soundwire: sysfs: add slave status and device number before probe
[linux-2.6-microblaze.git] / net / sched / sch_taprio.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c        Time Aware Priority Scheduler
4  *
5  * Authors:     Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29
30 #define TAPRIO_ALL_GATES_OPEN -1
31
32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
34 #define TAPRIO_FLAGS_INVALID U32_MAX
35
36 struct sched_entry {
37         struct list_head list;
38
39         /* The instant that this entry "closes" and the next one
40          * should open, the qdisc will make some effort so that no
41          * packet leaves after this time.
42          */
43         ktime_t close_time;
44         ktime_t next_txtime;
45         atomic_t budget;
46         int index;
47         u32 gate_mask;
48         u32 interval;
49         u8 command;
50 };
51
52 struct sched_gate_list {
53         struct rcu_head rcu;
54         struct list_head entries;
55         size_t num_entries;
56         ktime_t cycle_close_time;
57         s64 cycle_time;
58         s64 cycle_time_extension;
59         s64 base_time;
60 };
61
62 struct taprio_sched {
63         struct Qdisc **qdiscs;
64         struct Qdisc *root;
65         u32 flags;
66         enum tk_offsets tk_offset;
67         int clockid;
68         atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
69                                     * speeds it's sub-nanoseconds per byte
70                                     */
71
72         /* Protects the update side of the RCU protected current_entry */
73         spinlock_t current_entry_lock;
74         struct sched_entry __rcu *current_entry;
75         struct sched_gate_list __rcu *oper_sched;
76         struct sched_gate_list __rcu *admin_sched;
77         struct hrtimer advance_timer;
78         struct list_head taprio_list;
79         struct sk_buff *(*dequeue)(struct Qdisc *sch);
80         struct sk_buff *(*peek)(struct Qdisc *sch);
81         u32 txtime_delay;
82 };
83
84 struct __tc_taprio_qopt_offload {
85         refcount_t users;
86         struct tc_taprio_qopt_offload offload;
87 };
88
89 static ktime_t sched_base_time(const struct sched_gate_list *sched)
90 {
91         if (!sched)
92                 return KTIME_MAX;
93
94         return ns_to_ktime(sched->base_time);
95 }
96
97 static ktime_t taprio_get_time(struct taprio_sched *q)
98 {
99         ktime_t mono = ktime_get();
100
101         switch (q->tk_offset) {
102         case TK_OFFS_MAX:
103                 return mono;
104         default:
105                 return ktime_mono_to_any(mono, q->tk_offset);
106         }
107
108         return KTIME_MAX;
109 }
110
111 static void taprio_free_sched_cb(struct rcu_head *head)
112 {
113         struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
114         struct sched_entry *entry, *n;
115
116         if (!sched)
117                 return;
118
119         list_for_each_entry_safe(entry, n, &sched->entries, list) {
120                 list_del(&entry->list);
121                 kfree(entry);
122         }
123
124         kfree(sched);
125 }
126
127 static void switch_schedules(struct taprio_sched *q,
128                              struct sched_gate_list **admin,
129                              struct sched_gate_list **oper)
130 {
131         rcu_assign_pointer(q->oper_sched, *admin);
132         rcu_assign_pointer(q->admin_sched, NULL);
133
134         if (*oper)
135                 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
136
137         *oper = *admin;
138         *admin = NULL;
139 }
140
141 /* Get how much time has been already elapsed in the current cycle. */
142 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
143 {
144         ktime_t time_since_sched_start;
145         s32 time_elapsed;
146
147         time_since_sched_start = ktime_sub(time, sched->base_time);
148         div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
149
150         return time_elapsed;
151 }
152
153 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
154                                      struct sched_gate_list *admin,
155                                      struct sched_entry *entry,
156                                      ktime_t intv_start)
157 {
158         s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
159         ktime_t intv_end, cycle_ext_end, cycle_end;
160
161         cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
162         intv_end = ktime_add_ns(intv_start, entry->interval);
163         cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
164
165         if (ktime_before(intv_end, cycle_end))
166                 return intv_end;
167         else if (admin && admin != sched &&
168                  ktime_after(admin->base_time, cycle_end) &&
169                  ktime_before(admin->base_time, cycle_ext_end))
170                 return admin->base_time;
171         else
172                 return cycle_end;
173 }
174
175 static int length_to_duration(struct taprio_sched *q, int len)
176 {
177         return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
178 }
179
180 /* Returns the entry corresponding to next available interval. If
181  * validate_interval is set, it only validates whether the timestamp occurs
182  * when the gate corresponding to the skb's traffic class is open.
183  */
184 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
185                                                   struct Qdisc *sch,
186                                                   struct sched_gate_list *sched,
187                                                   struct sched_gate_list *admin,
188                                                   ktime_t time,
189                                                   ktime_t *interval_start,
190                                                   ktime_t *interval_end,
191                                                   bool validate_interval)
192 {
193         ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
194         ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
195         struct sched_entry *entry = NULL, *entry_found = NULL;
196         struct taprio_sched *q = qdisc_priv(sch);
197         struct net_device *dev = qdisc_dev(sch);
198         bool entry_available = false;
199         s32 cycle_elapsed;
200         int tc, n;
201
202         tc = netdev_get_prio_tc_map(dev, skb->priority);
203         packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
204
205         *interval_start = 0;
206         *interval_end = 0;
207
208         if (!sched)
209                 return NULL;
210
211         cycle = sched->cycle_time;
212         cycle_elapsed = get_cycle_time_elapsed(sched, time);
213         curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
214         cycle_end = ktime_add_ns(curr_intv_end, cycle);
215
216         list_for_each_entry(entry, &sched->entries, list) {
217                 curr_intv_start = curr_intv_end;
218                 curr_intv_end = get_interval_end_time(sched, admin, entry,
219                                                       curr_intv_start);
220
221                 if (ktime_after(curr_intv_start, cycle_end))
222                         break;
223
224                 if (!(entry->gate_mask & BIT(tc)) ||
225                     packet_transmit_time > entry->interval)
226                         continue;
227
228                 txtime = entry->next_txtime;
229
230                 if (ktime_before(txtime, time) || validate_interval) {
231                         transmit_end_time = ktime_add_ns(time, packet_transmit_time);
232                         if ((ktime_before(curr_intv_start, time) &&
233                              ktime_before(transmit_end_time, curr_intv_end)) ||
234                             (ktime_after(curr_intv_start, time) && !validate_interval)) {
235                                 entry_found = entry;
236                                 *interval_start = curr_intv_start;
237                                 *interval_end = curr_intv_end;
238                                 break;
239                         } else if (!entry_available && !validate_interval) {
240                                 /* Here, we are just trying to find out the
241                                  * first available interval in the next cycle.
