Linux 6.9-rc1
[linux-2.6-microblaze.git] / net / rfkill / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2006 - 2007 Ivo van Doorn
4  * Copyright (C) 2007 Dmitry Torokhov
5  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/workqueue.h>
12 #include <linux/capability.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/rfkill.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/device.h>
19 #include <linux/miscdevice.h>
20 #include <linux/wait.h>
21 #include <linux/poll.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24
25 #include "rfkill.h"
26
27 #define POLL_INTERVAL           (5 * HZ)
28
29 #define RFKILL_BLOCK_HW         BIT(0)
30 #define RFKILL_BLOCK_SW         BIT(1)
31 #define RFKILL_BLOCK_SW_PREV    BIT(2)
32 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
33                                  RFKILL_BLOCK_SW |\
34                                  RFKILL_BLOCK_SW_PREV)
35 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37 struct rfkill {
38         spinlock_t              lock;
39
40         enum rfkill_type        type;
41
42         unsigned long           state;
43         unsigned long           hard_block_reasons;
44
45         u32                     idx;
46
47         bool                    registered;
48         bool                    persistent;
49         bool                    polling_paused;
50         bool                    suspended;
51         bool                    need_sync;
52
53         const struct rfkill_ops *ops;
54         void                    *data;
55
56 #ifdef CONFIG_RFKILL_LEDS
57         struct led_trigger      led_trigger;
58         const char              *ledtrigname;
59 #endif
60
61         struct device           dev;
62         struct list_head        node;
63
64         struct delayed_work     poll_work;
65         struct work_struct      uevent_work;
66         struct work_struct      sync_work;
67         char                    name[];
68 };
69 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
70
71 struct rfkill_int_event {
72         struct list_head        list;
73         struct rfkill_event_ext ev;
74 };
75
76 struct rfkill_data {
77         struct list_head        list;
78         struct list_head        events;
79         struct mutex            mtx;
80         wait_queue_head_t       read_wait;
81         bool                    input_handler;
82         u8                      max_size;
83 };
84
85
86 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
87 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
88 MODULE_DESCRIPTION("RF switch support");
89 MODULE_LICENSE("GPL");
90
91
92 /*
93  * The locking here should be made much smarter, we currently have
94  * a bit of a stupid situation because drivers might want to register
95  * the rfkill struct under their own lock, and take this lock during
96  * rfkill method calls -- which will cause an AB-BA deadlock situation.
97  *
98  * To fix that, we need to rework this code here to be mostly lock-free
99  * and only use the mutex for list manipulations, not to protect the
100  * various other global variables. Then we can avoid holding the mutex
101  * around driver operations, and all is happy.
102  */
103 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
104 static DEFINE_MUTEX(rfkill_global_mutex);
105 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
106
107 static unsigned int rfkill_default_state = 1;
108 module_param_named(default_state, rfkill_default_state, uint, 0444);
109 MODULE_PARM_DESC(default_state,
110                  "Default initial state for all radio types, 0 = radio off");
111
112 static struct {
113         bool cur, sav;
114 } rfkill_global_states[NUM_RFKILL_TYPES];
115
116 static bool rfkill_epo_lock_active;
117
118
119 #ifdef CONFIG_RFKILL_LEDS
120 static void rfkill_led_trigger_event(struct rfkill *rfkill)
121 {
122         struct led_trigger *trigger;
123
124         if (!rfkill->registered)
125                 return;
126
127         trigger = &rfkill->led_trigger;
128
129         if (rfkill->state & RFKILL_BLOCK_ANY)
130                 led_trigger_event(trigger, LED_OFF);
131         else
132                 led_trigger_event(trigger, LED_FULL);
133 }
134
135 static int rfkill_led_trigger_activate(struct led_classdev *led)
136 {
137         struct rfkill *rfkill;
138
139         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
140
141         rfkill_led_trigger_event(rfkill);
142
143         return 0;
144 }
145
146 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
147 {
148         return rfkill->led_trigger.name;
149 }
150 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
151
152 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
153 {
154         BUG_ON(!rfkill);
155
156         rfkill->ledtrigname = name;
157 }
158 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
159
160 static int rfkill_led_trigger_register(struct rfkill *rfkill)
161 {
162         rfkill->led_trigger.name = rfkill->ledtrigname
163                                         ? : dev_name(&rfkill->dev);
164         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
165         return led_trigger_register(&rfkill->led_trigger);
166 }
167
168 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
169 {
170         led_trigger_unregister(&rfkill->led_trigger);
171 }
172
173 static struct led_trigger rfkill_any_led_trigger;
174 static struct led_trigger rfkill_none_led_trigger;
175 static struct work_struct rfkill_global_led_trigger_work;
176
177 static void rfkill_global_led_trigger_worker(struct work_struct *work)
178 {
179         enum led_brightness brightness = LED_OFF;
180         struct rfkill *rfkill;
181
182         mutex_lock(&rfkill_global_mutex);
