Merge tag 'platform-drivers-x86-v5.18-3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / net / sched / sch_taprio.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c        Time Aware Priority Scheduler
4  *
5  * Authors:     Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
23 #include <net/pkt_cls.h>
24 #include <net/sch_generic.h>
25 #include <net/sock.h>
26 #include <net/tcp.h>
27
28 static LIST_HEAD(taprio_list);
29 static DEFINE_SPINLOCK(taprio_list_lock);
30
31 #define TAPRIO_ALL_GATES_OPEN -1
32
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
35 #define TAPRIO_FLAGS_INVALID U32_MAX
36
37 struct sched_entry {
38         struct list_head list;
39
40         /* The instant that this entry "closes" and the next one
41          * should open, the qdisc will make some effort so that no
42          * packet leaves after this time.
43          */
44         ktime_t close_time;
45         ktime_t next_txtime;
46         atomic_t budget;
47         int index;
48         u32 gate_mask;
49         u32 interval;
50         u8 command;
51 };
52
53 struct sched_gate_list {
54         struct rcu_head rcu;
55         struct list_head entries;
56         size_t num_entries;
57         ktime_t cycle_close_time;
58         s64 cycle_time;
59         s64 cycle_time_extension;
60         s64 base_time;
61 };
62
63 struct taprio_sched {
64         struct Qdisc **qdiscs;
65         struct Qdisc *root;
66         u32 flags;
67         enum tk_offsets tk_offset;
68         int clockid;
69         atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
70                                     * speeds it's sub-nanoseconds per byte
71                                     */
72
73         /* Protects the update side of the RCU protected current_entry */
74         spinlock_t current_entry_lock;
75         struct sched_entry __rcu *current_entry;
76         struct sched_gate_list __rcu *oper_sched;
77         struct sched_gate_list __rcu *admin_sched;
78         struct hrtimer advance_timer;
79         struct list_head taprio_list;
80         struct sk_buff *(*dequeue)(struct Qdisc *sch);
81         struct sk_buff *(*peek)(struct Qdisc *sch);
82         u32 txtime_delay;
83 };
84
85 struct __tc_taprio_qopt_offload {
86         refcount_t users;
87         struct tc_taprio_qopt_offload offload;
88 };
89
90 static ktime_t sched_base_time(const struct sched_gate_list *sched)
91 {
92         if (!sched)
93                 return KTIME_MAX;
94
95         return ns_to_ktime(sched->base_time);
96 }
97
98 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
99 {
100         /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
101         enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
102
103         switch (tk_offset) {
104         case TK_OFFS_MAX:
105                 return mono;
106         default:
107                 return ktime_mono_to_any(mono, tk_offset);
108         }
109 }
110
111 static ktime_t taprio_get_time(const struct taprio_sched *q)
112 {
113         return taprio_mono_to_any(q, ktime_get());
114 }
115
116 static void taprio_free_sched_cb(struct rcu_head *head)
117 {
118         struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
119         struct sched_entry *entry, *n;
120
121         list_for_each_entry_safe(entry, n, &sched->entries, list) {
122                 list_del(&entry->list);
123                 kfree(entry);
124         }
125
126         kfree(sched);
127 }
128
129 static void switch_schedules(struct taprio_sched *q,
130                              struct sched_gate_list **admin,
131                              struct sched_gate_list **oper)
132 {
133         rcu_assign_pointer(q->oper_sched, *admin);
134         rcu_assign_pointer(q->admin_sched, NULL);
135
136         if (*oper)
137                 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
138
139         *oper = *admin;
140         *admin = NULL;
141 }
142
143 /* Get how much time has been already elapsed in the current cycle. */
144 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
145 {
146         ktime_t time_since_sched_start;
147         s32 time_elapsed;
148
149         time_since_sched_start = ktime_sub(time, sched->base_time);
150         div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
151
152         return time_elapsed;
153 }
154
155 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
156                                      struct sched_gate_list *admin,
157                                      struct sched_entry *entry,
158                                      ktime_t intv_start)
159 {
160         s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
161         ktime_t intv_end, cycle_ext_end, cycle_end;
162
163         cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
164         intv_end = ktime_add_ns(intv_start, entry->interval);
165         cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
166
167         if (ktime_before(intv_end, cycle_end))
168                 return intv_end;
169         else if (admin && admin != sched &&
170                  ktime_after(admin->base_time, cycle_end) &&
171                  ktime_before(admin->base_time, cycle_ext_end))
172                 return admin->base_time;
173         else
174                 return cycle_end;
175 }
176
177 static int length_to_duration(struct taprio_sched *q, int len)
178 {
179         return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
180 }
181
182 /* Returns the entry corresponding to next available interval. If
183  * validate_interval is set, it only validates whether the timestamp occurs
184  * when the gate corresponding to the skb's traffic class is open.
185  */
186 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
187                                                   struct Qdisc *sch,
188                                                   struct sched_gate_list *sched,
189                                                   struct sched_gate_list *admin,
190                                                   ktime_t time,
191                                                   ktime_t *interval_start,
192                                                   ktime_t *interval_end,
193                                                   bool validate_interval)
194 {
195         ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
196         ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
197         struct sched_entry *entry = NULL, *entry_found = NULL;
198         struct taprio_sched *q = qdisc_priv(sch);
199         struct net_device *dev = qdisc_dev(sch);
200         bool entry_available = false;
201         s32 cycle_elapsed;
202         int tc, n;
203
204         tc = netdev_get_prio_tc_map(dev, skb->priority);
205         packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
206
207         *interval_start = 0;
208         *interval_end = 0;
209
210         if (!sched)
211                 return NULL;
212
213         cycle = sched->cycle_time;
214         cycle_elapsed = get_cycle_time_elapsed(sched, time);
215         curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
216         cycle_end = ktime_add_ns(curr_intv_end, cycle);
217
218         list_for_each_entry(entry, &sched->entries, list) {
219                 curr_intv_start = curr_intv_end;
220                 curr_intv_end = get_interval_end_time(sched, admin, entry,
221                                                       curr_intv_start);
222
223                 if (ktime_after(curr_intv_start, cycle_end))
224                         break;
225
226                 if (!(entry->gate_mask & BIT(tc)) ||
227                     packet_transmit_time > entry->interval)
228                         continue;
229
230                 txtime = entry->next_txtime;
231
232                 if (ktime_before(txtime, time) || validate_interval) {
233                         transmit_end_time = ktime_add_ns(time, packet_transmit_time);
234                         if ((ktime_before(curr_intv_start, time) &&
235                              ktime_before(transmit_end_time, curr_intv_end)) ||
236                             (ktime_after(curr_intv_start, time) && !validate_interval)) {
237                                 entry_found = entry;
238                                 *interval_start = curr_intv_start;
239                                 *interval_end = curr_intv_end;
240                                 break;
241                         } else if (!entry_available && !validate_interval) {
242                                 /* Here, we are just trying to find out the
243                                  * first available interval in the next cycle.