242                                  */
243                                 entry_available = 1;
244                                 entry_found = entry;
245                                 *interval_start = ktime_add_ns(curr_intv_start, cycle);
246                                 *interval_end = ktime_add_ns(curr_intv_end, cycle);
247                         }
248                 } else if (ktime_before(txtime, earliest_txtime) &&
249                            !entry_available) {
250                         earliest_txtime = txtime;
251                         entry_found = entry;
252                         n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
253                         *interval_start = ktime_add(curr_intv_start, n * cycle);
254                         *interval_end = ktime_add(curr_intv_end, n * cycle);
255                 }
256         }
257
258         return entry_found;
259 }
260
261 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
262 {
263         struct taprio_sched *q = qdisc_priv(sch);
264         struct sched_gate_list *sched, *admin;
265         ktime_t interval_start, interval_end;
266         struct sched_entry *entry;
267
268         rcu_read_lock();
269         sched = rcu_dereference(q->oper_sched);
270         admin = rcu_dereference(q->admin_sched);
271
272         entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
273                                        &interval_start, &interval_end, true);
274         rcu_read_unlock();
275
276         return entry;
277 }
278
279 static bool taprio_flags_valid(u32 flags)
280 {
281         /* Make sure no other flag bits are set. */
282         if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
283                       TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
284                 return false;
285         /* txtime-assist and full offload are mutually exclusive */
286         if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
287             (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
288                 return false;
289         return true;
290 }
291
292 /* This returns the tstamp value set by TCP in terms of the set clock. */
293 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
294 {
295         unsigned int offset = skb_network_offset(skb);
296         const struct ipv6hdr *ipv6h;
297         const struct iphdr *iph;
298         struct ipv6hdr _ipv6h;
299
300         ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
301         if (!ipv6h)
302                 return 0;
303
304         if (ipv6h->version == 4) {
305                 iph = (struct iphdr *)ipv6h;
306                 offset += iph->ihl * 4;
307
308                 /* special-case 6in4 tunnelling, as that is a common way to get
309                  * v6 connectivity in the home
310                  */
311                 if (iph->protocol == IPPROTO_IPV6) {
312                         ipv6h = skb_header_pointer(skb, offset,
313                                                    sizeof(_ipv6h), &_ipv6h);
314
315                         if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
316                                 return 0;
317                 } else if (iph->protocol != IPPROTO_TCP) {
318                         return 0;
319                 }
320         } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
321                 return 0;
322         }
323
324         return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
325 }
326
327 /* There are a few scenarios where we will have to modify the txtime from
328  * what is read from next_txtime in sched_entry. They are:
329  * 1. If txtime is in the past,
330  *    a. The gate for the traffic class is currently open and packet can be
331  *       transmitted before it closes, schedule the packet right away.
332  *    b. If the gate corresponding to the traffic class is going to open later
333  *       in the cycle, set the txtime of packet to the interval start.
334  * 2. If txtime is in the future, there are packets corresponding to the
335  *    current traffic class waiting to be transmitted. So, the following
336  *    possibilities exist:
337  *    a. We can transmit the packet before the window containing the txtime
338  *       closes.
339  *    b. The window might close before the transmission can be completed
340  *       successfully. So, schedule the packet in the next open window.
341  */
342 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
343 {
344         ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
345         struct taprio_sched *q = qdisc_priv(sch);
346         struct sched_gate_list *sched, *admin;
347         ktime_t minimum_time, now, txtime;
348         int len, packet_transmit_time;
349         struct sched_entry *entry;
350         bool sched_changed;
351
352         now = taprio_get_time(q);
353         minimum_time = ktime_add_ns(now, q->txtime_delay);
354
355         tcp_tstamp = get_tcp_tstamp(q, skb);
356         minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
357
358         rcu_read_lock();
359         admin = rcu_dereference(q->admin_sched);
360         sched = rcu_dereference(q->oper_sched);
361         if (admin && ktime_after(minimum_time, admin->base_time))
362                 switch_schedules(q, &admin, &sched);
363
364         /* Until the schedule starts, all the queues are open */
365         if (!sched || ktime_before(minimum_time, sched->base_time)) {
366                 txtime = minimum_time;
367                 goto done;
368         }
369
370         len = qdisc_pkt_len(skb);
371         packet_transmit_time = length_to_duration(q, len);
372
373         do {
374                 sched_changed = 0;
375
376                 entry = find_entry_to_transmit(skb, sch, sched, admin,
377                                                minimum_time,
378                                                &interval_start, &interval_end,
379                                                false);
380                 if (!entry) {
381                         txtime = 0;
382                         goto done;
383                 }
384
385                 txtime = entry->next_txtime;
386                 txtime = max_t(ktime_t, txtime, minimum_time);
387                 txtime = max_t(ktime_t, txtime, interval_start);
388
389                 if (admin && admin != sched &&
390                     ktime_after(txtime, admin->base_time)) {
391                         sched = admin;
392                         sched_changed = 1;
393                         continue;
394                 }
395
396                 transmit_end_time = ktime_add(txtime, packet_transmit_time);
397                 minimum_time = transmit_end_time;
398
399                 /* Update the txtime of current entry to the next time it's
400                  * interval starts.
401                  */
402                 if (ktime_after(transmit_end_time, interval_end))
403                         entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
404         } while (sched_changed || ktime_after(transmit_end_time, interval_end));
405
406         entry->next_txtime = transmit_end_time;
407
408 done:
409         rcu_read_unlock();
410         return txtime;
411 }
412
413 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
414                           struct sk_buff **to_free)
415 {
416         struct taprio_sched *q = qdisc_priv(sch);
417         struct Qdisc *child;
418         int queue;
419
420         queue = skb_get_queue_mapping(skb);
421
422         child = q->qdiscs[queue];
423         if (unlikely(!child))
424                 return qdisc_drop(skb, sch, to_free);
425
426         if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
427                 if (!is_valid_interval(skb, sch))
428                         return qdisc_drop(skb, sch, to_free);
429         } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
430                 skb->tstamp = get_packet_txtime(skb, sch);
431                 if (!skb->tstamp)
432                         return qdisc_drop(skb, sch, to_free);
433         }
434
435         qdisc_qstats_backlog_inc(sch, skb);
436         sch->q.qlen++;
437
438         return qdisc_enqueue(skb, child, to_free);
439 }
440
441 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
442 {
443         struct taprio_sched *q = qdisc_priv(sch);
444         struct net_device *dev = qdisc_dev(sch);
445         struct sched_entry *entry;
446         struct sk_buff *skb;
447         u32 gate_mask;
448         int i;
449
450         rcu_read_lock();
451         entry = rcu_dereference(q->current_entry);
452         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
453         rcu_read_unlock();
454
455         if (!gate_mask)
456                 return NULL;
457
458         for (i = 0; i < dev->num_tx_queues; i++) {
459                 struct Qdisc *child = q->qdiscs[i];
460                 int prio;
461                 u8 tc;
462
463                 if (unlikely(!child))
464                         continue;
465
466                 skb = child->ops->peek(child);
467                 if (!skb)
468                         continue;
469
470                 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
471                         return skb;
472
473                 prio = skb->priority;