183         list_for_each_entry(rfkill, &rfkill_list, node) {
184                 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
185                         brightness = LED_FULL;
186                         break;
187                 }
188         }
189         mutex_unlock(&rfkill_global_mutex);
190
191         led_trigger_event(&rfkill_any_led_trigger, brightness);
192         led_trigger_event(&rfkill_none_led_trigger,
193                           brightness == LED_OFF ? LED_FULL : LED_OFF);
194 }
195
196 static void rfkill_global_led_trigger_event(void)
197 {
198         schedule_work(&rfkill_global_led_trigger_work);
199 }
200
201 static int rfkill_global_led_trigger_register(void)
202 {
203         int ret;
204
205         INIT_WORK(&rfkill_global_led_trigger_work,
206                         rfkill_global_led_trigger_worker);
207
208         rfkill_any_led_trigger.name = "rfkill-any";
209         ret = led_trigger_register(&rfkill_any_led_trigger);
210         if (ret)
211                 return ret;
212
213         rfkill_none_led_trigger.name = "rfkill-none";
214         ret = led_trigger_register(&rfkill_none_led_trigger);
215         if (ret)
216                 led_trigger_unregister(&rfkill_any_led_trigger);
217         else
218                 /* Delay activation until all global triggers are registered */
219                 rfkill_global_led_trigger_event();
220
221         return ret;
222 }
223
224 static void rfkill_global_led_trigger_unregister(void)
225 {
226         led_trigger_unregister(&rfkill_none_led_trigger);
227         led_trigger_unregister(&rfkill_any_led_trigger);
228         cancel_work_sync(&rfkill_global_led_trigger_work);
229 }
230 #else
231 static void rfkill_led_trigger_event(struct rfkill *rfkill)
232 {
233 }
234
235 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
236 {
237         return 0;
238 }
239
240 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
241 {
242 }
243
244 static void rfkill_global_led_trigger_event(void)
245 {
246 }
247
248 static int rfkill_global_led_trigger_register(void)
249 {
250         return 0;
251 }
252
253 static void rfkill_global_led_trigger_unregister(void)
254 {
255 }
256 #endif /* CONFIG_RFKILL_LEDS */
257
258 static void rfkill_fill_event(struct rfkill_event_ext *ev,
259                               struct rfkill *rfkill,
260                               enum rfkill_operation op)
261 {
262         unsigned long flags;
263
264         ev->idx = rfkill->idx;
265         ev->type = rfkill->type;
266         ev->op = op;
267
268         spin_lock_irqsave(&rfkill->lock, flags);
269         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
270         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
271                                         RFKILL_BLOCK_SW_PREV));
272         ev->hard_block_reasons = rfkill->hard_block_reasons;
273         spin_unlock_irqrestore(&rfkill->lock, flags);
274 }
275
276 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
277 {
278         struct rfkill_data *data;
279         struct rfkill_int_event *ev;
280
281         list_for_each_entry(data, &rfkill_fds, list) {
282                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
283                 if (!ev)
284                         continue;
285                 rfkill_fill_event(&ev->ev, rfkill, op);
286                 mutex_lock(&data->mtx);
287                 list_add_tail(&ev->list, &data->events);
288                 mutex_unlock(&data->mtx);
289                 wake_up_interruptible(&data->read_wait);
290         }
291 }
292
293 static void rfkill_event(struct rfkill *rfkill)
294 {
295         if (!rfkill->registered)
296                 return;
297
298         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
299
300         /* also send event to /dev/rfkill */
301         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
302 }
303
304 /**
305  * rfkill_set_block - wrapper for set_block method
306  *
307  * @rfkill: the rfkill struct to use
308  * @blocked: the new software state
309  *
310  * Calls the set_block method (when applicable) and handles notifications
311  * etc. as well.
312  */
313 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
314 {
315         unsigned long flags;
316         bool prev, curr;
317         int err;
318
319         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
320                 return;
321
322         /*
323          * Some platforms (...!) generate input events which affect the
324          * _hard_ kill state -- whenever something tries to change the
325          * current software state query the hardware state too.
326          */
327         if (rfkill->ops->query)
328                 rfkill->ops->query(rfkill, rfkill->data);
329
330         spin_lock_irqsave(&rfkill->lock, flags);
331         prev = rfkill->state & RFKILL_BLOCK_SW;
332
333         if (prev)
334                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
335         else
336                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
337
338         if (blocked)
339                 rfkill->state |= RFKILL_BLOCK_SW;
340         else
341                 rfkill->state &= ~RFKILL_BLOCK_SW;
342
343         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
344         spin_unlock_irqrestore(&rfkill->lock, flags);
345
346         err = rfkill->ops->set_block(rfkill->data, blocked);
347
348         spin_lock_irqsave(&rfkill->lock, flags);
349         if (err) {
350                 /*
351                  * Failed -- reset status to _PREV, which may be different
352                  * from what we have set _PREV to earlier in this function
353                  * if rfkill_set_sw_state was invoked.
