(tmp, detail);
238         cache_fresh_unlocked(old, detail);
239         cache_put(old, detail);
240         return tmp;
241 }
242 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
243
244 static inline int cache_is_valid(struct cache_head *h)
245 {
246         if (!test_bit(CACHE_VALID, &h->flags))
247                 return -EAGAIN;
248         else {
249                 /* entry is valid */
250                 if (test_bit(CACHE_NEGATIVE, &h->flags))
251                         return -ENOENT;
252                 else {
253                         /*
254                          * In combination with write barrier in
255                          * sunrpc_cache_update, ensures that anyone
256                          * using the cache entry after this sees the
257                          * updated contents:
258                          */
259                         smp_rmb();
260                         return 0;
261                 }
262         }
263 }
264
265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
266 {
267         int rv;
268
269         spin_lock(&detail->hash_lock);
270         rv = cache_is_valid(h);
271         if (rv == -EAGAIN) {
272                 cache_make_negative(detail, h);
273                 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
274                                    detail);
275                 rv = -ENOENT;
276         }
277         spin_unlock(&detail->hash_lock);
278         cache_fresh_unlocked(h, detail);
279         return rv;
280 }
281
282 /*
283  * This is the generic cache management routine for all
284  * the authentication caches.
285  * It checks the currency of a cache item and will (later)
286  * initiate an upcall to fill it if needed.
287  *
288  *
289  * Returns 0 if the cache_head can be used, or cache_puts it and returns
290  * -EAGAIN if upcall is pending and request has been queued
291  * -ETIMEDOUT if upcall failed or request could not be queue or
292  *           upcall completed but item is still invalid (implying that
293  *           the cache item has been replaced with a newer one).
294  * -ENOENT if cache entry was negative
295  */
296 int cache_check(struct cache_detail *detail,
297                     struct cache_head *h, struct cache_req *rqstp)
298 {
299         int rv;
300         time64_t refresh_age, age;
301
302         /* First decide return status as best we can */
303         rv = cache_is_valid(h);
304
305         /* now see if we want to start an upcall */
306         refresh_age = (h->expiry_time - h->last_refresh);
307         age = seconds_since_boot() - h->last_refresh;
308
309         if (rqstp == NULL) {
310                 if (rv == -EAGAIN)
311                         rv = -ENOENT;
312         } else if (rv == -EAGAIN ||
313                    (h->expiry_time != 0 && age > refresh_age/2)) {
314                 dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
315                                 refresh_age, age);
316                 switch (detail->cache_upcall(detail, h)) {
317                 case -EINVAL:
318                         rv = try_to_negate_entry(detail, h);
319                         break;
320                 case -EAGAIN:
321                         cache_fresh_unlocked(h, detail);
322                         break;
323                 }
324         }
325
326         if (rv == -EAGAIN) {
327                 if (!cache_defer_req(rqstp, h)) {
328                         /*
329                          * Request was not deferred; handle it as best
330                          * we can ourselves:
331                          */
332                         rv = cache_is_valid(h);
333                         if (rv == -EAGAIN)
334                                 rv = -ETIMEDOUT;
335                 }
336         }
337         if (rv)
338                 cache_put(h, detail);
339         return rv;
340 }
341 EXPORT_SYMBOL_GPL(cache_check);
342
343 /*
344  * caches need to be periodically cleaned.
345  * For this we maintain a list of cache_detail and
346  * a current pointer into that list and into the table
347  * for that entry.
348  *
349  * Each time cache_clean is called it finds the next non-empty entry
350  * in the current table and walks the list in that entry
351  * looking for entries that can be removed.
352  *
353  * An entry gets removed if:
354  * - The expiry is before current time
355  * - The last_refresh time is before the flush_time for that cache
356  *
357  * later we might drop old entries with non-NEVER expiry if that table
358  * is getting 'full' for some definition of 'full'
359  *
360  * The question of "how often to scan a table" is an interesting one
361  * and is answered in part by the use of the "nextcheck" field in the
362  * cache_detail.
363  * When a scan of a table begins, the nextcheck field is set to a time
364  * that is well into the future.
365  * While scanning, if an expiry time is found that is earlier than the
366  * current nextcheck time, nextcheck is set to that expiry time.
367  * If the flush_time is ever set to a time earlier than the nextcheck
368  * time, the nextcheck time is then set to that flush_time.
369  *
370  * A table is then only scanned if the current time is at least
371  * the nextcheck time.
372  *
373  */
374
375 static LIST_HEAD(cache_list);
376 static DEFINE_SPINLOCK(cache_list_lock);
377 static struct cache_detail *current_detail;
378 static int current_index;
379
380 static void do_cache_clean(struct work_struct *work);
381 static struct delayed_work cache_cleaner;
382
383 void sunrpc_init_cache_detail(struct cache_detail *cd)
384 {
385         spin_lock_init(&cd->hash_lock);
386         INIT_LIST_HEAD(&cd->queue);
387         spin_lock(&cache_list_lock);
388         cd->nextcheck = 0;
389         cd->entries = 0;
390         atomic_set(&cd->writers, 0);
391         cd->last_close = 0;
392         cd->last_warn = -1;
393         list_add(&cd->others, &cache_list);
394         spin_unlock(&cache_list_lock);
395
396         /* start the cleaning process */
397         queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
398 }
399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
400
401 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
402 {
403         cache_purge(cd);
404         spin_lock(&cache_list_lock);
405         spin_lock(&cd->hash_lock);
406         if (current_detail == cd)
407                 current_detail = NULL;
408         list_del_init(&cd->others);
409         spin_unlock(&cd->hash_lock);
410         spin_unlock(&cache_list_lock);
411         if (list_empty(&cache_list)) {
412                 /* module must be being unloaded so its safe to kill the worker */
413                 cancel_delayed_work_sync(&cache_cleaner);
414         }
415 }
416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
417
418 /* clean cache tries to find something to clean
419  * and cleans it.
420  * It returns 1 if it cleaned something,
421  *            0 if it didn't find anything this time
422  *           -1 if it fell off the end of the list.
