1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
8 * This file is part of the SCTP kernel implementation
10 * This module provides the abstraction for an SCTP association.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
51 #include <linux/slab.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
63 /* 1st Level Abstractions. */
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(
67 struct sctp_association *asoc,
68 const struct sctp_endpoint *ep,
69 const struct sock *sk,
70 enum sctp_scope scope, gfp_t gfp)
72 struct net *net = sock_net(sk);
74 struct sctp_paramhdr *p;
77 /* Retrieve the SCTP per socket area. */
78 sp = sctp_sk((struct sock *)sk);
80 /* Discarding const is appropriate here. */
81 asoc->ep = (struct sctp_endpoint *)ep;
82 asoc->base.sk = (struct sock *)sk;
84 sctp_endpoint_hold(asoc->ep);
85 sock_hold(asoc->base.sk);
87 /* Initialize the common base substructure. */
88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90 /* Initialize the object handling fields. */
91 refcount_set(&asoc->base.refcnt, 1);
93 /* Initialize the bind addr area. */
94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96 asoc->state = SCTP_STATE_CLOSED;
97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 asoc->user_frag = sp->user_frag;
100 /* Set the association max_retrans and RTO values from the
103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 asoc->pf_retrans = sp->pf_retrans;
106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110 /* Initialize the association's heartbeat interval based on the
111 * sock configured value.
113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115 /* Initialize path max retrans value. */
116 asoc->pathmaxrxt = sp->pathmaxrxt;
118 asoc->flowlabel = sp->flowlabel;
119 asoc->dscp = sp->dscp;
121 /* Set association default SACK delay */
122 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
123 asoc->sackfreq = sp->sackfreq;
125 /* Set the association default flags controlling
126 * Heartbeat, SACK delay, and Path MTU Discovery.
128 asoc->param_flags = sp->param_flags;
130 /* Initialize the maximum number of new data packets that can be sent
133 asoc->max_burst = sp->max_burst;
135 asoc->subscribe = sp->subscribe;
137 /* initialize association timers */
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
140 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
142 /* sctpimpguide Section 2.12.2
143 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
144 * recommended value of 5 times 'RTO.Max'.
146 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
150 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
152 /* Initializes the timers */
153 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
154 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been
158 * validated in the sock.
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet.
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
175 asoc->rwnd = sk->sk_rcvbuf/2;
177 asoc->a_rwnd = asoc->rwnd;
179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0);
185 init_waitqueue_head(&asoc->wait);
187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port;
190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
192 asoc->next_tsn = asoc->c.initial_tsn;
194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
199 /* ADDIP Section 4.1 Asconf Chunk Procedures
201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following:
204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN.
209 asoc->addip_serial = asoc->c.initial_tsn;
210 asoc->strreset_outseq = asoc->c.initial_tsn;
212 INIT_LIST_HEAD(&asoc->addip_chunk_list);
213 INIT_LIST_HEAD(&asoc->asconf_ack_list);
215 /* Make an empty list of remote transport addresses. */
216 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
218 /* RFC 2960 5.1 Normal Establishment of an Association
220 * After the reception of the first data chunk in an
221 * association the endpoint must immediately respond with a
222 * sack to acknowledge the data chunk. Subsequent
223 * acknowledgements should be done as described in Section
226 * [We implement this by telling a new association that it
227 * already received one packet.]
229 asoc->peer.sack_needed = 1;
230 asoc->peer.sack_generation = 1;
232 /* Assume that the peer will tell us if he recognizes ASCONF
233 * as part of INIT exchange.
234 * The sctp_addip_noauth option is there for backward compatibility
235 * and will revert old behavior.
237 if (net->sctp.addip_noauth)
238 asoc->peer.asconf_capable = 1;
240 /* Create an input queue. */
241 sctp_inq_init(&asoc->base.inqueue);
242 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
244 /* Create an output queue. */
245 sctp_outq_init(asoc, &asoc->outqueue);
247 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
250 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
254 /* Initialize default path MTU. */
255 asoc->pathmtu = sp->pathmtu;
256 sctp_assoc_update_frag_point(asoc);
258 /* Assume that peer would support both address types unless we are
261 asoc->peer.ipv4_address = 1;
262 if (asoc->base.sk->sk_family == PF_INET6)
263 asoc->peer.ipv6_address = 1;
264 INIT_LIST_HEAD(&asoc->asocs);
266 asoc->default_stream = sp->default_stream;
267 asoc->default_ppid = sp->default_ppid;
268 asoc->default_flags = sp->default_flags;
269 asoc->default_context = sp->default_context;
270 asoc->default_timetolive = sp->default_timetolive;
271 asoc->default_rcv_context = sp->default_rcv_context;
273 /* AUTH related initializations */
274 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
275 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
278 asoc->active_key_id = ep->active_key_id;
279 asoc->prsctp_enable = ep->prsctp_enable;
280 asoc->reconf_enable = ep->reconf_enable;
281 asoc->strreset_enable = ep->strreset_enable;
283 /* Save the hmacs and chunks list into this association */
284 if (ep->auth_hmacs_list)
285 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
286 ntohs(ep->auth_hmacs_list->param_hdr.length));
287 if (ep->auth_chunk_list)
288 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
289 ntohs(ep->auth_chunk_list->param_hdr.length));
291 /* Get the AUTH random number for this association */
292 p = (struct sctp_paramhdr *)asoc->c.auth_random;
293 p->type = SCTP_PARAM_RANDOM;
294 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
295 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
300 sctp_stream_free(&asoc->stream);
302 sock_put(asoc->base.sk);
303 sctp_endpoint_put(asoc->ep);
307 /* Allocate and initialize a new association */
308 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
309 const struct sock *sk,
310 enum sctp_scope scope, gfp_t gfp)
312 struct sctp_association *asoc;
314 asoc = kzalloc(sizeof(*asoc), gfp);
318 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
321 SCTP_DBG_OBJCNT_INC(assoc);
323 pr_debug("Created asoc %p\n", asoc);
333 /* Free this association if possible. There may still be users, so
334 * the actual deallocation may be delayed.
