Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / net / sched / sch_taprio.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c        Time Aware Priority Scheduler
4  *
5  * Authors:     Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29
30 #define TAPRIO_ALL_GATES_OPEN -1
31
32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
34 #define TAPRIO_FLAGS_INVALID U32_MAX
35
36 struct sched_entry {
37         struct list_head list;
38
39         /* The instant that this entry "closes" and the next one
40          * should open, the qdisc will make some effort so that no
41          * packet leaves after this time.
42          */
43         ktime_t close_time;
44         ktime_t next_txtime;
45         atomic_t budget;
46         int index;
47         u32 gate_mask;
48         u32 interval;
49         u8 command;
50 };
51
52 struct sched_gate_list {
53         struct rcu_head rcu;
54         struct list_head entries;
55         size_t num_entries;
56         ktime_t cycle_close_time;
57         s64 cycle_time;
58         s64 cycle_time_extension;
59         s64 base_time;
60 };
61
62 struct taprio_sched {
63         struct Qdisc **qdiscs;
64         struct Qdisc *root;
65         u32 flags;
66         enum tk_offsets tk_offset;
67         int clockid;
68         atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
69                                     * speeds it's sub-nanoseconds per byte
70                                     */
71
72         /* Protects the update side of the RCU protected current_entry */
73         spinlock_t current_entry_lock;
74         struct sched_entry __rcu *current_entry;
75         struct sched_gate_list __rcu *oper_sched;
76         struct sched_gate_list __rcu *admin_sched;
77         struct hrtimer advance_timer;
78         struct list_head taprio_list;
79         struct sk_buff *(*dequeue)(struct Qdisc *sch);
80         struct sk_buff *(*peek)(struct Qdisc *sch);
81         u32 txtime_delay;
82 };
83
84 struct __tc_taprio_qopt_offload {
85         refcount_t users;
86         struct tc_taprio_qopt_offload offload;
87 };
88
89 static ktime_t sched_base_time(const struct sched_gate_list *sched)
90 {
91         if (!sched)
92                 return KTIME_MAX;
93
94         return ns_to_ktime(sched->base_time);
95 }
96
97 static ktime_t taprio_get_time(struct taprio_sched *q)
98 {
99         ktime_t mono = ktime_get();
100
101         switch (q->tk_offset) {
102         case TK_OFFS_MAX:
103                 return mono;
104         default:
105                 return ktime_mono_to_any(mono, q->tk_offset);
106         }
107
108         return KTIME_MAX;
109 }
110
111 static void taprio_free_sched_cb(struct rcu_head *head)
112 {
113         struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
114         struct sched_entry *entry, *n;
115
116         if (!sched)
117                 return;
118
119         list_for_each_entry_safe(entry, n, &sched->entries, list) {
120                 list_del(&entry->list);
121                 kfree(entry);
122         }
123
124         kfree(sched);
125 }
126
127 static void switch_schedules(struct taprio_sched *q,
128                              struct sched_gate_list **admin,
129                              struct sched_gate_list **oper)
130 {
131         rcu_assign_pointer(q->oper_sched, *admin);
132         rcu_assign_pointer(q->admin_sched, NULL);
133
134         if (*oper)
135                 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
136
137         *oper = *admin;
138         *admin = NULL;
139 }
140
141 /* Get how much time has been already elapsed in the current cycle. */
142 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
143 {
144         ktime_t time_since_sched_start;
145         s32 time_elapsed;
146
147         time_since_sched_start = ktime_sub(time, sched->base_time);
148         div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
149
150         return time_elapsed;
151 }
152
153 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
154                                      struct sched_gate_list *admin,
155                                      struct sched_entry *entry,
156                                      ktime_t intv_start)
157 {
158         s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
159         ktime_t intv_end, cycle_ext_end, cycle_end;
160
161         cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
162         intv_end = ktime_add_ns(intv_start, entry->interval);
163         cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
164
165         if (ktime_before(intv_end, cycle_end))
166                 return intv_end;
167         else if (admin && admin != sched &&
168                  ktime_after(admin->base_time, cycle_end) &&
169                  ktime_before(admin->base_time, cycle_ext_end))
170                 return admin->base_time;
171         else
172                 return cycle_end;
173 }
174
175 static int length_to_duration(struct taprio_sched *q, int len)
176 {
177         return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
178 }
179
180 /* Returns the entry corresponding to next available interval. If
181  * validate_interval is set, it only validates whether the timestamp occurs
182  * when the gate corresponding to the skb's traffic class is open.
183  */
184 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
185                                                   struct Qdisc *sch,
186                                                   struct sched_gate_list *sched,
187                                                   struct sched_gate_list *admin,
188                                                   ktime_t time,
189                                                   ktime_t *interval_start,
190                                                   ktime_t *interval_end,
191                                                   bool validate_interval)
192 {
193         ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
194         ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
195         struct sched_entry *entry = NULL, *entry_found = NULL;
196         struct taprio_sched *q = qdisc_priv(sch);
197         struct net_device *dev = qdisc_dev(sch);
198         bool entry_available = false;
199         s32 cycle_elapsed;
200         int tc, n;
201
202         tc = netdev_get_prio_tc_map(dev, skb->priority);
203         packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
204
205         *interval_start = 0;
206         *interval_end = 0;
207
208         if (!sched)
209                 return NULL;
210
211         cycle = sched->cycle_time;
212         cycle_elapsed = get_cycle_time_elapsed(sched, time);
213         curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
214         cycle_end = ktime_add_ns(curr_intv_end, cycle);
215
216         list_for_each_entry(entry, &sched->entries, list) {
217                 curr_intv_start = curr_intv_end;
218                 curr_intv_end = get_interval_end_time(sched, admin, entry,
219                                                       curr_intv_start);
220
221                 if (ktime_after(curr_intv_start, cycle_end))
222                         break;
223
224                 if (!(entry->gate_mask & BIT(tc)) ||
225                     packet_transmit_time > entry->interval)
226                         continue;
227
228                 txtime = entry->next_txtime;
229
230                 if (ktime_before(txtime, time) || validate_interval) {
231                         transmit_end_time = ktime_add_ns(time, packet_transmit_time);
232                         if ((ktime_before(curr_intv_start, time) &&
233                              ktime_before(transmit_end_time, curr_intv_end)) ||
234                             (ktime_after(curr_intv_start, time) && !validate_interval)) {
235                                 entry_found = entry;
236                                 *interval_start = curr_intv_start;
237                                 *interval_end = curr_intv_end;
238                                 break;
239                         } else if (!entry_available && !validate_interval) {
240                                 /* Here, we are just trying to find out the
241                                  * first available interval in the next cycle.