474                 tc = netdev_get_prio_tc_map(dev, prio);
475
476                 if (!(gate_mask & BIT(tc)))
477                         continue;
478
479                 return skb;
480         }
481
482         return NULL;
483 }
484
485 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
486 {
487         struct taprio_sched *q = qdisc_priv(sch);
488         struct net_device *dev = qdisc_dev(sch);
489         struct sk_buff *skb;
490         int i;
491
492         for (i = 0; i < dev->num_tx_queues; i++) {
493                 struct Qdisc *child = q->qdiscs[i];
494
495                 if (unlikely(!child))
496                         continue;
497
498                 skb = child->ops->peek(child);
499                 if (!skb)
500                         continue;
501
502                 return skb;
503         }
504
505         return NULL;
506 }
507
508 static struct sk_buff *taprio_peek(struct Qdisc *sch)
509 {
510         struct taprio_sched *q = qdisc_priv(sch);
511
512         return q->peek(sch);
513 }
514
515 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
516 {
517         atomic_set(&entry->budget,
518                    div64_u64((u64)entry->interval * 1000,
519                              atomic64_read(&q->picos_per_byte)));
520 }
521
522 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
523 {
524         struct taprio_sched *q = qdisc_priv(sch);
525         struct net_device *dev = qdisc_dev(sch);
526         struct sk_buff *skb = NULL;
527         struct sched_entry *entry;
528         u32 gate_mask;
529         int i;
530
531         rcu_read_lock();
532         entry = rcu_dereference(q->current_entry);
533         /* if there's no entry, it means that the schedule didn't
534          * start yet, so force all gates to be open, this is in
535          * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
536          * "AdminGateSates"
537          */
538         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
539
540         if (!gate_mask)
541                 goto done;
542
543         for (i = 0; i < dev->num_tx_queues; i++) {
544                 struct Qdisc *child = q->qdiscs[i];
545                 ktime_t guard;
546                 int prio;
547                 int len;
548                 u8 tc;
549
550                 if (unlikely(!child))
551                         continue;
552
553                 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
554                         skb = child->ops->dequeue(child);
555                         if (!skb)
556                                 continue;
557                         goto skb_found;
558                 }
559
560                 skb = child->ops->peek(child);
561                 if (!skb)
562                         continue;
563
564                 prio = skb->priority;
565                 tc = netdev_get_prio_tc_map(dev, prio);
566
567                 if (!(gate_mask & BIT(tc))) {
568                         skb = NULL;
569                         continue;
570                 }
571
572                 len = qdisc_pkt_len(skb);
573                 guard = ktime_add_ns(taprio_get_time(q),
574                                      length_to_duration(q, len));
575
576                 /* In the case that there's no gate entry, there's no
577                  * guard band ...
578                  */
579                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
580                     ktime_after(guard, entry->close_time)) {
581                         skb = NULL;
582                         continue;
583                 }
584
585                 /* ... and no budget. */
586                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
587                     atomic_sub_return(len, &entry->budget) < 0) {
588                         skb = NULL;
589                         continue;
590                 }
591
592                 skb = child->ops->dequeue(child);
593                 if (unlikely(!skb))
594                         goto done;
595
596 skb_found:
597                 qdisc_bstats_update(sch, skb);
598                 qdisc_qstats_backlog_dec(sch, skb);
599                 sch->q.qlen--;
600
601                 goto done;
602         }
603
604 done:
605         rcu_read_unlock();
606
607         return skb;
608 }
609
610 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
611 {
612         struct taprio_sched *q = qdisc_priv(sch);
613         struct net_device *dev = qdisc_dev(sch);
614         struct sk_buff *skb;
615         int i;
616
617         for (i = 0; i < dev->num_tx_queues; i++) {
618                 struct Qdisc *child = q->qdiscs[i];
619
620                 if (unlikely(!child))
621                         continue;
622
623                 skb = child->ops->dequeue(child);
624                 if (unlikely(!skb))
625                         continue;
626
627                 qdisc_bstats_update(sch, skb);
628                 qdisc_qstats_backlog_dec(sch, skb);
629                 sch->q.qlen--;
630
631                 return skb;
632         }
633
634         return NULL;
635 }
636
637 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
638 {
639         struct taprio_sched *q = qdisc_priv(sch);
640
641         return q->dequeue(sch);
642 }
643
644 static bool should_restart_cycle(const struct sched_gate_list *oper,
645                                  const struct sched_entry *entry)
646 {
647         if (list_is_last(&entry->list, &oper->entries))
648                 return true;
649
650         if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
651                 return true;
652
653         return false;
654 }
655
656 static bool should_change_schedules(const struct sched_gate_list *admin,
657                                     const struct sched_gate_list *oper,
658                                     ktime_t close_time)
659 {
660         ktime_t next_base_time, extension_time;
661
662         if (!admin)
663                 return false;
664
665         next_base_time = sched_base_time(admin);
666
667         /* This is the simple case, the close_time would fall after
668          * the next schedule base_time.
669          */
670         if (ktime_compare(next_base_time, close_time) <= 0)
671                 return true;
672
673         /* This is the cycle_time_extension case, if the close_time
674          * plus the amount that can be extended would fall after the
675          * next schedule base_time, we can extend the current schedule
676          * for that amount.
677          */
678         extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
679
680         /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
681          * how precisely the extension should be made. So after
682          * conformance testing, this logic may change.
683          */
684         if (ktime_compare(next_base_time, extension_time) <= 0)
685                 return true;
686
687         return false;
688 }
689
690 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
691 {
692         struct taprio_sched *q = container_of(timer, struct taprio_sched,
693                                               advance_timer);
694         struct sched_gate_list *oper, *admin;
695         struct sched_entry *entry, *next;
696         struct Qdisc *sch = q->root;
697         ktime_t close_time;
698
699         spin_lock(&q->current_entry_lock);
700         entry = rcu_dereference_protected(q->current_entry,
701                                           lockdep_is_held(&q->current_entry_lock));
702         oper = rcu_dereference_protected(q->oper_sched,
703                                          lockdep_is_held(&q->current_entry_lock));
704         admin = rcu_dereference_protected(q->admin_sched,
705                                           lockdep_is_held(&q->current_entry_lock));
706
707         if (!oper)
708                 switch_schedules(q, &admin, &oper);
709
710         /* This can happen in two cases: 1. this is the very first run
711          * of this function (i.e. we weren't running any schedule
712          * previously); 2. The previous schedule just ended. The first
713          * entry of all schedules are pre-calculated during the
714          * schedule initialization.
715          */
716         if (unlikely(!entry || entry->close_time == oper->base_time)) {
717                 next = list_first_entry(&oper->entries, struct sched_entry,
718                                         list);
719                 close_time = next->close_time;
720                 goto first_run;
721         }
722
723         if (should_restart_cycle(oper, entry)) {
724                 next = list_first_entry(&oper->entries, struct sched_entry,
725                                         list);
726                 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
727                                                       oper->cycle_time);
728         } else {
729                 next = list_next_entry(entry, list);
730         }
731
732         close_time = ktime_add_ns(entry->close_time, next->interval);
733         close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
734
735         if (should_change_schedules(admin, oper, close_time)) {
736                 /* Set things so the next time this runs, the new
737                  * schedule runs.