336 void sctp_association_free(struct sctp_association *asoc)
338 struct sock *sk = asoc->base.sk;
339 struct sctp_transport *transport;
340 struct list_head *pos, *temp;
343 /* Only real associations count against the endpoint, so
344 * don't bother for if this is a temporary association.
346 if (!list_empty(&asoc->asocs)) {
347 list_del(&asoc->asocs);
349 /* Decrement the backlog value for a TCP-style listening
352 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
353 sk->sk_ack_backlog--;
356 /* Mark as dead, so other users can know this structure is
359 asoc->base.dead = true;
361 /* Dispose of any data lying around in the outqueue. */
362 sctp_outq_free(&asoc->outqueue);
364 /* Dispose of any pending messages for the upper layer. */
365 sctp_ulpq_free(&asoc->ulpq);
367 /* Dispose of any pending chunks on the inqueue. */
368 sctp_inq_free(&asoc->base.inqueue);
370 sctp_tsnmap_free(&asoc->peer.tsn_map);
372 /* Free stream information. */
373 sctp_stream_free(&asoc->stream);
375 if (asoc->strreset_chunk)
376 sctp_chunk_free(asoc->strreset_chunk);
378 /* Clean up the bound address list. */
379 sctp_bind_addr_free(&asoc->base.bind_addr);
381 /* Do we need to go through all of our timers and
382 * delete them? To be safe we will try to delete all, but we
383 * should be able to go through and make a guess based
386 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
387 if (del_timer(&asoc->timers[i]))
388 sctp_association_put(asoc);
391 /* Free peer's cached cookie. */
392 kfree(asoc->peer.cookie);
393 kfree(asoc->peer.peer_random);
394 kfree(asoc->peer.peer_chunks);
395 kfree(asoc->peer.peer_hmacs);
397 /* Release the transport structures. */
398 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
399 transport = list_entry(pos, struct sctp_transport, transports);
401 sctp_unhash_transport(transport);
402 sctp_transport_free(transport);
405 asoc->peer.transport_count = 0;
407 sctp_asconf_queue_teardown(asoc);
409 /* Free pending address space being deleted */
410 kfree(asoc->asconf_addr_del_pending);
412 /* AUTH - Free the endpoint shared keys */
413 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
415 /* AUTH - Free the association shared key */
416 sctp_auth_key_put(asoc->asoc_shared_key);
418 sctp_association_put(asoc);
421 /* Cleanup and free up an association. */
422 static void sctp_association_destroy(struct sctp_association *asoc)
424 if (unlikely(!asoc->base.dead)) {
425 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
429 sctp_endpoint_put(asoc->ep);
430 sock_put(asoc->base.sk);
432 if (asoc->assoc_id != 0) {
433 spin_lock_bh(&sctp_assocs_id_lock);
434 idr_remove(&sctp_assocs_id, asoc->assoc_id);
435 spin_unlock_bh(&sctp_assocs_id_lock);
438 WARN_ON(atomic_read(&asoc->rmem_alloc));
440 kfree_rcu(asoc, rcu);
441 SCTP_DBG_OBJCNT_DEC(assoc);
444 /* Change the primary destination address for the peer. */
445 void sctp_assoc_set_primary(struct sctp_association *asoc,
446 struct sctp_transport *transport)
450 /* it's a changeover only if we already have a primary path
451 * that we are changing
453 if (asoc->peer.primary_path != NULL &&
454 asoc->peer.primary_path != transport)
457 asoc->peer.primary_path = transport;
459 /* Set a default msg_name for events. */
460 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
461 sizeof(union sctp_addr));
463 /* If the primary path is changing, assume that the
464 * user wants to use this new path.
466 if ((transport->state == SCTP_ACTIVE) ||
467 (transport->state == SCTP_UNKNOWN))
468 asoc->peer.active_path = transport;
471 * SFR-CACC algorithm:
472 * Upon the receipt of a request to change the primary
473 * destination address, on the data structure for the new
474 * primary destination, the sender MUST do the following:
476 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
477 * to this destination address earlier. The sender MUST set
478 * CYCLING_CHANGEOVER to indicate that this switch is a
479 * double switch to the same destination address.
481 * Really, only bother is we have data queued or outstanding on
484 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
487 if (transport->cacc.changeover_active)
488 transport->cacc.cycling_changeover = changeover;
490 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
491 * a changeover has occurred.
493 transport->cacc.changeover_active = changeover;
495 /* 3) The sender MUST store the next TSN to be sent in
496 * next_tsn_at_change.