423  */
424 static int cache_clean(void)
425 {
426         int rv = 0;
427         struct list_head *next;
428
429         spin_lock(&cache_list_lock);
430
431         /* find a suitable table if we don't already have one */
432         while (current_detail == NULL ||
433             current_index >= current_detail->hash_size) {
434                 if (current_detail)
435                         next = current_detail->others.next;
436                 else
437                         next = cache_list.next;
438                 if (next == &cache_list) {
439                         current_detail = NULL;
440                         spin_unlock(&cache_list_lock);
441                         return -1;
442                 }
443                 current_detail = list_entry(next, struct cache_detail, others);
444                 if (current_detail->nextcheck > seconds_since_boot())
445                         current_index = current_detail->hash_size;
446                 else {
447                         current_index = 0;
448                         current_detail->nextcheck = seconds_since_boot()+30*60;
449                 }
450         }
451
452         /* find a non-empty bucket in the table */
453         while (current_detail &&
454                current_index < current_detail->hash_size &&
455                hlist_empty(&current_detail->hash_table[current_index]))
456                 current_index++;
457
458         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
459
460         if (current_detail && current_index < current_detail->hash_size) {
461                 struct cache_head *ch = NULL;
462                 struct cache_detail *d;
463                 struct hlist_head *head;
464                 struct hlist_node *tmp;
465
466                 spin_lock(&current_detail->hash_lock);
467
468                 /* Ok, now to clean this strand */
469
470                 head = &current_detail->hash_table[current_index];
471                 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
472                         if (current_detail->nextcheck > ch->expiry_time)
473                                 current_detail->nextcheck = ch->expiry_time+1;
474                         if (!cache_is_expired(current_detail, ch))
475                                 continue;
476
477                         sunrpc_begin_cache_remove_entry(ch, current_detail);
478                         trace_cache_entry_expired(current_detail, ch);
479                         rv = 1;
480                         break;
481                 }
482
483                 spin_unlock(&current_detail->hash_lock);
484                 d = current_detail;
485                 if (!ch)
486                         current_index ++;
487                 spin_unlock(&cache_list_lock);
488                 if (ch)
489                         sunrpc_end_cache_remove_entry(ch, d);
490         } else
491                 spin_unlock(&cache_list_lock);
492
493         return rv;
494 }
495
496 /*
497  * We want to regularly clean the cache, so we need to schedule some work ...
498  */
499 static void do_cache_clean(struct work_struct *work)
500 {
501         int delay;
502
503         if (list_empty(&cache_list))
504                 return;
505
506         if (cache_clean() == -1)
507                 delay = round_jiffies_relative(30*HZ);
508         else
509                 delay = 5;
510
511         queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay);
512 }
513
514
515 /*
516  * Clean all caches promptly.  This just calls cache_clean
517  * repeatedly until we are sure that every cache has had a chance to
518  * be fully cleaned
519  */
520 void cache_flush(void)
521 {
522         while (cache_clean() != -1)
523                 cond_resched();
524         while (cache_clean() != -1)
525                 cond_resched();
526 }
527 EXPORT_SYMBOL_GPL(cache_flush);
528
529 void cache_purge(struct cache_detail *detail)
530 {
531         struct cache_head *ch = NULL;
532         struct hlist_head *head = NULL;
533         int i = 0;
534
535         spin_lock(&detail->hash_lock);
536         if (!detail->entries) {
537                 spin_unlock(&detail->hash_lock);
538                 return;
539         }
540
541         dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
542         for (i = 0; i < detail->hash_size; i++) {
543                 head = &detail->hash_table[i];
544                 while (!hlist_empty(head)) {
545                         ch = hlist_entry(head->first, struct cache_head,
546                                          cache_list);
547                         sunrpc_begin_cache_remove_entry(ch, detail);
548                         spin_unlock(&detail->hash_lock);
549                         sunrpc_end_cache_remove_entry(ch, detail);
550                         spin_lock(&detail->hash_lock);
551                 }
552         }
553         spin_unlock(&detail->hash_lock);
554 }
555 EXPORT_SYMBOL_GPL(cache_purge);
556
557
558 /*
559  * Deferral and Revisiting of Requests.
560  *
561  * If a cache lookup finds a pending entry, we
562  * need to defer the request and revisit it later.
563  * All deferred requests are stored in a hash table,
564  * indexed by "struct cache_head *".
565  * As it may be wasteful to store a whole request
566  * structure, we allow the request to provide a
567  * deferred form, which must contain a
568  * 'struct cache_deferred_req'
569  * This cache_deferred_req contains a method to allow
570  * it to be revisited when cache info is available
571  */
572
573 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
574 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
575
576 #define DFR_MAX 300     /* ??? */
577
578 static DEFINE_SPINLOCK(cache_defer_lock);
579 static LIST_HEAD(cache_defer_list);
580 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
581 static int cache_defer_cnt;
582
583 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
584 {
585         hlist_del_init(&dreq->hash);
586         if (!list_empty(&dreq->recent)) {
587                 list_del_init(&dreq->recent);
588                 cache_defer_cnt--;
589         }
590 }
591
592 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
593 {
594         int hash = DFR_HASH(item);
595
596         INIT_LIST_HEAD(&dreq->recent);
597         hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
598 }
599
600 static void setup_deferral(struct cache_deferred_req *dreq,
601                            struct cache_head *item,
602                            int count_me)
603 {
604
605         dreq->item = item;
606
607         spin_lock(&cache_defer_lock);
608
609         __hash_deferred_req(dreq, item);
610
611         if (count_me) {
612                 cache_defer_cnt++;
613                 list_add(&dreq->recent, &cache_defer_list);
614         }
615
616         spin_unlock(&cache_defer_lock);
617
618 }
619
620 struct thread_deferred_req {
621         struct cache_deferred_req handle;
622         struct completion completion;
623 };
624
625 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
626 {
627         struct thread_deferred_req *dr =
628                 container_of(dreq, struct thread_deferred_req, handle);
629         complete(&dr->completion);
630 }
631
632 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
633 {
634         struct thread_deferred_req sleeper;
635         struct cache_deferred_req *dreq = &sleeper.handle;
636
637         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
638         dreq->revisit = cache_restart_thread;
639
640         setup_deferral(dreq, item, 0);
641
642         if (!test_bit(CACHE_PENDING, &item->flags) ||
643             wait_for_completion_interruptible_timeout(
644                     &sleeper.completion, req->thread_wait) <= 0) {
645                 /* The completion wasn't completed, so we need
646                  * to clean up
647                  */
648                 spin_lock(&cache_defer_lock);
649                 if (!hlist_unhashed(&sleeper.handle.hash)) {
650                         __unhash_deferred_req(&sleeper.handle);
651                         spin_unlock(&cache_defer_lock);
652                 } else {
653                         /* cache_revisit_request already removed
654                          * this from the hash table, but hasn't
655                          * called ->revisit yet.  It will very soon
656                          * and we need to wait for it.
