Merge tag '5.7-rc-smb3-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[linux-2.6-microblaze.git] / net / sunrpc / cache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 #include "netns.h"
37
38 #define  RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45         time64_t now = seconds_since_boot();
46         INIT_HLIST_NODE(&h->cache_list);
47         h->flags = 0;
48         kref_init(&h->ref);
49         h->expiry_time = now + CACHE_NEW_EXPIRY;
50         if (now <= detail->flush_time)
51                 /* ensure it isn't already expired */
52                 now = detail->flush_time + 1;
53         h->last_refresh = now;
54 }
55
56 static void cache_fresh_unlocked(struct cache_head *head,
57                                 struct cache_detail *detail);
58
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60                                                 struct cache_head *key,
61                                                 int hash)
62 {
63         struct hlist_head *head = &detail->hash_table[hash];
64         struct cache_head *tmp;
65
66         rcu_read_lock();
67         hlist_for_each_entry_rcu(tmp, head, cache_list) {
68                 if (!detail->match(tmp, key))
69                         continue;
70                 if (test_bit(CACHE_VALID, &tmp->flags) &&
71                     cache_is_expired(detail, tmp))
72                         continue;
73                 tmp = cache_get_rcu(tmp);
74                 rcu_read_unlock();
75                 return tmp;
76         }
77         rcu_read_unlock();
78         return NULL;
79 }
80
81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
82                                             struct cache_detail *cd)
83 {
84         /* Must be called under cd->hash_lock */
85         hlist_del_init_rcu(&ch->cache_list);
86         set_bit(CACHE_CLEANED, &ch->flags);
87         cd->entries --;
88 }
89
90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
91                                           struct cache_detail *cd)
92 {
93         cache_fresh_unlocked(ch, cd);
94         cache_put(ch, cd);
95 }
96
97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
98                                                  struct cache_head *key,
99                                                  int hash)
100 {
101         struct cache_head *new, *tmp, *freeme = NULL;
102         struct hlist_head *head = &detail->hash_table[hash];
103
104         new = detail->alloc();
105         if (!new)
106                 return NULL;
107         /* must fully initialise 'new', else
108          * we might get lose if we need to
109          * cache_put it soon.
110          */
111         cache_init(new, detail);
112         detail->init(new, key);
113
114         spin_lock(&detail->hash_lock);
115
116         /* check if entry appeared while we slept */
117         hlist_for_each_entry_rcu(tmp, head, cache_list,
118                                  lockdep_is_held(&detail->hash_lock)) {
119                 if (!detail->match(tmp, key))
120                         continue;
121                 if (test_bit(CACHE_VALID, &tmp->flags) &&
122                     cache_is_expired(detail, tmp)) {
123                         sunrpc_begin_cache_remove_entry(tmp, detail);
124                         trace_cache_entry_expired(detail, tmp);
125                         freeme = tmp;
126                         break;
127                 }
128                 cache_get(tmp);
129                 spin_unlock(&detail->hash_lock);
130                 cache_put(new, detail);
131                 return tmp;
132         }
133
134         hlist_add_head_rcu(&new->cache_list, head);
135         detail->entries++;
136         cache_get(new);
137         spin_unlock(&detail->hash_lock);
138
139         if (freeme)
140                 sunrpc_end_cache_remove_entry(freeme, detail);
141         return new;
142 }
143
144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
145                                            struct cache_head *key, int hash)
146 {
147         struct cache_head *ret;
148
149         ret = sunrpc_cache_find_rcu(detail, key, hash);
150         if (ret)
151                 return ret;
152         /* Didn't find anything, insert an empty entry */
153         return sunrpc_cache_add_entry(detail, key, hash);
154 }
155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
156
157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
158
159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
160                                struct cache_detail *detail)
161 {
162         time64_t now = seconds_since_boot();
163         if (now <= detail->flush_time)
164                 /* ensure it isn't immediately treated as expired */
165                 now = detail->flush_time + 1;
166         head->expiry_time = expiry;
167         head->last_refresh = now;
168         smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
169         set_bit(CACHE_VALID, &head->flags);
170 }
171
172 static void cache_fresh_unlocked(struct cache_head *head,
173                                  struct cache_detail *detail)
174 {
175         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
176                 cache_revisit_request(head);
177                 cache_dequeue(detail, head);
178         }
179 }
180
181 static void cache_make_negative(struct cache_detail *detail,
182                                 struct cache_head *h)
183 {
184         set_bit(CACHE_NEGATIVE, &h->flags);
185         trace_cache_entry_make_negative(detail, h);
186 }
187
188 static void cache_entry_update(struct cache_detail *detail,
189                                struct cache_head *h,
190                                struct cache_head *new)
191 {
192         if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
193                 detail->update(h, new);
194                 trace_cache_entry_update(detail, h);
195         } else {
196                 cache_make_negative(detail, h);
197         }
198 }
199
200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
201                                        struct cache_head *new, struct cache_head *old, int hash)
202 {
203         /* The 'old' entry is to be replaced by 'new'.
204          * If 'old' is not VALID, we update it directly,
205          * otherwise we need to replace it
206          */
207         struct cache_head *tmp;
208
209         if (!test_bit(CACHE_VALID, &old->flags)) {
210                 spin_lock(&detail->hash_lock);
211                 if (!test_bit(CACHE_VALID, &old->flags)) {
212                         cache_entry_update(detail, old, new);
213                         cache_fresh_locked(old, new->expiry_time, detail);
214                         spin_unlock(&detail->hash_lock);
215                         cache_fresh_unlocked(old, detail);
216                         return old;
217                 }
218                 spin_unlock(&detail->hash_lock);
219         }
220         /* We need to insert a new entry */
221         tmp = detail->alloc();
222         if (!tmp) {
223                 cache_put(old, detail);
224                 return NULL;
225         }
226         cache_init(tmp, detail);
227         detail->init(tmp, old);
228
229         spin_lock(&detail->hash_lock);
230         cache_entry_update(detail, tmp, new);
231         hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
232         detail->entries++;
233         cache_get(tmp);
234         cache_fresh_locked(tmp, new->expiry_time, detail);
235         cache_fresh_locked(old, 0, detail);
236         spin_unlock(&detail->hash_lock);
237         cache_fresh_unlocked(tmp, detail);
238         cache_fresh_unlocked(old, detail);
239         cache_put(old, detail);
240         return tmp;
241 }
242 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
243
244 static inline int cache_is_valid(struct cache_head *h)
245 {
246         if (!test_bit(CACHE_VALID, &h->flags))
247                 return -EAGAIN;
248         else {
249                 /* entry is valid */
250                 if (test_bit(CACHE_NEGATIVE, &h->flags))
251                         return -ENOENT;
252                 else {
253                         /*
254                          * In combination with write barrier in
255                          * sunrpc_cache_update, ensures that anyone
256                          * using the cache entry after this sees the
257                          * updated contents:
258                          */
259                         smp_rmb();
260                         return 0;
261                 }
262         }
263 }
264
265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
266 {
267         int rv;
268
269         spin_lock(&detail->hash_lock);
270         rv = cache_is_valid(h);
271         if (rv == -EAGAIN) {
272                 cache_make_negative(detail, h);
273                 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
274                                    detail);
275                 rv = -ENOENT;
276         }
277         spin_unlock(&detail->hash_lock);
278         cache_fresh_unlocked(h, detail);
279         return rv;
280 }
281
282 /*
283  * This is the generic cache management routine for all
284  * the authentication caches.