498 transport->cacc.next_tsn_at_change = asoc->next_tsn;
501 /* Remove a transport from an association. */
502 void sctp_assoc_rm_peer(struct sctp_association *asoc,
503 struct sctp_transport *peer)
505 struct sctp_transport *transport;
506 struct list_head *pos;
507 struct sctp_chunk *ch;
509 pr_debug("%s: association:%p addr:%pISpc\n",
510 __func__, asoc, &peer->ipaddr.sa);
512 /* If we are to remove the current retran_path, update it
513 * to the next peer before removing this peer from the list.
515 if (asoc->peer.retran_path == peer)
516 sctp_assoc_update_retran_path(asoc);
518 /* Remove this peer from the list. */
519 list_del_rcu(&peer->transports);
520 /* Remove this peer from the transport hashtable */
521 sctp_unhash_transport(peer);
523 /* Get the first transport of asoc. */
524 pos = asoc->peer.transport_addr_list.next;
525 transport = list_entry(pos, struct sctp_transport, transports);
527 /* Update any entries that match the peer to be deleted. */
528 if (asoc->peer.primary_path == peer)
529 sctp_assoc_set_primary(asoc, transport);
530 if (asoc->peer.active_path == peer)
531 asoc->peer.active_path = transport;
532 if (asoc->peer.retran_path == peer)
533 asoc->peer.retran_path = transport;
534 if (asoc->peer.last_data_from == peer)
535 asoc->peer.last_data_from = transport;
537 if (asoc->strreset_chunk &&
538 asoc->strreset_chunk->transport == peer) {
539 asoc->strreset_chunk->transport = transport;
540 sctp_transport_reset_reconf_timer(transport);
543 /* If we remove the transport an INIT was last sent to, set it to
544 * NULL. Combined with the update of the retran path above, this
545 * will cause the next INIT to be sent to the next available
546 * transport, maintaining the cycle.
548 if (asoc->init_last_sent_to == peer)
549 asoc->init_last_sent_to = NULL;
551 /* If we remove the transport an SHUTDOWN was last sent to, set it
552 * to NULL. Combined with the update of the retran path above, this
553 * will cause the next SHUTDOWN to be sent to the next available
554 * transport, maintaining the cycle.
556 if (asoc->shutdown_last_sent_to == peer)
557 asoc->shutdown_last_sent_to = NULL;
559 /* If we remove the transport an ASCONF was last sent to, set it to
562 if (asoc->addip_last_asconf &&
563 asoc->addip_last_asconf->transport == peer)
564 asoc->addip_last_asconf->transport = NULL;
566 /* If we have something on the transmitted list, we have to
567 * save it off. The best place is the active path.
569 if (!list_empty(&peer->transmitted)) {
570 struct sctp_transport *active = asoc->peer.active_path;
572 /* Reset the transport of each chunk on this list */
573 list_for_each_entry(ch, &peer->transmitted,
575 ch->transport = NULL;
576 ch->rtt_in_progress = 0;
579 list_splice_tail_init(&peer->transmitted,
580 &active->transmitted);
582 /* Start a T3 timer here in case it wasn't running so
583 * that these migrated packets have a chance to get
586 if (!timer_pending(&active->T3_rtx_timer))
587 if (!mod_timer(&active->T3_rtx_timer,
588 jiffies + active->rto))
589 sctp_transport_hold(active);
592 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
593 if (ch->transport == peer)
594 ch->transport = NULL;
596 asoc->peer.transport_count--;
598 sctp_transport_free(peer);
601 /* Add a transport address to an association. */
602 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
603 const union sctp_addr *addr,
605 const int peer_state)
607 struct net *net = sock_net(asoc->base.sk);
608 struct sctp_transport *peer;
609 struct sctp_sock *sp;
612 sp = sctp_sk(asoc->base.sk);
614 /* AF_INET and AF_INET6 share common port field. */
615 port = ntohs(addr->v4.sin_port);
617 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
618 asoc, &addr->sa, peer_state);
620 /* Set the port if it has not been set yet. */
621 if (0 == asoc->peer.port)
622 asoc->peer.port = port;
624 /* Check to see if this is a duplicate. */
625 peer = sctp_assoc_lookup_paddr(asoc, addr);
627 /* An UNKNOWN state is only set on transports added by
628 * user in sctp_connectx() call. Such transports should be
629 * considered CONFIRMED per RFC 4960, Section 5.4.
631 if (peer->state == SCTP_UNKNOWN) {
632 peer->state = SCTP_ACTIVE;
637 peer = sctp_transport_new(net, addr, gfp);
641 sctp_transport_set_owner(peer, asoc);
643 /* Initialize the peer's heartbeat interval based on the
644 * association configured value.
646 peer->hbinterval = asoc->hbinterval;
648 /* Set the path max_retrans. */
649 peer->pathmaxrxt = asoc->pathmaxrxt;
651 /* And the partial failure retrans threshold */
652 peer->pf_retrans = asoc->pf_retrans;
654 /* Initialize the peer's SACK delay timeout based on the
655 * association configured value.