657                          */
658                         spin_unlock(&cache_defer_lock);
659                         wait_for_completion(&sleeper.completion);
660                 }
661         }
662 }
663
664 static void cache_limit_defers(void)
665 {
666         /* Make sure we haven't exceed the limit of allowed deferred
667          * requests.
668          */
669         struct cache_deferred_req *discard = NULL;
670
671         if (cache_defer_cnt <= DFR_MAX)
672                 return;
673
674         spin_lock(&cache_defer_lock);
675
676         /* Consider removing either the first or the last */
677         if (cache_defer_cnt > DFR_MAX) {
678                 if (prandom_u32() & 1)
679                         discard = list_entry(cache_defer_list.next,
680                                              struct cache_deferred_req, recent);
681                 else
682                         discard = list_entry(cache_defer_list.prev,
683                                              struct cache_deferred_req, recent);
684                 __unhash_deferred_req(discard);
685         }
686         spin_unlock(&cache_defer_lock);
687         if (discard)
688                 discard->revisit(discard, 1);
689 }
690
691 /* Return true if and only if a deferred request is queued. */
692 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
693 {
694         struct cache_deferred_req *dreq;
695
696         if (req->thread_wait) {
697                 cache_wait_req(req, item);
698                 if (!test_bit(CACHE_PENDING, &item->flags))
699                         return false;
700         }
701         dreq = req->defer(req);
702         if (dreq == NULL)
703                 return false;
704         setup_deferral(dreq, item, 1);
705         if (!test_bit(CACHE_PENDING, &item->flags))
706                 /* Bit could have been cleared before we managed to
707                  * set up the deferral, so need to revisit just in case
708                  */
709                 cache_revisit_request(item);
710
711         cache_limit_defers();
712         return true;
713 }
714
715 static void cache_revisit_request(struct cache_head *item)
716 {
717         struct cache_deferred_req *dreq;
718         struct list_head pending;
719         struct hlist_node *tmp;
720         int hash = DFR_HASH(item);
721
722         INIT_LIST_HEAD(&pending);
723         spin_lock(&cache_defer_lock);
724
725         hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
726                 if (dreq->item == item) {
727                         __unhash_deferred_req(dreq);
728                         list_add(&dreq->recent, &pending);
729                 }
730
731         spin_unlock(&cache_defer_lock);
732
733         while (!list_empty(&pending)) {
734                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
735                 list_del_init(&dreq->recent);
736                 dreq->revisit(dreq, 0);
737         }
738 }
739
740 void cache_clean_deferred(void *owner)
741 {
742         struct cache_deferred_req *dreq, *tmp;
743         struct list_head pending;
744
745
746         INIT_LIST_HEAD(&pending);
747         spin_lock(&cache_defer_lock);
748
749         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
750                 if (dreq->owner == owner) {
751                         __unhash_deferred_req(dreq);
752                         list_add(&dreq->recent, &pending);
753                 }
754         }
755         spin_unlock(&cache_defer_lock);
756
757         while (!list_empty(&pending)) {
758                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
759                 list_del_init(&dreq->recent);
760                 dreq->revisit(dreq, 1);
761         }
762 }
763
764 /*
765  * communicate with user-space
766  *
767  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
768  * On read, you get a full request, or block.
769  * On write, an update request is processed.
770  * Poll works if anything to read, and always allows write.
771  *
772  * Implemented by linked list of requests.  Each open file has
773  * a ->private that also exists in this list.  New requests are added
774  * to the end and may wakeup and preceding readers.
775  * New readers are added to the head.  If, on read, an item is found with
776  * CACHE_UPCALLING clear, we free it from the list.
777  *
778  */
779
780 static DEFINE_SPINLOCK(queue_lock);
781 static DEFINE_MUTEX(queue_io_mutex);
782
783 struct cache_queue {
784         struct list_head        list;
785         int                     reader; /* if 0, then request */
786 };
787 struct cache_request {
788         struct cache_queue      q;
789         struct cache_head       *item;
790         char                    * buf;
791         int                     len;
792         int                     readers;
793 };
794 struct cache_reader {
795         struct cache_queue      q;
796         int                     offset; /* if non-0, we have a refcnt on next request */
797 };
798
799 static int cache_request(struct cache_detail *detail,
800                                struct cache_request *crq)
801 {
802         char *bp = crq->buf;
803         int len = PAGE_SIZE;
804
805         detail->cache_request(detail, crq->item, &bp, &len);
806         if (len < 0)
807                 return -EAGAIN;
808         return PAGE_SIZE - len;
809 }
810
811 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
812                           loff_t *ppos, struct cache_detail *cd)
813 {
814         struct cache_reader *rp = filp->private_data;
815         struct cache_request *rq;
816         struct inode *inode = file_inode(filp);
817         int err;
818
819         if (count == 0)
820                 return 0;
821
822         inode_lock(inode); /* protect against multiple concurrent
823                               * readers on this file */
824  again:
825         spin_lock(&queue_lock);
826         /* need to find next request */
827         while (rp->q.list.next != &cd->queue &&
828                list_entry(rp->q.list.next, struct cache_queue, list)
829                ->reader) {
830                 struct list_head *next = rp->q.list.next;
831                 list_move(&rp->q.list, next);
832         }
833         if (rp->q.list.next == &cd->queue) {
834                 spin_unlock(&queue_lock);
835                 inode_unlock(inode);
836                 WARN_ON_ONCE(rp->offset);
837                 return 0;
838         }
839         rq = container_of(rp->q.list.next, struct cache_request, q.list);
840         WARN_ON_ONCE(rq->q.reader);
841         if (rp->offset == 0)
842                 rq->readers++;
843         spin_unlock(&queue_lock);
844
845         if (rq->len == 0) {
846                 err = cache_request(cd, rq);
847                 if (err < 0)
848                         goto out;
849                 rq->len = err;
850         }
851
852         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
853                 err = -EAGAIN;
854                 spin_lock(&queue_lock);
855                 list_move(&rp->q.list, &rq->q.list);
856                 spin_unlock(&queue_lock);
857         } else {
858                 if (rp->offset + count > rq->len)
859                         count = rq->len - rp->offset;
860                 err = -EFAULT;
861                 if (copy_to_user(buf, rq->buf + rp->offset, count))
862                         goto out;
863                 rp->offset += count;
864                 if (rp->offset >= rq->len) {
865                         rp->offset = 0;
866                         spin_lock(&queue_lock);
867                         list_move(&rp->q.list, &rq->q.list);
868                         spin_unlock(&queue_lock);
869                 }
870                 err = 0;
871         }
872  out:
873         if (rp->offset == 0) {
874                 /* need to release rq */
875                 spin_lock(&queue_lock);
876                 rq->readers--;
877                 if (rq->readers == 0 &&
878                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
879                         list_del(&rq->q.list);
880                         spin_unlock(&queue_lock);
881                         cache_put(rq->item, cd);
882                         kfree(rq->buf);
883                         kfree(rq);