738                  */
739                 close_time = sched_base_time(admin);
740                 switch_schedules(q, &admin, &oper);
741         }
742
743         next->close_time = close_time;
744         taprio_set_budget(q, next);
745
746 first_run:
747         rcu_assign_pointer(q->current_entry, next);
748         spin_unlock(&q->current_entry_lock);
749
750         hrtimer_set_expires(&q->advance_timer, close_time);
751
752         rcu_read_lock();
753         __netif_schedule(sch);
754         rcu_read_unlock();
755
756         return HRTIMER_RESTART;
757 }
758
759 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
760         [TCA_TAPRIO_SCHED_ENTRY_INDEX]     = { .type = NLA_U32 },
761         [TCA_TAPRIO_SCHED_ENTRY_CMD]       = { .type = NLA_U8 },
762         [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
763         [TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
764 };
765
766 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
767         [TCA_TAPRIO_ATTR_PRIOMAP]              = {
768                 .len = sizeof(struct tc_mqprio_qopt)
769         },
770         [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
771         [TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
772         [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
773         [TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
774         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
775         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
776         [TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
777         [TCA_TAPRIO_ATTR_TXTIME_DELAY]               = { .type = NLA_U32 },
778 };
779
780 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
781                             struct netlink_ext_ack *extack)
782 {
783         u32 interval = 0;
784
785         if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
786                 entry->command = nla_get_u8(
787                         tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
788
789         if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
790                 entry->gate_mask = nla_get_u32(
791                         tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
792
793         if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
794                 interval = nla_get_u32(
795                         tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
796
797         if (interval == 0) {
798                 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
799                 return -EINVAL;
800         }
801
802         entry->interval = interval;
803
804         return 0;
805 }
806
807 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
808                              int index, struct netlink_ext_ack *extack)
809 {
810         struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
811         int err;
812
813         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
814                                           entry_policy, NULL);
815         if (err < 0) {
816                 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
817                 return -EINVAL;
818         }
819
820         entry->index = index;
821
822         return fill_sched_entry(tb, entry, extack);
823 }
824
825 static int parse_sched_list(struct nlattr *list,
826                             struct sched_gate_list *sched,
827                             struct netlink_ext_ack *extack)
828 {
829         struct nlattr *n;
830         int err, rem;
831         int i = 0;
832
833         if (!list)
834                 return -EINVAL;
835
836         nla_for_each_nested(n, list, rem) {
837                 struct sched_entry *entry;
838
839                 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
840                         NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
841                         continue;
842                 }
843
844                 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
845                 if (!entry) {
846                         NL_SET_ERR_MSG(extack, "Not enough memory for entry");
847                         return -ENOMEM;
848                 }
849
850                 err = parse_sched_entry(n, entry, i, extack);
851                 if (err < 0) {
852                         kfree(entry);
853                         return err;
854                 }
855
856                 list_add_tail(&entry->list, &sched->entries);
857                 i++;
858         }
859
860         sched->num_entries = i;
861
862         return i;
863 }
864
865 static int parse_taprio_schedule(struct nlattr **tb,
866                                  struct sched_gate_list *new,
867                                  struct netlink_ext_ack *extack)
868 {
869         int err = 0;
870
871         if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
872                 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
873                 return -ENOTSUPP;
874         }
875
876         if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
877                 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
878
879         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
880                 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
881
882         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
883                 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
884
885         if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
886                 err = parse_sched_list(
887                         tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
888         if (err < 0)
889                 return err;
890
891         if (!new->cycle_time) {
892                 struct sched_entry *entry;
893                 ktime_t cycle = 0;
894
895                 list_for_each_entry(entry, &new->entries, list)
896                         cycle = ktime_add_ns(cycle, entry->interval);
897                 new->cycle_time = cycle;
898         }
899
900         return 0;
901 }
902
903 static int taprio_parse_mqprio_opt(struct net_device *dev,
904                                    struct tc_mqprio_qopt *qopt,
905                                    struct netlink_ext_ack *extack,
906                                    u32 taprio_flags)
907 {
908         int i, j;
909
910         if (!qopt && !dev->num_tc) {
911                 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
912                 return -EINVAL;
913         }
914
915         /* If num_tc is already set, it means that the user already
916          * configured the mqprio part
917          */
918         if (dev->num_tc)
919                 return 0;
920
921         /* Verify num_tc is not out of max range */
922         if (qopt->num_tc > TC_MAX_QUEUE) {
923                 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
924                 return -EINVAL;
925         }
926
927         /* taprio imposes that traffic classes map 1:n to tx queues */
928         if (qopt->num_tc > dev->num_tx_queues) {
929                 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
930                 return -EINVAL;
931         }
932
933         /* Verify priority mapping uses valid tcs */
934         for (i = 0; i <= TC_BITMASK; i++) {
935                 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
936                         NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
937                         return -EINVAL;
938                 }
939         }
940
941         for (i = 0; i < qopt->num_tc; i++) {
942                 unsigned int last = qopt->offset[i] + qopt->count[i];
943
944                 /* Verify the queue count is in tx range being equal to the
945                  * real_num_tx_queues indicates the last queue is in use.
946                  */
947                 if (qopt->offset[i] >= dev->num_tx_queues ||
948                     !qopt->count[i] ||
949                     last > dev->real_num_tx_queues) {
950                         NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
951                         return -EINVAL;
952                 }
953
954                 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
955                         continue;
956
957                 /* Verify that the offset and counts do not overlap */
958                 for (j = i + 1; j < qopt->num_tc; j++) {
959                         if (last > qopt->offset[j]) {
960                                 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
961                                 return -EINVAL;
962                         }
963                 }
964         }
965
966         return 0;
967 }
968
969 static int taprio_get_start_time(struct Qdisc *sch,
970                                  struct sched_gate_list *sched,
971                                  ktime_t *start)
972 {
973         struct taprio_sched *q = qdisc_priv(sch);
974         ktime_t now, base, cycle;
975         s64 n;
976
977         base = sched_base_time(sched);
978         now = taprio_get_time(q);
979
980         if (ktime_after(base, now)) {
981                 *start = base;
982                 return 0;
983         }
984
985         cycle = sched->cycle_time;
986
987         /* The qdisc is expected to have at least one sched_entry.  Moreover,
988          * any entry must have 'interval' > 0. Thus if the cycle time is zero,
989          * something went really wrong. In that case, we should warn about this
990          * inconsistent state and return error.
991          */
992         if (WARN_ON(!cycle))
993                 return -EFAULT;
994
995         /* Schedule the start time for the beginning of the next
996          * cycle.