285  * It checks the currency of a cache item and will (later)
286  * initiate an upcall to fill it if needed.
287  *
288  *
289  * Returns 0 if the cache_head can be used, or cache_puts it and returns
290  * -EAGAIN if upcall is pending and request has been queued
291  * -ETIMEDOUT if upcall failed or request could not be queue or
292  *           upcall completed but item is still invalid (implying that
293  *           the cache item has been replaced with a newer one).
294  * -ENOENT if cache entry was negative
295  */
296 int cache_check(struct cache_detail *detail,
297                     struct cache_head *h, struct cache_req *rqstp)
298 {
299         int rv;
300         time64_t refresh_age, age;
301
302         /* First decide return status as best we can */
303         rv = cache_is_valid(h);
304
305         /* now see if we want to start an upcall */
306         refresh_age = (h->expiry_time - h->last_refresh);
307         age = seconds_since_boot() - h->last_refresh;
308
309         if (rqstp == NULL) {
310                 if (rv == -EAGAIN)
311                         rv = -ENOENT;
312         } else if (rv == -EAGAIN ||
313                    (h->expiry_time != 0 && age > refresh_age/2)) {
314                 dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
315                                 refresh_age, age);
316                 switch (detail->cache_upcall(detail, h)) {
317                 case -EINVAL:
318                         rv = try_to_negate_entry(detail, h);
319                         break;
320                 case -EAGAIN:
321                         cache_fresh_unlocked(h, detail);
322                         break;
323                 }
324         }
325
326         if (rv == -EAGAIN) {
327                 if (!cache_defer_req(rqstp, h)) {
328                         /*
329                          * Request was not deferred; handle it as best
330                          * we can ourselves:
331                          */
332                         rv = cache_is_valid(h);
333                         if (rv == -EAGAIN)
334                                 rv = -ETIMEDOUT;
335                 }
336         }
337         if (rv)
338                 cache_put(h, detail);
339         return rv;
340 }
341 EXPORT_SYMBOL_GPL(cache_check);
342
343 /*
344  * caches need to be periodically cleaned.
345  * For this we maintain a list of cache_detail and
346  * a current pointer into that list and into the table
347  * for that entry.
348  *
349  * Each time cache_clean is called it finds the next non-empty entry
350  * in the current table and walks the list in that entry
351  * looking for entries that can be removed.
352  *
353  * An entry gets removed if:
354  * - The expiry is before current time
355  * - The last_refresh time is before the flush_time for that cache
356  *
357  * later we might drop old entries with non-NEVER expiry if that table
358  * is getting 'full' for some definition of 'full'
359  *
360  * The question of "how often to scan a table" is an interesting one
361  * and is answered in part by the use of the "nextcheck" field in the
362  * cache_detail.
363  * When a scan of a table begins, the nextcheck field is set to a time
364  * that is well into the future.
365  * While scanning, if an expiry time is found that is earlier than the
366  * current nextcheck time, nextcheck is set to that expiry time.
367  * If the flush_time is ever set to a time earlier than the nextcheck
368  * time, the nextcheck time is then set to that flush_time.
369  *
370  * A table is then only scanned if the current time is at least
371  * the nextcheck time.
372  *
373  */
374
375 static LIST_HEAD(cache_list);
376 static DEFINE_SPINLOCK(cache_list_lock);
377 static struct cache_detail *current_detail;
378 static int current_index;
379
380 static void do_cache_clean(struct work_struct *work);
381 static struct delayed_work cache_cleaner;
382
383 void sunrpc_init_cache_detail(struct cache_detail *cd)
384 {
385         spin_lock_init(&cd->hash_lock);
386         INIT_LIST_HEAD(&cd->queue);
387         spin_lock(&cache_list_lock);
388         cd->nextcheck = 0;
389         cd->entries = 0;
390         atomic_set(&cd->writers, 0);
391         cd->last_close = 0;
392         cd->last_warn = -1;
393         list_add(&cd->others, &cache_list);
394         spin_unlock(&cache_list_lock);
395
396         /* start the cleaning process */
397         queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
398 }
399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
400
401 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
402 {
403         cache_purge(cd);
404         spin_lock(&cache_list_lock);
405         spin_lock(&cd->hash_lock);
406         if (current_detail == cd)
407                 current_detail = NULL;
408         list_del_init(&cd->others);
409         spin_unlock(&cd->hash_lock);
410         spin_unlock(&cache_list_lock);
411         if (list_empty(&cache_list)) {
412                 /* module must be being unloaded so its safe to kill the worker */
413                 cancel_delayed_work_sync(&cache_cleaner);
414         }
415 }
416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
417
418 /* clean cache tries to find something to clean
419  * and cleans it.
420  * It returns 1 if it cleaned something,
421  *            0 if it didn't find anything this time
422  *           -1 if it fell off the end of the list.
423  */
424 static int cache_clean(void)
425 {
426         int rv = 0;
427         struct list_head *next;
428
429         spin_lock(&cache_list_lock);
430
431         /* find a suitable table if we don't already have one */
432         while (current_detail == NULL ||
433             current_index >= current_detail->hash_size) {
434                 if (current_detail)
435                         next = current_detail->others.next;
436                 else
437                         next = cache_list.next;
438                 if (next == &cache_list) {
439                         current_detail = NULL;
440                         spin_unlock(&cache_list_lock);
441                         return -1;
442                 }
443                 current_detail = list_entry(next, struct cache_detail, others);
444                 if (current_detail->nextcheck > seconds_since_boot())
445                         current_index = current_detail->hash_size;
446                 else {
447                         current_index = 0;
448                         current_detail->nextcheck = seconds_since_boot()+30*60;
449                 }
450         }
451
452         /* find a non-empty bucket in the table */
453         while (current_detail &&
454                current_index < current_detail->hash_size &&
455                hlist_empty(&current_detail->hash_table[current_index]))
456                 current_index++;
457
458         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
459
460         if (current_detail && current_index < current_detail->hash_size) {
461                 struct cache_head *ch = NULL;
462                 struct cache_detail *d;
463                 struct hlist_head *head;
464                 struct hlist_node *tmp;
465
466                 spin_lock(&current_detail->hash_lock);
467
468                 /* Ok, now to clean this strand */
469
470                 head = &current_detail->hash_table[current_index];
471                 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
472                         if (current_detail->nextcheck > ch->expiry_time)
473                                 current_detail->nextcheck = ch->expiry_time+1;
474                         if (!cache_is_expired(current_detail, ch))
475                                 continue;
476
477                         sunrpc_begin_cache_remove_entry(ch, current_detail);
478                         trace_cache_entry_expired(current_detail, ch);
479                         rv = 1;
480                         break;
481                 }
482
483                 spin_unlock(&current_detail->hash_lock);
484                 d = current_detail;
485                 if (!ch)
486                         current_index ++;
487                 spin_unlock(&cache_list_lock);
488                 if (ch)
489                         sunrpc_end_cache_remove_entry(ch, d);
490         } else
491                 spin_unlock(&cache_list_lock);
492
493         return rv;
494 }
495
496 /*
497  * We want to regularly clean the cache, so we need to schedule some work ...