884                 } else
885                         spin_unlock(&queue_lock);
886         }
887         if (err == -EAGAIN)
888                 goto again;
889         inode_unlock(inode);
890         return err ? err :  count;
891 }
892
893 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
894                                  size_t count, struct cache_detail *cd)
895 {
896         ssize_t ret;
897
898         if (count == 0)
899                 return -EINVAL;
900         if (copy_from_user(kaddr, buf, count))
901                 return -EFAULT;
902         kaddr[count] = '\0';
903         ret = cd->cache_parse(cd, kaddr, count);
904         if (!ret)
905                 ret = count;
906         return ret;
907 }
908
909 static ssize_t cache_slow_downcall(const char __user *buf,
910                                    size_t count, struct cache_detail *cd)
911 {
912         static char write_buf[32768]; /* protected by queue_io_mutex */
913         ssize_t ret = -EINVAL;
914
915         if (count >= sizeof(write_buf))
916                 goto out;
917         mutex_lock(&queue_io_mutex);
918         ret = cache_do_downcall(write_buf, buf, count, cd);
919         mutex_unlock(&queue_io_mutex);
920 out:
921         return ret;
922 }
923
924 static ssize_t cache_downcall(struct address_space *mapping,
925                               const char __user *buf,
926                               size_t count, struct cache_detail *cd)
927 {
928         struct page *page;
929         char *kaddr;
930         ssize_t ret = -ENOMEM;
931
932         if (count >= PAGE_SIZE)
933                 goto out_slow;
934
935         page = find_or_create_page(mapping, 0, GFP_KERNEL);
936         if (!page)
937                 goto out_slow;
938
939         kaddr = kmap(page);
940         ret = cache_do_downcall(kaddr, buf, count, cd);
941         kunmap(page);
942         unlock_page(page);
943         put_page(page);
944         return ret;
945 out_slow:
946         return cache_slow_downcall(buf, count, cd);
947 }
948
949 static ssize_t cache_write(struct file *filp, const char __user *buf,
950                            size_t count, loff_t *ppos,
951                            struct cache_detail *cd)
952 {
953         struct address_space *mapping = filp->f_mapping;
954         struct inode *inode = file_inode(filp);
955         ssize_t ret = -EINVAL;
956
957         if (!cd->cache_parse)
958                 goto out;
959
960         inode_lock(inode);
961         ret = cache_downcall(mapping, buf, count, cd);
962         inode_unlock(inode);
963 out:
964         return ret;
965 }
966
967 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
968
969 static __poll_t cache_poll(struct file *filp, poll_table *wait,
970                                struct cache_detail *cd)
971 {
972         __poll_t mask;
973         struct cache_reader *rp = filp->private_data;
974         struct cache_queue *cq;
975
976         poll_wait(filp, &queue_wait, wait);
977
978         /* alway allow write */
979         mask = EPOLLOUT | EPOLLWRNORM;
980
981         if (!rp)
982                 return mask;
983
984         spin_lock(&queue_lock);
985
986         for (cq= &rp->q; &cq->list != &cd->queue;
987              cq = list_entry(cq->list.next, struct cache_queue, list))
988                 if (!cq->reader) {
989                         mask |= EPOLLIN | EPOLLRDNORM;
990                         break;
991                 }
992         spin_unlock(&queue_lock);
993         return mask;
994 }
995
996 static int cache_ioctl(struct inode *ino, struct file *filp,
997                        unsigned int cmd, unsigned long arg,
998                        struct cache_detail *cd)
999 {
1000         int len = 0;
1001         struct cache_reader *rp = filp->private_data;
1002         struct cache_queue *cq;
1003
1004         if (cmd != FIONREAD || !rp)
1005                 return -EINVAL;
1006
1007         spin_lock(&queue_lock);
1008
1009         /* only find the length remaining in current request,
1010          * or the length of the next request
1011          */
1012         for (cq= &rp->q; &cq->list != &cd->queue;
1013              cq = list_entry(cq->list.next, struct cache_queue, list))
1014                 if (!cq->reader) {
1015                         struct cache_request *cr =
1016                                 container_of(cq, struct cache_request, q);
1017                         len = cr->len - rp->offset;
1018                         break;
1019                 }
1020         spin_unlock(&queue_lock);
1021
1022         return put_user(len, (int __user *)arg);
1023 }
1024
1025 static int cache_open(struct inode *inode, struct file *filp,
1026                       struct cache_detail *cd)
1027 {
1028         struct cache_reader *rp = NULL;
1029
1030         if (!cd || !try_module_get(cd->owner))
1031                 return -EACCES;
1032         nonseekable_open(inode, filp);
1033         if (filp->f_mode & FMODE_READ) {
1034                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1035                 if (!rp) {
1036                         module_put(cd->owner);
1037                         return -ENOMEM;
1038                 }
1039                 rp->offset = 0;
1040                 rp->q.reader = 1;
1041
1042                 spin_lock(&queue_lock);
1043                 list_add(&rp->q.list, &cd->queue);
1044                 spin_unlock(&queue_lock);
1045         }
1046         if (filp->f_mode & FMODE_WRITE)
1047                 atomic_inc(&cd->writers);
1048         filp->private_data = rp;
1049         return 0;
1050 }
1051
1052 static int cache_release(struct inode *inode, struct file *filp,
1053                          struct cache_detail *cd)
1054 {
1055         struct cache_reader *rp = filp->private_data;
1056
1057         if (rp) {
1058                 spin_lock(&queue_lock);
1059                 if (rp->offset) {
1060                         struct cache_queue *cq;
1061                         for (cq= &rp->q; &cq->list != &cd->queue;
1062                              cq = list_entry(cq->list.next, struct cache_queue, list))
1063                                 if (!cq->reader) {
1064                                         container_of(cq, struct cache_request, q)
1065                                                 ->readers--;
1066                                         break;
1067                                 }
1068                         rp->offset = 0;
1069                 }
1070                 list_del(&rp->q.list);
1071                 spin_unlock(&queue_lock);
1072
1073                 filp->private_data = NULL;
1074                 kfree(rp);
1075
1076         }
1077         if (filp->f_mode & FMODE_WRITE) {
1078                 atomic_dec(&cd->writers);
1079                 cd->last_close = seconds_since_boot();
1080         }
1081         module_put(cd->owner);
1082         return 0;
1083 }
1084
1085
1086
1087 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1088 {
1089         struct cache_queue *cq, *tmp;
1090         struct cache_request *cr;
1091         struct list_head dequeued;
1092
1093         INIT_LIST_HEAD(&dequeued);
1094         spin_lock(&queue_lock);
1095         list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1096                 if (!cq->reader) {
1097                         cr = container_of(cq, struct cache_request, q);
1098                         if (cr->item != ch)
1099                                 continue;
1100                         if (test_bit(CACHE_PENDING, &ch->flags))
1101                                 /* Lost a race and it is pending again */
1102                                 break;
1103                         if (cr->readers != 0)
1104                                 continue;
1105                         list_move(&cr->q.list, &dequeued);
1106                 }
1107         spin_unlock(&queue_lock);
1108         while (!list_empty(&dequeued)) {
1109                 cr = list_entry(dequeued.next, struct cache_request, q.list);
1110                 list_del(&cr->q.list);
1111                 cache_put(cr->item, detail);
1112                 kfree(cr->buf);
1113                 kfree(cr);
1114         }
1115 }
1116
1117 /*
1118  * Support routines for text-based upcalls.