997          */
998         n = div64_s64(ktime_sub_ns(now, base), cycle);
999         *start = ktime_add_ns(base, (n + 1) * cycle);
1000         return 0;
1001 }
1002
1003 static void setup_first_close_time(struct taprio_sched *q,
1004                                    struct sched_gate_list *sched, ktime_t base)
1005 {
1006         struct sched_entry *first;
1007         ktime_t cycle;
1008
1009         first = list_first_entry(&sched->entries,
1010                                  struct sched_entry, list);
1011
1012         cycle = sched->cycle_time;
1013
1014         /* FIXME: find a better place to do this */
1015         sched->cycle_close_time = ktime_add_ns(base, cycle);
1016
1017         first->close_time = ktime_add_ns(base, first->interval);
1018         taprio_set_budget(q, first);
1019         rcu_assign_pointer(q->current_entry, NULL);
1020 }
1021
1022 static void taprio_start_sched(struct Qdisc *sch,
1023                                ktime_t start, struct sched_gate_list *new)
1024 {
1025         struct taprio_sched *q = qdisc_priv(sch);
1026         ktime_t expires;
1027
1028         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1029                 return;
1030
1031         expires = hrtimer_get_expires(&q->advance_timer);
1032         if (expires == 0)
1033                 expires = KTIME_MAX;
1034
1035         /* If the new schedule starts before the next expiration, we
1036          * reprogram it to the earliest one, so we change the admin
1037          * schedule to the operational one at the right time.
1038          */
1039         start = min_t(ktime_t, start, expires);
1040
1041         hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1042 }
1043
1044 static void taprio_set_picos_per_byte(struct net_device *dev,
1045                                       struct taprio_sched *q)
1046 {
1047         struct ethtool_link_ksettings ecmd;
1048         int speed = SPEED_10;
1049         int picos_per_byte;
1050         int err;
1051
1052         err = __ethtool_get_link_ksettings(dev, &ecmd);
1053         if (err < 0)
1054                 goto skip;
1055
1056         if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1057                 speed = ecmd.base.speed;
1058
1059 skip:
1060         picos_per_byte = (USEC_PER_SEC * 8) / speed;
1061
1062         atomic64_set(&q->picos_per_byte, picos_per_byte);
1063         netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1064                    dev->name, (long long)atomic64_read(&q->picos_per_byte),
1065                    ecmd.base.speed);
1066 }
1067
1068 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1069                                void *ptr)
1070 {
1071         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1072         struct net_device *qdev;
1073         struct taprio_sched *q;
1074         bool found = false;
1075
1076         ASSERT_RTNL();
1077
1078         if (event != NETDEV_UP && event != NETDEV_CHANGE)
1079                 return NOTIFY_DONE;
1080
1081         spin_lock(&taprio_list_lock);
1082         list_for_each_entry(q, &taprio_list, taprio_list) {
1083                 qdev = qdisc_dev(q->root);
1084                 if (qdev == dev) {
1085                         found = true;
1086                         break;
1087                 }
1088         }
1089         spin_unlock(&taprio_list_lock);
1090
1091         if (found)
1092                 taprio_set_picos_per_byte(dev, q);
1093
1094         return NOTIFY_DONE;
1095 }
1096
1097 static void setup_txtime(struct taprio_sched *q,
1098                          struct sched_gate_list *sched, ktime_t base)
1099 {
1100         struct sched_entry *entry;
1101         u32 interval = 0;
1102
1103         list_for_each_entry(entry, &sched->entries, list) {
1104                 entry->next_txtime = ktime_add_ns(base, interval);
1105                 interval += entry->interval;
1106         }
1107 }
1108
1109 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1110 {
1111         struct __tc_taprio_qopt_offload *__offload;
1112
1113         __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1114                             GFP_KERNEL);
1115         if (!__offload)
1116                 return NULL;
1117
1118         refcount_set(&__offload->users, 1);
1119
1120         return &__offload->offload;
1121 }
1122
1123 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1124                                                   *offload)
1125 {
1126         struct __tc_taprio_qopt_offload *__offload;
1127
1128         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1129                                  offload);
1130
1131         refcount_inc(&__offload->users);
1132
1133         return offload;
1134 }
1135 EXPORT_SYMBOL_GPL(taprio_offload_get);
1136
1137 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1138 {
1139         struct __tc_taprio_qopt_offload *__offload;
1140
1141         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1142                                  offload);
1143
1144         if (!refcount_dec_and_test(&__offload->users))
1145                 return;
1146
1147         kfree(__offload);
1148 }
1149 EXPORT_SYMBOL_GPL(taprio_offload_free);
1150
1151 /* The function will only serve to keep the pointers to the "oper" and "admin"
1152  * schedules valid in relation to their base times, so when calling dump() the
1153  * users looks at the right schedules.
1154  * When using full offload, the admin configuration is promoted to oper at the
1155  * base_time in the PHC time domain.  But because the system time is not
1156  * necessarily in sync with that, we can't just trigger a hrtimer to call
1157  * switch_schedules at the right hardware time.
1158  * At the moment we call this by hand right away from taprio, but in the future
1159  * it will be useful to create a mechanism for drivers to notify taprio of the
1160  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1161  * This is left as TODO.
1162  */
1163 static void taprio_offload_config_changed(struct taprio_sched *q)
1164 {
1165         struct sched_gate_list *oper, *admin;
1166
1167         spin_lock(&q->current_entry_lock);
1168
1169         oper = rcu_dereference_protected(q->oper_sched,
1170                                          lockdep_is_held(&q->current_entry_lock));
1171         admin = rcu_dereference_protected(q->admin_sched,
1172                                           lockdep_is_held(&q->current_entry_lock));
1173
1174         switch_schedules(q, &admin, &oper);
1175
1176         spin_unlock(&q->current_entry_lock);
1177 }
1178
1179 static void taprio_sched_to_offload(struct taprio_sched *q,
1180                                     struct sched_gate_list *sched,
1181                                     const struct tc_mqprio_qopt *mqprio,
1182                                     struct tc_taprio_qopt_offload *offload)
1183 {
1184         struct sched_entry *entry;
1185         int i = 0;
1186
1187         offload->base_time = sched->base_time;
1188         offload->cycle_time = sched->cycle_time;
1189         offload->cycle_time_extension = sched->cycle_time_extension;
1190
1191         list_for_each_entry(entry, &sched->entries, list) {
1192                 struct tc_taprio_sched_entry *e = &offload->entries[i];
1193
1194                 e->command = entry->command;
1195                 e->interval = entry->interval;
1196                 e->gate_mask = entry->gate_mask;
1197                 i++;
1198         }
1199
1200         offload->num_entries = i;
1201 }
1202
1203 static int taprio_enable_offload(struct net_device *dev,
1204                                  struct tc_mqprio_qopt *mqprio,
1205                                  struct taprio_sched *q,
1206                                  struct sched_gate_list *sched,
1207                                  struct netlink_ext_ack *extack)
1208 {
1209         const struct net_device_ops *ops = dev->netdev_ops;
1210         struct tc_taprio_qopt_offload *offload;
1211         int err = 0;
1212
1213         if (!ops->ndo_setup_tc) {
1214                 NL_SET_ERR_MSG(extack,
1215                                "Device does not support taprio offload");
1216                 return -EOPNOTSUPP;
1217         }
1218
1219         offload = taprio_offload_alloc(sched->num_entries);
1220         if (!offload) {
1221                 NL_SET_ERR_MSG(extack,
1222                                "Not enough memory for enabling offload mode");
1223                 return -ENOMEM;
1224         }
1225         offload->enable = 1;
1226         taprio_sched_to_offload(q, sched, mqprio, offload);
1227
1228         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1229         if (err < 0) {
1230                 NL_SET_ERR_MSG(extack,
1231                                "Device failed to setup taprio offload");
1232                 goto done;
1233         }
1234
1235 done:
1236         taprio_offload_free(offload);
1237
1238         return err;
1239 }
1240
1241 static int taprio_disable_offload(struct net_device *dev,
1242                                   struct taprio_sched *q,
1243                                   struct netlink_ext_ack *extack)
1244 {
1245         const struct net_device_ops *ops = dev->netdev_ops;
1246         struct tc_taprio_qopt_offload *offload;
1247         int err;
1248
1249         if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1250                 return 0;
1251
1252         if (!ops->ndo_setup_tc)
1253                 return -EOPNOTSUPP;
1254
1255         offload = taprio_offload_alloc(0);
1256         if (!offload) {
1257                 NL_SET_ERR_MSG(extack,
1258                                "Not enough memory to disable offload mode");
1259                 return -ENOMEM;
1260         }
1261         offload->enable = 0;
1262
1263         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1264         if (err < 0) {
1265                 NL_SET_ERR_MSG(extack,
1266                                "Device failed to disable offload");
1267                 goto out;
1268         }
1269
1270 out:
1271         taprio_offload_free(offload);
1272
1273         return err;
1274 }
1275
1276 /* If full offload is enabled, the only possible clockid is the net device's
1277  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1278  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1279  * in sync with the specified clockid via a user space daemon such as phc2sys.