242                                  */
243                                 entry_available = 1;
244                                 entry_found = entry;
245                                 *interval_start = ktime_add_ns(curr_intv_start, cycle);
246                                 *interval_end = ktime_add_ns(curr_intv_end, cycle);
247                         }
248                 } else if (ktime_before(txtime, earliest_txtime) &&
249                            !entry_available) {
250                         earliest_txtime = txtime;
251                         entry_found = entry;
252                         n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
253                         *interval_start = ktime_add(curr_intv_start, n * cycle);
254                         *interval_end = ktime_add(curr_intv_end, n * cycle);
255                 }
256         }
257
258         return entry_found;
259 }
260
261 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
262 {
263         struct taprio_sched *q = qdisc_priv(sch);
264         struct sched_gate_list *sched, *admin;
265         ktime_t interval_start, interval_end;
266         struct sched_entry *entry;
267
268         rcu_read_lock();
269         sched = rcu_dereference(q->oper_sched);
270         admin = rcu_dereference(q->admin_sched);
271
272         entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
273                                        &interval_start, &interval_end, true);
274         rcu_read_unlock();
275
276         return entry;
277 }
278
279 static bool taprio_flags_valid(u32 flags)
280 {
281         /* Make sure no other flag bits are set. */
282         if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
283                       TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
284                 return false;
285         /* txtime-assist and full offload are mutually exclusive */
286         if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
287             (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
288                 return false;
289         return true;
290 }
291
292 /* This returns the tstamp value set by TCP in terms of the set clock. */
293 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
294 {
295         unsigned int offset = skb_network_offset(skb);
296         const struct ipv6hdr *ipv6h;
297         const struct iphdr *iph;
298         struct ipv6hdr _ipv6h;
299
300         ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
301         if (!ipv6h)
302                 return 0;
303
304         if (ipv6h->version == 4) {
305                 iph = (struct iphdr *)ipv6h;
306                 offset += iph->ihl * 4;
307
308                 /* special-case 6in4 tunnelling, as that is a common way to get
309                  * v6 connectivity in the home
310                  */
311                 if (iph->protocol == IPPROTO_IPV6) {
312                         ipv6h = skb_header_pointer(skb, offset,
313                                                    sizeof(_ipv6h), &_ipv6h);
314
315                         if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
316                                 return 0;
317                 } else if (iph->protocol != IPPROTO_TCP) {
318                         return 0;
319                 }
320         } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
321                 return 0;
322         }
323
324         return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
325 }
326
327 /* There are a few scenarios where we will have to modify the txtime from
328  * what is read from next_txtime in sched_entry. They are:
329  * 1. If txtime is in the past,
330  *    a. The gate for the traffic class is currently open and packet can be
331  *       transmitted before it closes, schedule the packet right away.
332  *    b. If the gate corresponding to the traffic class is going to open later
333  *       in the cycle, set the txtime of packet to the interval start.
334  * 2. If txtime is in the future, there are packets corresponding to the
335  *    current traffic class waiting to be transmitted. So, the following
336  *    possibilities exist:
337  *    a. We can transmit the packet before the window containing the txtime
338  *       closes.
339  *    b. The window might close before the transmission can be completed
340  *       successfully. So, schedule the packet in the next open window.
341  */
342 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
343 {
344         ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
345         struct taprio_sched *q = qdisc_priv(sch);
346         struct sched_gate_list *sched, *admin;
347         ktime_t minimum_time, now, txtime;
348         int len, packet_transmit_time;
349         struct sched_entry *entry;
350         bool sched_changed;
351
352         now = taprio_get_time(q);
353         minimum_time = ktime_add_ns(now, q->txtime_delay);
354
355         tcp_tstamp = get_tcp_tstamp(q, skb);
356         minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
357
358         rcu_read_lock();
359         admin = rcu_dereference(q->admin_sched);
360         sched = rcu_dereference(q->oper_sched);
361         if (admin && ktime_after(minimum_time, admin->base_time))
362                 switch_schedules(q, &admin, &sched);
363
364         /* Until the schedule starts, all the queues are open */
365         if (!sched || ktime_before(minimum_time, sched->base_time)) {
366                 txtime = minimum_time;
367                 goto done;
368         }
369
370         len = qdisc_pkt_len(skb);
371         packet_transmit_time = length_to_duration(q, len);
372
373         do {
374                 sched_changed = 0;
375
376                 entry = find_entry_to_transmit(skb, sch, sched, admin,
377                                                minimum_time,
378                                                &interval_start, &interval_end,
379                                                false);
380                 if (!entry) {
381                         txtime = 0;
382                         goto done;
383                 }
384
385                 txtime = entry->next_txtime;
386                 txtime = max_t(ktime_t, txtime, minimum_time);
387                 txtime = max_t(ktime_t, txtime, interval_start);
388
389                 if (admin && admin != sched &&
390                     ktime_after(txtime, admin->base_time)) {
391                         sched = admin;
392                         sched_changed = 1;
393                         continue;
394                 }
395
396                 transmit_end_time = ktime_add(txtime, packet_transmit_time);
397                 minimum_time = transmit_end_time;
398
399                 /* Update the txtime of current entry to the next time it's
400                  * interval starts.
401                  */
402                 if (ktime_after(transmit_end_time, interval_end))
403                         entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
404         } while (sched_changed || ktime_after(transmit_end_time, interval_end));
405
406         entry->next_txtime = transmit_end_time;
407
408 done:
409         rcu_read_unlock();
410         return txtime;
411 }
412
413 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
414                           struct sk_buff **to_free)
415 {
416         struct taprio_sched *q = qdisc_priv(sch);
417         struct Qdisc *child;
418         int queue;
419
420         queue = skb_get_queue_mapping(skb);
421
422         child = q->qdiscs[queue];
423         if (unlikely(!child))
424                 return qdisc_drop(skb, sch, to_free);
425
426         if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
427                 if (!is_valid_interval(skb, sch))
428                         return qdisc_drop(skb, sch, to_free);
429         } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
430                 skb->tstamp = get_packet_txtime(skb, sch);
431                 if (!skb->tstamp)
432                         return qdisc_drop(skb, sch, to_free);
433         }
434
435         qdisc_qstats_backlog_inc(sch, skb);
436         sch->q.qlen++;
437
438         return qdisc_enqueue(skb, child, to_free);
439 }
440
441 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
442 {
443         struct taprio_sched *q = qdisc_priv(sch);
444         struct net_device *dev = qdisc_dev(sch);
445         struct sched_entry *entry;
446         struct sk_buff *skb;
447         u32 gate_mask;
448         int i;
449
450         rcu_read_lock();
451         entry = rcu_dereference(q->current_entry);
452         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
453         rcu_read_unlock();
454
455         if (!gate_mask)
456                 return NULL;
457
458         for (i = 0; i < dev->num_tx_queues; i++) {
459                 struct Qdisc *child = q->qdiscs[i];
460                 int prio;
461                 u8 tc;
462
463                 if (unlikely(!child))
464                         continue;
465
466                 skb = child->ops->peek(child);
467                 if (!skb)
468                         continue;
469
470                 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
471                         return skb;
472
473                 prio = skb->priority;