1119  * Fields are separated by spaces.
1120  * Fields are either mangled to quote space tab newline slosh with slosh
1121  * or a hexified with a leading \x
1122  * Record is terminated with newline.
1123  *
1124  */
1125
1126 void qword_add(char **bpp, int *lp, char *str)
1127 {
1128         char *bp = *bpp;
1129         int len = *lp;
1130         int ret;
1131
1132         if (len < 0) return;
1133
1134         ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1135         if (ret >= len) {
1136                 bp += len;
1137                 len = -1;
1138         } else {
1139                 bp += ret;
1140                 len -= ret;
1141                 *bp++ = ' ';
1142                 len--;
1143         }
1144         *bpp = bp;
1145         *lp = len;
1146 }
1147 EXPORT_SYMBOL_GPL(qword_add);
1148
1149 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1150 {
1151         char *bp = *bpp;
1152         int len = *lp;
1153
1154         if (len < 0) return;
1155
1156         if (len > 2) {
1157                 *bp++ = '\\';
1158                 *bp++ = 'x';
1159                 len -= 2;
1160                 while (blen && len >= 2) {
1161                         bp = hex_byte_pack(bp, *buf++);
1162                         len -= 2;
1163                         blen--;
1164                 }
1165         }
1166         if (blen || len<1) len = -1;
1167         else {
1168                 *bp++ = ' ';
1169                 len--;
1170         }
1171         *bpp = bp;
1172         *lp = len;
1173 }
1174 EXPORT_SYMBOL_GPL(qword_addhex);
1175
1176 static void warn_no_listener(struct cache_detail *detail)
1177 {
1178         if (detail->last_warn != detail->last_close) {
1179                 detail->last_warn = detail->last_close;
1180                 if (detail->warn_no_listener)
1181                         detail->warn_no_listener(detail, detail->last_close != 0);
1182         }
1183 }
1184
1185 static bool cache_listeners_exist(struct cache_detail *detail)
1186 {
1187         if (atomic_read(&detail->writers))
1188                 return true;
1189         if (detail->last_close == 0)
1190                 /* This cache was never opened */
1191                 return false;
1192         if (detail->last_close < seconds_since_boot() - 30)
1193                 /*
1194                  * We allow for the possibility that someone might
1195                  * restart a userspace daemon without restarting the
1196                  * server; but after 30 seconds, we give up.
1197                  */
1198                  return false;
1199         return true;
1200 }
1201
1202 /*
1203  * register an upcall request to user-space and queue it up for read() by the
1204  * upcall daemon.
1205  *
1206  * Each request is at most one page long.
1207  */
1208 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1209 {
1210         char *buf;
1211         struct cache_request *crq;
1212         int ret = 0;
1213
1214         if (test_bit(CACHE_CLEANED, &h->flags))
1215                 /* Too late to make an upcall */
1216                 return -EAGAIN;
1217
1218         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1219         if (!buf)
1220                 return -EAGAIN;
1221
1222         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1223         if (!crq) {
1224                 kfree(buf);
1225                 return -EAGAIN;
1226         }
1227
1228         crq->q.reader = 0;
1229         crq->buf = buf;
1230         crq->len = 0;
1231         crq->readers = 0;
1232         spin_lock(&queue_lock);
1233         if (test_bit(CACHE_PENDING, &h->flags)) {
1234                 crq->item = cache_get(h);
1235                 list_add_tail(&crq->q.list, &detail->queue);
1236                 trace_cache_entry_upcall(detail, h);
1237         } else
1238                 /* Lost a race, no longer PENDING, so don't enqueue */
1239                 ret = -EAGAIN;
1240         spin_unlock(&queue_lock);
1241         wake_up(&queue_wait);
1242         if (ret == -EAGAIN) {
1243                 kfree(buf);
1244                 kfree(crq);
1245         }
1246         return ret;
1247 }
1248
1249 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1250 {
1251         if (test_and_set_bit(CACHE_PENDING, &h->flags))
1252                 return 0;
1253         return cache_pipe_upcall(detail, h);
1254 }
1255 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1256
1257 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1258                                      struct cache_head *h)
1259 {
1260         if (!cache_listeners_exist(detail)) {
1261                 warn_no_listener(detail);
1262                 trace_cache_entry_no_listener(detail, h);
1263                 return -EINVAL;
1264         }
1265         return sunrpc_cache_pipe_upcall(detail, h);
1266 }
1267 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1268
1269 /*
1270  * parse a message from user-space and pass it
1271  * to an appropriate cache
1272  * Messages are, like requests, separated into fields by
1273  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1274  *
1275  * Message is
1276  *   reply cachename expiry key ... content....