498  */
499 static void do_cache_clean(struct work_struct *work)
500 {
501         int delay = 5;
502         if (cache_clean() == -1)
503                 delay = round_jiffies_relative(30*HZ);
504
505         if (list_empty(&cache_list))
506                 delay = 0;
507
508         if (delay)
509                 queue_delayed_work(system_power_efficient_wq,
510                                    &cache_cleaner, delay);
511 }
512
513
514 /*
515  * Clean all caches promptly.  This just calls cache_clean
516  * repeatedly until we are sure that every cache has had a chance to
517  * be fully cleaned
518  */
519 void cache_flush(void)
520 {
521         while (cache_clean() != -1)
522                 cond_resched();
523         while (cache_clean() != -1)
524                 cond_resched();
525 }
526 EXPORT_SYMBOL_GPL(cache_flush);
527
528 void cache_purge(struct cache_detail *detail)
529 {
530         struct cache_head *ch = NULL;
531         struct hlist_head *head = NULL;
532         struct hlist_node *tmp = NULL;
533         int i = 0;
534
535         spin_lock(&detail->hash_lock);
536         if (!detail->entries) {
537                 spin_unlock(&detail->hash_lock);
538                 return;
539         }
540
541         dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
542         for (i = 0; i < detail->hash_size; i++) {
543                 head = &detail->hash_table[i];
544                 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
545                         sunrpc_begin_cache_remove_entry(ch, detail);
546                         spin_unlock(&detail->hash_lock);
547                         sunrpc_end_cache_remove_entry(ch, detail);
548                         spin_lock(&detail->hash_lock);
549                 }
550         }
551         spin_unlock(&detail->hash_lock);
552 }
553 EXPORT_SYMBOL_GPL(cache_purge);
554
555
556 /*
557  * Deferral and Revisiting of Requests.
558  *
559  * If a cache lookup finds a pending entry, we
560  * need to defer the request and revisit it later.
561  * All deferred requests are stored in a hash table,
562  * indexed by "struct cache_head *".
563  * As it may be wasteful to store a whole request
564  * structure, we allow the request to provide a
565  * deferred form, which must contain a
566  * 'struct cache_deferred_req'
567  * This cache_deferred_req contains a method to allow
568  * it to be revisited when cache info is available
569  */
570
571 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
572 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
573
574 #define DFR_MAX 300     /* ??? */
575
576 static DEFINE_SPINLOCK(cache_defer_lock);
577 static LIST_HEAD(cache_defer_list);
578 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
579 static int cache_defer_cnt;
580
581 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
582 {
583         hlist_del_init(&dreq->hash);
584         if (!list_empty(&dreq->recent)) {
585                 list_del_init(&dreq->recent);
586                 cache_defer_cnt--;
587         }
588 }
589
590 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
591 {
592         int hash = DFR_HASH(item);
593
594         INIT_LIST_HEAD(&dreq->recent);
595         hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
596 }
597
598 static void setup_deferral(struct cache_deferred_req *dreq,
599                            struct cache_head *item,
600                            int count_me)
601 {
602
603         dreq->item = item;
604
605         spin_lock(&cache_defer_lock);
606
607         __hash_deferred_req(dreq, item);
608
609         if (count_me) {
610                 cache_defer_cnt++;
611                 list_add(&dreq->recent, &cache_defer_list);
612         }
613
614         spin_unlock(&cache_defer_lock);
615
616 }
617
618 struct thread_deferred_req {
619         struct cache_deferred_req handle;
620         struct completion completion;
621 };
622
623 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
624 {
625         struct thread_deferred_req *dr =
626                 container_of(dreq, struct thread_deferred_req, handle);
627         complete(&dr->completion);
628 }
629
630 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
631 {
632         struct thread_deferred_req sleeper;
633         struct cache_deferred_req *dreq = &sleeper.handle;
634
635         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
636         dreq->revisit = cache_restart_thread;
637
638         setup_deferral(dreq, item, 0);
639
640         if (!test_bit(CACHE_PENDING, &item->flags) ||
641             wait_for_completion_interruptible_timeout(
642                     &sleeper.completion, req->thread_wait) <= 0) {
643                 /* The completion wasn't completed, so we need
644                  * to clean up
645                  */
646                 spin_lock(&cache_defer_lock);
647                 if (!hlist_unhashed(&sleeper.handle.hash)) {
648                         __unhash_deferred_req(&sleeper.handle);
649                         spin_unlock(&cache_defer_lock);
650                 } else {
651                         /* cache_revisit_request already removed
652                          * this from the hash table, but hasn't
653                          * called ->revisit yet.  It will very soon
654                          * and we need to wait for it.
655                          */
656                         spin_unlock(&cache_defer_lock);
657                         wait_for_completion(&sleeper.completion);
658                 }
659         }
660 }
661
662 static void cache_limit_defers(void)
663 {
664         /* Make sure we haven't exceed the limit of allowed deferred
665          * requests.
666          */
667         struct cache_deferred_req *discard = NULL;
668
669         if (cache_defer_cnt <= DFR_MAX)
670                 return;
671
672         spin_lock(&cache_defer_lock);
673
674         /* Consider removing either the first or the last */
675         if (cache_defer_cnt > DFR_MAX) {
676                 if (prandom_u32() & 1)
677                         discard = list_entry(cache_defer_list.next,
678                                              struct cache_deferred_req, recent);
679                 else
680                         discard = list_entry(cache_defer_list.prev,
681                                              struct cache_deferred_req, recent);
682                 __unhash_deferred_req(discard);
683         }
684         spin_unlock(&cache_defer_lock);
685         if (discard)
686                 discard->revisit(discard, 1);
687 }
688
689 /* Return true if and only if a deferred request is queued. */
690 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
691 {
692         struct cache_deferred_req *dreq;
693
694         if (req->thread_wait) {
695                 cache_wait_req(req, item);
696                 if (!test_bit(CACHE_PENDING, &item->flags))
697                         return false;
698         }
699         dreq = req->defer(req);
700         if (dreq == NULL)
701                 return false;
702         setup_deferral(dreq, item, 1);
703         if (!test_bit(CACHE_PENDING, &item->flags))
704                 /* Bit could have been cleared before we managed to
705                  * set up the deferral, so need to revisit just in case
706                  */
707                 cache_revisit_request(item);
708
709         cache_limit_defers();
710         return true;
711 }
712
713 static void cache_revisit_request(struct cache_head *item)
714 {
715         struct cache_deferred_req *dreq;
716         struct list_head pending;
717         struct hlist_node *tmp;
718         int hash = DFR_HASH(item);
719
720         INIT_LIST_HEAD(&pending);
721         spin_lock(&cache_defer_lock);
722
723         hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
724                 if (dreq->item == item) {
725                         __unhash_deferred_req(dreq);
726                         list_add(&dreq->recent, &pending);
727                 }
728
729         spin_unlock(&cache_defer_lock);
730
731         while (!list_empty(&pending)) {
732                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
733                 list_del_init(&dreq->recent);
734                 dreq->revisit(dreq, 0);
735         }
736 }
737
738 void cache_clean_deferred(void *owner)
739 {
740         struct cache_deferred_req *dreq, *tmp;
741         struct list_head pending;
742
743
744         INIT_LIST_HEAD(&pending);
745         spin_lock(&cache_defer_lock);
746
747         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
748                 if (dreq->owner == owner) {
749                         __unhash_deferred_req(dreq);
750                         list_add(&dreq->recent, &pending);
751                 }
752         }
753         spin_unlock(&cache_defer_lock);
754
755         while (!list_empty(&pending)) {
756                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
757                 list_del_init(&dreq->recent);
758                 dreq->revisit(dreq, 1);
759         }
760 }
761
762 /*
763  * communicate with user-space
764  *
765  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
766  * On read, you get a full request, or block.