354                  */
355                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
356                         rfkill->state |= RFKILL_BLOCK_SW;
357                 else
358                         rfkill->state &= ~RFKILL_BLOCK_SW;
359         }
360         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
361         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
362         curr = rfkill->state & RFKILL_BLOCK_SW;
363         spin_unlock_irqrestore(&rfkill->lock, flags);
364
365         rfkill_led_trigger_event(rfkill);
366         rfkill_global_led_trigger_event();
367
368         if (prev != curr)
369                 rfkill_event(rfkill);
370 }
371
372 static void rfkill_sync(struct rfkill *rfkill)
373 {
374         lockdep_assert_held(&rfkill_global_mutex);
375
376         if (!rfkill->need_sync)
377                 return;
378
379         rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
380         rfkill->need_sync = false;
381 }
382
383 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
384 {
385         int i;
386
387         if (type != RFKILL_TYPE_ALL) {
388                 rfkill_global_states[type].cur = blocked;
389                 return;
390         }
391
392         for (i = 0; i < NUM_RFKILL_TYPES; i++)
393                 rfkill_global_states[i].cur = blocked;
394 }
395
396 #ifdef CONFIG_RFKILL_INPUT
397 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
398
399 /**
400  * __rfkill_switch_all - Toggle state of all switches of given type
401  * @type: type of interfaces to be affected
402  * @blocked: the new state
403  *
404  * This function sets the state of all switches of given type,
405  * unless a specific switch is suspended.
406  *
407  * Caller must have acquired rfkill_global_mutex.
408  */
409 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
410 {
411         struct rfkill *rfkill;
412
413         rfkill_update_global_state(type, blocked);
414         list_for_each_entry(rfkill, &rfkill_list, node) {
415                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
416                         continue;
417
418                 rfkill_set_block(rfkill, blocked);
419         }
420 }
421
422 /**
423  * rfkill_switch_all - Toggle state of all switches of given type
424  * @type: type of interfaces to be affected
425  * @blocked: the new state
426  *
427  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
428  * Please refer to __rfkill_switch_all() for details.
429  *
430  * Does nothing if the EPO lock is active.
431  */
432 void rfkill_switch_all(enum rfkill_type type, bool blocked)
433 {
434         if (atomic_read(&rfkill_input_disabled))
435                 return;
436
437         mutex_lock(&rfkill_global_mutex);
438
439         if (!rfkill_epo_lock_active)
440                 __rfkill_switch_all(type, blocked);
441
442         mutex_unlock(&rfkill_global_mutex);
443 }
444
445 /**
446  * rfkill_epo - emergency power off all transmitters
447  *
448  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
449  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
450  *
451  * The global state before the EPO is saved and can be restored later
452  * using rfkill_restore_states().
453  */
454 void rfkill_epo(void)
455 {
456         struct rfkill *rfkill;
457         int i;
458
459         if (atomic_read(&rfkill_input_disabled))
460                 return;
461
462         mutex_lock(&rfkill_global_mutex);
463
464         rfkill_epo_lock_active = true;
465         list_for_each_entry(rfkill, &rfkill_list, node)
466                 rfkill_set_block(rfkill, true);
467
468         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
469                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
470                 rfkill_global_states[i].cur = true;
471         }
472
473         mutex_unlock(&rfkill_global_mutex);
474 }
475
476 /**
477  * rfkill_restore_states - restore global states
478  *
479  * Restore (and sync switches to) the global state from the
480  * states in rfkill_default_states.  This can undo the effects of
481  * a call to rfkill_epo().
482  */
483 void rfkill_restore_states(void)
484 {
485         int i;
486
487         if (atomic_read(&rfkill_input_disabled))
488                 return;
489
490         mutex_lock(&rfkill_global_mutex);
491
492         rfkill_epo_lock_active = false;
493         for (i = 0; i < NUM_RFKILL_TYPES; i++)
494                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
495         mutex_unlock(&rfkill_global_mutex);
496 }
497
498 /**
499  * rfkill_remove_epo_lock - unlock state changes
500  *
501  * Used by rfkill-input manually unlock state changes, when
502  * the EPO switch is deactivated.
503  */
504 void rfkill_remove_epo_lock(void)
505 {
506         if (atomic_read(&rfkill_input_disabled))
507                 return;
508
509         mutex_lock(&rfkill_global_mutex);
510         rfkill_epo_lock_active = false;
511         mutex_unlock(&rfkill_global_mutex);
512 }
513
514 /**
515  * rfkill_is_epo_lock_active - returns true EPO is active
516  *
517  * Returns 0 (false) if there is NOT an active EPO condition,
518  * and 1 (true) if there is an active EPO condition, which
519  * locks all radios in one of the BLOCKED states.