657 peer->sackdelay = asoc->sackdelay;
658 peer->sackfreq = asoc->sackfreq;
660 if (addr->sa.sa_family == AF_INET6) {
661 __be32 info = addr->v6.sin6_flowinfo;
664 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
665 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
667 peer->flowlabel = asoc->flowlabel;
670 peer->dscp = asoc->dscp;
672 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
673 * based on association setting.
675 peer->param_flags = asoc->param_flags;
677 /* Initialize the pmtu of the transport. */
678 sctp_transport_route(peer, NULL, sp);
680 /* If this is the first transport addr on this association,
681 * initialize the association PMTU to the peer's PMTU.
682 * If not and the current association PMTU is higher than the new
683 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
685 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
686 min_t(int, peer->pathmtu, asoc->pathmtu) :
689 peer->pmtu_pending = 0;
691 /* The asoc->peer.port might not be meaningful yet, but
692 * initialize the packet structure anyway.
694 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
699 * o The initial cwnd before DATA transmission or after a sufficiently
700 * long idle period MUST be set to
701 * min(4*MTU, max(2*MTU, 4380 bytes))
703 * o The initial value of ssthresh MAY be arbitrarily high
704 * (for example, implementations MAY use the size of the
705 * receiver advertised window).
707 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
709 /* At this point, we may not have the receiver's advertised window,
710 * so initialize ssthresh to the default value and it will be set
711 * later when we process the INIT.
713 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
715 peer->partial_bytes_acked = 0;
716 peer->flight_size = 0;
717 peer->burst_limited = 0;
719 /* Set the transport's RTO.initial value */
720 peer->rto = asoc->rto_initial;
721 sctp_max_rto(asoc, peer);
723 /* Set the peer's active state. */
724 peer->state = peer_state;
726 /* Add this peer into the transport hashtable */
727 if (sctp_hash_transport(peer)) {
728 sctp_transport_free(peer);
732 /* Attach the remote transport to our asoc. */
733 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
734 asoc->peer.transport_count++;
736 /* If we do not yet have a primary path, set one. */
737 if (!asoc->peer.primary_path) {
738 sctp_assoc_set_primary(asoc, peer);
739 asoc->peer.retran_path = peer;
742 if (asoc->peer.active_path == asoc->peer.retran_path &&
743 peer->state != SCTP_UNCONFIRMED) {
744 asoc->peer.retran_path = peer;
750 /* Delete a transport address from an association. */
751 void sctp_assoc_del_peer(struct sctp_association *asoc,
752 const union sctp_addr *addr)
754 struct list_head *pos;
755 struct list_head *temp;
756 struct sctp_transport *transport;
758 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
759 transport = list_entry(pos, struct sctp_transport, transports);
760 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
761 /* Do book keeping for removing the peer and free it. */
762 sctp_assoc_rm_peer(asoc, transport);
768 /* Lookup a transport by address. */
769 struct sctp_transport *sctp_assoc_lookup_paddr(
770 const struct sctp_association *asoc,
771 const union sctp_addr *address)
773 struct sctp_transport *t;
775 /* Cycle through all transports searching for a peer address. */
777 list_for_each_entry(t, &asoc->peer.transport_addr_list,
779 if (sctp_cmp_addr_exact(address, &t->ipaddr))
786 /* Remove all transports except a give one */
787 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
788 struct sctp_transport *primary)
790 struct sctp_transport *temp;
791 struct sctp_transport *t;
793 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
795 /* if the current transport is not the primary one, delete it */
797 sctp_assoc_rm_peer(asoc, t);
801 /* Engage in transport control operations.
802 * Mark the transport up or down and send a notification to the user.
803 * Select and update the new active and retran paths.
805 void sctp_assoc_control_transport(struct sctp_association *asoc,
806 struct sctp_transport *transport,
807 enum sctp_transport_cmd command,
808 sctp_sn_error_t error)
810 struct sctp_ulpevent *event;
811 struct sockaddr_storage addr;
813 bool ulp_notify = true;
815 /* Record the transition on the transport. */
817 case SCTP_TRANSPORT_UP:
818 /* If we are moving from UNCONFIRMED state due
819 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
820 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
822 if (SCTP_UNCONFIRMED == transport->state &&
823 SCTP_HEARTBEAT_SUCCESS == error)
824 spc_state = SCTP_ADDR_CONFIRMED;
826 spc_state = SCTP_ADDR_AVAILABLE;
827 /* Don't inform ULP about transition from PF to
828 * active state and set cwnd to 1 MTU, see SCTP
829 * Quick failover draft section 5.1, point 5
831 if (transport->state == SCTP_PF) {
833 transport->cwnd = asoc->pathmtu;
835 transport->state = SCTP_ACTIVE;
838 case SCTP_TRANSPORT_DOWN:
839 /* If the transport was never confirmed, do not transition it
840 * to inactive state. Also, release the cached route since
841 * there may be a better route next time.
843 if (transport->state != SCTP_UNCONFIRMED)
844 transport->state = SCTP_INACTIVE;
846 sctp_transport_dst_release(transport);
850 spc_state = SCTP_ADDR_UNREACHABLE;
853 case SCTP_TRANSPORT_PF:
854 transport->state = SCTP_PF;
862 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
866 memset(&addr, 0, sizeof(struct sockaddr_storage));
867 memcpy(&addr, &transport->ipaddr,
868 transport->af_specific->sockaddr_len);
870 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
871 0, spc_state, error, GFP_ATOMIC);
873 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
876 /* Select new active and retran paths. */
877 sctp_select_active_and_retran_path(asoc);
880 /* Hold a reference to an association. */
881 void sctp_association_hold(struct sctp_association *asoc)
883 refcount_inc(&asoc->base.refcnt);
886 /* Release a reference to an association and cleanup
887 * if there are no more references.