767  * On write, an update request is processed.
768  * Poll works if anything to read, and always allows write.
769  *
770  * Implemented by linked list of requests.  Each open file has
771  * a ->private that also exists in this list.  New requests are added
772  * to the end and may wakeup and preceding readers.
773  * New readers are added to the head.  If, on read, an item is found with
774  * CACHE_UPCALLING clear, we free it from the list.
775  *
776  */
777
778 static DEFINE_SPINLOCK(queue_lock);
779 static DEFINE_MUTEX(queue_io_mutex);
780
781 struct cache_queue {
782         struct list_head        list;
783         int                     reader; /* if 0, then request */
784 };
785 struct cache_request {
786         struct cache_queue      q;
787         struct cache_head       *item;
788         char                    * buf;
789         int                     len;
790         int                     readers;
791 };
792 struct cache_reader {
793         struct cache_queue      q;
794         int                     offset; /* if non-0, we have a refcnt on next request */
795 };
796
797 static int cache_request(struct cache_detail *detail,
798                                struct cache_request *crq)
799 {
800         char *bp = crq->buf;
801         int len = PAGE_SIZE;
802
803         detail->cache_request(detail, crq->item, &bp, &len);
804         if (len < 0)
805                 return -EAGAIN;
806         return PAGE_SIZE - len;
807 }
808
809 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
810                           loff_t *ppos, struct cache_detail *cd)
811 {
812         struct cache_reader *rp = filp->private_data;
813         struct cache_request *rq;
814         struct inode *inode = file_inode(filp);
815         int err;
816
817         if (count == 0)
818                 return 0;
819
820         inode_lock(inode); /* protect against multiple concurrent
821                               * readers on this file */
822  again:
823         spin_lock(&queue_lock);
824         /* need to find next request */
825         while (rp->q.list.next != &cd->queue &&
826                list_entry(rp->q.list.next, struct cache_queue, list)
827                ->reader) {
828                 struct list_head *next = rp->q.list.next;
829                 list_move(&rp->q.list, next);
830         }
831         if (rp->q.list.next == &cd->queue) {
832                 spin_unlock(&queue_lock);
833                 inode_unlock(inode);
834                 WARN_ON_ONCE(rp->offset);
835                 return 0;
836         }
837         rq = container_of(rp->q.list.next, struct cache_request, q.list);
838         WARN_ON_ONCE(rq->q.reader);
839         if (rp->offset == 0)
840                 rq->readers++;
841         spin_unlock(&queue_lock);
842
843         if (rq->len == 0) {
844                 err = cache_request(cd, rq);
845                 if (err < 0)
846                         goto out;
847                 rq->len = err;
848         }
849
850         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
851                 err = -EAGAIN;
852                 spin_lock(&queue_lock);
853                 list_move(&rp->q.list, &rq->q.list);
854                 spin_unlock(&queue_lock);
855         } else {
856                 if (rp->offset + count > rq->len)
857                         count = rq->len - rp->offset;
858                 err = -EFAULT;
859                 if (copy_to_user(buf, rq->buf + rp->offset, count))
860                         goto out;
861                 rp->offset += count;
862                 if (rp->offset >= rq->len) {
863                         rp->offset = 0;
864                         spin_lock(&queue_lock);
865                         list_move(&rp->q.list, &rq->q.list);
866                         spin_unlock(&queue_lock);
867                 }
868                 err = 0;
869         }
870  out:
871         if (rp->offset == 0) {
872                 /* need to release rq */
873                 spin_lock(&queue_lock);
874                 rq->readers--;
875                 if (rq->readers == 0 &&
876                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
877                         list_del(&rq->q.list);
878                         spin_unlock(&queue_lock);
879                         cache_put(rq->item, cd);
880                         kfree(rq->buf);
881                         kfree(rq);
882                 } else
883                         spin_unlock(&queue_lock);
884         }
885         if (err == -EAGAIN)
886                 goto again;
887         inode_unlock(inode);
888         return err ? err :  count;
889 }
890
891 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
892                                  size_t count, struct cache_detail *cd)
893 {
894         ssize_t ret;
895
896         if (count == 0)
897                 return -EINVAL;
898         if (copy_from_user(kaddr, buf, count))
899                 return -EFAULT;
900         kaddr[count] = '\0';
901         ret = cd->cache_parse(cd, kaddr, count);
902         if (!ret)
903                 ret = count;
904         return ret;
905 }
906
907 static ssize_t cache_slow_downcall(const char __user *buf,
908                                    size_t count, struct cache_detail *cd)
909 {
910         static char write_buf[8192]; /* protected by queue_io_mutex */
911         ssize_t ret = -EINVAL;
912
913         if (count >= sizeof(write_buf))
914                 goto out;
915         mutex_lock(&queue_io_mutex);
916         ret = cache_do_downcall(write_buf, buf, count, cd);
917         mutex_unlock(&queue_io_mutex);
918 out:
919         return ret;
920 }
921
922 static ssize_t cache_downcall(struct address_space *mapping,
923                               const char __user *buf,
924                               size_t count, struct cache_detail *cd)
925 {
926         struct page *page;
927         char *kaddr;
928         ssize_t ret = -ENOMEM;
929
930         if (count >= PAGE_SIZE)
931                 goto out_slow;
932
933         page = find_or_create_page(mapping, 0, GFP_KERNEL);
934         if (!page)
935                 goto out_slow;
936
937         kaddr = kmap(page);
938         ret = cache_do_downcall(kaddr, buf, count, cd);
939         kunmap(page);
940         unlock_page(page);
941         put_page(page);
942         return ret;
943 out_slow:
944         return cache_slow_downcall(buf, count, cd);
945 }
946
947 static ssize_t cache_write(struct file *filp, const char __user *buf,
948                            size_t count, loff_t *ppos,
949                            struct cache_detail *cd)
950 {
951         struct address_space *mapping = filp->f_mapping;
952         struct inode *inode = file_inode(filp);
953         ssize_t ret = -EINVAL;
954
955         if (!cd->cache_parse)
956                 goto out;
957
958         inode_lock(inode);
959         ret = cache_downcall(mapping, buf, count, cd);
960         inode_unlock(inode);
961 out:
962         return ret;
963 }
964
965 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
966
967 static __poll_t cache_poll(struct file *filp, poll_table *wait,
968                                struct cache_detail *cd)
969 {
970         __poll_t mask;
971         struct cache_reader *rp = filp->private_data;
972         struct cache_queue *cq;
973
974         poll_wait(filp, &queue_wait, wait);
975
976         /* alway allow write */
977         mask = EPOLLOUT | EPOLLWRNORM;
978
979         if (!rp)
980                 return mask;
981
982         spin_lock(&queue_lock);
983
984         for (cq= &rp->q; &cq->list != &cd->queue;
985              cq = list_entry(cq->list.next, struct cache_queue, list))