520  *
521  * Can be called in atomic context.
522  */
523 bool rfkill_is_epo_lock_active(void)
524 {
525         return rfkill_epo_lock_active;
526 }
527
528 /**
529  * rfkill_get_global_sw_state - returns global state for a type
530  * @type: the type to get the global state of
531  *
532  * Returns the current global state for a given wireless
533  * device type.
534  */
535 bool rfkill_get_global_sw_state(const enum rfkill_type type)
536 {
537         return rfkill_global_states[type].cur;
538 }
539 #endif
540
541 bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
542                                 bool blocked, unsigned long reason)
543 {
544         unsigned long flags;
545         bool ret, prev;
546
547         BUG_ON(!rfkill);
548
549         if (WARN(reason &
550             ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
551             "hw_state reason not supported: 0x%lx", reason))
552                 return blocked;
553
554         spin_lock_irqsave(&rfkill->lock, flags);
555         prev = !!(rfkill->hard_block_reasons & reason);
556         if (blocked) {
557                 rfkill->state |= RFKILL_BLOCK_HW;
558                 rfkill->hard_block_reasons |= reason;
559         } else {
560                 rfkill->hard_block_reasons &= ~reason;
561                 if (!rfkill->hard_block_reasons)
562                         rfkill->state &= ~RFKILL_BLOCK_HW;
563         }
564         ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
565         spin_unlock_irqrestore(&rfkill->lock, flags);
566
567         rfkill_led_trigger_event(rfkill);
568         rfkill_global_led_trigger_event();
569
570         if (rfkill->registered && prev != blocked)
571                 schedule_work(&rfkill->uevent_work);
572
573         return ret;
574 }
575 EXPORT_SYMBOL(rfkill_set_hw_state_reason);
576
577 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
578 {
579         u32 bit = RFKILL_BLOCK_SW;
580
581         /* if in a ops->set_block right now, use other bit */
582         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
583                 bit = RFKILL_BLOCK_SW_PREV;
584
585         if (blocked)
586                 rfkill->state |= bit;
587         else
588                 rfkill->state &= ~bit;
589 }
590
591 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
592 {
593         unsigned long flags;
594         bool prev, hwblock;
595
596         BUG_ON(!rfkill);
597
598         spin_lock_irqsave(&rfkill->lock, flags);
599         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
600         __rfkill_set_sw_state(rfkill, blocked);
601         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
602         blocked = blocked || hwblock;
603         spin_unlock_irqrestore(&rfkill->lock, flags);
604
605         if (!rfkill->registered)
606                 return blocked;
607
608         if (prev != blocked && !hwblock)
609                 schedule_work(&rfkill->uevent_work);
610
611         rfkill_led_trigger_event(rfkill);
612         rfkill_global_led_trigger_event();
613
614         return blocked;
615 }
616 EXPORT_SYMBOL(rfkill_set_sw_state);
617
618 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
619 {
620         unsigned long flags;
621
622         BUG_ON(!rfkill);
623         BUG_ON(rfkill->registered);
624
625         spin_lock_irqsave(&rfkill->lock, flags);
626         __rfkill_set_sw_state(rfkill, blocked);
627         rfkill->persistent = true;
628         spin_unlock_irqrestore(&rfkill->lock, flags);
629 }
630 EXPORT_SYMBOL(rfkill_init_sw_state);
631
632 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
633 {
634         unsigned long flags;
635         bool swprev, hwprev;
636
637         BUG_ON(!rfkill);
638
639         spin_lock_irqsave(&rfkill->lock, flags);
640
641         /*
642          * No need to care about prev/setblock ... this is for uevent only
643          * and that will get triggered by rfkill_set_block anyway.