1277  *
1278  * key and content are both parsed by cache
1279  */
1280
1281 int qword_get(char **bpp, char *dest, int bufsize)
1282 {
1283         /* return bytes copied, or -1 on error */
1284         char *bp = *bpp;
1285         int len = 0;
1286
1287         while (*bp == ' ') bp++;
1288
1289         if (bp[0] == '\\' && bp[1] == 'x') {
1290                 /* HEX STRING */
1291                 bp += 2;
1292                 while (len < bufsize - 1) {
1293                         int h, l;
1294
1295                         h = hex_to_bin(bp[0]);
1296                         if (h < 0)
1297                                 break;
1298
1299                         l = hex_to_bin(bp[1]);
1300                         if (l < 0)
1301                                 break;
1302
1303                         *dest++ = (h << 4) | l;
1304                         bp += 2;
1305                         len++;
1306                 }
1307         } else {
1308                 /* text with \nnn octal quoting */
1309                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1310                         if (*bp == '\\' &&
1311                             isodigit(bp[1]) && (bp[1] <= '3') &&
1312                             isodigit(bp[2]) &&
1313                             isodigit(bp[3])) {
1314                                 int byte = (*++bp -'0');
1315                                 bp++;
1316                                 byte = (byte << 3) | (*bp++ - '0');
1317                                 byte = (byte << 3) | (*bp++ - '0');
1318                                 *dest++ = byte;
1319                                 len++;
1320                         } else {
1321                                 *dest++ = *bp++;
1322                                 len++;
1323                         }
1324                 }
1325         }
1326
1327         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1328                 return -1;
1329         while (*bp == ' ') bp++;
1330         *bpp = bp;
1331         *dest = '\0';
1332         return len;
1333 }
1334 EXPORT_SYMBOL_GPL(qword_get);
1335
1336
1337 /*
1338  * support /proc/net/rpc/$CACHENAME/content
1339  * as a seqfile.
1340  * We call ->cache_show passing NULL for the item to
1341  * get a header, then pass each real item in the cache
1342  */
1343
1344 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1345 {
1346         loff_t n = *pos;
1347         unsigned int hash, entry;
1348         struct cache_head *ch;
1349         struct cache_detail *cd = m->private;
1350
1351         if (!n--)
1352                 return SEQ_START_TOKEN;
1353         hash = n >> 32;
1354         entry = n & ((1LL<<32) - 1);
1355
1356         hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1357                 if (!entry--)
1358                         return ch;
1359         n &= ~((1LL<<32) - 1);
1360         do {
1361                 hash++;
1362                 n += 1LL<<32;
1363         } while(hash < cd->hash_size &&
1364                 hlist_empty(&cd->hash_table[hash]));
1365         if (hash >= cd->hash_size)
1366                 return NULL;
1367         *pos = n+1;
1368         return hlist_entry_safe(rcu_dereference_raw(
1369                                 hlist_first_rcu(&cd->hash_table[hash])),
1370                                 struct cache_head, cache_list);
1371 }
1372
1373 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1374 {
1375         struct cache_head *ch = p;
1376         int hash = (*pos >> 32);
1377         struct cache_detail *cd = m->private;
1378
1379         if (p == SEQ_START_TOKEN)
1380                 hash = 0;
1381         else if (ch->cache_list.next == NULL) {
1382                 hash++;
1383                 *pos += 1LL<<32;
1384         } else {
1385                 ++*pos;
1386                 return hlist_entry_safe(rcu_dereference_raw(
1387                                         hlist_next_rcu(&ch->cache_list)),
1388                                         struct cache_head, cache_list);
1389         }
1390         *pos &= ~((1LL<<32) - 1);
1391         while (hash < cd->hash_size &&
1392                hlist_empty(&cd->hash_table[hash])) {
1393                 hash++;
1394                 *pos += 1LL<<32;
1395         }
1396         if (hash >= cd->hash_size)
1397                 return NULL;
1398         ++*pos;
1399         return hlist_entry_safe(rcu_dereference_raw(
1400                                 hlist_first_rcu(&cd->hash_table[hash])),
1401                                 struct cache_head, cache_list);
1402 }
1403
1404 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1405         __acquires(RCU)
1406 {
1407         rcu_read_lock();
1408         return __cache_seq_start(m, pos);
1409 }
1410 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1411
1412 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1413 {
1414         return cache_seq_next(file, p, pos);
1415 }
1416 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1417
1418 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1419         __releases(RCU)
1420 {
1421         rcu_read_unlock();
1422 }
1423 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1424
1425 static int c_show(struct seq_file *m, void *p)
1426 {
1427         struct cache_head *cp = p;
1428         struct cache_detail *cd = m->private;
1429
1430         if (p == SEQ_START_TOKEN)
1431                 return cd->cache_show(m, cd, NULL);
1432
1433         ifdebug(CACHE)
1434                 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1435                            convert_to_wallclock(cp->expiry_time),
1436                            kref_read(&cp->ref), cp->flags);
1437         cache_get(cp);
1438         if (cache_check(cd, cp, NULL))
1439                 /* cache_check does a cache_put on failure */
1440                 seq_puts(m, "# ");
1441         else {
1442                 if (cache_is_expired(cd, cp))
1443                         seq_puts(m, "# ");
1444                 cache_put(cp, cd);
1445         }
1446
1447         return cd->cache_show(m, cd, cp);
1448 }
1449
1450 static const struct seq_operations cache_content_op = {
1451         .start  = cache_seq_start_rcu,
1452         .next   = cache_seq_next_rcu,
1453         .stop   = cache_seq_stop_rcu,
1454         .show   = c_show,
1455 };
1456
1457 static int content_open(struct inode *inode, struct file *file,
1458                         struct cache_detail *cd)
1459 {
1460         struct seq_file *seq;
1461         int err;
1462
1463         if (!cd || !try_module_get(cd->owner))
1464                 return -EACCES;
1465
1466         err = seq_open(file, &cache_content_op);
1467         if (err) {
1468                 module_put(cd->owner);
1469                 return err;
1470         }
1471
1472         seq = file->private_data;
1473         seq->private = cd;
1474         return 0;
1475 }
1476
1477 static int content_release(struct inode *inode, struct file *file,
1478                 struct cache_detail *cd)
1479 {
1480         int ret = seq_release(inode, file);
1481         module_put(cd->owner);
1482         return ret;
1483 }
1484
1485 static int open_flush(struct inode *inode, struct file *file,
1486                         struct cache_detail *cd)
1487 {
1488         if (!cd || !try_module_get(cd->owner))
1489                 return -EACCES;
1490         return nonseekable_open(inode, file);
1491 }
1492
1493 static int release_flush(struct inode *inode, struct file *file,
1494                         struct cache_detail *cd)
1495 {
1496         module_put(cd->owner);
1497         return 0;
1498 }
1499
1500 static ssize_t read_flush(struct file *file, char __user *buf,
1501                           size_t count, loff_t *ppos,
1502                           struct cache_detail *cd)
1503 {
1504         char tbuf[22];
1505         size_t len;
1506
1507         len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1508                         convert_to_wallclock(cd->flush_time));
1509         return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1510 }
1511
1512 static ssize_t write_flush(struct file *file, const char __user *buf,
1513                            size_t count, loff_t *ppos,
1514                            struct cache_detail *cd)
1515 {
1516         char tbuf[20];
1517         char *ep;
1518         time64_t now;
1519
1520         if (*ppos || count > sizeof(tbuf)-1)
1521                 return -EINVAL;
1522         if (copy_from_user(tbuf, buf, count))
1523                 return -EFAULT;
1524         tbuf[count] = 0;
1525         simple_strtoul(tbuf, &ep, 0);
1526         if (*ep && *ep != '\n')
1527                 return -EINVAL;
1528         /* Note that while we check that 'buf' holds a valid number,
1529          * we always ignore the value and just flush everything.