474                 tc = netdev_get_prio_tc_map(dev, prio);
475
476                 if (!(gate_mask & BIT(tc)))
477                         continue;
478
479                 return skb;
480         }
481
482         return NULL;
483 }
484
485 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
486 {
487         struct taprio_sched *q = qdisc_priv(sch);
488         struct net_device *dev = qdisc_dev(sch);
489         struct sk_buff *skb;
490         int i;
491
492         for (i = 0; i < dev->num_tx_queues; i++) {
493                 struct Qdisc *child = q->qdiscs[i];
494
495                 if (unlikely(!child))
496                         continue;
497
498                 skb = child->ops->peek(child);
499                 if (!skb)
500                         continue;
501
502                 return skb;
503         }
504
505         return NULL;
506 }
507
508 static struct sk_buff *taprio_peek(struct Qdisc *sch)
509 {
510         struct taprio_sched *q = qdisc_priv(sch);
511
512         return q->peek(sch);
513 }
514
515 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
516 {
517         atomic_set(&entry->budget,
518                    div64_u64((u64)entry->interval * 1000,
519                              atomic64_read(&q->picos_per_byte)));
520 }
521
522 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
523 {
524         struct taprio_sched *q = qdisc_priv(sch);
525         struct net_device *dev = qdisc_dev(sch);
526         struct sk_buff *skb = NULL;
527         struct sched_entry *entry;
528         u32 gate_mask;
529         int i;
530
531         rcu_read_lock();
532         entry = rcu_dereference(q->current_entry);
533         /* if there's no entry, it means that the schedule didn't
534          * start yet, so force all gates to be open, this is in
535          * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
536          * "AdminGateSates"
537          */
538         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
539
540         if (!gate_mask)
541                 goto done;
542
543         for (i = 0; i < dev->num_tx_queues; i++) {
544                 struct Qdisc *child = q->qdiscs[i];
545                 ktime_t guard;
546                 int prio;
547                 int len;
548                 u8 tc;
549
550                 if (unlikely(!child))
551                         continue;
552
553                 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
554                         skb = child->ops->dequeue(child);
555                         if (!skb)
556                                 continue;
557                         goto skb_found;
558                 }
559
560                 skb = child->ops->peek(child);
561                 if (!skb)
562                         continue;
563
564                 prio = skb->priority;
565                 tc = netdev_get_prio_tc_map(dev, prio);
566
567                 if (!(gate_mask & BIT(tc))) {
568                         skb = NULL;
569                         continue;
570                 }
571
572                 len = qdisc_pkt_len(skb);
573                 guard = ktime_add_ns(taprio_get_time(q),
574                                      length_to_duration(q, len));
575
576                 /* In the case that there's no gate entry, there's no
577                  * guard band ...
578                  */
579                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
580                     ktime_after(guard, entry->close_time)) {
581                         skb = NULL;
582                         continue;
583                 }
584
585                 /* ... and no budget. */
586                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
587                     atomic_sub_return(len, &entry->budget) < 0) {
588                         skb = NULL;
589                         continue;
590                 }
591
592                 skb = child->ops->dequeue(child);
593                 if (unlikely(!skb))
594                         goto done;
595
596 skb_found:
597                 qdisc_bstats_update(sch, skb);
598                 qdisc_qstats_backlog_dec(sch, skb);
599                 sch->q.qlen--;
600
601                 goto done;
602         }
603
604 done:
605         rcu_read_unlock();
606
607         return skb;
608 }
609
610 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
611 {
612         struct taprio_sched *q = qdisc_priv(sch);
613         struct net_device *dev = qdisc_dev(sch);
614         struct sk_buff *skb;
615         int i;
616
617         for (i = 0; i < dev->num_tx_queues; i++) {
618                 struct Qdisc *child = q->qdiscs[i];
619
620                 if (unlikely(!child))
621                         continue;
622
623                 skb = child->ops->dequeue(child);
624                 if (unlikely(!skb))
625                         continue;
626
627                 qdisc_bstats_update(sch, skb);
628                 qdisc_qstats_backlog_dec(sch, skb);
629                 sch->q.qlen--;
630
631                 return skb;
632         }
633
634         return NULL;
635 }
636
637 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
638 {
639         struct taprio_sched *q = qdisc_priv(sch);
640
641         return q->dequeue(sch);
642 }
643
644 static bool should_restart_cycle(const struct sched_gate_list *oper,
645                                  const struct sched_entry *entry)
646 {
647         if (list_is_last(&entry->list, &oper->entries))
648                 return true;
649
650         if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
651                 return true;
652
653         return false;
654 }
655
656 static bool should_change_schedules(const struct sched_gate_list *admin,
657                                     const struct sched_gate_list *oper,
658                                     ktime_t close_time)
659 {
660         ktime_t next_base_time, extension_time;
661
662         if (!admin)
663                 return false;
664
665         next_base_time = sched_base_time(admin);
666
667         /* This is the simple case, the close_time would fall after
668          * the next schedule base_time.
669          */
670         if (ktime_compare(next_base_time, close_time) <= 0)
671                 return true;
672
673         /* This is the cycle_time_extension case, if the close_time
674          * plus the amount that can be extended would fall after the
675          * next schedule base_time, we can extend the current schedule
676          * for that amount.
677          */
678         extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
679
680         /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
681          * how precisely the extension should be made. So after
682          * conformance testing, this logic may change.
683          */
684         if (ktime_compare(next_base_time, extension_time) <= 0)
685                 return true;
686
687         return false;
688 }
689
690 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
691 {
692         struct taprio_sched *q = container_of(timer, struct taprio_sched,
693                                               advance_timer);
694         struct sched_gate_list *oper, *admin;
695         struct sched_entry *entry, *next;
696         struct Qdisc *sch = q->root;
697         ktime_t close_time;
698
699         spin_lock(&q->current_entry_lock);
700         entry = rcu_dereference_protected(q->current_entry,
701                                           lockdep_is_held(&q->current_entry_lock));
702         oper = rcu_dereference_protected(q->oper_sched,
703                                          lockdep_is_held(&q->current_entry_lock));
704         admin = rcu_dereference_protected(q->admin_sched,
705                                           lockdep_is_held(&q->current_entry_lock));
706
707         if (!oper)
708                 switch_schedules(q, &admin, &oper);
709
710         /* This can happen in two cases: 1. this is the very first run
711          * of this function (i.e. we weren't running any schedule
712          * previously); 2. The previous schedule just ended. The first
713          * entry of all schedules are pre-calculated during the
714          * schedule initialization.
715          */
716         if (unlikely(!entry || entry->close_time == oper->base_time)) {
717                 next = list_first_entry(&oper->entries, struct sched_entry,
718                                         list);
719                 close_time = next->close_time;
720                 goto first_run;
721         }
722
723         if (should_restart_cycle(oper, entry)) {
724                 next = list_first_entry(&oper->entries, struct sched_entry,
725                                         list);
726                 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
727                                                       oper->cycle_time);
728         } else {
729                 next = list_next_entry(entry, list);
730         }
731
732         close_time = ktime_add_ns(entry->close_time, next->interval);
733         close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
734
735         if (should_change_schedules(admin, oper, close_time)) {
736                 /* Set things so the next time this runs, the new
737                  * schedule runs.