889 void sctp_association_put(struct sctp_association *asoc)
891 if (refcount_dec_and_test(&asoc->base.refcnt))
892 sctp_association_destroy(asoc);
895 /* Allocate the next TSN, Transmission Sequence Number, for the given
898 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
900 /* From Section 1.6 Serial Number Arithmetic:
901 * Transmission Sequence Numbers wrap around when they reach
902 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
903 * after transmitting TSN = 2*32 - 1 is TSN = 0.
905 __u32 retval = asoc->next_tsn;
912 /* Compare two addresses to see if they match. Wildcard addresses
913 * only match themselves.
915 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
916 const union sctp_addr *ss2)
920 af = sctp_get_af_specific(ss1->sa.sa_family);
924 return af->cmp_addr(ss1, ss2);
927 /* Return an ecne chunk to get prepended to a packet.
928 * Note: We are sly and return a shared, prealloced chunk. FIXME:
929 * No we don't, but we could/should.
931 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
933 if (!asoc->need_ecne)
936 /* Send ECNE if needed.
937 * Not being able to allocate a chunk here is not deadly.
939 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
943 * Find which transport this TSN was sent on.
945 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
948 struct sctp_transport *active;
949 struct sctp_transport *match;
950 struct sctp_transport *transport;
951 struct sctp_chunk *chunk;
952 __be32 key = htonl(tsn);
957 * FIXME: In general, find a more efficient data structure for
962 * The general strategy is to search each transport's transmitted
963 * list. Return which transport this TSN lives on.
965 * Let's be hopeful and check the active_path first.
966 * Another optimization would be to know if there is only one
967 * outbound path and not have to look for the TSN at all.
971 active = asoc->peer.active_path;
973 list_for_each_entry(chunk, &active->transmitted,
976 if (key == chunk->subh.data_hdr->tsn) {
982 /* If not found, go search all the other transports. */
983 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
986 if (transport == active)
988 list_for_each_entry(chunk, &transport->transmitted,
990 if (key == chunk->subh.data_hdr->tsn) {
1000 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1001 static void sctp_assoc_bh_rcv(struct work_struct *work)
1003 struct sctp_association *asoc =
1004 container_of(work, struct sctp_association,
1005 base.inqueue.immediate);
1006 struct net *net = sock_net(asoc->base.sk);
1007 union sctp_subtype subtype;
1008 struct sctp_endpoint *ep;
1009 struct sctp_chunk *chunk;
1010 struct sctp_inq *inqueue;
1011 int first_time = 1; /* is this the first time through the loop */
1015 /* The association should be held so we should be safe. */
1018 inqueue = &asoc->base.inqueue;
1019 sctp_association_hold(asoc);
1020 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1021 state = asoc->state;
1022 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1024 /* If the first chunk in the packet is AUTH, do special
1025 * processing specified in Section 6.3 of SCTP-AUTH spec
1027 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1028 struct sctp_chunkhdr *next_hdr;
1030 next_hdr = sctp_inq_peek(inqueue);
1034 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1035 * chunk while saving a pointer to it so we can do
1036 * Authentication later (during cookie-echo
1039 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1040 chunk->auth_chunk = skb_clone(chunk->skb,
1048 /* SCTP-AUTH, Section 6.3:
1049 * The receiver has a list of chunk types which it expects
1050 * to be received only after an AUTH-chunk. This list has
1051 * been sent to the peer during the association setup. It
1052 * MUST silently discard these chunks if they are not placed
1053 * after an AUTH chunk in the packet.
1055 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1058 /* Remember where the last DATA chunk came from so we
1059 * know where to send the SACK.
1061 if (sctp_chunk_is_data(chunk))
1062 asoc->peer.last_data_from = chunk->transport;
1064 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1065 asoc->stats.ictrlchunks++;
1066 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1067 asoc->stats.isacks++;
1070 if (chunk->transport)
1071 chunk->transport->last_time_heard = ktime_get();
1073 /* Run through the state machine. */
1074 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1075 state, ep, asoc, chunk, GFP_ATOMIC);
1077 /* Check to see if the association is freed in response to
1078 * the incoming chunk. If so, get out of the while loop.