244                                  */
245                                 entry_available = true;
246                                 entry_found = entry;
247                                 *interval_start = ktime_add_ns(curr_intv_start, cycle);
248                                 *interval_end = ktime_add_ns(curr_intv_end, cycle);
249                         }
250                 } else if (ktime_before(txtime, earliest_txtime) &&
251                            !entry_available) {
252                         earliest_txtime = txtime;
253                         entry_found = entry;
254                         n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
255                         *interval_start = ktime_add(curr_intv_start, n * cycle);
256                         *interval_end = ktime_add(curr_intv_end, n * cycle);
257                 }
258         }
259
260         return entry_found;
261 }
262
263 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
264 {
265         struct taprio_sched *q = qdisc_priv(sch);
266         struct sched_gate_list *sched, *admin;
267         ktime_t interval_start, interval_end;
268         struct sched_entry *entry;
269
270         rcu_read_lock();
271         sched = rcu_dereference(q->oper_sched);
272         admin = rcu_dereference(q->admin_sched);
273
274         entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
275                                        &interval_start, &interval_end, true);
276         rcu_read_unlock();
277
278         return entry;
279 }
280
281 static bool taprio_flags_valid(u32 flags)
282 {
283         /* Make sure no other flag bits are set. */
284         if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
285                       TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
286                 return false;
287         /* txtime-assist and full offload are mutually exclusive */
288         if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
289             (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
290                 return false;
291         return true;
292 }
293
294 /* This returns the tstamp value set by TCP in terms of the set clock. */
295 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
296 {
297         unsigned int offset = skb_network_offset(skb);
298         const struct ipv6hdr *ipv6h;
299         const struct iphdr *iph;
300         struct ipv6hdr _ipv6h;
301
302         ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
303         if (!ipv6h)
304                 return 0;
305
306         if (ipv6h->version == 4) {
307                 iph = (struct iphdr *)ipv6h;
308                 offset += iph->ihl * 4;
309
310                 /* special-case 6in4 tunnelling, as that is a common way to get
311                  * v6 connectivity in the home
312                  */
313                 if (iph->protocol == IPPROTO_IPV6) {
314                         ipv6h = skb_header_pointer(skb, offset,
315                                                    sizeof(_ipv6h), &_ipv6h);
316
317                         if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
318                                 return 0;
319                 } else if (iph->protocol != IPPROTO_TCP) {
320                         return 0;
321                 }
322         } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
323                 return 0;
324         }
325
326         return taprio_mono_to_any(q, skb->skb_mstamp_ns);
327 }
328
329 /* There are a few scenarios where we will have to modify the txtime from
330  * what is read from next_txtime in sched_entry. They are:
331  * 1. If txtime is in the past,
332  *    a. The gate for the traffic class is currently open and packet can be
333  *       transmitted before it closes, schedule the packet right away.
334  *    b. If the gate corresponding to the traffic class is going to open later
335  *       in the cycle, set the txtime of packet to the interval start.
336  * 2. If txtime is in the future, there are packets corresponding to the
337  *    current traffic class waiting to be transmitted. So, the following
338  *    possibilities exist:
339  *    a. We can transmit the packet before the window containing the txtime
340  *       closes.
341  *    b. The window might close before the transmission can be completed
342  *       successfully. So, schedule the packet in the next open window.
343  */
344 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
345 {
346         ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
347         struct taprio_sched *q = qdisc_priv(sch);
348         struct sched_gate_list *sched, *admin;
349         ktime_t minimum_time, now, txtime;
350         int len, packet_transmit_time;
351         struct sched_entry *entry;
352         bool sched_changed;
353
354         now = taprio_get_time(q);
355         minimum_time = ktime_add_ns(now, q->txtime_delay);
356
357         tcp_tstamp = get_tcp_tstamp(q, skb);
358         minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
359
360         rcu_read_lock();
361         admin = rcu_dereference(q->admin_sched);
362         sched = rcu_dereference(q->oper_sched);
363         if (admin && ktime_after(minimum_time, admin->base_time))
364                 switch_schedules(q, &admin, &sched);
365
366         /* Until the schedule starts, all the queues are open */
367         if (!sched || ktime_before(minimum_time, sched->base_time)) {
368                 txtime = minimum_time;
369                 goto done;
370         }
371
372         len = qdisc_pkt_len(skb);
373         packet_transmit_time = length_to_duration(q, len);
374
375         do {
376                 sched_changed = false;
377
378                 entry = find_entry_to_transmit(skb, sch, sched, admin,
379                                                minimum_time,
380                                                &interval_start, &interval_end,
381                                                false);
382                 if (!entry) {
383                         txtime = 0;
384                         goto done;
385                 }
386
387                 txtime = entry->next_txtime;
388                 txtime = max_t(ktime_t, txtime, minimum_time);
389                 txtime = max_t(ktime_t, txtime, interval_start);
390
391                 if (admin && admin != sched &&
392                     ktime_after(txtime, admin->base_time)) {
393                         sched = admin;
394                         sched_changed = true;
395                         continue;
396                 }
397
398                 transmit_end_time = ktime_add(txtime, packet_transmit_time);
399                 minimum_time = transmit_end_time;
400
401                 /* Update the txtime of current entry to the next time it's
402                  * interval starts.
403                  */
404                 if (ktime_after(transmit_end_time, interval_end))
405                         entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
406         } while (sched_changed || ktime_after(transmit_end_time, interval_end));
407
408         entry->next_txtime = transmit_end_time;
409
410 done:
411         rcu_read_unlock();
412         return txtime;
413 }
414
415 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
416                               struct Qdisc *child, struct sk_buff **to_free)
417 {
418         struct taprio_sched *q = qdisc_priv(sch);
419
420         /* sk_flags are only safe to use on full sockets. */
421         if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
422                 if (!is_valid_interval(skb, sch))
423                         return qdisc_drop(skb, sch, to_free);
424         } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
425                 skb->tstamp = get_packet_txtime(skb, sch);
426                 if (!skb->tstamp)
427                         return qdisc_drop(skb, sch, to_free);
428         }
429
430         qdisc_qstats_backlog_inc(sch, skb);
431         sch->q.qlen++;
432
433         return qdisc_enqueue(skb, child, to_free);
434 }
435
436 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
437                           struct sk_buff **to_free)
438 {
439         struct taprio_sched *q = qdisc_priv(sch);
440         struct Qdisc *child;
441         int queue;
442
443         if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) {
444                 WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n");
445                 return qdisc_drop(skb, sch, to_free);
446         }
447
448         queue = skb_get_queue_mapping(skb);
449
450         child = q->qdiscs[queue];
451         if (unlikely(!child))
452                 return qdisc_drop(skb, sch, to_free);
453
454         /* Large packets might not be transmitted when the transmission duration
455          * exceeds any configured interval. Therefore, segment the skb into
456          * smaller chunks. Skip it for the full offload case, as the driver
457          * and/or the hardware is expected to handle this.