738                  */
739                 close_time = sched_base_time(admin);
740                 switch_schedules(q, &admin, &oper);
741         }
742
743         next->close_time = close_time;
744         taprio_set_budget(q, next);
745
746 first_run:
747         rcu_assign_pointer(q->current_entry, next);
748         spin_unlock(&q->current_entry_lock);
749
750         hrtimer_set_expires(&q->advance_timer, close_time);
751
752         rcu_read_lock();
753         __netif_schedule(sch);
754         rcu_read_unlock();
755
756         return HRTIMER_RESTART;
757 }
758
759 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
760         [TCA_TAPRIO_SCHED_ENTRY_INDEX]     = { .type = NLA_U32 },
761         [TCA_TAPRIO_SCHED_ENTRY_CMD]       = { .type = NLA_U8 },
762         [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
763         [TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
764 };
765
766 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
767         [TCA_TAPRIO_ATTR_PRIOMAP]              = {
768                 .len = sizeof(struct tc_mqprio_qopt)
769         },
770         [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
771         [TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
772         [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
773         [TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
774         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
775         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
776         [TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
777         [TCA_TAPRIO_ATTR_TXTIME_DELAY]               = { .type = NLA_U32 },
778 };
779
780 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
781                             struct sched_entry *entry,
782                             struct netlink_ext_ack *extack)
783 {
784         int min_duration = length_to_duration(q, ETH_ZLEN);
785         u32 interval = 0;
786
787         if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
788                 entry->command = nla_get_u8(
789                         tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
790
791         if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
792                 entry->gate_mask = nla_get_u32(
793                         tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
794
795         if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
796                 interval = nla_get_u32(
797                         tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
798
799         /* The interval should allow at least the minimum ethernet
800          * frame to go out.
801          */
802         if (interval < min_duration) {
803                 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
804                 return -EINVAL;
805         }
806
807         entry->interval = interval;
808
809         return 0;
810 }
811
812 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
813                              struct sched_entry *entry, int index,
814                              struct netlink_ext_ack *extack)
815 {
816         struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
817         int err;
818
819         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
820                                           entry_policy, NULL);
821         if (err < 0) {
822                 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
823                 return -EINVAL;
824         }
825
826         entry->index = index;
827
828         return fill_sched_entry(q, tb, entry, extack);
829 }
830
831 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
832                             struct sched_gate_list *sched,
833                             struct netlink_ext_ack *extack)
834 {
835         struct nlattr *n;
836         int err, rem;
837         int i = 0;
838
839         if (!list)
840                 return -EINVAL;
841
842         nla_for_each_nested(n, list, rem) {
843                 struct sched_entry *entry;
844
845                 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
846                         NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
847                         continue;
848                 }
849
850                 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
851                 if (!entry) {
852                         NL_SET_ERR_MSG(extack, "Not enough memory for entry");
853                         return -ENOMEM;
854                 }
855
856                 err = parse_sched_entry(q, n, entry, i, extack);
857                 if (err < 0) {
858                         kfree(entry);
859                         return err;
860                 }
861
862                 list_add_tail(&entry->list, &sched->entries);
863                 i++;
864         }
865
866         sched->num_entries = i;
867
868         return i;
869 }
870
871 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
872                                  struct sched_gate_list *new,
873                                  struct netlink_ext_ack *extack)
874 {
875         int err = 0;
876
877         if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
878                 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
879                 return -ENOTSUPP;
880         }
881
882         if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
883                 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
884
885         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
886                 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
887
888         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
889                 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
890
891         if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
892                 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
893                                        new, extack);
894         if (err < 0)
895                 return err;
896
897         if (!new->cycle_time) {
898                 struct sched_entry *entry;
899                 ktime_t cycle = 0;
900
901                 list_for_each_entry(entry, &new->entries, list)
902                         cycle = ktime_add_ns(cycle, entry->interval);
903                 new->cycle_time = cycle;
904         }
905
906         return 0;
907 }
908
909 static int taprio_parse_mqprio_opt(struct net_device *dev,
910                                    struct tc_mqprio_qopt *qopt,
911                                    struct netlink_ext_ack *extack,
912                                    u32 taprio_flags)
913 {
914         int i, j;
915
916         if (!qopt && !dev->num_tc) {
917                 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
918                 return -EINVAL;
919         }
920
921         /* If num_tc is already set, it means that the user already
922          * configured the mqprio part
923          */
924         if (dev->num_tc)
925                 return 0;
926
927         /* Verify num_tc is not out of max range */
928         if (qopt->num_tc > TC_MAX_QUEUE) {
929                 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
930                 return -EINVAL;
931         }
932
933         /* taprio imposes that traffic classes map 1:n to tx queues */
934         if (qopt->num_tc > dev->num_tx_queues) {
935                 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
936                 return -EINVAL;
937         }
938
939         /* Verify priority mapping uses valid tcs */
940         for (i = 0; i <= TC_BITMASK; i++) {
941                 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
942                         NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
943                         return -EINVAL;
944                 }
945         }
946
947         for (i = 0; i < qopt->num_tc; i++) {
948                 unsigned int last = qopt->offset[i] + qopt->count[i];
949
950                 /* Verify the queue count is in tx range being equal to the
951                  * real_num_tx_queues indicates the last queue is in use.
952                  */
953                 if (qopt->offset[i] >= dev->num_tx_queues ||
954                     !qopt->count[i] ||
955                     last > dev->real_num_tx_queues) {
956                         NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
957                         return -EINVAL;
958                 }
959
960                 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
961                         continue;
962
963                 /* Verify that the offset and counts do not overlap */
964                 for (j = i + 1; j < qopt->num_tc; j++) {
965                         if (last > qopt->offset[j]) {
966                                 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
967                                 return -EINVAL;
968                         }
969                 }
970         }
971
972         return 0;
973 }
974
975 static int taprio_get_start_time(struct Qdisc *sch,
976                                  struct sched_gate_list *sched,
977                                  ktime_t *start)
978 {
979         struct taprio_sched *q = qdisc_priv(sch);
980         ktime_t now, base, cycle;
981         s64 n;
982
983         base = sched_base_time(sched);
984         now = taprio_get_time(q);
985
986         if (ktime_after(base, now)) {
987                 *start = base;
988                 return 0;
989         }
990
991         cycle = sched->cycle_time;
992
993         /* The qdisc is expected to have at least one sched_entry.  Moreover,
994          * any entry must have 'interval' > 0. Thus if the cycle time is zero,
995          * something went really wrong. In that case, we should warn about this
996          * inconsistent state and return error.
997          */
998         if (WARN_ON(!cycle))
999                 return -EFAULT;
1000
1001         /* Schedule the start time for the beginning of the next
1002          * cycle.
1003          */
1004         n = div64_s64(ktime_sub_ns(now, base), cycle);
1005         *start = ktime_add_ns(base, (n + 1) * cycle);
1006         return 0;
1007 }
1008
1009 static void setup_first_close_time(struct taprio_sched *q,
1010                                    struct sched_gate_list *sched, ktime_t base)
1011 {
1012         struct sched_entry *first;
1013         ktime_t cycle;
1014
1015         first = list_first_entry(&sched->entries,
1016                                  struct sched_entry, list);
1017
1018         cycle = sched->cycle_time;
1019
1020         /* FIXME: find a better place to do this */
1021         sched->cycle_close_time = ktime_add_ns(base, cycle);
1022
1023         first->close_time = ktime_add_ns(base, first->interval);
1024         taprio_set_budget(q, first);
1025         rcu_assign_pointer(q->current_entry, NULL);
1026 }
1027
1028 static void taprio_start_sched(struct Qdisc *sch,
1029                                ktime_t start, struct sched_gate_list *new)
1030 {
1031         struct taprio_sched *q = qdisc_priv(sch);
1032         ktime_t expires;
1033
1034         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1035                 return;
1036
1037         expires = hrtimer_get_expires(&q->advance_timer);
1038         if (expires == 0)
1039                 expires = KTIME_MAX;
1040
1041         /* If the new schedule starts before the next expiration, we
1042          * reprogram it to the earliest one, so we change the admin
1043          * schedule to the operational one at the right time.