1080 if (asoc->base.dead)
1083 /* If there is an error on chunk, discard this packet. */
1085 chunk->pdiscard = 1;
1090 sctp_association_put(asoc);
1093 /* This routine moves an association from its old sk to a new sk. */
1094 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1096 struct sctp_sock *newsp = sctp_sk(newsk);
1097 struct sock *oldsk = assoc->base.sk;
1099 /* Delete the association from the old endpoint's list of
1102 list_del_init(&assoc->asocs);
1104 /* Decrement the backlog value for a TCP-style socket. */
1105 if (sctp_style(oldsk, TCP))
1106 oldsk->sk_ack_backlog--;
1108 /* Release references to the old endpoint and the sock. */
1109 sctp_endpoint_put(assoc->ep);
1110 sock_put(assoc->base.sk);
1112 /* Get a reference to the new endpoint. */
1113 assoc->ep = newsp->ep;
1114 sctp_endpoint_hold(assoc->ep);
1116 /* Get a reference to the new sock. */
1117 assoc->base.sk = newsk;
1118 sock_hold(assoc->base.sk);
1120 /* Add the association to the new endpoint's list of associations. */
1121 sctp_endpoint_add_asoc(newsp->ep, assoc);
1124 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1125 int sctp_assoc_update(struct sctp_association *asoc,
1126 struct sctp_association *new)
1128 struct sctp_transport *trans;
1129 struct list_head *pos, *temp;
1131 /* Copy in new parameters of peer. */
1133 asoc->peer.rwnd = new->peer.rwnd;
1134 asoc->peer.sack_needed = new->peer.sack_needed;
1135 asoc->peer.auth_capable = new->peer.auth_capable;
1136 asoc->peer.i = new->peer.i;
1138 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1139 asoc->peer.i.initial_tsn, GFP_ATOMIC))
1142 /* Remove any peer addresses not present in the new association. */
1143 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1144 trans = list_entry(pos, struct sctp_transport, transports);
1145 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1146 sctp_assoc_rm_peer(asoc, trans);
1150 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1151 sctp_transport_reset(trans);
1154 /* If the case is A (association restart), use
1155 * initial_tsn as next_tsn. If the case is B, use
1156 * current next_tsn in case data sent to peer
1157 * has been discarded and needs retransmission.
1159 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1160 asoc->next_tsn = new->next_tsn;
1161 asoc->ctsn_ack_point = new->ctsn_ack_point;
1162 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1164 /* Reinitialize SSN for both local streams
1165 * and peer's streams.
1167 sctp_stream_clear(&asoc->stream);
1169 /* Flush the ULP reassembly and ordered queue.
1170 * Any data there will now be stale and will
1173 sctp_ulpq_flush(&asoc->ulpq);
1175 /* reset the overall association error count so
1176 * that the restarted association doesn't get torn
1177 * down on the next retransmission timer.
1179 asoc->overall_error_count = 0;
1182 /* Add any peer addresses from the new association. */
1183 list_for_each_entry(trans, &new->peer.transport_addr_list,
1185 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1186 !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1187 GFP_ATOMIC, trans->state))
1190 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1191 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1193 if (sctp_state(asoc, COOKIE_WAIT))
1194 sctp_stream_update(&asoc->stream, &new->stream);
1196 /* get a new assoc id if we don't have one yet. */
1197 if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1201 /* SCTP-AUTH: Save the peer parameters from the new associations
1202 * and also move the association shared keys over
1204 kfree(asoc->peer.peer_random);
1205 asoc->peer.peer_random = new->peer.peer_random;
1206 new->peer.peer_random = NULL;
1208 kfree(asoc->peer.peer_chunks);
1209 asoc->peer.peer_chunks = new->peer.peer_chunks;
1210 new->peer.peer_chunks = NULL;
1212 kfree(asoc->peer.peer_hmacs);
1213 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1214 new->peer.peer_hmacs = NULL;
1216 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1219 /* Update the retran path for sending a retransmitted packet.
1220 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1222 * When there is outbound data to send and the primary path
1223 * becomes inactive (e.g., due to failures), or where the
1224 * SCTP user explicitly requests to send data to an
1225 * inactive destination transport address, before reporting
1226 * an error to its ULP, the SCTP endpoint should try to send
1227 * the data to an alternate active destination transport
1228 * address if one exists.
1230 * When retransmitting data that timed out, if the endpoint
1231 * is multihomed, it should consider each source-destination
1232 * address pair in its retransmission selection policy.
1233 * When retransmitting timed-out data, the endpoint should
1234 * attempt to pick the most divergent source-destination
1235 * pair from the original source-destination pair to which
1236 * the packet was transmitted.
1238 * Note: Rules for picking the most divergent source-destination
1239 * pair are an implementation decision and are not specified
1240 * within this document.
1242 * Our basic strategy is to round-robin transports in priorities
1243 * according to sctp_trans_score() e.g., if no such
1244 * transport with state SCTP_ACTIVE exists, round-robin through
1245 * SCTP_UNKNOWN, etc. You get the picture.
1247 static u8 sctp_trans_score(const struct sctp_transport *trans)
1249 switch (trans->state) {
1251 return 3; /* best case */
1256 default: /* case SCTP_INACTIVE */
1257 return 0; /* worst case */
1261 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1262 struct sctp_transport *trans2)
1264 if (trans1->error_count > trans2->error_count) {
1266 } else if (trans1->error_count == trans2->error_count &&
1267 ktime_after(trans2->last_time_heard,
1268 trans1->last_time_heard)) {
1275 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1276 struct sctp_transport *best)
1278 u8 score_curr, score_best;
1280 if (best == NULL || curr == best)
1283 score_curr = sctp_trans_score(curr);
1284 score_best = sctp_trans_score(best);
1286 /* First, try a score-based selection if both transport states
1287 * differ. If we're in a tie, lets try to make a more clever
1288 * decision here based on error counts and last time heard.