458          */
459         if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
460                 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
461                 netdev_features_t features = netif_skb_features(skb);
462                 struct sk_buff *segs, *nskb;
463                 int ret;
464
465                 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
466                 if (IS_ERR_OR_NULL(segs))
467                         return qdisc_drop(skb, sch, to_free);
468
469                 skb_list_walk_safe(segs, segs, nskb) {
470                         skb_mark_not_on_list(segs);
471                         qdisc_skb_cb(segs)->pkt_len = segs->len;
472                         slen += segs->len;
473
474                         ret = taprio_enqueue_one(segs, sch, child, to_free);
475                         if (ret != NET_XMIT_SUCCESS) {
476                                 if (net_xmit_drop_count(ret))
477                                         qdisc_qstats_drop(sch);
478                         } else {
479                                 numsegs++;
480                         }
481                 }
482
483                 if (numsegs > 1)
484                         qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
485                 consume_skb(skb);
486
487                 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
488         }
489
490         return taprio_enqueue_one(skb, sch, child, to_free);
491 }
492
493 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
494 {
495         struct taprio_sched *q = qdisc_priv(sch);
496         struct net_device *dev = qdisc_dev(sch);
497         struct sched_entry *entry;
498         struct sk_buff *skb;
499         u32 gate_mask;
500         int i;
501
502         rcu_read_lock();
503         entry = rcu_dereference(q->current_entry);
504         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
505         rcu_read_unlock();
506
507         if (!gate_mask)
508                 return NULL;
509
510         for (i = 0; i < dev->num_tx_queues; i++) {
511                 struct Qdisc *child = q->qdiscs[i];
512                 int prio;
513                 u8 tc;
514
515                 if (unlikely(!child))
516                         continue;
517
518                 skb = child->ops->peek(child);
519                 if (!skb)
520                         continue;
521
522                 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
523                         return skb;
524
525                 prio = skb->priority;
526                 tc = netdev_get_prio_tc_map(dev, prio);
527
528                 if (!(gate_mask & BIT(tc)))
529                         continue;
530
531                 return skb;
532         }
533
534         return NULL;
535 }
536
537 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
538 {
539         WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n");
540
541         return NULL;
542 }
543
544 static struct sk_buff *taprio_peek(struct Qdisc *sch)
545 {
546         struct taprio_sched *q = qdisc_priv(sch);
547
548         return q->peek(sch);
549 }
550
551 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
552 {
553         atomic_set(&entry->budget,
554                    div64_u64((u64)entry->interval * 1000,
555                              atomic64_read(&q->picos_per_byte)));
556 }
557
558 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
559 {
560         struct taprio_sched *q = qdisc_priv(sch);
561         struct net_device *dev = qdisc_dev(sch);
562         struct sk_buff *skb = NULL;
563         struct sched_entry *entry;
564         u32 gate_mask;
565         int i;
566
567         rcu_read_lock();
568         entry = rcu_dereference(q->current_entry);
569         /* if there's no entry, it means that the schedule didn't
570          * start yet, so force all gates to be open, this is in
571          * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
572          * "AdminGateStates"
573          */
574         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
575
576         if (!gate_mask)
577                 goto done;
578
579         for (i = 0; i < dev->num_tx_queues; i++) {
580                 struct Qdisc *child = q->qdiscs[i];
581                 ktime_t guard;
582                 int prio;
583                 int len;
584                 u8 tc;
585
586                 if (unlikely(!child))
587                         continue;
588
589                 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
590                         skb = child->ops->dequeue(child);
591                         if (!skb)
592                                 continue;
593                         goto skb_found;
594                 }
595
596                 skb = child->ops->peek(child);
597                 if (!skb)
598                         continue;
599
600                 prio = skb->priority;
601                 tc = netdev_get_prio_tc_map(dev, prio);
602
603                 if (!(gate_mask & BIT(tc))) {
604                         skb = NULL;
605                         continue;
606                 }
607
608                 len = qdisc_pkt_len(skb);
609                 guard = ktime_add_ns(taprio_get_time(q),
610                                      length_to_duration(q, len));
611
612                 /* In the case that there's no gate entry, there's no
613                  * guard band ...
614                  */
615                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
616                     ktime_after(guard, entry->close_time)) {
617                         skb = NULL;
618                         continue;
619                 }
620
621                 /* ... and no budget. */
622                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
623                     atomic_sub_return(len, &entry->budget) < 0) {
624                         skb = NULL;
625                         continue;
626                 }
627
628                 skb = child->ops->dequeue(child);
629                 if (unlikely(!skb))
630                         goto done;
631
632 skb_found:
633                 qdisc_bstats_update(sch, skb);
634                 qdisc_qstats_backlog_dec(sch, skb);
635                 sch->q.qlen--;
636
637                 goto done;
638         }
639
640 done:
641         rcu_read_unlock();
642
643         return skb;
644 }
645
646 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
647 {
648         WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n");
649
650         return NULL;
651 }
652
653 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
654 {
655         struct taprio_sched *q = qdisc_priv(sch);
656
657         return q->dequeue(sch);
658 }
659
660 static bool should_restart_cycle(const struct sched_gate_list *oper,
661                                  const struct sched_entry *entry)
662 {
663         if (list_is_last(&entry->list, &oper->entries))
664                 return true;
665
666         if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
667                 return true;
668
669         return false;
670 }
671
672 static bool should_change_schedules(const struct sched_gate_list *admin,
673                                     const struct sched_gate_list *oper,
674                                     ktime_t close_time)
675 {
676         ktime_t next_base_time, extension_time;
677
678         if (!admin)
679                 return false;
680
681         next_base_time = sched_base_time(admin);
682
683         /* This is the simple case, the close_time would fall after
684          * the next schedule base_time.
685          */
686         if (ktime_compare(next_base_time, close_time) <= 0)
687                 return true;
688
689         /* This is the cycle_time_extension case, if the close_time
690          * plus the amount that can be extended would fall after the
691          * next schedule base_time, we can extend the current schedule
692          * for that amount.
693          */
694         extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
695
696         /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
697          * how precisely the extension should be made. So after
698          * conformance testing, this logic may change.
699          */
700         if (ktime_compare(next_base_time, extension_time) <= 0)
701                 return true;
702
703         return false;
704 }
705
706 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
707 {
708         struct taprio_sched *q = container_of(timer, struct taprio_sched,
709                                               advance_timer);
710         struct sched_gate_list *oper, *admin;
711         struct sched_entry *entry, *next;
712         struct Qdisc *sch = q->root;
713         ktime_t close_time;
714
715         spin_lock(&q->current_entry_lock);
716         entry = rcu_dereference_protected(q->current_entry,
717                                           lockdep_is_held(&q->current_entry_lock));
718         oper = rcu_dereference_protected(q->oper_sched,
719                                          lockdep_is_held(&q->current_entry_lock));
720         admin = rcu_dereference_protected(q->admin_sched,
721                                           lockdep_is_held(&q->current_entry_lock));
722
723         if (!oper)
724                 switch_schedules(q, &admin, &oper);
725
726         /* This can happen in two cases: 1. this is the very first run
727          * of this function (i.e. we weren't running any schedule
728          * previously); 2. The previous schedule just ended. The first
729          * entry of all schedules are pre-calculated during the
730          * schedule initialization.
731          */
732         if (unlikely(!entry || entry->close_time == oper->base_time)) {
733                 next = list_first_entry(&oper->entries, struct sched_entry,
734                                         list);
735                 close_time = next->close_time;
736                 goto first_run;
737         }
738
739         if (should_restart_cycle(oper, entry)) {
740                 next = list_first_entry(&oper->entries, struct sched_entry,
741                                         list);
742                 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
743                                                       oper->cycle_time);
744         } else {
745                 next = list_next_entry(entry, list);
746         }
747
748         close_time = ktime_add_ns(entry->close_time, next->interval);
749         close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
750
751         if (should_change_schedules(admin, oper, close_time)) {
752                 /* Set things so the next time this runs, the new
753                  * schedule runs.