1044          */
1045         start = min_t(ktime_t, start, expires);
1046
1047         hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1048 }
1049
1050 static void taprio_set_picos_per_byte(struct net_device *dev,
1051                                       struct taprio_sched *q)
1052 {
1053         struct ethtool_link_ksettings ecmd;
1054         int speed = SPEED_10;
1055         int picos_per_byte;
1056         int err;
1057
1058         err = __ethtool_get_link_ksettings(dev, &ecmd);
1059         if (err < 0)
1060                 goto skip;
1061
1062         if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1063                 speed = ecmd.base.speed;
1064
1065 skip:
1066         picos_per_byte = (USEC_PER_SEC * 8) / speed;
1067
1068         atomic64_set(&q->picos_per_byte, picos_per_byte);
1069         netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1070                    dev->name, (long long)atomic64_read(&q->picos_per_byte),
1071                    ecmd.base.speed);
1072 }
1073
1074 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1075                                void *ptr)
1076 {
1077         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1078         struct net_device *qdev;
1079         struct taprio_sched *q;
1080         bool found = false;
1081
1082         ASSERT_RTNL();
1083
1084         if (event != NETDEV_UP && event != NETDEV_CHANGE)
1085                 return NOTIFY_DONE;
1086
1087         spin_lock(&taprio_list_lock);
1088         list_for_each_entry(q, &taprio_list, taprio_list) {
1089                 qdev = qdisc_dev(q->root);
1090                 if (qdev == dev) {
1091                         found = true;
1092                         break;
1093                 }
1094         }
1095         spin_unlock(&taprio_list_lock);
1096
1097         if (found)
1098                 taprio_set_picos_per_byte(dev, q);
1099
1100         return NOTIFY_DONE;
1101 }
1102
1103 static void setup_txtime(struct taprio_sched *q,
1104                          struct sched_gate_list *sched, ktime_t base)
1105 {
1106         struct sched_entry *entry;
1107         u32 interval = 0;
1108
1109         list_for_each_entry(entry, &sched->entries, list) {
1110                 entry->next_txtime = ktime_add_ns(base, interval);
1111                 interval += entry->interval;
1112         }
1113 }
1114
1115 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1116 {
1117         struct __tc_taprio_qopt_offload *__offload;
1118
1119         __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1120                             GFP_KERNEL);
1121         if (!__offload)
1122                 return NULL;
1123
1124         refcount_set(&__offload->users, 1);
1125
1126         return &__offload->offload;
1127 }
1128
1129 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1130                                                   *offload)
1131 {
1132         struct __tc_taprio_qopt_offload *__offload;
1133
1134         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1135                                  offload);
1136
1137         refcount_inc(&__offload->users);
1138
1139         return offload;
1140 }
1141 EXPORT_SYMBOL_GPL(taprio_offload_get);
1142
1143 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1144 {
1145         struct __tc_taprio_qopt_offload *__offload;
1146
1147         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1148                                  offload);
1149
1150         if (!refcount_dec_and_test(&__offload->users))
1151                 return;
1152
1153         kfree(__offload);
1154 }
1155 EXPORT_SYMBOL_GPL(taprio_offload_free);
1156
1157 /* The function will only serve to keep the pointers to the "oper" and "admin"
1158  * schedules valid in relation to their base times, so when calling dump() the
1159  * users looks at the right schedules.
1160  * When using full offload, the admin configuration is promoted to oper at the
1161  * base_time in the PHC time domain.  But because the system time is not
1162  * necessarily in sync with that, we can't just trigger a hrtimer to call
1163  * switch_schedules at the right hardware time.
1164  * At the moment we call this by hand right away from taprio, but in the future
1165  * it will be useful to create a mechanism for drivers to notify taprio of the
1166  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1167  * This is left as TODO.
1168  */
1169 static void taprio_offload_config_changed(struct taprio_sched *q)
1170 {
1171         struct sched_gate_list *oper, *admin;
1172
1173         spin_lock(&q->current_entry_lock);
1174
1175         oper = rcu_dereference_protected(q->oper_sched,
1176                                          lockdep_is_held(&q->current_entry_lock));
1177         admin = rcu_dereference_protected(q->admin_sched,
1178                                           lockdep_is_held(&q->current_entry_lock));
1179
1180         switch_schedules(q, &admin, &oper);
1181
1182         spin_unlock(&q->current_entry_lock);
1183 }
1184
1185 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1186 {
1187         u32 i, queue_mask = 0;
1188
1189         for (i = 0; i < dev->num_tc; i++) {
1190                 u32 offset, count;
1191
1192                 if (!(tc_mask & BIT(i)))
1193                         continue;
1194
1195                 offset = dev->tc_to_txq[i].offset;
1196                 count = dev->tc_to_txq[i].count;
1197
1198                 queue_mask |= GENMASK(offset + count - 1, offset);
1199         }
1200
1201         return queue_mask;
1202 }
1203
1204 static void taprio_sched_to_offload(struct net_device *dev,
1205                                     struct sched_gate_list *sched,
1206                                     struct tc_taprio_qopt_offload *offload)
1207 {
1208         struct sched_entry *entry;
1209         int i = 0;
1210
1211         offload->base_time = sched->base_time;
1212         offload->cycle_time = sched->cycle_time;
1213         offload->cycle_time_extension = sched->cycle_time_extension;
1214
1215         list_for_each_entry(entry, &sched->entries, list) {
1216                 struct tc_taprio_sched_entry *e = &offload->entries[i];
1217
1218                 e->command = entry->command;
1219                 e->interval = entry->interval;
1220                 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1221
1222                 i++;
1223         }
1224
1225         offload->num_entries = i;
1226 }
1227
1228 static int taprio_enable_offload(struct net_device *dev,
1229                                  struct taprio_sched *q,
1230                                  struct sched_gate_list *sched,
1231                                  struct netlink_ext_ack *extack)
1232 {
1233         const struct net_device_ops *ops = dev->netdev_ops;
1234         struct tc_taprio_qopt_offload *offload;
1235         int err = 0;
1236
1237         if (!ops->ndo_setup_tc) {
1238                 NL_SET_ERR_MSG(extack,
1239                                "Device does not support taprio offload");
1240                 return -EOPNOTSUPP;
1241         }
1242
1243         offload = taprio_offload_alloc(sched->num_entries);
1244         if (!offload) {
1245                 NL_SET_ERR_MSG(extack,
1246                                "Not enough memory for enabling offload mode");
1247                 return -ENOMEM;
1248         }
1249         offload->enable = 1;
1250         taprio_sched_to_offload(dev, sched, offload);
1251
1252         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1253         if (err < 0) {
1254                 NL_SET_ERR_MSG(extack,
1255                                "Device failed to setup taprio offload");
1256                 goto done;
1257         }
1258
1259 done:
1260         taprio_offload_free(offload);
1261
1262         return err;
1263 }
1264
1265 static int taprio_disable_offload(struct net_device *dev,
1266                                   struct taprio_sched *q,
1267                                   struct netlink_ext_ack *extack)
1268 {
1269         const struct net_device_ops *ops = dev->netdev_ops;
1270         struct tc_taprio_qopt_offload *offload;
1271         int err;
1272
1273         if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1274                 return 0;
1275
1276         if (!ops->ndo_setup_tc)
1277                 return -EOPNOTSUPP;
1278
1279         offload = taprio_offload_alloc(0);
1280         if (!offload) {
1281                 NL_SET_ERR_MSG(extack,
1282                                "Not enough memory to disable offload mode");
1283                 return -ENOMEM;
1284         }
1285         offload->enable = 0;
1286
1287         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1288         if (err < 0) {
1289                 NL_SET_ERR_MSG(extack,
1290                                "Device failed to disable offload");
1291                 goto out;
1292         }
1293
1294 out:
1295         taprio_offload_free(offload);
1296
1297         return err;
1298 }
1299
1300 /* If full offload is enabled, the only possible clockid is the net device's
1301  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1302  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1303  * in sync with the specified clockid via a user space daemon such as phc2sys.