1290 if (score_curr > score_best)
1292 else if (score_curr == score_best)
1293 return sctp_trans_elect_tie(best, curr);
1298 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1300 struct sctp_transport *trans = asoc->peer.retran_path;
1301 struct sctp_transport *trans_next = NULL;
1303 /* We're done as we only have the one and only path. */
1304 if (asoc->peer.transport_count == 1)
1306 /* If active_path and retran_path are the same and active,
1307 * then this is the only active path. Use it.
1309 if (asoc->peer.active_path == asoc->peer.retran_path &&
1310 asoc->peer.active_path->state == SCTP_ACTIVE)
1313 /* Iterate from retran_path's successor back to retran_path. */
1314 for (trans = list_next_entry(trans, transports); 1;
1315 trans = list_next_entry(trans, transports)) {
1316 /* Manually skip the head element. */
1317 if (&trans->transports == &asoc->peer.transport_addr_list)
1319 if (trans->state == SCTP_UNCONFIRMED)
1321 trans_next = sctp_trans_elect_best(trans, trans_next);
1322 /* Active is good enough for immediate return. */
1323 if (trans_next->state == SCTP_ACTIVE)
1325 /* We've reached the end, time to update path. */
1326 if (trans == asoc->peer.retran_path)
1330 asoc->peer.retran_path = trans_next;
1332 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1333 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1336 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1338 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1339 struct sctp_transport *trans_pf = NULL;
1341 /* Look for the two most recently used active transports. */
1342 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1344 /* Skip uninteresting transports. */
1345 if (trans->state == SCTP_INACTIVE ||
1346 trans->state == SCTP_UNCONFIRMED)
1348 /* Keep track of the best PF transport from our
1349 * list in case we don't find an active one.
1351 if (trans->state == SCTP_PF) {
1352 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1355 /* For active transports, pick the most recent ones. */
1356 if (trans_pri == NULL ||
1357 ktime_after(trans->last_time_heard,
1358 trans_pri->last_time_heard)) {
1359 trans_sec = trans_pri;
1361 } else if (trans_sec == NULL ||
1362 ktime_after(trans->last_time_heard,
1363 trans_sec->last_time_heard)) {
1368 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1370 * By default, an endpoint should always transmit to the primary
1371 * path, unless the SCTP user explicitly specifies the
1372 * destination transport address (and possibly source transport
1373 * address) to use. [If the primary is active but not most recent,
1374 * bump the most recently used transport.]
1376 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1377 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1378 asoc->peer.primary_path != trans_pri) {
1379 trans_sec = trans_pri;
1380 trans_pri = asoc->peer.primary_path;
1383 /* We did not find anything useful for a possible retransmission
1384 * path; either primary path that we found is the the same as
1385 * the current one, or we didn't generally find an active one.
1387 if (trans_sec == NULL)
1388 trans_sec = trans_pri;
1390 /* If we failed to find a usable transport, just camp on the
1391 * active or pick a PF iff it's the better choice.
1393 if (trans_pri == NULL) {
1394 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1395 trans_sec = trans_pri;
1398 /* Set the active and retran transports. */
1399 asoc->peer.active_path = trans_pri;
1400 asoc->peer.retran_path = trans_sec;
1403 struct sctp_transport *
1404 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1405 struct sctp_transport *last_sent_to)
1407 /* If this is the first time packet is sent, use the active path,
1408 * else use the retran path. If the last packet was sent over the
1409 * retran path, update the retran path and use it.
1411 if (last_sent_to == NULL) {
1412 return asoc->peer.active_path;
1414 if (last_sent_to == asoc->peer.retran_path)
1415 sctp_assoc_update_retran_path(asoc);
1417 return asoc->peer.retran_path;
1421 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1423 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1424 sctp_datachk_len(&asoc->stream));
1426 if (asoc->user_frag)
1427 frag = min_t(int, frag, asoc->user_frag);
1429 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1430 sctp_datachk_len(&asoc->stream));
1432 asoc->frag_point = SCTP_TRUNC4(frag);
1435 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1437 if (asoc->pathmtu != pmtu) {
1438 asoc->pathmtu = pmtu;
1439 sctp_assoc_update_frag_point(asoc);
1442 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1443 asoc->pathmtu, asoc->frag_point);
1446 /* Update the association's pmtu and frag_point by going through all the
1447 * transports. This routine is called when a transport's PMTU has changed.
1449 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1451 struct sctp_transport *t;
1457 /* Get the lowest pmtu of all the transports. */
1458 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1459 if (t->pmtu_pending && t->dst) {
1460 sctp_transport_update_pmtu(t,
1461 atomic_read(&t->mtu_info));
1462 t->pmtu_pending = 0;
1464 if (!pmtu || (t->pathmtu < pmtu))
1468 sctp_assoc_set_pmtu(asoc, pmtu);
1471 /* Should we send a SACK to update our peer? */
1472 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1474 struct net *net = sock_net(asoc->base.sk);
1475 switch (asoc->state) {
1476 case SCTP_STATE_ESTABLISHED:
1477 case SCTP_STATE_SHUTDOWN_PENDING:
1478 case SCTP_STATE_SHUTDOWN_RECEIVED:
1479 case SCTP_STATE_SHUTDOWN_SENT:
1480 if ((asoc->rwnd > asoc->a_rwnd) &&
1481 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1482 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1492 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1493 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1495 struct sctp_chunk *sack;
1496 struct timer_list *timer;
1498 if (asoc->rwnd_over) {
1499 if (asoc->rwnd_over >= len) {
1500 asoc->rwnd_over -= len;
1502 asoc->rwnd += (len - asoc->rwnd_over);
1503 asoc->rwnd_over = 0;
1509 /* If we had window pressure, start recovering it
1510 * once our rwnd had reached the accumulated pressure
1511 * threshold. The idea is to recover slowly, but up
1512 * to the initial advertised window.