644          */
645         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
646         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
647         __rfkill_set_sw_state(rfkill, sw);
648         if (hw)
649                 rfkill->state |= RFKILL_BLOCK_HW;
650         else
651                 rfkill->state &= ~RFKILL_BLOCK_HW;
652
653         spin_unlock_irqrestore(&rfkill->lock, flags);
654
655         if (!rfkill->registered) {
656                 rfkill->persistent = true;
657         } else {
658                 if (swprev != sw || hwprev != hw)
659                         schedule_work(&rfkill->uevent_work);
660
661                 rfkill_led_trigger_event(rfkill);
662                 rfkill_global_led_trigger_event();
663         }
664 }
665 EXPORT_SYMBOL(rfkill_set_states);
666
667 static const char * const rfkill_types[] = {
668         NULL, /* RFKILL_TYPE_ALL */
669         "wlan",
670         "bluetooth",
671         "ultrawideband",
672         "wimax",
673         "wwan",
674         "gps",
675         "fm",
676         "nfc",
677 };
678
679 enum rfkill_type rfkill_find_type(const char *name)
680 {
681         int i;
682
683         BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
684
685         if (!name)
686                 return RFKILL_TYPE_ALL;
687
688         for (i = 1; i < NUM_RFKILL_TYPES; i++)
689                 if (!strcmp(name, rfkill_types[i]))
690                         return i;
691         return RFKILL_TYPE_ALL;
692 }
693 EXPORT_SYMBOL(rfkill_find_type);
694
695 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
696                          char *buf)
697 {
698         struct rfkill *rfkill = to_rfkill(dev);
699
700         return sysfs_emit(buf, "%s\n", rfkill->name);
701 }
702 static DEVICE_ATTR_RO(name);
703
704 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
705                          char *buf)
706 {
707         struct rfkill *rfkill = to_rfkill(dev);
708
709         return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
710 }
711 static DEVICE_ATTR_RO(type);
712
713 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
714                           char *buf)
715 {
716         struct rfkill *rfkill = to_rfkill(dev);
717
718         return sysfs_emit(buf, "%d\n", rfkill->idx);
719 }
720 static DEVICE_ATTR_RO(index);
721
722 static ssize_t persistent_show(struct device *dev,
723                                struct device_attribute *attr, char *buf)
724 {
725         struct rfkill *rfkill = to_rfkill(dev);
726
727         return sysfs_emit(buf, "%d\n", rfkill->persistent);
728 }
729 static DEVICE_ATTR_RO(persistent);
730
731 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
732                          char *buf)
733 {
734         struct rfkill *rfkill = to_rfkill(dev);
735
736         return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
737 }
738 static DEVICE_ATTR_RO(hard);
739
740 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
741                          char *buf)
742 {
743         struct rfkill *rfkill = to_rfkill(dev);
744
745         mutex_lock(&rfkill_global_mutex);
746         rfkill_sync(rfkill);
747         mutex_unlock(&rfkill_global_mutex);
748
749         return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
750 }
751
752 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
753                           const char *buf, size_t count)
754 {
755         struct rfkill *rfkill = to_rfkill(dev);
756         unsigned long state;
757         int err;
758
759         if (!capable(CAP_NET_ADMIN))
760                 return -EPERM;
761
762         err = kstrtoul(buf, 0, &state);
763         if (err)
764                 return err;
765
766         if (state > 1 )
767                 return -EINVAL;
768
769         mutex_lock(&rfkill_global_mutex);
770         rfkill_sync(rfkill);
771         rfkill_set_block(rfkill, state);
772         mutex_unlock(&rfkill_global_mutex);
773
774         return count;
775 }
776 static DEVICE_ATTR_RW(soft);
777
778 static ssize_t hard_block_reasons_show(struct device *dev,
779                                        struct device_attribute *attr,
780                                        char *buf)
781 {
782         struct rfkill *rfkill = to_rfkill(dev);
783
784         return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
785 }
786 static DEVICE_ATTR_RO(hard_block_reasons);
787
788 static u8 user_state_from_blocked(unsigned long state)
789 {
790         if (state & RFKILL_BLOCK_HW)
791                 return RFKILL_USER_STATE_HARD_BLOCKED;
792         if (state & RFKILL_BLOCK_SW)
793                 return RFKILL_USER_STATE_SOFT_BLOCKED;
794
795         return RFKILL_USER_STATE_UNBLOCKED;
796 }
797
798 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
799                           char *buf)
800 {
801         struct rfkill *rfkill = to_rfkill(dev);
802
803         mutex_lock(&rfkill_global_mutex);
804         rfkill_sync(rfkill);
805         mutex_unlock(&rfkill_global_mutex);
806
807         return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
808 }
809
810 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
811                            const char *buf, size_t count)
812 {
813         struct rfkill *rfkill = to_rfkill(dev);
814         unsigned long state;
815         int err;
816
817         if (!capable(CAP_NET_ADMIN))
818                 return -EPERM;
819
820         err = kstrtoul(buf, 0, &state);
821         if (err)
822                 return err;
823
824         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
825             state != RFKILL_USER_STATE_UNBLOCKED)
826                 return -EINVAL;
827
828         mutex_lock(&rfkill_global_mutex);
829         rfkill_sync(rfkill);
830         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
831         mutex_unlock(&rfkill_global_mutex);
832
833         return count;
834 }
835 static DEVICE_ATTR_RW(state);
836
837 static struct attribute *rfkill_dev_attrs[] = {
838         &dev_attr_name.attr,