1304  * For both software taprio and txtime-assist, the clockid is used for the
1305  * hrtimer that advances the schedule and hence mandatory.
1306  */
1307 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1308                                 struct netlink_ext_ack *extack)
1309 {
1310         struct taprio_sched *q = qdisc_priv(sch);
1311         struct net_device *dev = qdisc_dev(sch);
1312         int err = -EINVAL;
1313
1314         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1315                 const struct ethtool_ops *ops = dev->ethtool_ops;
1316                 struct ethtool_ts_info info = {
1317                         .cmd = ETHTOOL_GET_TS_INFO,
1318                         .phc_index = -1,
1319                 };
1320
1321                 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1322                         NL_SET_ERR_MSG(extack,
1323                                        "The 'clockid' cannot be specified for full offload");
1324                         goto out;
1325                 }
1326
1327                 if (ops && ops->get_ts_info)
1328                         err = ops->get_ts_info(dev, &info);
1329
1330                 if (err || info.phc_index < 0) {
1331                         NL_SET_ERR_MSG(extack,
1332                                        "Device does not have a PTP clock");
1333                         err = -ENOTSUPP;
1334                         goto out;
1335                 }
1336         } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1337                 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1338
1339                 /* We only support static clockids and we don't allow
1340                  * for it to be modified after the first init.
1341                  */
1342                 if (clockid < 0 ||
1343                     (q->clockid != -1 && q->clockid != clockid)) {
1344                         NL_SET_ERR_MSG(extack,
1345                                        "Changing the 'clockid' of a running schedule is not supported");
1346                         err = -ENOTSUPP;
1347                         goto out;
1348                 }
1349
1350                 switch (clockid) {
1351                 case CLOCK_REALTIME:
1352                         q->tk_offset = TK_OFFS_REAL;
1353                         break;
1354                 case CLOCK_MONOTONIC:
1355                         q->tk_offset = TK_OFFS_MAX;
1356                         break;
1357                 case CLOCK_BOOTTIME:
1358                         q->tk_offset = TK_OFFS_BOOT;
1359                         break;
1360                 case CLOCK_TAI:
1361                         q->tk_offset = TK_OFFS_TAI;
1362                         break;
1363                 default:
1364                         NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1365                         err = -EINVAL;
1366                         goto out;
1367                 }
1368
1369                 q->clockid = clockid;
1370         } else {
1371                 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1372                 goto out;
1373         }
1374
1375         /* Everything went ok, return success. */
1376         err = 0;
1377
1378 out:
1379         return err;
1380 }
1381
1382 static int taprio_mqprio_cmp(const struct net_device *dev,
1383                              const struct tc_mqprio_qopt *mqprio)
1384 {
1385         int i;
1386
1387         if (!mqprio || mqprio->num_tc != dev->num_tc)
1388                 return -1;
1389
1390         for (i = 0; i < mqprio->num_tc; i++)
1391                 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1392                     dev->tc_to_txq[i].offset != mqprio->offset[i])
1393                         return -1;
1394
1395         for (i = 0; i <= TC_BITMASK; i++)
1396                 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1397                         return -1;
1398
1399         return 0;
1400 }
1401
1402 /* The semantics of the 'flags' argument in relation to 'change()'
1403  * requests, are interpreted following two rules (which are applied in
1404  * this order): (1) an omitted 'flags' argument is interpreted as
1405  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1406  * changed.
1407  */
1408 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1409                             struct netlink_ext_ack *extack)
1410 {
1411         u32 new = 0;
1412
1413         if (attr)
1414                 new = nla_get_u32(attr);
1415
1416         if (old != TAPRIO_FLAGS_INVALID && old != new) {
1417                 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1418                 return -EOPNOTSUPP;
1419         }
1420
1421         if (!taprio_flags_valid(new)) {
1422                 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1423                 return -EINVAL;
1424         }
1425
1426         return new;
1427 }
1428
1429 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1430                          struct netlink_ext_ack *extack)
1431 {
1432         struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1433         struct sched_gate_list *oper, *admin, *new_admin;
1434         struct taprio_sched *q = qdisc_priv(sch);
1435         struct net_device *dev = qdisc_dev(sch);
1436         struct tc_mqprio_qopt *mqprio = NULL;
1437         unsigned long flags;
1438         ktime_t start;
1439         int i, err;
1440
1441         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1442                                           taprio_policy, extack);
1443         if (err < 0)
1444                 return err;
1445
1446         if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1447                 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1448
1449         err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1450                                q->flags, extack);
1451         if (err < 0)
1452                 return err;
1453
1454         q->flags = err;
1455
1456         err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1457         if (err < 0)
1458                 return err;
1459
1460         new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1461         if (!new_admin) {
1462                 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1463                 return -ENOMEM;
1464         }
1465         INIT_LIST_HEAD(&new_admin->entries);
1466
1467         rcu_read_lock();
1468         oper = rcu_dereference(q->oper_sched);
1469         admin = rcu_dereference(q->admin_sched);
1470         rcu_read_unlock();
1471
1472         /* no changes - no new mqprio settings */
1473         if (!taprio_mqprio_cmp(dev, mqprio))
1474                 mqprio = NULL;
1475
1476         if (mqprio && (oper || admin)) {
1477                 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1478                 err = -ENOTSUPP;
1479                 goto free_sched;
1480         }
1481
1482         err = parse_taprio_schedule(q, tb, new_admin, extack);
1483         if (err < 0)
1484                 goto free_sched;
1485
1486         if (new_admin->num_entries == 0) {
1487                 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1488                 err = -EINVAL;
1489                 goto free_sched;
1490         }
1491
1492         err = taprio_parse_clockid(sch, tb, extack);
1493         if (err < 0)
1494                 goto free_sched;
1495
1496         taprio_set_picos_per_byte(dev, q);
1497
1498         if (mqprio) {
1499                 netdev_set_num_tc(dev, mqprio->num_tc);
1500                 for (i = 0; i < mqprio->num_tc; i++)
1501                         netdev_set_tc_queue(dev, i,
1502                                             mqprio->count[i],
1503                                             mqprio->offset[i]);
1504
1505                 /* Always use supplied priority mappings */
1506                 for (i = 0; i <= TC_BITMASK; i++)
1507                         netdev_set_prio_tc_map(dev, i,
1508                                                mqprio->prio_tc_map[i]);
1509         }
1510
1511         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1512                 err = taprio_enable_offload(dev, q, new_admin, extack);
1513         else
1514                 err = taprio_disable_offload(dev, q, extack);
1515         if (err)
1516                 goto free_sched;
1517
1518         /* Protects against enqueue()/dequeue() */
1519         spin_lock_bh(qdisc_lock(sch));
1520
1521         if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1522                 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1523                         NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1524                         err = -EINVAL;
1525                         goto unlock;
1526                 }
1527
1528                 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1529         }
1530
1531         if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1532             !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1533             !hrtimer_active(&q->advance_timer)) {
1534                 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1535                 q->advance_timer.function = advance_sched;
1536         }
1537
1538         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1539                 q->dequeue = taprio_dequeue_offload;
1540                 q->peek = taprio_peek_offload;
1541         } else {
1542                 /* Be sure to always keep the function pointers
1543                  * in a consistent state.