1280  * For both software taprio and txtime-assist, the clockid is used for the
1281  * hrtimer that advances the schedule and hence mandatory.
1282  */
1283 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1284                                 struct netlink_ext_ack *extack)
1285 {
1286         struct taprio_sched *q = qdisc_priv(sch);
1287         struct net_device *dev = qdisc_dev(sch);
1288         int err = -EINVAL;
1289
1290         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1291                 const struct ethtool_ops *ops = dev->ethtool_ops;
1292                 struct ethtool_ts_info info = {
1293                         .cmd = ETHTOOL_GET_TS_INFO,
1294                         .phc_index = -1,
1295                 };
1296
1297                 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1298                         NL_SET_ERR_MSG(extack,
1299                                        "The 'clockid' cannot be specified for full offload");
1300                         goto out;
1301                 }
1302
1303                 if (ops && ops->get_ts_info)
1304                         err = ops->get_ts_info(dev, &info);
1305
1306                 if (err || info.phc_index < 0) {
1307                         NL_SET_ERR_MSG(extack,
1308                                        "Device does not have a PTP clock");
1309                         err = -ENOTSUPP;
1310                         goto out;
1311                 }
1312         } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1313                 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1314
1315                 /* We only support static clockids and we don't allow
1316                  * for it to be modified after the first init.
1317                  */
1318                 if (clockid < 0 ||
1319                     (q->clockid != -1 && q->clockid != clockid)) {
1320                         NL_SET_ERR_MSG(extack,
1321                                        "Changing the 'clockid' of a running schedule is not supported");
1322                         err = -ENOTSUPP;
1323                         goto out;
1324                 }
1325
1326                 switch (clockid) {
1327                 case CLOCK_REALTIME:
1328                         q->tk_offset = TK_OFFS_REAL;
1329                         break;
1330                 case CLOCK_MONOTONIC:
1331                         q->tk_offset = TK_OFFS_MAX;
1332                         break;
1333                 case CLOCK_BOOTTIME:
1334                         q->tk_offset = TK_OFFS_BOOT;
1335                         break;
1336                 case CLOCK_TAI:
1337                         q->tk_offset = TK_OFFS_TAI;
1338                         break;
1339                 default:
1340                         NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1341                         err = -EINVAL;
1342                         goto out;
1343                 }
1344
1345                 q->clockid = clockid;
1346         } else {
1347                 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1348                 goto out;
1349         }
1350
1351         /* Everything went ok, return success. */
1352         err = 0;
1353
1354 out:
1355         return err;
1356 }
1357
1358 static int taprio_mqprio_cmp(const struct net_device *dev,
1359                              const struct tc_mqprio_qopt *mqprio)
1360 {
1361         int i;
1362
1363         if (!mqprio || mqprio->num_tc != dev->num_tc)
1364                 return -1;
1365
1366         for (i = 0; i < mqprio->num_tc; i++)
1367                 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1368                     dev->tc_to_txq[i].offset != mqprio->offset[i])
1369                         return -1;
1370
1371         for (i = 0; i <= TC_BITMASK; i++)
1372                 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1373                         return -1;
1374
1375         return 0;
1376 }
1377
1378 /* The semantics of the 'flags' argument in relation to 'change()'
1379  * requests, are interpreted following two rules (which are applied in
1380  * this order): (1) an omitted 'flags' argument is interpreted as
1381  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1382  * changed.
1383  */
1384 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1385                             struct netlink_ext_ack *extack)
1386 {
1387         u32 new = 0;
1388
1389         if (attr)
1390                 new = nla_get_u32(attr);
1391
1392         if (old != TAPRIO_FLAGS_INVALID && old != new) {
1393                 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1394                 return -EOPNOTSUPP;
1395         }
1396
1397         if (!taprio_flags_valid(new)) {
1398                 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1399                 return -EINVAL;
1400         }
1401
1402         return new;
1403 }
1404
1405 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1406                          struct netlink_ext_ack *extack)
1407 {
1408         struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1409         struct sched_gate_list *oper, *admin, *new_admin;
1410         struct taprio_sched *q = qdisc_priv(sch);
1411         struct net_device *dev = qdisc_dev(sch);
1412         struct tc_mqprio_qopt *mqprio = NULL;
1413         unsigned long flags;
1414         ktime_t start;
1415         int i, err;
1416
1417         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1418                                           taprio_policy, extack);
1419         if (err < 0)
1420                 return err;
1421
1422         if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1423                 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1424
1425         err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1426                                q->flags, extack);
1427         if (err < 0)
1428                 return err;
1429
1430         q->flags = err;
1431
1432         err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1433         if (err < 0)
1434                 return err;
1435
1436         new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1437         if (!new_admin) {
1438                 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1439                 return -ENOMEM;
1440         }
1441         INIT_LIST_HEAD(&new_admin->entries);
1442
1443         rcu_read_lock();
1444         oper = rcu_dereference(q->oper_sched);
1445         admin = rcu_dereference(q->admin_sched);
1446         rcu_read_unlock();
1447
1448         /* no changes - no new mqprio settings */
1449         if (!taprio_mqprio_cmp(dev, mqprio))
1450                 mqprio = NULL;
1451
1452         if (mqprio && (oper || admin)) {
1453                 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1454                 err = -ENOTSUPP;
1455                 goto free_sched;
1456         }
1457
1458         err = parse_taprio_schedule(tb, new_admin, extack);
1459         if (err < 0)
1460                 goto free_sched;
1461
1462         if (new_admin->num_entries == 0) {
1463                 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1464                 err = -EINVAL;
1465                 goto free_sched;
1466         }
1467
1468         err = taprio_parse_clockid(sch, tb, extack);
1469         if (err < 0)
1470                 goto free_sched;
1471
1472         taprio_set_picos_per_byte(dev, q);
1473
1474         if (mqprio) {
1475                 netdev_set_num_tc(dev, mqprio->num_tc);
1476                 for (i = 0; i < mqprio->num_tc; i++)
1477                         netdev_set_tc_queue(dev, i,
1478                                             mqprio->count[i],
1479                                             mqprio->offset[i]);
1480
1481                 /* Always use supplied priority mappings */
1482                 for (i = 0; i <= TC_BITMASK; i++)
1483                         netdev_set_prio_tc_map(dev, i,
1484                                                mqprio->prio_tc_map[i]);
1485         }
1486
1487         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1488                 err = taprio_enable_offload(dev, mqprio, q, new_admin, extack);
1489         else
1490                 err = taprio_disable_offload(dev, q, extack);
1491         if (err)
1492                 goto free_sched;
1493
1494         /* Protects against enqueue()/dequeue() */
1495         spin_lock_bh(qdisc_lock(sch));
1496
1497         if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1498                 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1499                         NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1500                         err = -EINVAL;
1501                         goto unlock;
1502                 }
1503
1504                 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1505         }
1506
1507         if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1508             !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1509             !hrtimer_active(&q->advance_timer)) {
1510                 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1511                 q->advance_timer.function = advance_sched;
1512         }
1513
1514         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1515                 q->dequeue = taprio_dequeue_offload;
1516                 q->peek = taprio_peek_offload;
1517         } else {
1518                 /* Be sure to always keep the function pointers
1519                  * in a consistent state.