986                 if (!cq->reader) {
987                         mask |= EPOLLIN | EPOLLRDNORM;
988                         break;
989                 }
990         spin_unlock(&queue_lock);
991         return mask;
992 }
993
994 static int cache_ioctl(struct inode *ino, struct file *filp,
995                        unsigned int cmd, unsigned long arg,
996                        struct cache_detail *cd)
997 {
998         int len = 0;
999         struct cache_reader *rp = filp->private_data;
1000         struct cache_queue *cq;
1001
1002         if (cmd != FIONREAD || !rp)
1003                 return -EINVAL;
1004
1005         spin_lock(&queue_lock);
1006
1007         /* only find the length remaining in current request,
1008          * or the length of the next request
1009          */
1010         for (cq= &rp->q; &cq->list != &cd->queue;
1011              cq = list_entry(cq->list.next, struct cache_queue, list))
1012                 if (!cq->reader) {
1013                         struct cache_request *cr =
1014                                 container_of(cq, struct cache_request, q);
1015                         len = cr->len - rp->offset;
1016                         break;
1017                 }
1018         spin_unlock(&queue_lock);
1019
1020         return put_user(len, (int __user *)arg);
1021 }
1022
1023 static int cache_open(struct inode *inode, struct file *filp,
1024                       struct cache_detail *cd)
1025 {
1026         struct cache_reader *rp = NULL;
1027
1028         if (!cd || !try_module_get(cd->owner))
1029                 return -EACCES;
1030         nonseekable_open(inode, filp);
1031         if (filp->f_mode & FMODE_READ) {
1032                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1033                 if (!rp) {
1034                         module_put(cd->owner);
1035                         return -ENOMEM;
1036                 }
1037                 rp->offset = 0;
1038                 rp->q.reader = 1;
1039
1040                 spin_lock(&queue_lock);
1041                 list_add(&rp->q.list, &cd->queue);
1042                 spin_unlock(&queue_lock);
1043         }
1044         if (filp->f_mode & FMODE_WRITE)
1045                 atomic_inc(&cd->writers);
1046         filp->private_data = rp;
1047         return 0;
1048 }
1049
1050 static int cache_release(struct inode *inode, struct file *filp,
1051                          struct cache_detail *cd)
1052 {
1053         struct cache_reader *rp = filp->private_data;
1054
1055         if (rp) {
1056                 spin_lock(&queue_lock);
1057                 if (rp->offset) {
1058                         struct cache_queue *cq;
1059                         for (cq= &rp->q; &cq->list != &cd->queue;
1060                              cq = list_entry(cq->list.next, struct cache_queue, list))
1061                                 if (!cq->reader) {
1062                                         container_of(cq, struct cache_request, q)
1063                                                 ->readers--;
1064                                         break;
1065                                 }
1066                         rp->offset = 0;
1067                 }
1068                 list_del(&rp->q.list);
1069                 spin_unlock(&queue_lock);
1070
1071                 filp->private_data = NULL;
1072                 kfree(rp);
1073
1074         }
1075         if (filp->f_mode & FMODE_WRITE) {
1076                 atomic_dec(&cd->writers);
1077                 cd->last_close = seconds_since_boot();
1078         }
1079         module_put(cd->owner);
1080         return 0;
1081 }
1082
1083
1084
1085 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1086 {
1087         struct cache_queue *cq, *tmp;
1088         struct cache_request *cr;
1089         struct list_head dequeued;
1090
1091         INIT_LIST_HEAD(&dequeued);
1092         spin_lock(&queue_lock);
1093         list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1094                 if (!cq->reader) {
1095                         cr = container_of(cq, struct cache_request, q);
1096                         if (cr->item != ch)
1097                                 continue;
1098                         if (test_bit(CACHE_PENDING, &ch->flags))
1099                                 /* Lost a race and it is pending again */
1100                                 break;
1101                         if (cr->readers != 0)
1102                                 continue;
1103                         list_move(&cr->q.list, &dequeued);
1104                 }
1105         spin_unlock(&queue_lock);
1106         while (!list_empty(&dequeued)) {
1107                 cr = list_entry(dequeued.next, struct cache_request, q.list);
1108                 list_del(&cr->q.list);
1109                 cache_put(cr->item, detail);
1110                 kfree(cr->buf);
1111                 kfree(cr);
1112         }
1113 }
1114
1115 /*
1116  * Support routines for text-based upcalls.
1117  * Fields are separated by spaces.
1118  * Fields are either mangled to quote space tab newline slosh with slosh
1119  * or a hexified with a leading \x
1120  * Record is terminated with newline.
1121  *
1122  */
1123
1124 void qword_add(char **bpp, int *lp, char *str)
1125 {
1126         char *bp = *bpp;
1127         int len = *lp;
1128         int ret;
1129
1130         if (len < 0) return;
1131
1132         ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1133         if (ret >= len) {
1134                 bp += len;
1135                 len = -1;
1136         } else {
1137                 bp += ret;
1138                 len -= ret;
1139                 *bp++ = ' ';
1140                 len--;
1141         }
1142         *bpp = bp;
1143         *lp = len;
1144 }
1145 EXPORT_SYMBOL_GPL(qword_add);
1146
1147 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1148 {
1149         char *bp = *bpp;
1150         int len = *lp;
1151
1152         if (len < 0) return;
1153
1154         if (len > 2) {
1155                 *bp++ = '\\';
1156                 *bp++ = 'x';
1157                 len -= 2;
1158                 while (blen && len >= 2) {
1159                         bp = hex_byte_pack(bp, *buf++);
1160                         len -= 2;
1161                         blen--;
1162                 }
1163         }
1164         if (blen || len<1) len = -1;
1165         else {
1166                 *bp++ = ' ';
1167                 len--;
1168         }
1169         *bpp = bp;
1170         *lp = len;
1171 }
1172 EXPORT_SYMBOL_GPL(qword_addhex);
1173
1174 static void warn_no_listener(struct cache_detail *detail)
1175 {
1176         if (detail->last_warn != detail->last_close) {
1177                 detail->last_warn = detail->last_close;
1178                 if (detail->warn_no_listener)
1179                         detail->warn_no_listener(detail, detail->last_close != 0);
1180         }
1181 }
1182
1183 static bool cache_listeners_exist(struct cache_detail *detail)
1184 {
1185         if (atomic_read(&detail->writers))
1186                 return true;
1187         if (detail->last_close == 0)
1188                 /* This cache was never opened */
1189                 return false;
1190         if (detail->last_close < seconds_since_boot() - 30)
1191                 /*
1192                  * We allow for the possibility that someone might
1193                  * restart a userspace daemon without restarting the
1194                  * server; but after 30 seconds, we give up.
1195                  */
1196                  return false;
1197         return true;
1198 }
1199
1200 /*
1201  * register an upcall request to user-space and queue it up for read() by the
1202  * upcall daemon.