1544                  */
1545                 q->dequeue = taprio_dequeue_soft;
1546                 q->peek = taprio_peek_soft;
1547         }
1548
1549         err = taprio_get_start_time(sch, new_admin, &start);
1550         if (err < 0) {
1551                 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1552                 goto unlock;
1553         }
1554
1555         setup_txtime(q, new_admin, start);
1556
1557         if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1558                 if (!oper) {
1559                         rcu_assign_pointer(q->oper_sched, new_admin);
1560                         err = 0;
1561                         new_admin = NULL;
1562                         goto unlock;
1563                 }
1564
1565                 rcu_assign_pointer(q->admin_sched, new_admin);
1566                 if (admin)
1567                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1568         } else {
1569                 setup_first_close_time(q, new_admin, start);
1570
1571                 /* Protects against advance_sched() */
1572                 spin_lock_irqsave(&q->current_entry_lock, flags);
1573
1574                 taprio_start_sched(sch, start, new_admin);
1575
1576                 rcu_assign_pointer(q->admin_sched, new_admin);
1577                 if (admin)
1578                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1579
1580                 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1581
1582                 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1583                         taprio_offload_config_changed(q);
1584         }
1585
1586         new_admin = NULL;
1587         err = 0;
1588
1589 unlock:
1590         spin_unlock_bh(qdisc_lock(sch));
1591
1592 free_sched:
1593         if (new_admin)
1594                 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1595
1596         return err;
1597 }
1598
1599 static void taprio_destroy(struct Qdisc *sch)
1600 {
1601         struct taprio_sched *q = qdisc_priv(sch);
1602         struct net_device *dev = qdisc_dev(sch);
1603         unsigned int i;
1604
1605         spin_lock(&taprio_list_lock);
1606         list_del(&q->taprio_list);
1607         spin_unlock(&taprio_list_lock);
1608
1609         hrtimer_cancel(&q->advance_timer);
1610
1611         taprio_disable_offload(dev, q, NULL);
1612
1613         if (q->qdiscs) {
1614                 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1615                         qdisc_put(q->qdiscs[i]);
1616
1617                 kfree(q->qdiscs);
1618         }
1619         q->qdiscs = NULL;
1620
1621         netdev_reset_tc(dev);
1622
1623         if (q->oper_sched)
1624                 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1625
1626         if (q->admin_sched)
1627                 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1628 }
1629
1630 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1631                        struct netlink_ext_ack *extack)
1632 {
1633         struct taprio_sched *q = qdisc_priv(sch);
1634         struct net_device *dev = qdisc_dev(sch);
1635         int i;
1636
1637         spin_lock_init(&q->current_entry_lock);
1638
1639         hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1640         q->advance_timer.function = advance_sched;
1641
1642         q->dequeue = taprio_dequeue_soft;
1643         q->peek = taprio_peek_soft;
1644
1645         q->root = sch;
1646
1647         /* We only support static clockids. Use an invalid value as default
1648          * and get the valid one on taprio_change().
1649          */
1650         q->clockid = -1;
1651         q->flags = TAPRIO_FLAGS_INVALID;
1652
1653         spin_lock(&taprio_list_lock);
1654         list_add(&q->taprio_list, &taprio_list);
1655         spin_unlock(&taprio_list_lock);
1656
1657         if (sch->parent != TC_H_ROOT)
1658                 return -EOPNOTSUPP;
1659
1660         if (!netif_is_multiqueue(dev))
1661                 return -EOPNOTSUPP;
1662
1663         /* pre-allocate qdisc, attachment can't fail */
1664         q->qdiscs = kcalloc(dev->num_tx_queues,
1665                             sizeof(q->qdiscs[0]),
1666                             GFP_KERNEL);
1667
1668         if (!q->qdiscs)
1669                 return -ENOMEM;
1670
1671         if (!opt)
1672                 return -EINVAL;
1673
1674         for (i = 0; i < dev->num_tx_queues; i++) {
1675                 struct netdev_queue *dev_queue;
1676                 struct Qdisc *qdisc;
1677
1678                 dev_queue = netdev_get_tx_queue(dev, i);
1679                 qdisc = qdisc_create_dflt(dev_queue,
1680                                           &pfifo_qdisc_ops,
1681                                           TC_H_MAKE(TC_H_MAJ(sch->handle),
1682                                                     TC_H_MIN(i + 1)),
1683                                           extack);
1684                 if (!qdisc)
1685                         return -ENOMEM;
1686
1687                 if (i < dev->real_num_tx_queues)
1688                         qdisc_hash_add(qdisc, false);
1689
1690                 q->qdiscs[i] = qdisc;
1691         }
1692
1693         return taprio_change(sch, opt, extack);
1694 }
1695
1696 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1697                                              unsigned long cl)
1698 {
1699         struct net_device *dev = qdisc_dev(sch);
1700         unsigned long ntx = cl - 1;
1701
1702         if (ntx >= dev->num_tx_queues)
1703                 return NULL;
1704
1705         return netdev_get_tx_queue(dev, ntx);
1706 }
1707
1708 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1709                         struct Qdisc *new, struct Qdisc **old,
1710                         struct netlink_ext_ack *extack)
1711 {
1712         struct taprio_sched *q = qdisc_priv(sch);
1713         struct net_device *dev = qdisc_dev(sch);
1714         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1715
1716         if (!dev_queue)
1717                 return -EINVAL;
1718
1719         if (dev->flags & IFF_UP)
1720                 dev_deactivate(dev);
1721
1722         *old = q->qdiscs[cl - 1];
1723         q->qdiscs[cl - 1] = new;
1724
1725         if (new)
1726                 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1727
1728         if (dev->flags & IFF_UP)
1729                 dev_activate(dev);
1730
1731         return 0;
1732 }
1733
1734 static int dump_entry(struct sk_buff *msg,
1735                       const struct sched_entry *entry)
1736 {
1737         struct nlattr *item;
1738
1739         item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1740         if (!item)
1741                 return -ENOSPC;
1742
1743         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1744                 goto nla_put_failure;
1745
1746         if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1747                 goto nla_put_failure;
1748
1749         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1750                         entry->gate_mask))
1751                 goto nla_put_failure;
1752
1753         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1754                         entry->interval))
1755                 goto nla_put_failure;
1756
1757         return nla_nest_end(msg, item);
1758
1759 nla_put_failure:
1760         nla_nest_cancel(msg, item);
1761         return -1;