1520                  */
1521                 q->dequeue = taprio_dequeue_soft;
1522                 q->peek = taprio_peek_soft;
1523         }
1524
1525         err = taprio_get_start_time(sch, new_admin, &start);
1526         if (err < 0) {
1527                 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1528                 goto unlock;
1529         }
1530
1531         setup_txtime(q, new_admin, start);
1532
1533         if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1534                 if (!oper) {
1535                         rcu_assign_pointer(q->oper_sched, new_admin);
1536                         err = 0;
1537                         new_admin = NULL;
1538                         goto unlock;
1539                 }
1540
1541                 rcu_assign_pointer(q->admin_sched, new_admin);
1542                 if (admin)
1543                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1544         } else {
1545                 setup_first_close_time(q, new_admin, start);
1546
1547                 /* Protects against advance_sched() */
1548                 spin_lock_irqsave(&q->current_entry_lock, flags);
1549
1550                 taprio_start_sched(sch, start, new_admin);
1551
1552                 rcu_assign_pointer(q->admin_sched, new_admin);
1553                 if (admin)
1554                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1555
1556                 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1557
1558                 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1559                         taprio_offload_config_changed(q);
1560         }
1561
1562         new_admin = NULL;
1563         err = 0;
1564
1565 unlock:
1566         spin_unlock_bh(qdisc_lock(sch));
1567
1568 free_sched:
1569         if (new_admin)
1570                 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1571
1572         return err;
1573 }
1574
1575 static void taprio_destroy(struct Qdisc *sch)
1576 {
1577         struct taprio_sched *q = qdisc_priv(sch);
1578         struct net_device *dev = qdisc_dev(sch);
1579         unsigned int i;
1580
1581         spin_lock(&taprio_list_lock);
1582         list_del(&q->taprio_list);
1583         spin_unlock(&taprio_list_lock);
1584
1585         hrtimer_cancel(&q->advance_timer);
1586
1587         taprio_disable_offload(dev, q, NULL);
1588
1589         if (q->qdiscs) {
1590                 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1591                         qdisc_put(q->qdiscs[i]);
1592
1593                 kfree(q->qdiscs);
1594         }
1595         q->qdiscs = NULL;
1596
1597         netdev_reset_tc(dev);
1598
1599         if (q->oper_sched)
1600                 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1601
1602         if (q->admin_sched)
1603                 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1604 }
1605
1606 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1607                        struct netlink_ext_ack *extack)
1608 {
1609         struct taprio_sched *q = qdisc_priv(sch);
1610         struct net_device *dev = qdisc_dev(sch);
1611         int i;
1612
1613         spin_lock_init(&q->current_entry_lock);
1614
1615         hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1616         q->advance_timer.function = advance_sched;
1617
1618         q->dequeue = taprio_dequeue_soft;
1619         q->peek = taprio_peek_soft;
1620
1621         q->root = sch;
1622
1623         /* We only support static clockids. Use an invalid value as default
1624          * and get the valid one on taprio_change().
1625          */
1626         q->clockid = -1;
1627         q->flags = TAPRIO_FLAGS_INVALID;
1628
1629         spin_lock(&taprio_list_lock);
1630         list_add(&q->taprio_list, &taprio_list);
1631         spin_unlock(&taprio_list_lock);
1632
1633         if (sch->parent != TC_H_ROOT)
1634                 return -EOPNOTSUPP;
1635
1636         if (!netif_is_multiqueue(dev))
1637                 return -EOPNOTSUPP;
1638
1639         /* pre-allocate qdisc, attachment can't fail */
1640         q->qdiscs = kcalloc(dev->num_tx_queues,
1641                             sizeof(q->qdiscs[0]),
1642                             GFP_KERNEL);
1643
1644         if (!q->qdiscs)
1645                 return -ENOMEM;
1646
1647         if (!opt)
1648                 return -EINVAL;
1649
1650         for (i = 0; i < dev->num_tx_queues; i++) {
1651                 struct netdev_queue *dev_queue;
1652                 struct Qdisc *qdisc;
1653
1654                 dev_queue = netdev_get_tx_queue(dev, i);
1655                 qdisc = qdisc_create_dflt(dev_queue,
1656                                           &pfifo_qdisc_ops,
1657                                           TC_H_MAKE(TC_H_MAJ(sch->handle),
1658                                                     TC_H_MIN(i + 1)),
1659                                           extack);
1660                 if (!qdisc)
1661                         return -ENOMEM;
1662
1663                 if (i < dev->real_num_tx_queues)
1664                         qdisc_hash_add(qdisc, false);
1665
1666                 q->qdiscs[i] = qdisc;
1667         }
1668
1669         return taprio_change(sch, opt, extack);
1670 }
1671
1672 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1673                                              unsigned long cl)
1674 {
1675         struct net_device *dev = qdisc_dev(sch);
1676         unsigned long ntx = cl - 1;
1677
1678         if (ntx >= dev->num_tx_queues)
1679                 return NULL;
1680
1681         return netdev_get_tx_queue(dev, ntx);
1682 }
1683
1684 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1685                         struct Qdisc *new, struct Qdisc **old,
1686                         struct netlink_ext_ack *extack)
1687 {
1688         struct taprio_sched *q = qdisc_priv(sch);
1689         struct net_device *dev = qdisc_dev(sch);
1690         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1691
1692         if (!dev_queue)
1693                 return -EINVAL;
1694
1695         if (dev->flags & IFF_UP)
1696                 dev_deactivate(dev);
1697
1698         *old = q->qdiscs[cl - 1];
1699         q->qdiscs[cl - 1] = new;
1700
1701         if (new)
1702                 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1703
1704         if (dev->flags & IFF_UP)
1705                 dev_activate(dev);
1706
1707         return 0;
1708 }
1709
1710 static int dump_entry(struct sk_buff *msg,
1711                       const struct sched_entry *entry)
1712 {
1713         struct nlattr *item;
1714
1715         item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1716         if (!item)
1717                 return -ENOSPC;
1718
1719         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1720                 goto nla_put_failure;
1721
1722         if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1723                 goto nla_put_failure;
1724
1725         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1726                         entry->gate_mask))
1727                 goto nla_put_failure;
1728
1729         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1730                         entry->interval))
1731                 goto nla_put_failure;
1732
1733         return nla_nest_end(msg, item);
1734
1735 nla_put_failure:
1736         nla_nest_cancel(msg, item);
1737         return -1;