1203  *
1204  * Each request is at most one page long.
1205  */
1206 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1207 {
1208         char *buf;
1209         struct cache_request *crq;
1210         int ret = 0;
1211
1212         if (test_bit(CACHE_CLEANED, &h->flags))
1213                 /* Too late to make an upcall */
1214                 return -EAGAIN;
1215
1216         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1217         if (!buf)
1218                 return -EAGAIN;
1219
1220         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1221         if (!crq) {
1222                 kfree(buf);
1223                 return -EAGAIN;
1224         }
1225
1226         crq->q.reader = 0;
1227         crq->buf = buf;
1228         crq->len = 0;
1229         crq->readers = 0;
1230         spin_lock(&queue_lock);
1231         if (test_bit(CACHE_PENDING, &h->flags)) {
1232                 crq->item = cache_get(h);
1233                 list_add_tail(&crq->q.list, &detail->queue);
1234                 trace_cache_entry_upcall(detail, h);
1235         } else
1236                 /* Lost a race, no longer PENDING, so don't enqueue */
1237                 ret = -EAGAIN;
1238         spin_unlock(&queue_lock);
1239         wake_up(&queue_wait);
1240         if (ret == -EAGAIN) {
1241                 kfree(buf);
1242                 kfree(crq);
1243         }
1244         return ret;
1245 }
1246
1247 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1248 {
1249         if (test_and_set_bit(CACHE_PENDING, &h->flags))
1250                 return 0;
1251         return cache_pipe_upcall(detail, h);
1252 }
1253 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1254
1255 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1256                                      struct cache_head *h)
1257 {
1258         if (!cache_listeners_exist(detail)) {
1259                 warn_no_listener(detail);
1260                 trace_cache_entry_no_listener(detail, h);
1261                 return -EINVAL;
1262         }
1263         return sunrpc_cache_pipe_upcall(detail, h);
1264 }
1265 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1266
1267 /*
1268  * parse a message from user-space and pass it
1269  * to an appropriate cache
1270  * Messages are, like requests, separated into fields by
1271  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1272  *
1273  * Message is
1274  *   reply cachename expiry key ... content....
1275  *
1276  * key and content are both parsed by cache
1277  */
1278
1279 int qword_get(char **bpp, char *dest, int bufsize)
1280 {
1281         /* return bytes copied, or -1 on error */
1282         char *bp = *bpp;
1283         int len = 0;
1284
1285         while (*bp == ' ') bp++;
1286
1287         if (bp[0] == '\\' && bp[1] == 'x') {
1288                 /* HEX STRING */
1289                 bp += 2;
1290                 while (len < bufsize - 1) {
1291                         int h, l;
1292
1293                         h = hex_to_bin(bp[0]);
1294                         if (h < 0)
1295                                 break;
1296
1297                         l = hex_to_bin(bp[1]);
1298                         if (l < 0)
1299                                 break;
1300
1301                         *dest++ = (h << 4) | l;
1302                         bp += 2;
1303                         len++;
1304                 }
1305         } else {
1306                 /* text with \nnn octal quoting */
1307                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1308                         if (*bp == '\\' &&
1309                             isodigit(bp[1]) && (bp[1] <= '3') &&
1310                             isodigit(bp[2]) &&
1311                             isodigit(bp[3])) {
1312                                 int byte = (*++bp -'0');
1313                                 bp++;
1314                                 byte = (byte << 3) | (*bp++ - '0');
1315                                 byte = (byte << 3) | (*bp++ - '0');
1316                                 *dest++ = byte;
1317                                 len++;
1318                         } else {
1319                                 *dest++ = *bp++;
1320                                 len++;
1321                         }
1322                 }
1323         }
1324
1325         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1326                 return -1;
1327         while (*bp == ' ') bp++;
1328         *bpp = bp;
1329         *dest = '\0';
1330         return len;
1331 }
1332 EXPORT_SYMBOL_GPL(qword_get);
1333
1334
1335 /*
1336  * support /proc/net/rpc/$CACHENAME/content
1337  * as a seqfile.
1338  * We call ->cache_show passing NULL for the item to
1339  * get a header, then pass each real item in the cache
1340  */
1341
1342 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1343 {
1344         loff_t n = *pos;
1345         unsigned int hash, entry;
1346         struct cache_head *ch;
1347         struct cache_detail *cd = m->private;
1348
1349         if (!n--)
1350                 return SEQ_START_TOKEN;
1351         hash = n >> 32;
1352         entry = n & ((1LL<<32) - 1);
1353
1354         hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1355                 if (!entry--)
1356                         return ch;
1357         n &= ~((1LL<<32) - 1);
1358         do {
1359                 hash++;
1360                 n += 1LL<<32;
1361         } while(hash < cd->hash_size &&
1362                 hlist_empty(&cd->hash_table[hash]));
1363         if (hash >= cd->hash_size)
1364                 return NULL;
1365         *pos = n+1;
1366         return hlist_entry_safe(rcu_dereference_raw(
1367                                 hlist_first_rcu(&cd->hash_table[hash])),
1368                                 struct cache_head, cache_list);
1369 }
1370
1371 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1372 {
1373         struct cache_head *ch = p;
1374         int hash = (*pos >> 32);
1375         struct cache_detail *cd = m->private;
1376
1377         if (p == SEQ_START_TOKEN)
1378                 hash = 0;
1379         else if (ch->cache_list.next == NULL) {
1380                 hash++;
1381                 *pos += 1LL<<32;
1382         } else {
1383                 ++*pos;
1384                 return hlist_entry_safe(rcu_dereference_raw(
1385                                         hlist_next_rcu(&ch->cache_list)),
1386                                         struct cache_head, cache_list);
1387         }
1388         *pos &= ~((1LL<<32) - 1);
1389         while (hash < cd->hash_size &&
1390                hlist_empty(&cd->hash_table[hash])) {
1391                 hash++;
1392                 *pos += 1LL<<32;
1393         }
1394         if (hash >= cd->hash_size)
1395                 return NULL;
1396         ++*pos;
1397         return hlist_entry_safe(rcu_dereference_raw(
1398                                 hlist_first_rcu(&cd->hash_table[hash])),
1399                                 struct cache_head, cache_list);
1400 }
1401
1402 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1403         __acquires(RCU)
1404 {
1405         rcu_read_lock();
1406         return __cache_seq_start(m, pos);
1407 }
1408 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1409
1410 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1411 {
1412         return cache_seq_next(file, p, pos);
1413 }
1414 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1415
1416 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1417         __releases(RCU)
1418 {
1419         rcu_read_unlock();
1420 }
1421 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1422
1423 static int c_show(struct seq_file *m, void *p)
1424 {
1425         struct cache_head *cp = p;
1426         struct cache_detail *cd = m->private;
1427
1428         if (p == SEQ_START_TOKEN)
1429                 return cd->cache_show(m, cd, NULL);
1430
1431         ifdebug(CACHE)
1432                 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1433                            convert_to_wallclock(cp->expiry_time),
1434                            kref_read(&cp->ref), cp->flags);