839         &dev_attr_type.attr,
840         &dev_attr_index.attr,
841         &dev_attr_persistent.attr,
842         &dev_attr_state.attr,
843         &dev_attr_soft.attr,
844         &dev_attr_hard.attr,
845         &dev_attr_hard_block_reasons.attr,
846         NULL,
847 };
848 ATTRIBUTE_GROUPS(rfkill_dev);
849
850 static void rfkill_release(struct device *dev)
851 {
852         struct rfkill *rfkill = to_rfkill(dev);
853
854         kfree(rfkill);
855 }
856
857 static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
858 {
859         struct rfkill *rfkill = to_rfkill(dev);
860         unsigned long flags;
861         unsigned long reasons;
862         u32 state;
863         int error;
864
865         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
866         if (error)
867                 return error;
868         error = add_uevent_var(env, "RFKILL_TYPE=%s",
869                                rfkill_types[rfkill->type]);
870         if (error)
871                 return error;
872         spin_lock_irqsave(&rfkill->lock, flags);
873         state = rfkill->state;
874         reasons = rfkill->hard_block_reasons;
875         spin_unlock_irqrestore(&rfkill->lock, flags);
876         error = add_uevent_var(env, "RFKILL_STATE=%d",
877                                user_state_from_blocked(state));
878         if (error)
879                 return error;
880         return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
881 }
882
883 void rfkill_pause_polling(struct rfkill *rfkill)
884 {
885         BUG_ON(!rfkill);
886
887         if (!rfkill->ops->poll)
888                 return;
889
890         rfkill->polling_paused = true;
891         cancel_delayed_work_sync(&rfkill->poll_work);
892 }
893 EXPORT_SYMBOL(rfkill_pause_polling);
894
895 void rfkill_resume_polling(struct rfkill *rfkill)
896 {
897         BUG_ON(!rfkill);
898
899         if (!rfkill->ops->poll)
900                 return;
901
902         rfkill->polling_paused = false;
903
904         if (rfkill->suspended)
905                 return;
906
907         queue_delayed_work(system_power_efficient_wq,
908                            &rfkill->poll_work, 0);
909 }
910 EXPORT_SYMBOL(rfkill_resume_polling);
911
912 #ifdef CONFIG_PM_SLEEP
913 static int rfkill_suspend(struct device *dev)
914 {
915         struct rfkill *rfkill = to_rfkill(dev);
916
917         rfkill->suspended = true;
918         cancel_delayed_work_sync(&rfkill->poll_work);
919
920         return 0;
921 }
922
923 static int rfkill_resume(struct device *dev)
924 {
925         struct rfkill *rfkill = to_rfkill(dev);
926         bool cur;
927
928         rfkill->suspended = false;
929
930         if (!rfkill->registered)
931                 return 0;
932
933         if (!rfkill->persistent) {
934                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
935                 rfkill_set_block(rfkill, cur);
936         }
937
938         if (rfkill->ops->poll && !rfkill->polling_paused)
939                 queue_delayed_work(system_power_efficient_wq,
940                                    &rfkill->poll_work, 0);
941
942         return 0;
943 }
944
945 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
946 #define RFKILL_PM_OPS (&rfkill_pm_ops)
947 #else
948 #define RFKILL_PM_OPS NULL
949 #endif
950
951 static struct class rfkill_class = {
952         .name           = "rfkill",
953         .dev_release    = rfkill_release,
954         .dev_groups     = rfkill_dev_groups,
955         .dev_uevent     = rfkill_dev_uevent,
956         .pm             = RFKILL_PM_OPS,
957 };
958
959 bool rfkill_blocked(struct rfkill *rfkill)
960 {
961         unsigned long flags;
962         u32 state;
963
964         spin_lock_irqsave(&rfkill->lock, flags);
965         state = rfkill->state;
966         spin_unlock_irqrestore(&rfkill->lock, flags);
967
968         return !!(state & RFKILL_BLOCK_ANY);
969 }
970 EXPORT_SYMBOL(rfkill_blocked);
971
972 bool rfkill_soft_blocked(struct rfkill *rfkill)
973 {
974         unsigned long flags;
975         u32 state;
976
977         spin_lock_irqsave(&rfkill->lock, flags);
978         state = rfkill->state;
979         spin_unlock_irqrestore(&rfkill->lock, flags);
980
981         return !!(state & RFKILL_BLOCK_SW);
982 }
983 EXPORT_SYMBOL(rfkill_soft_blocked);
984
985 struct rfkill * __must_check rfkill_alloc(const char *name,
986                                           struct device *parent,
987                                           const enum rfkill_type type,
988                                           const struct rfkill_ops *ops,
989                                           void *ops_data)
990 {
991         struct rfkill *rfkill;
992         struct device *dev;
993
994         if (WARN_ON(!ops))
995                 return NULL;
996
997         if (WARN_ON(!ops->set_block))
998                 return NULL;
999
1000         if (WARN_ON(!name))
1001                 return NULL;
1002
1003         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1004                 return NULL;
1005
1006         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1007         if (!rfkill)
1008                 return NULL;
1009
1010         spin_lock_init(&rfkill->lock);
1011         INIT_LIST_HEAD(&rfkill->node);
1012         rfkill->type = type;
1013         strcpy(rfkill->name, name);
1014         rfkill->ops = ops;
1015         rfkill->data = ops_data;
1016
1017         dev = &rfkill->dev;
1018         dev->class = &rfkill_class;
1019         dev->parent = parent;
1020         device_initialize(dev);
1021
1022         return rfkill;
1023 }
1024 EXPORT_SYMBOL(rfkill_alloc);
1025
1026 static void rfkill_poll(struct work_struct *work)
1027 {
1028         struct rfkill *rfkill;
1029
1030         rfkill = container_of(work, struct rfkill, poll_work.work);
1031
1032         /*
1033          * Poll hardware state -- driver will use one of the
1034          * rfkill_set{,_hw,_sw}_state functions and use its
1035          * return value to update the current status.