1738 }
1739
1740 static int dump_schedule(struct sk_buff *msg,
1741                          const struct sched_gate_list *root)
1742 {
1743         struct nlattr *entry_list;
1744         struct sched_entry *entry;
1745
1746         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1747                         root->base_time, TCA_TAPRIO_PAD))
1748                 return -1;
1749
1750         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1751                         root->cycle_time, TCA_TAPRIO_PAD))
1752                 return -1;
1753
1754         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1755                         root->cycle_time_extension, TCA_TAPRIO_PAD))
1756                 return -1;
1757
1758         entry_list = nla_nest_start_noflag(msg,
1759                                            TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1760         if (!entry_list)
1761                 goto error_nest;
1762
1763         list_for_each_entry(entry, &root->entries, list) {
1764                 if (dump_entry(msg, entry) < 0)
1765                         goto error_nest;
1766         }
1767
1768         nla_nest_end(msg, entry_list);
1769         return 0;
1770
1771 error_nest:
1772         nla_nest_cancel(msg, entry_list);
1773         return -1;
1774 }
1775
1776 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1777 {
1778         struct taprio_sched *q = qdisc_priv(sch);
1779         struct net_device *dev = qdisc_dev(sch);
1780         struct sched_gate_list *oper, *admin;
1781         struct tc_mqprio_qopt opt = { 0 };
1782         struct nlattr *nest, *sched_nest;
1783         unsigned int i;
1784
1785         rcu_read_lock();
1786         oper = rcu_dereference(q->oper_sched);
1787         admin = rcu_dereference(q->admin_sched);
1788
1789         opt.num_tc = netdev_get_num_tc(dev);
1790         memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1791
1792         for (i = 0; i < netdev_get_num_tc(dev); i++) {
1793                 opt.count[i] = dev->tc_to_txq[i].count;
1794                 opt.offset[i] = dev->tc_to_txq[i].offset;
1795         }
1796
1797         nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1798         if (!nest)
1799                 goto start_error;
1800
1801         if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1802                 goto options_error;
1803
1804         if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1805             nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1806                 goto options_error;
1807
1808         if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1809                 goto options_error;
1810
1811         if (q->txtime_delay &&
1812             nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1813                 goto options_error;
1814
1815         if (oper && dump_schedule(skb, oper))
1816                 goto options_error;
1817
1818         if (!admin)
1819                 goto done;
1820
1821         sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1822         if (!sched_nest)
1823                 goto options_error;
1824
1825         if (dump_schedule(skb, admin))
1826                 goto admin_error;
1827
1828         nla_nest_end(skb, sched_nest);
1829
1830 done:
1831         rcu_read_unlock();
1832
1833         return nla_nest_end(skb, nest);
1834
1835 admin_error:
1836         nla_nest_cancel(skb, sched_nest);
1837
1838 options_error:
1839         nla_nest_cancel(skb, nest);
1840
1841 start_error:
1842         rcu_read_unlock();
1843         return -ENOSPC;
1844 }
1845
1846 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1847 {
1848         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1849
1850         if (!dev_queue)
1851                 return NULL;
1852
1853         return dev_queue->qdisc_sleeping;
1854 }
1855
1856 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1857 {
1858         unsigned int ntx = TC_H_MIN(classid);
1859
1860         if (!taprio_queue_get(sch, ntx))
1861                 return 0;
1862         return ntx;
1863 }
1864
1865 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1866                              struct sk_buff *skb, struct tcmsg *tcm)
1867 {
1868         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1869
1870         tcm->tcm_parent = TC_H_ROOT;
1871         tcm->tcm_handle |= TC_H_MIN(cl);
1872         tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1873
1874         return 0;
1875 }
1876
1877 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1878                                    struct gnet_dump *d)
1879         __releases(d->lock)
1880         __acquires(d->lock)
1881 {
1882         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1883
1884         sch = dev_queue->qdisc_sleeping;
1885         if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1886             qdisc_qstats_copy(d, sch) < 0)
1887                 return -1;
1888         return 0;
1889 }
1890
1891 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1892 {
1893         struct net_device *dev = qdisc_dev(sch);
1894         unsigned long ntx;
1895
1896         if (arg->stop)
1897                 return;
1898
1899         arg->count = arg->skip;
1900         for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1901                 if (arg->fn(sch, ntx + 1, arg) < 0) {
1902                         arg->stop = 1;
1903                         break;
1904                 }
1905                 arg->count++;
1906         }
1907 }
1908
1909 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1910                                                 struct tcmsg *tcm)
1911 {
1912         return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1913 }
1914
1915 static const struct Qdisc_class_ops taprio_class_ops = {
1916         .graft          = taprio_graft,
1917         .leaf           = taprio_leaf,
1918         .find           = taprio_find,
1919         .walk           = taprio_walk,
1920         .dump           = taprio_dump_class,
1921         .dump_stats     = taprio_dump_class_stats,
1922         .select_queue   = taprio_select_queue,
1923 };
1924
1925 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1926         .cl_ops         = &taprio_class_ops,
1927         .id             = "taprio",
1928         .priv_size      = sizeof(struct taprio_sched),
1929         .init           = taprio_init,
1930         .change         = taprio_change,
1931         .destroy        = taprio_destroy,
1932         .peek           = taprio_peek,
1933         .dequeue        = taprio_dequeue,
1934         .enqueue        = taprio_enqueue,
1935         .dump           = taprio_dump,
1936         .owner          = THIS_MODULE,
1937 };
1938
1939 static struct notifier_block taprio_device_notifier = {
1940         .notifier_call = taprio_dev_notifier,
1941 };
1942
1943 static int __init taprio_module_init(void)
1944 {
1945         int err = register_netdevice_notifier(&taprio_device_notifier);
1946
1947         if (err)
1948                 return err;
1949
1950         return register_qdisc(&taprio_qdisc_ops);
1951 }
1952
1953 static void __exit taprio_module_exit(void)
1954 {
1955         unregister_qdisc(&taprio_qdisc_ops);
1956         unregister_netdevice_notifier(&taprio_device_notifier);
1957 }
1958
1959 module_init(taprio_module_init);
1960 module_exit(taprio_module_exit);
1961 MODULE_LICENSE("GPL");