1435         cache_get(cp);
1436         if (cache_check(cd, cp, NULL))
1437                 /* cache_check does a cache_put on failure */
1438                 seq_printf(m, "# ");
1439         else {
1440                 if (cache_is_expired(cd, cp))
1441                         seq_printf(m, "# ");
1442                 cache_put(cp, cd);
1443         }
1444
1445         return cd->cache_show(m, cd, cp);
1446 }
1447
1448 static const struct seq_operations cache_content_op = {
1449         .start  = cache_seq_start_rcu,
1450         .next   = cache_seq_next_rcu,
1451         .stop   = cache_seq_stop_rcu,
1452         .show   = c_show,
1453 };
1454
1455 static int content_open(struct inode *inode, struct file *file,
1456                         struct cache_detail *cd)
1457 {
1458         struct seq_file *seq;
1459         int err;
1460
1461         if (!cd || !try_module_get(cd->owner))
1462                 return -EACCES;
1463
1464         err = seq_open(file, &cache_content_op);
1465         if (err) {
1466                 module_put(cd->owner);
1467                 return err;
1468         }
1469
1470         seq = file->private_data;
1471         seq->private = cd;
1472         return 0;
1473 }
1474
1475 static int content_release(struct inode *inode, struct file *file,
1476                 struct cache_detail *cd)
1477 {
1478         int ret = seq_release(inode, file);
1479         module_put(cd->owner);
1480         return ret;
1481 }
1482
1483 static int open_flush(struct inode *inode, struct file *file,
1484                         struct cache_detail *cd)
1485 {
1486         if (!cd || !try_module_get(cd->owner))
1487                 return -EACCES;
1488         return nonseekable_open(inode, file);
1489 }
1490
1491 static int release_flush(struct inode *inode, struct file *file,
1492                         struct cache_detail *cd)
1493 {
1494         module_put(cd->owner);
1495         return 0;
1496 }
1497
1498 static ssize_t read_flush(struct file *file, char __user *buf,
1499                           size_t count, loff_t *ppos,
1500                           struct cache_detail *cd)
1501 {
1502         char tbuf[22];
1503         size_t len;
1504
1505         len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1506                         convert_to_wallclock(cd->flush_time));
1507         return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1508 }
1509
1510 static ssize_t write_flush(struct file *file, const char __user *buf,
1511                            size_t count, loff_t *ppos,
1512                            struct cache_detail *cd)
1513 {
1514         char tbuf[20];
1515         char *ep;
1516         time64_t now;
1517
1518         if (*ppos || count > sizeof(tbuf)-1)
1519                 return -EINVAL;
1520         if (copy_from_user(tbuf, buf, count))
1521                 return -EFAULT;
1522         tbuf[count] = 0;
1523         simple_strtoul(tbuf, &ep, 0);
1524         if (*ep && *ep != '\n')
1525                 return -EINVAL;
1526         /* Note that while we check that 'buf' holds a valid number,
1527          * we always ignore the value and just flush everything.
1528          * Making use of the number leads to races.
1529          */
1530
1531         now = seconds_since_boot();
1532         /* Always flush everything, so behave like cache_purge()
1533          * Do this by advancing flush_time to the current time,
1534          * or by one second if it has already reached the current time.
1535          * Newly added cache entries will always have ->last_refresh greater
1536          * that ->flush_time, so they don't get flushed prematurely.
1537          */
1538
1539         if (cd->flush_time >= now)
1540                 now = cd->flush_time + 1;
1541
1542         cd->flush_time = now;
1543         cd->nextcheck = now;
1544         cache_flush();
1545
1546         if (cd->flush)
1547                 cd->flush();
1548
1549         *ppos += count;
1550         return count;
1551 }
1552
1553 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1554                                  size_t count, loff_t *ppos)
1555 {
1556         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1557
1558         return cache_read(filp, buf, count, ppos, cd);
1559 }
1560
1561 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1562                                   size_t count, loff_t *ppos)
1563 {
1564         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1565
1566         return cache_write(filp, buf, count, ppos, cd);
1567 }
1568
1569 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1570 {
1571         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1572
1573         return cache_poll(filp, wait, cd);
1574 }
1575
1576 static long cache_ioctl_procfs(struct file *filp,
1577                                unsigned int cmd, unsigned long arg)
1578 {
1579         struct inode *inode = file_inode(filp);
1580         struct cache_detail *cd = PDE_DATA(inode);
1581
1582         return cache_ioctl(inode, filp, cmd, arg, cd);
1583 }
1584
1585 static int cache_open_procfs(struct inode *inode, struct file *filp)
1586 {
1587         struct cache_detail *cd = PDE_DATA(inode);
1588
1589         return cache_open(inode, filp, cd);
1590 }
1591
1592 static int cache_release_procfs(struct inode *inode, struct file *filp)
1593 {
1594         struct cache_detail *cd = PDE_DATA(inode);
1595
1596         return cache_release(inode, filp, cd);
1597 }
1598
1599 static const struct proc_ops cache_channel_proc_ops = {
1600         .proc_lseek     = no_llseek,
1601         .proc_read      = cache_read_procfs,
1602         .proc_write     = cache_write_procfs,
1603         .proc_poll      = cache_poll_procfs,
1604         .proc_ioctl     = cache_ioctl_procfs, /* for FIONREAD */
1605         .proc_open      = cache_open_procfs,
1606         .proc_release   = cache_release_procfs,
1607 };
1608
1609 static int content_open_procfs(struct inode *inode, struct file *filp)
1610 {
1611         struct cache_detail *cd = PDE_DATA(inode);
1612
1613         return content_open(inode, filp, cd);
1614 }
1615
1616 static int content_release_procfs(struct inode *inode, struct file *filp)
1617 {
1618         struct cache_detail *cd = PDE_DATA(inode);
1619
1620         return content_release(inode, filp, cd);
1621 }
1622
1623 static const struct proc_ops content_proc_ops = {
1624         .proc_open      = content_open_procfs,
1625         .proc_read      = seq_read,
1626         .proc_lseek     = seq_lseek,
1627         .proc_release   = content_release_procfs,
1628 };
1629
1630 static int open_flush_procfs(struct inode *inode, struct file *filp)
1631 {
1632         struct cache_detail *cd = PDE_DATA(inode);
1633
1634         return open_flush(inode, filp, cd);
1635 }
1636
1637 static int release_flush_procfs(struct inode *inode, struct file *filp)
1638 {
1639         struct cache_detail *cd = PDE_DATA(inode);
1640
1641         return release_flush(inode, filp, cd);
1642 }
1643
1644 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1645                             size_t count, loff_t *ppos)
1646 {
1647         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1648
1649         return read_flush(filp, buf, count, ppos, cd);
1650 }
1651
1652 static ssize_t write_flush_procfs(struct file *filp,
1653                                   const char __user *buf,
1654                                   size_t count, loff_t *ppos)
1655 {
1656         struct cache_detail *cd = PDE_DATA(file_inode(filp));
1657
1658         return write_flush(filp, buf, count, ppos, cd);
1659 }
1660
1661 static const struct proc_ops cache_flush_proc_ops = {
1662         .proc_open      = open_flush_procfs,
1663         .proc_read      = read_flush_procfs,
1664         .proc_write     = write_flush_procfs,
1665         .proc_release   = release_flush_procfs,
1666         .proc_lseek     = no_llseek,
1667 };
1668
1669 static void remove_cache_proc_entries(struct cache_detail *cd)
1670 {
1671         if (cd->procfs) {
1672                 proc_remove(cd->procfs);
1673                 cd->procfs = NULL;
1674         }
1675 }
1676
1677 #ifdef CONFIG_PROC_FS