1036          */
1037         rfkill->ops->poll(rfkill, rfkill->data);
1038
1039         queue_delayed_work(system_power_efficient_wq,
1040                 &rfkill->poll_work,
1041                 round_jiffies_relative(POLL_INTERVAL));
1042 }
1043
1044 static void rfkill_uevent_work(struct work_struct *work)
1045 {
1046         struct rfkill *rfkill;
1047
1048         rfkill = container_of(work, struct rfkill, uevent_work);
1049
1050         mutex_lock(&rfkill_global_mutex);
1051         rfkill_event(rfkill);
1052         mutex_unlock(&rfkill_global_mutex);
1053 }
1054
1055 static void rfkill_sync_work(struct work_struct *work)
1056 {
1057         struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
1058
1059         mutex_lock(&rfkill_global_mutex);
1060         rfkill_sync(rfkill);
1061         mutex_unlock(&rfkill_global_mutex);
1062 }
1063
1064 int __must_check rfkill_register(struct rfkill *rfkill)
1065 {
1066         static unsigned long rfkill_no;
1067         struct device *dev;
1068         int error;
1069
1070         if (!rfkill)
1071                 return -EINVAL;
1072
1073         dev = &rfkill->dev;
1074
1075         mutex_lock(&rfkill_global_mutex);
1076
1077         if (rfkill->registered) {
1078                 error = -EALREADY;
1079                 goto unlock;
1080         }
1081
1082         rfkill->idx = rfkill_no;
1083         dev_set_name(dev, "rfkill%lu", rfkill_no);
1084         rfkill_no++;
1085
1086         list_add_tail(&rfkill->node, &rfkill_list);
1087
1088         error = device_add(dev);
1089         if (error)
1090                 goto remove;
1091
1092         error = rfkill_led_trigger_register(rfkill);
1093         if (error)
1094                 goto devdel;
1095
1096         rfkill->registered = true;
1097
1098         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1099         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1100         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1101
1102         if (rfkill->ops->poll)
1103                 queue_delayed_work(system_power_efficient_wq,
1104                         &rfkill->poll_work,
1105                         round_jiffies_relative(POLL_INTERVAL));
1106
1107         if (!rfkill->persistent || rfkill_epo_lock_active) {
1108                 rfkill->need_sync = true;
1109                 schedule_work(&rfkill->sync_work);
1110         } else {
1111 #ifdef CONFIG_RFKILL_INPUT
1112                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1113
1114                 if (!atomic_read(&rfkill_input_disabled))
1115                         __rfkill_switch_all(rfkill->type, soft_blocked);
1116 #endif
1117         }
1118
1119         rfkill_global_led_trigger_event();
1120         rfkill_send_events(rfkill, RFKILL_OP_ADD);
1121
1122         mutex_unlock(&rfkill_global_mutex);
1123         return 0;
1124
1125  devdel:
1126         device_del(&rfkill->dev);
1127  remove:
1128         list_del_init(&rfkill->node);
1129  unlock:
1130         mutex_unlock(&rfkill_global_mutex);
1131         return error;
1132 }
1133 EXPORT_SYMBOL(rfkill_register);
1134
1135 void rfkill_unregister(struct rfkill *rfkill)
1136 {
1137         BUG_ON(!rfkill);
1138
1139         if (rfkill->ops->poll)
1140                 cancel_delayed_work_sync(&rfkill->poll_work);
1141
1142         cancel_work_sync(&rfkill->uevent_work);
1143         cancel_work_sync(&rfkill->sync_work);
1144
1145         rfkill->registered = false;
1146
1147         device_del(&rfkill->dev);
1148
1149         mutex_lock(&rfkill_global_mutex);
1150         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1151         list_del_init(&rfkill->node);
1152         rfkill_global_led_trigger_event();
1153         mutex_unlock(&rfkill_global_mutex);
1154
1155         rfkill_led_trigger_unregister(rfkill);
1156 }
1157 EXPORT_SYMBOL(rfkill_unregister);
1158
1159 void rfkill_destroy(struct rfkill *rfkill)
1160 {
1161         if (rfkill)
1162                 put_device(&rfkill->dev);
1163 }
1164 EXPORT_SYMBOL(rfkill_destroy);
1165
1166 static int rfkill_fop_open(struct inode *inode, struct file *file)
1167 {
1168         struct rfkill_data *data;
1169         struct rfkill *rfkill;
1170         struct rfkill_int_event *ev, *tmp;
1171
1172         data = kzalloc(sizeof(*data), GFP_KERNEL);
1173         if (!data)
1174                 return -ENOMEM;
1175
1176         data->max_size = RFKILL_EVENT_SIZE_V1;
1177
1178         INIT_LIST_HEAD(&data->events);
1179         mutex_init(&data->mtx);
1180         init_waitqueue_head(&data->read_wait);