1762 }
1763
1764 static int dump_schedule(struct sk_buff *msg,
1765                          const struct sched_gate_list *root)
1766 {
1767         struct nlattr *entry_list;
1768         struct sched_entry *entry;
1769
1770         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1771                         root->base_time, TCA_TAPRIO_PAD))
1772                 return -1;
1773
1774         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1775                         root->cycle_time, TCA_TAPRIO_PAD))
1776                 return -1;
1777
1778         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1779                         root->cycle_time_extension, TCA_TAPRIO_PAD))
1780                 return -1;
1781
1782         entry_list = nla_nest_start_noflag(msg,
1783                                            TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1784         if (!entry_list)
1785                 goto error_nest;
1786
1787         list_for_each_entry(entry, &root->entries, list) {
1788                 if (dump_entry(msg, entry) < 0)
1789                         goto error_nest;
1790         }
1791
1792         nla_nest_end(msg, entry_list);
1793         return 0;
1794
1795 error_nest:
1796         nla_nest_cancel(msg, entry_list);
1797         return -1;
1798 }
1799
1800 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1801 {
1802         struct taprio_sched *q = qdisc_priv(sch);
1803         struct net_device *dev = qdisc_dev(sch);
1804         struct sched_gate_list *oper, *admin;
1805         struct tc_mqprio_qopt opt = { 0 };
1806         struct nlattr *nest, *sched_nest;
1807         unsigned int i;
1808
1809         rcu_read_lock();
1810         oper = rcu_dereference(q->oper_sched);
1811         admin = rcu_dereference(q->admin_sched);
1812
1813         opt.num_tc = netdev_get_num_tc(dev);
1814         memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1815
1816         for (i = 0; i < netdev_get_num_tc(dev); i++) {
1817                 opt.count[i] = dev->tc_to_txq[i].count;
1818                 opt.offset[i] = dev->tc_to_txq[i].offset;
1819         }
1820
1821         nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1822         if (!nest)
1823                 goto start_error;
1824
1825         if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1826                 goto options_error;
1827
1828         if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1829             nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1830                 goto options_error;
1831
1832         if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1833                 goto options_error;
1834
1835         if (q->txtime_delay &&
1836             nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1837                 goto options_error;
1838
1839         if (oper && dump_schedule(skb, oper))
1840                 goto options_error;
1841
1842         if (!admin)
1843                 goto done;
1844
1845         sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1846         if (!sched_nest)
1847                 goto options_error;
1848
1849         if (dump_schedule(skb, admin))
1850                 goto admin_error;
1851
1852         nla_nest_end(skb, sched_nest);
1853
1854 done:
1855         rcu_read_unlock();
1856
1857         return nla_nest_end(skb, nest);
1858
1859 admin_error:
1860         nla_nest_cancel(skb, sched_nest);
1861
1862 options_error:
1863         nla_nest_cancel(skb, nest);
1864
1865 start_error:
1866         rcu_read_unlock();
1867         return -ENOSPC;
1868 }
1869
1870 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1871 {
1872         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1873
1874         if (!dev_queue)
1875                 return NULL;
1876
1877         return dev_queue->qdisc_sleeping;
1878 }
1879
1880 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1881 {
1882         unsigned int ntx = TC_H_MIN(classid);
1883
1884         if (!taprio_queue_get(sch, ntx))
1885                 return 0;
1886         return ntx;
1887 }
1888
1889 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1890                              struct sk_buff *skb, struct tcmsg *tcm)
1891 {
1892         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1893
1894         tcm->tcm_parent = TC_H_ROOT;
1895         tcm->tcm_handle |= TC_H_MIN(cl);
1896         tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1897
1898         return 0;
1899 }
1900
1901 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1902                                    struct gnet_dump *d)
1903         __releases(d->lock)
1904         __acquires(d->lock)
1905 {
1906         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1907
1908         sch = dev_queue->qdisc_sleeping;
1909         if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1910             qdisc_qstats_copy(d, sch) < 0)
1911                 return -1;
1912         return 0;
1913 }
1914
1915 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1916 {
1917         struct net_device *dev = qdisc_dev(sch);
1918         unsigned long ntx;
1919
1920         if (arg->stop)
1921                 return;
1922
1923         arg->count = arg->skip;
1924         for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1925                 if (arg->fn(sch, ntx + 1, arg) < 0) {
1926                         arg->stop = 1;
1927                         break;
1928                 }
1929                 arg->count++;
1930         }
1931 }
1932
1933 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1934                                                 struct tcmsg *tcm)
1935 {
1936         return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1937 }
1938
1939 static const struct Qdisc_class_ops taprio_class_ops = {
1940         .graft          = taprio_graft,
1941         .leaf           = taprio_leaf,
1942         .find           = taprio_find,
1943         .walk           = taprio_walk,
1944         .dump           = taprio_dump_class,
1945         .dump_stats     = taprio_dump_class_stats,
1946         .select_queue   = taprio_select_queue,
1947 };
1948
1949 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1950         .cl_ops         = &taprio_class_ops,
1951         .id             = "taprio",
1952         .priv_size      = sizeof(struct taprio_sched),
1953         .init           = taprio_init,
1954         .change         = taprio_change,
1955         .destroy        = taprio_destroy,
1956         .peek           = taprio_peek,
1957         .dequeue        = taprio_dequeue,
1958         .enqueue        = taprio_enqueue,
1959         .dump           = taprio_dump,
1960         .owner          = THIS_MODULE,
1961 };
1962
1963 static struct notifier_block taprio_device_notifier = {
1964         .notifier_call = taprio_dev_notifier,
1965 };
1966
1967 static int __init taprio_module_init(void)
1968 {
1969         int err = register_netdevice_notifier(&taprio_device_notifier);
1970
1971         if (err)
1972                 return err;
1973
1974         return register_qdisc(&taprio_qdisc_ops);
1975 }
1976
1977 static void __exit taprio_module_exit(void)
1978 {
1979         unregister_qdisc(&taprio_qdisc_ops);
1980         unregister_netdevice_notifier(&taprio_device_notifier);
1981 }
1982
1983 module_init(taprio_module_init);
1984 module_exit(taprio_module_exit);
1985 MODULE_LICENSE("GPL");