1530          * Making use of the number leads to races.
1531          */
1532
1533         now = seconds_since_boot();
1534         /* Always flush everything, so behave like cache_purge()
1535          * Do this by advancing flush_time to the current time,
1536          * or by one second if it has already reached the current time.
1537          * Newly added cache entries will always have ->last_refresh greater
1538          * that ->flush_time, so they don't get flushed prematurely.
1539          */
1540
1541         if (cd->flush_time >= now)
1542                 now = cd->flush_time + 1;
1543
1544         cd->flush_time = now;
1545         cd->nextcheck = now;
1546         cache_flush();
1547
1548         if (cd->flush)
1549                 cd->flush();
1550
1551         *ppos += count;
1552         return count;
1553 }
1554
1555 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1556                                  size_t count, loff_t *ppos)
1557 {
1558         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1559
1560         return cache_read(filp, buf, count, ppos, cd);
1561 }
1562
1563 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1564                                   size_t count, loff_t *ppos)
1565 {
1566         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1567
1568         return cache_write(filp, buf, count, ppos, cd);
1569 }
1570
1571 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1572 {
1573         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1574
1575         return cache_poll(filp, wait, cd);
1576 }
1577
1578 static long cache_ioctl_procfs(struct file *filp,
1579                                unsigned int cmd, unsigned long arg)
1580 {
1581         struct inode *inode = file_inode(filp);
1582         struct cache_detail *cd = PDE_DATA(inode);
1583
1584         return cache_ioctl(inode, filp, cmd, arg, cd);
1585 }
1586
1587 static int cache_open_procfs(struct inode *inode, struct file *filp)
1588 {
1589         struct cache_detail *cd = PDE_DATA(inode);
1590
1591         return cache_open(inode, filp, cd);
1592 }
1593
1594 static int cache_release_procfs(struct inode *inode, struct file *filp)
1595 {
1596         struct cache_detail *cd = PDE_DATA(inode);
1597
1598         return cache_release(inode, filp, cd);
1599 }
1600
1601 static const struct proc_ops cache_channel_proc_ops = {
1602         .proc_lseek     = no_llseek,
1603         .proc_read      = cache_read_procfs,
1604         .proc_write     = cache_write_procfs,
1605         .proc_poll      = cache_poll_procfs,
1606         .proc_ioctl     = cache_ioctl_procfs, /* for FIONREAD */
1607         .proc_open      = cache_open_procfs,
1608         .proc_release   = cache_release_procfs,
1609 };
1610
1611 static int content_open_procfs(struct inode *inode, struct file *filp)
1612 {
1613         struct cache_detail *cd = PDE_DATA(inode);
1614
1615         return content_open(inode, filp, cd);
1616 }
1617
1618 static int content_release_procfs(struct inode *inode, struct file *filp)
1619 {
1620         struct cache_detail *cd = PDE_DATA(inode);
1621
1622         return content_release(inode, filp, cd);
1623 }
1624
1625 static const struct proc_ops content_proc_ops = {
1626         .proc_open      = content_open_procfs,
1627         .proc_read      = seq_read,
1628         .proc_lseek     = seq_lseek,
1629         .proc_release   = content_release_procfs,
1630 };
1631
1632 static int open_flush_procfs(struct inode *inode, struct file *filp)
1633 {
1634         struct cache_detail *cd = PDE_DATA(inode);
1635
1636         return open_flush(inode, filp, cd);
1637 }
1638
1639 static int release_flush_procfs(struct inode *inode, struct file *filp)
1640 {
1641         struct cache_detail *cd = PDE_DATA(inode);
1642
1643         return release_flush(inode, filp, cd);
1644 }
1645
1646 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1647                             size_t count, loff_t *ppos)
1648 {
1649         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1650
1651         return read_flush(filp, buf, count, ppos, cd);
1652 }
1653
1654 static ssize_t write_flush_procfs(struct file *filp,
1655                                   const char __user *buf,
1656                                   size_t count, loff_t *ppos)
1657 {
1658         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1659
1660         return write_flush(filp, buf, count, ppos, cd);
1661 }
1662
1663 static const struct proc_ops cache_flush_proc_ops = {
1664         .proc_open      = open_flush_procfs,
1665         .proc_read      = read_flush_procfs,
1666         .proc_write     = write_flush_procfs,
1667         .proc_release   = release_flush_procfs,
1668         .proc_lseek     = no_llseek,
1669 };
1670
1671 static void remove_cache_proc_entries(struct cache_detail *cd)
1672 {
1673         if (cd->procfs) {
1674                 proc_remove(cd->procfs);
1675                 cd->procfs = NULL;
1676         }
1677 }
1678
1679 #ifdef CONFIG_PROC_FS
1680 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1681 {
1682         struct proc_dir_entry *p;
1683         struct sunrpc_net *sn;
1684
1685         sn = net_generic(net, sunrpc_net_id);
1686         cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1687         if (cd->procfs == NULL)
1688                 goto out_nomem;
1689
1690         p = proc_create_data("flush", S_IFREG | 0600,
1691                              cd->procfs, &cache_flush_proc_ops, cd);
1692         if (p == NULL)
1693                 goto out_nomem;
1694
1695         if (cd->cache_request || cd->cache_parse) {
1696                 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1697                                      &cache_channel_proc_ops, cd);
1698                 if (p == NULL)
1699                         goto out_nomem;
1700         }
1701         if (cd->cache_show) {
1702                 p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1703                                      &content_proc_ops, cd);
1704                 if (p == NULL)
1705                         goto out_nomem;
1706         }
1707         return 0;
1708 out_nomem:
1709         remove_cache_proc_entries(cd);
1710         return -ENOMEM;
1711 }
1712 #else /* CONFIG_PROC_FS */
1713 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1714 {
1715         return 0;
1716 }
1717 #endif
1718
1719 void __init cache_initialize(void)
1720 {
1721         INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1722 }
1723
1724 int cache_register_net(struct cache_detail *cd, struct net *net)