754                  */
755                 close_time = sched_base_time(admin);
756                 switch_schedules(q, &admin, &oper);
757         }
758
759         next->close_time = close_time;
760         taprio_set_budget(q, next);
761
762 first_run:
763         rcu_assign_pointer(q->current_entry, next);
764         spin_unlock(&q->current_entry_lock);
765
766         hrtimer_set_expires(&q->advance_timer, close_time);
767
768         rcu_read_lock();
769         __netif_schedule(sch);
770         rcu_read_unlock();
771
772         return HRTIMER_RESTART;
773 }
774
775 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
776         [TCA_TAPRIO_SCHED_ENTRY_INDEX]     = { .type = NLA_U32 },
777         [TCA_TAPRIO_SCHED_ENTRY_CMD]       = { .type = NLA_U8 },
778         [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
779         [TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
780 };
781
782 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
783         [TCA_TAPRIO_ATTR_PRIOMAP]              = {
784                 .len = sizeof(struct tc_mqprio_qopt)
785         },
786         [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
787         [TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
788         [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
789         [TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
790         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
791         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
792         [TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
793         [TCA_TAPRIO_ATTR_TXTIME_DELAY]               = { .type = NLA_U32 },
794 };
795
796 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
797                             struct sched_entry *entry,
798                             struct netlink_ext_ack *extack)
799 {
800         int min_duration = length_to_duration(q, ETH_ZLEN);
801         u32 interval = 0;
802
803         if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
804                 entry->command = nla_get_u8(
805                         tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
806
807         if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
808                 entry->gate_mask = nla_get_u32(
809                         tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
810
811         if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
812                 interval = nla_get_u32(
813                         tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
814
815         /* The interval should allow at least the minimum ethernet
816          * frame to go out.
817          */
818         if (interval < min_duration) {
819                 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
820                 return -EINVAL;
821         }
822
823         entry->interval = interval;
824
825         return 0;
826 }
827
828 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
829                              struct sched_entry *entry, int index,
830                              struct netlink_ext_ack *extack)
831 {
832         struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
833         int err;
834
835         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
836                                           entry_policy, NULL);
837         if (err < 0) {
838                 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
839                 return -EINVAL;
840         }
841
842         entry->index = index;
843
844         return fill_sched_entry(q, tb, entry, extack);
845 }
846
847 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
848                             struct sched_gate_list *sched,
849                             struct netlink_ext_ack *extack)
850 {
851         struct nlattr *n;
852         int err, rem;
853         int i = 0;
854
855         if (!list)
856                 return -EINVAL;
857
858         nla_for_each_nested(n, list, rem) {
859                 struct sched_entry *entry;
860
861                 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
862                         NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
863                         continue;
864                 }
865
866                 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
867                 if (!entry) {
868                         NL_SET_ERR_MSG(extack, "Not enough memory for entry");
869                         return -ENOMEM;
870                 }
871
872                 err = parse_sched_entry(q, n, entry, i, extack);
873                 if (err < 0) {
874                         kfree(entry);
875                         return err;
876                 }
877
878                 list_add_tail(&entry->list, &sched->entries);
879                 i++;
880         }
881
882         sched->num_entries = i;
883
884         return i;
885 }
886
887 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
888                                  struct sched_gate_list *new,
889                                  struct netlink_ext_ack *extack)
890 {
891         int err = 0;
892
893         if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
894                 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
895                 return -ENOTSUPP;
896         }
897
898         if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
899                 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
900
901         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
902                 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
903
904         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
905                 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
906
907         if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
908                 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
909                                        new, extack);
910         if (err < 0)
911                 return err;
912
913         if (!new->cycle_time) {
914                 struct sched_entry *entry;
915                 ktime_t cycle = 0;
916
917                 list_for_each_entry(entry, &new->entries, list)
918                         cycle = ktime_add_ns(cycle, entry->interval);
919
920                 if (!cycle) {
921                         NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
922                         return -EINVAL;
923                 }
924
925                 new->cycle_time = cycle;
926         }
927
928         return 0;
929 }
930
931 static int taprio_parse_mqprio_opt(struct net_device *dev,
932                                    struct tc_mqprio_qopt *qopt,
933                                    struct netlink_ext_ack *extack,
934                                    u32 taprio_flags)
935 {
936         int i, j;
937
938         if (!qopt && !dev->num_tc) {
939                 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
940                 return -EINVAL;
941         }
942
943         /* If num_tc is already set, it means that the user already
944          * configured the mqprio part
945          */
946         if (dev->num_tc)
947                 return 0;
948
949         /* Verify num_tc is not out of max range */
950         if (qopt->num_tc > TC_MAX_QUEUE) {
951                 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
952                 return -EINVAL;
953         }
954
955         /* taprio imposes that traffic classes map 1:n to tx queues */
956         if (qopt->num_tc > dev->num_tx_queues) {
957                 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
958                 return -EINVAL;
959         }
960
961         /* Verify priority mapping uses valid tcs */
962         for (i = 0; i <= TC_BITMASK; i++) {
963                 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
964                         NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
965                         return -EINVAL;
966                 }
967         }
968
969         for (i = 0; i < qopt->num_tc; i++) {
970                 unsigned int last = qopt->offset[i] + qopt->count[i];
971
972                 /* Verify the queue count is in tx range being equal to the
973                  * real_num_tx_queues indicates the last queue is in use.
974                  */
975                 if (qopt->offset[i] >= dev->num_tx_queues ||
976                     !qopt->count[i] ||
977                     last > dev->real_num_tx_queues) {
978                         NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
979                         return -EINVAL;
980                 }
981
982                 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
983                         continue;
984
985                 /* Verify that the offset and counts do not overlap */
986                 for (j = i + 1; j < qopt->num_tc; j++) {
987                         if (last > qopt->offset[j]) {
988                                 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
989                                 return -EINVAL;
990                         }
991                 }
992         }
993
994         return 0;
995 }
996
997 static int taprio_get_start_time(struct Qdisc *sch,
998                                  struct sched_gate_list *sched,
999                                  ktime_t *start)
1000 {
1001         struct taprio_sched *q = qdisc_priv(sch);
1002         ktime_t now, base, cycle;
1003         s64 n;
1004
1005         base = sched_base_time(sched);
1006         now = taprio_get_time(q);
1007
1008         if (ktime_after(base, now)) {
1009                 *start = base;
1010                 return 0;
1011         }
1012
1013         cycle = sched->cycle_time;
1014
1015         /* The qdisc is expected to have at least one sched_entry.  Moreover,
1016          * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1017          * something went really wrong. In that case, we should warn about this
1018          * inconsistent state and return error.
1019          */
1020         if (WARN_ON(!cycle))
1021                 return -EFAULT;
1022
1023         /* Schedule the start time for the beginning of the next
1024          * cycle.
1025          */
1026         n = div64_s64(ktime_sub_ns(now, base), cycle);
1027         *start = ktime_add_ns(base, (n + 1) * cycle);
1028         return 0;
1029 }
1030
1031 static void setup_first_close_time(struct taprio_sched *q,
1032                                    struct sched_gate_list *sched, ktime_t base)
1033 {
1034         struct sched_entry *first;
1035         ktime_t cycle;
1036
1037         first = list_first_entry(&sched->entries,
1038                                  struct sched_entry, list);
1039
1040         cycle = sched->cycle_time;
1041
1042         /* FIXME: find a better place to do this */
1043         sched->cycle_close_time = ktime_add_ns(base, cycle);
1044
1045         first->close_time = ktime_add_ns(base, first->interval);
1046         taprio_set_budget(q, first);
1047         rcu_assign_pointer(q->current_entry, NULL);
1048 }
1049
1050 static void taprio_start_sched(struct Qdisc *sch,
1051                                ktime_t start, struct sched_gate_list *new)
1052 {
1053         struct taprio_sched *q = qdisc_priv(sch);
1054         ktime_t expires;
1055
1056         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1057                 return;
1058
1059         expires = hrtimer_get_expires(&q->advance_timer);
1060         if (expires == 0)
1061                 expires = KTIME_MAX;
1062
1063         /* If the new schedule starts before the next expiration, we
1064          * reprogram it to the earliest one, so we change the admin
1065          * schedule to the operational one at the right time.