1514 if (asoc->rwnd_press) {
1515 int change = min(asoc->pathmtu, asoc->rwnd_press);
1516 asoc->rwnd += change;
1517 asoc->rwnd_press -= change;
1520 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1521 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1524 /* Send a window update SACK if the rwnd has increased by at least the
1525 * minimum of the association's PMTU and half of the receive buffer.
1526 * The algorithm used is similar to the one described in
1527 * Section 4.2.3.3 of RFC 1122.
1529 if (sctp_peer_needs_update(asoc)) {
1530 asoc->a_rwnd = asoc->rwnd;
1532 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1533 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1536 sack = sctp_make_sack(asoc);
1540 asoc->peer.sack_needed = 0;
1542 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1544 /* Stop the SACK timer. */
1545 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1546 if (del_timer(timer))
1547 sctp_association_put(asoc);
1551 /* Decrease asoc's rwnd by len. */
1552 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1557 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1558 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1559 "asoc->rwnd_over:%u!\n", __func__, asoc,
1560 asoc->rwnd, asoc->rwnd_over);
1562 if (asoc->ep->rcvbuf_policy)
1563 rx_count = atomic_read(&asoc->rmem_alloc);
1565 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1567 /* If we've reached or overflowed our receive buffer, announce
1568 * a 0 rwnd if rwnd would still be positive. Store the
1569 * the potential pressure overflow so that the window can be restored
1570 * back to original value.
1572 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1575 if (asoc->rwnd >= len) {
1578 asoc->rwnd_press += asoc->rwnd;
1582 asoc->rwnd_over += len - asoc->rwnd;
1586 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1587 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1591 /* Build the bind address list for the association based on info from the
1592 * local endpoint and the remote peer.
1594 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1595 enum sctp_scope scope, gfp_t gfp)
1599 /* Use scoping rules to determine the subset of addresses from
1602 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1603 if (asoc->peer.ipv4_address)
1604 flags |= SCTP_ADDR4_PEERSUPP;
1605 if (asoc->peer.ipv6_address)
1606 flags |= SCTP_ADDR6_PEERSUPP;
1608 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1609 &asoc->base.bind_addr,
1610 &asoc->ep->base.bind_addr,
1614 /* Build the association's bind address list from the cookie. */
1615 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1616 struct sctp_cookie *cookie,
1619 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1620 int var_size3 = cookie->raw_addr_list_len;
1621 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1623 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1624 asoc->ep->base.bind_addr.port, gfp);
1627 /* Lookup laddr in the bind address list of an association. */
1628 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1629 const union sctp_addr *laddr)
1633 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1634 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1635 sctp_sk(asoc->base.sk)))
1641 /* Set an association id for a given association */
1642 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1644 bool preload = gfpflags_allow_blocking(gfp);
1647 /* If the id is already assigned, keep it. */
1653 spin_lock_bh(&sctp_assocs_id_lock);
1654 /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1655 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1657 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1659 spin_unlock_bh(&sctp_assocs_id_lock);
1665 asoc->assoc_id = (sctp_assoc_t)ret;
1669 /* Free the ASCONF queue */
1670 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1672 struct sctp_chunk *asconf;
1673 struct sctp_chunk *tmp;
1675 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1676 list_del_init(&asconf->list);
1677 sctp_chunk_free(asconf);
1681 /* Free asconf_ack cache */
1682 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1684 struct sctp_chunk *ack;
1685 struct sctp_chunk *tmp;
1687 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1689 list_del_init(&ack->transmitted_list);
1690 sctp_chunk_free(ack);
1694 /* Clean up the ASCONF_ACK queue */
1695 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1697 struct sctp_chunk *ack;
1698 struct sctp_chunk *tmp;
1700 /* We can remove all the entries from the queue up to
1701 * the "Peer-Sequence-Number".
1703 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1705 if (ack->subh.addip_hdr->serial ==
1706 htonl(asoc->peer.addip_serial))
1709 list_del_init(&ack->transmitted_list);
1710 sctp_chunk_free(ack);
1714 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1715 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1716 const struct sctp_association *asoc,
1719 struct sctp_chunk *ack;
1721 /* Walk through the list of cached ASCONF-ACKs and find the
1722 * ack chunk whose serial number matches that of the request.
1724 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1725 if (sctp_chunk_pending(ack))
1727 if (ack->subh.addip_hdr->serial == serial) {
1728 sctp_chunk_hold(ack);
1736 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1738 /* Free any cached ASCONF_ACK chunk. */
1739 sctp_assoc_free_asconf_acks(asoc);
1741 /* Free the ASCONF queue. */
1742 sctp_assoc_free_asconf_queue(asoc);
1744 /* Free any cached ASCONF chunk. */
1745 if (asoc->addip_last_asconf)
1746 sctp_chunk_free(asoc->addip_last_asconf);