1725 {
1726         int ret;
1727
1728         sunrpc_init_cache_detail(cd);
1729         ret = create_cache_proc_entries(cd, net);
1730         if (ret)
1731                 sunrpc_destroy_cache_detail(cd);
1732         return ret;
1733 }
1734 EXPORT_SYMBOL_GPL(cache_register_net);
1735
1736 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1737 {
1738         remove_cache_proc_entries(cd);
1739         sunrpc_destroy_cache_detail(cd);
1740 }
1741 EXPORT_SYMBOL_GPL(cache_unregister_net);
1742
1743 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1744 {
1745         struct cache_detail *cd;
1746         int i;
1747
1748         cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1749         if (cd == NULL)
1750                 return ERR_PTR(-ENOMEM);
1751
1752         cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1753                                  GFP_KERNEL);
1754         if (cd->hash_table == NULL) {
1755                 kfree(cd);
1756                 return ERR_PTR(-ENOMEM);
1757         }
1758
1759         for (i = 0; i < cd->hash_size; i++)
1760                 INIT_HLIST_HEAD(&cd->hash_table[i]);
1761         cd->net = net;
1762         return cd;
1763 }
1764 EXPORT_SYMBOL_GPL(cache_create_net);
1765
1766 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1767 {
1768         kfree(cd->hash_table);
1769         kfree(cd);
1770 }
1771 EXPORT_SYMBOL_GPL(cache_destroy_net);
1772
1773 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1774                                  size_t count, loff_t *ppos)
1775 {
1776         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1777
1778         return cache_read(filp, buf, count, ppos, cd);
1779 }
1780
1781 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1782                                   size_t count, loff_t *ppos)
1783 {
1784         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1785
1786         return cache_write(filp, buf, count, ppos, cd);
1787 }
1788
1789 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1790 {
1791         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1792
1793         return cache_poll(filp, wait, cd);
1794 }
1795
1796 static long cache_ioctl_pipefs(struct file *filp,
1797                               unsigned int cmd, unsigned long arg)
1798 {
1799         struct inode *inode = file_inode(filp);
1800         struct cache_detail *cd = RPC_I(inode)->private;
1801
1802         return cache_ioctl(inode, filp, cmd, arg, cd);
1803 }
1804
1805 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1806 {
1807         struct cache_detail *cd = RPC_I(inode)->private;
1808
1809         return cache_open(inode, filp, cd);
1810 }
1811
1812 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1813 {
1814         struct cache_detail *cd = RPC_I(inode)->private;
1815
1816         return cache_release(inode, filp, cd);
1817 }
1818
1819 const struct file_operations cache_file_operations_pipefs = {
1820         .owner          = THIS_MODULE,
1821         .llseek         = no_llseek,
1822         .read           = cache_read_pipefs,
1823         .write          = cache_write_pipefs,
1824         .poll           = cache_poll_pipefs,
1825         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1826         .open           = cache_open_pipefs,
1827         .release        = cache_release_pipefs,
1828 };
1829
1830 static int content_open_pipefs(struct inode *inode, struct file *filp)
1831 {
1832         struct cache_detail *cd = RPC_I(inode)->private;
1833
1834         return content_open(inode, filp, cd);
1835 }
1836
1837 static int content_release_pipefs(struct inode *inode, struct file *filp)
1838 {
1839         struct cache_detail *cd = RPC_I(inode)->private;
1840
1841         return content_release(inode, filp, cd);
1842 }
1843
1844 const struct file_operations content_file_operations_pipefs = {
1845         .open           = content_open_pipefs,
1846         .read           = seq_read,
1847         .llseek         = seq_lseek,
1848         .release        = content_release_pipefs,
1849 };
1850
1851 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1852 {
1853         struct cache_detail *cd = RPC_I(inode)->private;
1854
1855         return open_flush(inode, filp, cd);
1856 }
1857
1858 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1859 {
1860         struct cache_detail *cd = RPC_I(inode)->private;
1861
1862         return release_flush(inode, filp, cd);
1863 }
1864
1865 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1866                             size_t count, loff_t *ppos)
1867 {
1868         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1869
1870         return read_flush(filp, buf, count, ppos, cd);
1871 }
1872
1873 static ssize_t write_flush_pipefs(struct file *filp,
1874                                   const char __user *buf,
1875                                   size_t count, loff_t *ppos)
1876 {
1877         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1878
1879         return write_flush(filp, buf, count, ppos, cd);
1880 }
1881
1882 const struct file_operations cache_flush_operations_pipefs = {
1883         .open           = open_flush_pipefs,
1884         .read           = read_flush_pipefs,
1885         .write          = write_flush_pipefs,
1886         .release        = release_flush_pipefs,
1887         .llseek         = no_llseek,
1888 };
1889
1890 int sunrpc_cache_register_pipefs(struct dentry *parent,
1891                                  const char *name, umode_t umode,
1892                                  struct cache_detail *cd)
1893 {
1894         struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1895         if (IS_ERR(dir))
1896                 return PTR_ERR(dir);
1897         cd->pipefs = dir;
1898         return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1901
1902 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1903 {
1904         if (cd->pipefs) {
1905                 rpc_remove_cache_dir(cd->pipefs);
1906                 cd->pipefs = NULL;
1907         }
1908 }
1909 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1910
1911 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1912 {
1913         spin_lock(&cd->hash_lock);
1914         if (!hlist_unhashed(&h->cache_list)){
1915                 sunrpc_begin_cache_remove_entry(h, cd);
1916                 spin_unlock(&cd->hash_lock);
1917                 sunrpc_end_cache_remove_entry(h, cd);
1918         } else
1919                 spin_unlock(&cd->hash_lock);
1920 }
1921 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);