1066          */
1067         start = min_t(ktime_t, start, expires);
1068
1069         hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1070 }
1071
1072 static void taprio_set_picos_per_byte(struct net_device *dev,
1073                                       struct taprio_sched *q)
1074 {
1075         struct ethtool_link_ksettings ecmd;
1076         int speed = SPEED_10;
1077         int picos_per_byte;
1078         int err;
1079
1080         err = __ethtool_get_link_ksettings(dev, &ecmd);
1081         if (err < 0)
1082                 goto skip;
1083
1084         if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1085                 speed = ecmd.base.speed;
1086
1087 skip:
1088         picos_per_byte = (USEC_PER_SEC * 8) / speed;
1089
1090         atomic64_set(&q->picos_per_byte, picos_per_byte);
1091         netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1092                    dev->name, (long long)atomic64_read(&q->picos_per_byte),
1093                    ecmd.base.speed);
1094 }
1095
1096 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1097                                void *ptr)
1098 {
1099         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1100         struct net_device *qdev;
1101         struct taprio_sched *q;
1102         bool found = false;
1103
1104         ASSERT_RTNL();
1105
1106         if (event != NETDEV_UP && event != NETDEV_CHANGE)
1107                 return NOTIFY_DONE;
1108
1109         spin_lock(&taprio_list_lock);
1110         list_for_each_entry(q, &taprio_list, taprio_list) {
1111                 qdev = qdisc_dev(q->root);
1112                 if (qdev == dev) {
1113                         found = true;
1114                         break;
1115                 }
1116         }
1117         spin_unlock(&taprio_list_lock);
1118
1119         if (found)
1120                 taprio_set_picos_per_byte(dev, q);
1121
1122         return NOTIFY_DONE;
1123 }
1124
1125 static void setup_txtime(struct taprio_sched *q,
1126                          struct sched_gate_list *sched, ktime_t base)
1127 {
1128         struct sched_entry *entry;
1129         u32 interval = 0;
1130
1131         list_for_each_entry(entry, &sched->entries, list) {
1132                 entry->next_txtime = ktime_add_ns(base, interval);
1133                 interval += entry->interval;
1134         }
1135 }
1136
1137 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1138 {
1139         struct __tc_taprio_qopt_offload *__offload;
1140
1141         __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1142                             GFP_KERNEL);
1143         if (!__offload)
1144                 return NULL;
1145
1146         refcount_set(&__offload->users, 1);
1147
1148         return &__offload->offload;
1149 }
1150
1151 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1152                                                   *offload)
1153 {
1154         struct __tc_taprio_qopt_offload *__offload;
1155
1156         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1157                                  offload);
1158
1159         refcount_inc(&__offload->users);
1160
1161         return offload;
1162 }
1163 EXPORT_SYMBOL_GPL(taprio_offload_get);
1164
1165 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1166 {
1167         struct __tc_taprio_qopt_offload *__offload;
1168
1169         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1170                                  offload);
1171
1172         if (!refcount_dec_and_test(&__offload->users))
1173                 return;
1174
1175         kfree(__offload);
1176 }
1177 EXPORT_SYMBOL_GPL(taprio_offload_free);
1178
1179 /* The function will only serve to keep the pointers to the "oper" and "admin"
1180  * schedules valid in relation to their base times, so when calling dump() the
1181  * users looks at the right schedules.
1182  * When using full offload, the admin configuration is promoted to oper at the
1183  * base_time in the PHC time domain.  But because the system time is not
1184  * necessarily in sync with that, we can't just trigger a hrtimer to call
1185  * switch_schedules at the right hardware time.
1186  * At the moment we call this by hand right away from taprio, but in the future
1187  * it will be useful to create a mechanism for drivers to notify taprio of the
1188  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1189  * This is left as TODO.
1190  */
1191 static void taprio_offload_config_changed(struct taprio_sched *q)
1192 {
1193         struct sched_gate_list *oper, *admin;
1194
1195         spin_lock(&q->current_entry_lock);
1196
1197         oper = rcu_dereference_protected(q->oper_sched,
1198                                          lockdep_is_held(&q->current_entry_lock));
1199         admin = rcu_dereference_protected(q->admin_sched,
1200                                           lockdep_is_held(&q->current_entry_lock));
1201
1202         switch_schedules(q, &admin, &oper);
1203
1204         spin_unlock(&q->current_entry_lock);
1205 }
1206
1207 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1208 {
1209         u32 i, queue_mask = 0;
1210
1211         for (i = 0; i < dev->num_tc; i++) {
1212                 u32 offset, count;
1213
1214                 if (!(tc_mask & BIT(i)))
1215                         continue;
1216
1217                 offset = dev->tc_to_txq[i].offset;
1218                 count = dev->tc_to_txq[i].count;
1219
1220                 queue_mask |= GENMASK(offset + count - 1, offset);
1221         }
1222
1223         return queue_mask;
1224 }
1225
1226 static void taprio_sched_to_offload(struct net_device *dev,
1227                                     struct sched_gate_list *sched,
1228                                     struct tc_taprio_qopt_offload *offload)
1229 {
1230         struct sched_entry *entry;
1231         int i = 0;
1232
1233         offload->base_time = sched->base_time;
1234         offload->cycle_time = sched->cycle_time;
1235         offload->cycle_time_extension = sched->cycle_time_extension;
1236
1237         list_for_each_entry(entry, &sched->entries, list) {
1238                 struct tc_taprio_sched_entry *e = &offload->entries[i];
1239
1240                 e->command = entry->command;
1241                 e->interval = entry->interval;
1242                 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1243
1244                 i++;
1245         }
1246
1247         offload->num_entries = i;
1248 }
1249
1250 static int taprio_enable_offload(struct net_device *dev,
1251                                  struct taprio_sched *q,
1252                                  struct sched_gate_list *sched,
1253                                  struct netlink_ext_ack *extack)
1254 {
1255         const struct net_device_ops *ops = dev->netdev_ops;
1256         struct tc_taprio_qopt_offload *offload;
1257         int err = 0;
1258
1259         if (!ops->ndo_setup_tc) {
1260                 NL_SET_ERR_MSG(extack,
1261                                "Device does not support taprio offload");
1262                 return -EOPNOTSUPP;
1263         }
1264
1265         offload = taprio_offload_alloc(sched->num_entries);
1266         if (!offload) {
1267                 NL_SET_ERR_MSG(extack,
1268                                "Not enough memory for enabling offload mode");
1269                 return -ENOMEM;
1270         }
1271         offload->enable = 1;
1272         taprio_sched_to_offload(dev, sched, offload);
1273
1274         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1275         if (err < 0) {
1276                 NL_SET_ERR_MSG(extack,
1277                                "Device failed to setup taprio offload");
1278                 goto done;
1279         }
1280
1281 done:
1282         taprio_offload_free(offload);
1283
1284         return err;
1285 }
1286
1287 static int taprio_disable_offload(struct net_device *dev,
1288                                   struct taprio_sched *q,
1289                                   struct netlink_ext_ack *extack)
1290 {
1291         const struct net_device_ops *ops = dev->netdev_ops;
1292         struct tc_taprio_qopt_offload *offload;
1293         int err;
1294
1295         if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1296                 return 0;
1297
1298         if (!ops->ndo_setup_tc)
1299                 return -EOPNOTSUPP;
1300
1301         offload = taprio_offload_alloc(0);
1302         if (!offload) {
1303                 NL_SET_ERR_MSG(extack,
1304                                "Not enough memory to disable offload mode");
1305                 return -ENOMEM;
1306         }
1307         offload->enable = 0;
1308
1309         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1310         if (err < 0) {
1311                 NL_SET_ERR_MSG(extack,
1312                                "Device failed to disable offload");
1313                 goto out;
1314         }
1315
1316 out:
1317         taprio_offload_free(offload);
1318
1319         return err;
1320 }
1321
1322 /* If full offload is enabled, the only possible clockid is the net device's
1323  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1324  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1325  * in sync with the specified clockid via a user space daemon such as phc2sys.