1678 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1679 {
1680         struct proc_dir_entry *p;
1681         struct sunrpc_net *sn;
1682
1683         sn = net_generic(net, sunrpc_net_id);
1684         cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1685         if (cd->procfs == NULL)
1686                 goto out_nomem;
1687
1688         p = proc_create_data("flush", S_IFREG | 0600,
1689                              cd->procfs, &cache_flush_proc_ops, cd);
1690         if (p == NULL)
1691                 goto out_nomem;
1692
1693         if (cd->cache_request || cd->cache_parse) {
1694                 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1695                                      &cache_channel_proc_ops, cd);
1696                 if (p == NULL)
1697                         goto out_nomem;
1698         }
1699         if (cd->cache_show) {
1700                 p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1701                                      &content_proc_ops, cd);
1702                 if (p == NULL)
1703                         goto out_nomem;
1704         }
1705         return 0;
1706 out_nomem:
1707         remove_cache_proc_entries(cd);
1708         return -ENOMEM;
1709 }
1710 #else /* CONFIG_PROC_FS */
1711 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1712 {
1713         return 0;
1714 }
1715 #endif
1716
1717 void __init cache_initialize(void)
1718 {
1719         INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1720 }
1721
1722 int cache_register_net(struct cache_detail *cd, struct net *net)
1723 {
1724         int ret;
1725
1726         sunrpc_init_cache_detail(cd);
1727         ret = create_cache_proc_entries(cd, net);
1728         if (ret)
1729                 sunrpc_destroy_cache_detail(cd);
1730         return ret;
1731 }
1732 EXPORT_SYMBOL_GPL(cache_register_net);
1733
1734 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1735 {
1736         remove_cache_proc_entries(cd);
1737         sunrpc_destroy_cache_detail(cd);
1738 }
1739 EXPORT_SYMBOL_GPL(cache_unregister_net);
1740
1741 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1742 {
1743         struct cache_detail *cd;
1744         int i;
1745
1746         cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1747         if (cd == NULL)
1748                 return ERR_PTR(-ENOMEM);
1749
1750         cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1751                                  GFP_KERNEL);
1752         if (cd->hash_table == NULL) {
1753                 kfree(cd);
1754                 return ERR_PTR(-ENOMEM);
1755         }
1756
1757         for (i = 0; i < cd->hash_size; i++)
1758                 INIT_HLIST_HEAD(&cd->hash_table[i]);
1759         cd->net = net;
1760         return cd;
1761 }
1762 EXPORT_SYMBOL_GPL(cache_create_net);
1763
1764 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1765 {
1766         kfree(cd->hash_table);
1767         kfree(cd);
1768 }
1769 EXPORT_SYMBOL_GPL(cache_destroy_net);
1770
1771 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1772                                  size_t count, loff_t *ppos)
1773 {
1774         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1775
1776         return cache_read(filp, buf, count, ppos, cd);
1777 }
1778
1779 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1780                                   size_t count, loff_t *ppos)
1781 {
1782         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1783
1784         return cache_write(filp, buf, count, ppos, cd);
1785 }
1786
1787 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1788 {
1789         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1790
1791         return cache_poll(filp, wait, cd);
1792 }
1793
1794 static long cache_ioctl_pipefs(struct file *filp,
1795                               unsigned int cmd, unsigned long arg)
1796 {
1797         struct inode *inode = file_inode(filp);
1798         struct cache_detail *cd = RPC_I(inode)->private;
1799
1800         return cache_ioctl(inode, filp, cmd, arg, cd);
1801 }
1802
1803 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1804 {
1805         struct cache_detail *cd = RPC_I(inode)->private;
1806
1807         return cache_open(inode, filp, cd);
1808 }
1809
1810 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1811 {
1812         struct cache_detail *cd = RPC_I(inode)->private;
1813
1814         return cache_release(inode, filp, cd);
1815 }
1816
1817 const struct file_operations cache_file_operations_pipefs = {
1818         .owner          = THIS_MODULE,
1819         .llseek         = no_llseek,
1820         .read           = cache_read_pipefs,
1821         .write          = cache_write_pipefs,
1822         .poll           = cache_poll_pipefs,
1823         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1824         .open           = cache_open_pipefs,
1825         .release        = cache_release_pipefs,
1826 };
1827
1828 static int content_open_pipefs(struct inode *inode, struct file *filp)
1829 {
1830         struct cache_detail *cd = RPC_I(inode)->private;
1831
1832         return content_open(inode, filp, cd);
1833 }
1834
1835 static int content_release_pipefs(struct inode *inode, struct file *filp)
1836 {
1837         struct cache_detail *cd = RPC_I(inode)->private;
1838
1839         return content_release(inode, filp, cd);
1840 }
1841
1842 const struct file_operations content_file_operations_pipefs = {
1843         .open           = content_open_pipefs,
1844         .read           = seq_read,
1845         .llseek         = seq_lseek,
1846         .release        = content_release_pipefs,
1847 };
1848
1849 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1850 {
1851         struct cache_detail *cd = RPC_I(inode)->private;
1852
1853         return open_flush(inode, filp, cd);
1854 }
1855
1856 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1857 {
1858         struct cache_detail *cd = RPC_I(inode)->private;
1859
1860         return release_flush(inode, filp, cd);
1861 }
1862
1863 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1864                             size_t count, loff_t *ppos)
1865 {
1866         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1867
1868         return read_flush(filp, buf, count, ppos, cd);
1869 }
1870
1871 static ssize_t write_flush_pipefs(struct file *filp,
1872                                   const char __user *buf,
1873                                   size_t count, loff_t *ppos)
1874 {
1875         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1876
1877         return write_flush(filp, buf, count, ppos, cd);
1878 }
1879
1880 const struct file_operations cache_flush_operations_pipefs = {
1881         .open           = open_flush_pipefs,
1882         .read           = read_flush_pipefs,
1883         .write          = write_flush_pipefs,
1884         .release        = release_flush_pipefs,
1885         .llseek         = no_llseek,
1886 };
1887
1888 int sunrpc_cache_register_pipefs(struct dentry *parent,
1889                                  const char *name, umode_t umode,
1890                                  struct cache_detail *cd)
1891 {
1892         struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1893         if (IS_ERR(dir))
1894                 return PTR_ERR(dir);
1895         cd->pipefs = dir;
1896         return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1899
1900 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1901 {
1902         if (cd->pipefs) {
1903                 rpc_remove_cache_dir(cd->pipefs);
1904                 cd->pipefs = NULL;
1905         }
1906 }
1907 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1908
1909 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1910 {
1911         spin_lock(&cd->hash_lock);
1912         if (!hlist_unhashed(&h->cache_list)){
1913                 sunrpc_begin_cache_remove_entry(h, cd);
1914                 spin_unlock(&cd->hash_lock);
1915                 sunrpc_end_cache_remove_entry(h, cd);
1916         } else
1917                 spin_unlock(&cd->hash_lock);
1918 }
1919 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);