1326  * For both software taprio and txtime-assist, the clockid is used for the
1327  * hrtimer that advances the schedule and hence mandatory.
1328  */
1329 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1330                                 struct netlink_ext_ack *extack)
1331 {
1332         struct taprio_sched *q = qdisc_priv(sch);
1333         struct net_device *dev = qdisc_dev(sch);
1334         int err = -EINVAL;
1335
1336         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1337                 const struct ethtool_ops *ops = dev->ethtool_ops;
1338                 struct ethtool_ts_info info = {
1339                         .cmd = ETHTOOL_GET_TS_INFO,
1340                         .phc_index = -1,
1341                 };
1342
1343                 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1344                         NL_SET_ERR_MSG(extack,
1345                                        "The 'clockid' cannot be specified for full offload");
1346                         goto out;
1347                 }
1348
1349                 if (ops && ops->get_ts_info)
1350                         err = ops->get_ts_info(dev, &info);
1351
1352                 if (err || info.phc_index < 0) {
1353                         NL_SET_ERR_MSG(extack,
1354                                        "Device does not have a PTP clock");
1355                         err = -ENOTSUPP;
1356                         goto out;
1357                 }
1358         } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1359                 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1360                 enum tk_offsets tk_offset;
1361
1362                 /* We only support static clockids and we don't allow
1363                  * for it to be modified after the first init.
1364                  */
1365                 if (clockid < 0 ||
1366                     (q->clockid != -1 && q->clockid != clockid)) {
1367                         NL_SET_ERR_MSG(extack,
1368                                        "Changing the 'clockid' of a running schedule is not supported");
1369                         err = -ENOTSUPP;
1370                         goto out;
1371                 }
1372
1373                 switch (clockid) {
1374                 case CLOCK_REALTIME:
1375                         tk_offset = TK_OFFS_REAL;
1376                         break;
1377                 case CLOCK_MONOTONIC:
1378                         tk_offset = TK_OFFS_MAX;
1379                         break;
1380                 case CLOCK_BOOTTIME:
1381                         tk_offset = TK_OFFS_BOOT;
1382                         break;
1383                 case CLOCK_TAI:
1384                         tk_offset = TK_OFFS_TAI;
1385                         break;
1386                 default:
1387                         NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1388                         err = -EINVAL;
1389                         goto out;
1390                 }
1391                 /* This pairs with READ_ONCE() in taprio_mono_to_any */
1392                 WRITE_ONCE(q->tk_offset, tk_offset);
1393
1394                 q->clockid = clockid;
1395         } else {
1396                 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1397                 goto out;
1398         }
1399
1400         /* Everything went ok, return success. */
1401         err = 0;
1402
1403 out:
1404         return err;
1405 }
1406
1407 static int taprio_mqprio_cmp(const struct net_device *dev,
1408                              const struct tc_mqprio_qopt *mqprio)
1409 {
1410         int i;
1411
1412         if (!mqprio || mqprio->num_tc != dev->num_tc)
1413                 return -1;
1414
1415         for (i = 0; i < mqprio->num_tc; i++)
1416                 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1417                     dev->tc_to_txq[i].offset != mqprio->offset[i])
1418                         return -1;
1419
1420         for (i = 0; i <= TC_BITMASK; i++)
1421                 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1422                         return -1;
1423
1424         return 0;
1425 }
1426
1427 /* The semantics of the 'flags' argument in relation to 'change()'
1428  * requests, are interpreted following two rules (which are applied in
1429  * this order): (1) an omitted 'flags' argument is interpreted as
1430  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1431  * changed.
1432  */
1433 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1434                             struct netlink_ext_ack *extack)
1435 {
1436         u32 new = 0;
1437
1438         if (attr)
1439                 new = nla_get_u32(attr);
1440
1441         if (old != TAPRIO_FLAGS_INVALID && old != new) {
1442                 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1443                 return -EOPNOTSUPP;
1444         }
1445
1446         if (!taprio_flags_valid(new)) {
1447                 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1448                 return -EINVAL;
1449         }
1450
1451         return new;
1452 }
1453
1454 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1455                          struct netlink_ext_ack *extack)
1456 {
1457         struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1458         struct sched_gate_list *oper, *admin, *new_admin;
1459         struct taprio_sched *q = qdisc_priv(sch);
1460         struct net_device *dev = qdisc_dev(sch);
1461         struct tc_mqprio_qopt *mqprio = NULL;
1462         unsigned long flags;
1463         ktime_t start;
1464         int i, err;
1465
1466         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1467                                           taprio_policy, extack);
1468         if (err < 0)
1469                 return err;
1470
1471         if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1472                 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1473
1474         err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1475                                q->flags, extack);
1476         if (err < 0)
1477                 return err;
1478
1479         q->flags = err;
1480
1481         err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1482         if (err < 0)
1483                 return err;
1484
1485         new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1486         if (!new_admin) {
1487                 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1488                 return -ENOMEM;
1489         }
1490         INIT_LIST_HEAD(&new_admin->entries);
1491
1492         rcu_read_lock();
1493         oper = rcu_dereference(q->oper_sched);
1494         admin = rcu_dereference(q->admin_sched);
1495         rcu_read_unlock();
1496
1497         /* no changes - no new mqprio settings */
1498         if (!taprio_mqprio_cmp(dev, mqprio))
1499                 mqprio = NULL;
1500
1501         if (mqprio && (oper || admin)) {
1502                 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1503                 err = -ENOTSUPP;
1504                 goto free_sched;
1505         }
1506
1507         err = parse_taprio_schedule(q, tb, new_admin, extack);
1508         if (err < 0)
1509                 goto free_sched;
1510
1511         if (new_admin->num_entries == 0) {
1512                 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1513                 err = -EINVAL;
1514                 goto free_sched;
1515         }
1516
1517         err = taprio_parse_clockid(sch, tb, extack);
1518         if (err < 0)
1519                 goto free_sched;
1520
1521         taprio_set_picos_per_byte(dev, q);
1522
1523         if (mqprio) {
1524                 err = netdev_set_num_tc(dev, mqprio->num_tc);
1525                 if (err)
1526                         goto free_sched;
1527                 for (i = 0; i < mqprio->num_tc; i++)
1528                         netdev_set_tc_queue(dev, i,
1529                                             mqprio->count[i],
1530                                             mqprio->offset[i]);
1531
1532                 /* Always use supplied priority mappings */
1533                 for (i = 0; i <= TC_BITMASK; i++)
1534                         netdev_set_prio_tc_map(dev, i,
1535                                                mqprio->prio_tc_map[i]);
1536         }
1537
1538         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1539                 err = taprio_enable_offload(dev, q, new_admin, extack);
1540         else
1541                 err = taprio_disable_offload(dev, q, extack);
1542         if (err)
1543                 goto free_sched;
1544
1545         /* Protects against enqueue()/dequeue() */
1546         spin_lock_bh(qdisc_lock(sch));
1547
1548         if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1549                 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1550                         NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1551                         err = -EINVAL;
1552                         goto unlock;
1553                 }
1554
1555                 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1556         }
1557
1558         if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1559             !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1560             !hrtimer_active(&q->advance_timer)) {
1561                 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1562                 q->advance_timer.function = advance_sched;
1563         }
1564
1565         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1566                 q->dequeue = taprio_dequeue_offload;
1567                 q->peek = taprio_peek_offload;
1568         } else {
1569                 /* Be sure to always keep the function pointers
1570                  * in a consistent state.
1571                  */
1572                 q->dequeue = taprio_dequeue_soft;
1573                 q->peek = taprio_peek_soft;
1574         }
1575
1576         err = taprio_get_start_time(sch, new_admin, &start);
1577         if (err < 0) {
1578                 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1579                 goto unlock;
1580         }
1581
1582         setup_txtime(q, new_admin, start);
1583
1584         if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1585                 if (!oper) {
1586                         rcu_assign_pointer(q->oper_sched, new_admin);
1587                         err = 0;
1588                         new_admin = NULL;
1589                         goto unlock;
1590                 }
1591
1592                 rcu_assign_pointer(q->admin_sched, new_admin);
1593                 if (admin)
1594                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1595         } else {
1596                 setup_first_close_time(q, new_admin, start);
1597
1598                 /* Protects against advance_sched() */
1599                 spin_lock_irqsave(&q->current_entry_lock, flags);
1600
1601                 taprio_start_sched(sch, start, new_admin);
1602
1603                 rcu_assign_pointer(q->admin_sched, new_admin);
1604                 if (admin)
1605                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1606
1607                 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1608
1609                 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1610                         taprio_offload_config_changed(q);
1611         }
1612
1613         new_admin = NULL;
1614         err = 0;
1615
1616 unlock:
1617         spin_unlock_bh(qdisc_lock(sch));
1618
1619 free_sched:
1620         if (new_admin)
1621                 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1622
1623         return err;
1624 }
1625
1626 static void taprio_reset(struct Qdisc *sch)
1627 {
1628         struct taprio_sched *q = qdisc_priv(sch);
1629         struct net_device *dev = qdisc_dev(sch);
1630         int i;
1631
1632         hrtimer_cancel(&q->advance_timer);
1633         if (q->qdiscs) {
1634                 for (i = 0; i < dev->num_tx_queues; i++)
1635                         if (q->qdiscs[i])
1636                                 qdisc_reset(q->qdiscs[i]);
1637         }
1638         sch->qstats.backlog = 0;
1639         sch->q.qlen = 0;
1640 }
1641
1642 static void taprio_destroy(struct Qdisc *sch)
1643 {
1644         struct taprio_sched *q = qdisc_priv(sch);
1645         struct net_device *dev = qdisc_dev(sch);
1646         unsigned int i;
1647
1648         spin_lock(&taprio_list_lock);
1649         list_del(&q->taprio_list);
1650         spin_unlock(&taprio_list_lock);
1651
1652         /* Note that taprio_reset() might not be called if an error
1653          * happens in qdisc_create(), after taprio_init() has been called.
1654          */
1655         hrtimer_cancel(&q->advance_timer);
1656
1657         taprio_disable_offload(dev, q, NULL);
1658
1659         if (q->qdiscs) {
1660                 for (i = 0; i < dev->num_tx_queues; i++)
1661                         qdisc_put(q->qdiscs[i]);
1662
1663                 kfree(q->qdiscs);
1664         }
1665         q->qdiscs = NULL;
1666
1667         netdev_reset_tc(dev);
1668
1669         if (q->oper_sched)
1670                 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1671
1672         if (q->admin_sched)
1673                 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1674 }
1675
1676 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1677                        struct netlink_ext_ack *extack)
1678 {
1679         struct taprio_sched *q = qdisc_priv(sch);
1680         struct net_device *dev = qdisc_dev(sch);
1681         int i;
1682
1683         spin_lock_init(&q->current_entry_lock);
1684
1685         hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1686         q->advance_timer.function = advance_sched;
1687
1688         q->dequeue = taprio_dequeue_soft;
1689         q->peek = taprio_peek_soft;
1690
1691         q->root = sch;
1692
1693         /* We only support static clockids. Use an invalid value as default
1694          * and get the valid one on taprio_change().
1695          */
1696         q->clockid = -1;
1697         q->flags = TAPRIO_FLAGS_INVALID;
1698
1699         spin_lock(&taprio_list_lock);
1700         list_add(&q->taprio_list, &taprio_list);
1701         spin_unlock(&taprio_list_lock);
1702
1703         if (sch->parent != TC_H_ROOT)
1704                 return -EOPNOTSUPP;
1705
1706         if (!netif_is_multiqueue(dev))
1707                 return -EOPNOTSUPP;
1708
1709         /* pre-allocate qdisc, attachment can't fail */
1710         q->qdiscs = kcalloc(dev->num_tx_queues,
1711                             sizeof(q->qdiscs[0]),
1712                             GFP_KERNEL);
1713
1714         if (!q->qdiscs)
1715                 return -ENOMEM;
1716
1717         if (!opt)
1718                 return -EINVAL;
1719
1720         for (i = 0; i < dev->num_tx_queues; i++) {
1721                 struct netdev_queue *dev_queue;
1722                 struct Qdisc *qdisc;
1723
1724                 dev_queue = netdev_get_tx_queue(dev, i);
1725                 qdisc = qdisc_create_dflt(dev_queue,
1726                                           &pfifo_qdisc_ops,
1727                                           TC_H_MAKE(TC_H_MAJ(sch->handle),
1728                                                     TC_H_MIN(i + 1)),
1729                                           extack);
1730                 if (!qdisc)
1731                         return -ENOMEM;
1732
1733                 if (i < dev->real_num_tx_queues)
1734                         qdisc_hash_add(qdisc, false);
1735
1736                 q->qdiscs[i] = qdisc;
1737         }
1738
1739         return taprio_change(sch, opt, extack);
1740 }
1741
1742 static void taprio_attach(struct Qdisc *sch)
1743 {
1744         struct taprio_sched *q = qdisc_priv(sch);
1745         struct net_device *dev = qdisc_dev(sch);
1746         unsigned int ntx;
1747
1748         /* Attach underlying qdisc */
1749         for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1750                 struct Qdisc *qdisc = q->qdiscs[ntx];
1751                 struct Qdisc *old;
1752
1753                 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1754                         qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1755                         old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1756                 } else {
1757                         old = dev_graft_qdisc(qdisc->dev_queue, sch);
1758                         qdisc_refcount_inc(sch);
1759                 }
1760                 if (old)
1761                         qdisc_put(old);
1762         }
1763
1764         /* access to the child qdiscs is not needed in offload mode */
1765         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1766                 kfree(q->qdiscs);
1767                 q->qdiscs = NULL;
1768         }
1769 }
1770
1771 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1772                                              unsigned long cl)
1773 {
1774         struct net_device *dev = qdisc_dev(sch);
1775         unsigned long ntx = cl - 1;
1776
1777         if (ntx >= dev->num_tx_queues)
1778                 return NULL;
1779
1780         return netdev_get_tx_queue(dev, ntx);
1781 }
1782
1783 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1784                         struct Qdisc *new, struct Qdisc **old,
1785                         struct netlink_ext_ack *extack)
1786 {
1787         struct taprio_sched *q = qdisc_priv(sch);
1788         struct net_device *dev = qdisc_dev(sch);
1789         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1790
1791         if (!dev_queue)
1792                 return -EINVAL;
1793
1794         if (dev->flags & IFF_UP)
1795                 dev_deactivate(dev);
1796
1797         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1798                 *old = dev_graft_qdisc(dev_queue, new);
1799         } else {
1800                 *old = q->qdiscs[cl - 1];
1801                 q->qdiscs[cl - 1] = new;
1802         }
1803
1804         if (new)
1805                 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1806
1807         if (dev->flags & IFF_UP)
1808                 dev_activate(dev);
1809
1810         return 0;
1811 }
1812
1813 static int dump_entry(struct sk_buff *msg,
1814                       const struct sched_entry *entry)
1815 {
1816         struct nlattr *item;
1817
1818         item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1819         if (!item)
1820                 return -ENOSPC;
1821
1822         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1823                 goto nla_put_failure;
1824
1825         if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1826                 goto nla_put_failure;
1827
1828         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1829                         entry->gate_mask))
1830                 goto nla_put_failure;
1831
1832         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1833                         entry->interval))
1834                 goto nla_put_failure;
1835
1836         return nla_nest_end(msg, item);
1837
1838 nla_put_failure:
1839         nla_nest_cancel(msg, item);
1840         return -1;
1841 }
1842
1843 static int dump_schedule(struct sk_buff *msg,
1844                          const struct sched_gate_list *root)
1845 {
1846         struct nlattr *entry_list;
1847         struct sched_entry *entry;
1848
1849         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1850                         root->base_time, TCA_TAPRIO_PAD))
1851                 return -1;
1852
1853         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1854                         root->cycle_time, TCA_TAPRIO_PAD))
1855                 return -1;
1856
1857         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1858                         root->cycle_time_extension, TCA_TAPRIO_PAD))
1859                 return -1;
1860
1861         entry_list = nla_nest_start_noflag(msg,
1862                                            TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1863         if (!entry_list)
1864                 goto error_nest;
1865
1866         list_for_each_entry(entry, &root->entries, list) {
1867                 if (dump_entry(msg, entry) < 0)
1868                         goto error_nest;
1869         }
1870
1871         nla_nest_end(msg, entry_list);
1872         return 0;
1873
1874 error_nest:
1875         nla_nest_cancel(msg, entry_list);
1876         return -1;
1877 }
1878
1879 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1880 {
1881         struct taprio_sched *q = qdisc_priv(sch);
1882         struct net_device *dev = qdisc_dev(sch);
1883         struct sched_gate_list *oper, *admin;
1884         struct tc_mqprio_qopt opt = { 0 };
1885         struct nlattr *nest, *sched_nest;
1886         unsigned int i;
1887
1888         rcu_read_lock();
1889         oper = rcu_dereference(q->oper_sched);
1890         admin = rcu_dereference(q->admin_sched);
1891
1892         opt.num_tc = netdev_get_num_tc(dev);
1893         memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1894
1895         for (i = 0; i < netdev_get_num_tc(dev); i++) {
1896                 opt.count[i] = dev->tc_to_txq[i].count;
1897                 opt.offset[i] = dev->tc_to_txq[i].offset;
1898         }
1899
1900         nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1901         if (!nest)
1902                 goto start_error;
1903
1904         if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1905                 goto options_error;
1906
1907         if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1908             nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1909                 goto options_error;
1910
1911         if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1912                 goto options_error;
1913
1914         if (q->txtime_delay &&
1915             nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1916                 goto options_error;
1917
1918         if (oper && dump_schedule(skb, oper))
1919                 goto options_error;
1920
1921         if (!admin)
1922                 goto done;
1923
1924         sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1925         if (!sched_nest)
1926                 goto options_error;
1927
1928         if (dump_schedule(skb, admin))
1929                 goto admin_error;
1930
1931         nla_nest_end(skb, sched_nest);
1932
1933 done:
1934         rcu_read_unlock();
1935
1936         return nla_nest_end(skb, nest);
1937
1938 admin_error:
1939         nla_nest_cancel(skb, sched_nest);
1940
1941 options_error:
1942         nla_nest_cancel(skb, nest);
1943
1944 start_error:
1945         rcu_read_unlock();
1946         return -ENOSPC;
1947 }
1948
1949 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1950 {
1951         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1952
1953         if (!dev_queue)
1954                 return NULL;
1955
1956         return dev_queue->qdisc_sleeping;
1957 }
1958
1959 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1960 {
1961         unsigned int ntx = TC_H_MIN(classid);
1962
1963         if (!taprio_queue_get(sch, ntx))
1964                 return 0;
1965         return ntx;
1966 }
1967
1968 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1969                              struct sk_buff *skb, struct tcmsg *tcm)
1970 {
1971         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1972
1973         tcm->tcm_parent = TC_H_ROOT;
1974         tcm->tcm_handle |= TC_H_MIN(cl);
1975         tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1976
1977         return 0;
1978 }
1979
1980 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1981                                    struct gnet_dump *d)
1982         __releases(d->lock)
1983         __acquires(d->lock)
1984 {
1985         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1986
1987         sch = dev_queue->qdisc_sleeping;
1988         if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
1989             qdisc_qstats_copy(d, sch) < 0)
1990                 return -1;
1991         return 0;
1992 }
1993
1994 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1995 {
1996         struct net_device *dev = qdisc_dev(sch);
1997         unsigned long ntx;
1998
1999         if (arg->stop)
2000                 return;
2001
2002         arg->count = arg->skip;
2003         for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2004                 if (arg->fn(sch, ntx + 1, arg) < 0) {
2005                         arg->stop = 1;
2006                         break;
2007                 }
2008                 arg->count++;
2009         }
2010 }
2011
2012 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2013                                                 struct tcmsg *tcm)
2014 {
2015         return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2016 }
2017
2018 static const struct Qdisc_class_ops taprio_class_ops = {
2019         .graft          = taprio_graft,
2020         .leaf           = taprio_leaf,
2021         .find           = taprio_find,
2022         .walk           = taprio_walk,
2023         .dump           = taprio_dump_class,
2024         .dump_stats     = taprio_dump_class_stats,
2025         .select_queue   = taprio_select_queue,
2026 };
2027
2028 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2029         .cl_ops         = &taprio_class_ops,
2030         .id             = "taprio",
2031         .priv_size      = sizeof(struct taprio_sched),
2032         .init           = taprio_init,
2033         .change         = taprio_change,
2034         .destroy        = taprio_destroy,
2035         .reset          = taprio_reset,
2036         .attach         = taprio_attach,
2037         .peek           = taprio_peek,
2038         .dequeue        = taprio_dequeue,
2039         .enqueue        = taprio_enqueue,
2040         .dump           = taprio_dump,
2041         .owner          = THIS_MODULE,
2042 };
2043
2044 static struct notifier_block taprio_device_notifier = {
2045         .notifier_call = taprio_dev_notifier,
2046 };
2047
2048 static int __init taprio_module_init(void)
2049 {
2050         int err = register_netdevice_notifier(&taprio_device_notifier);
2051
2052         if (err)
2053                 return err;
2054
2055         return register_qdisc(&taprio_qdisc_ops);
2056 }
2057
2058 static void __exit taprio_module_exit(void)
2059 {
2060         unregister_qdisc(&taprio_qdisc_ops);
2061         unregister_netdevice_notifier(&taprio_device_notifier);
2062 }
2063
2064 module_init(taprio_module_init);
2065 module_exit(taprio_module_exit);
2066 MODULE_LICENSE("GPL");