1181
1182         mutex_lock(&rfkill_global_mutex);
1183         /*
1184          * start getting events from elsewhere but hold mtx to get
1185          * startup events added first
1186          */
1187
1188         list_for_each_entry(rfkill, &rfkill_list, node) {
1189                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1190                 if (!ev)
1191                         goto free;
1192                 rfkill_sync(rfkill);
1193                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1194                 mutex_lock(&data->mtx);
1195                 list_add_tail(&ev->list, &data->events);
1196                 mutex_unlock(&data->mtx);
1197         }
1198         list_add(&data->list, &rfkill_fds);
1199         mutex_unlock(&rfkill_global_mutex);
1200
1201         file->private_data = data;
1202
1203         return stream_open(inode, file);
1204
1205  free:
1206         mutex_unlock(&rfkill_global_mutex);
1207         mutex_destroy(&data->mtx);
1208         list_for_each_entry_safe(ev, tmp, &data->events, list)
1209                 kfree(ev);
1210         kfree(data);
1211         return -ENOMEM;
1212 }
1213
1214 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1215 {
1216         struct rfkill_data *data = file->private_data;
1217         __poll_t res = EPOLLOUT | EPOLLWRNORM;
1218
1219         poll_wait(file, &data->read_wait, wait);
1220
1221         mutex_lock(&data->mtx);
1222         if (!list_empty(&data->events))
1223                 res = EPOLLIN | EPOLLRDNORM;
1224         mutex_unlock(&data->mtx);
1225
1226         return res;
1227 }
1228
1229 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1230                                size_t count, loff_t *pos)
1231 {
1232         struct rfkill_data *data = file->private_data;
1233         struct rfkill_int_event *ev;
1234         unsigned long sz;
1235         int ret;
1236
1237         mutex_lock(&data->mtx);
1238
1239         while (list_empty(&data->events)) {
1240                 if (file->f_flags & O_NONBLOCK) {
1241                         ret = -EAGAIN;
1242                         goto out;
1243                 }
1244                 mutex_unlock(&data->mtx);
1245                 /* since we re-check and it just compares pointers,
1246                  * using !list_empty() without locking isn't a problem
1247                  */
1248                 ret = wait_event_interruptible(data->read_wait,
1249                                                !list_empty(&data->events));
1250                 mutex_lock(&data->mtx);
1251
1252                 if (ret)
1253                         goto out;
1254         }
1255
1256         ev = list_first_entry(&data->events, struct rfkill_int_event,
1257                                 list);
1258
1259         sz = min_t(unsigned long, sizeof(ev->ev), count);
1260         sz = min_t(unsigned long, sz, data->max_size);
1261         ret = sz;
1262         if (copy_to_user(buf, &ev->ev, sz))
1263                 ret = -EFAULT;
1264
1265         list_del(&ev->list);
1266         kfree(ev);
1267  out:
1268         mutex_unlock(&data->mtx);
1269         return ret;
1270 }
1271
1272 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1273                                 size_t count, loff_t *pos)
1274 {
1275         struct rfkill_data *data = file->private_data;
1276         struct rfkill *rfkill;
1277         struct rfkill_event_ext ev;
1278         int ret;
1279
1280         /* we don't need the 'hard' variable but accept it */
1281         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1282                 return -EINVAL;
1283
1284         /*
1285          * Copy as much data as we can accept into our 'ev' buffer,
1286          * but tell userspace how much we've copied so it can determine
1287          * our API version even in a write() call, if it cares.
1288          */
1289         count = min(count, sizeof(ev));
1290         count = min_t(size_t, count, data->max_size);
1291         if (copy_from_user(&ev, buf, count))
1292                 return -EFAULT;
1293
1294         if (ev.type >= NUM_RFKILL_TYPES)
1295                 return -EINVAL;
1296
1297         mutex_lock(&rfkill_global_mutex);
1298
1299         switch (ev.op) {
1300         case RFKILL_OP_CHANGE_ALL:
1301                 rfkill_update_global_state(ev.type, ev.soft);
1302                 list_for_each_entry(rfkill, &rfkill_list, node)
1303                         if (rfkill->type == ev.type ||
1304                             ev.type == RFKILL_TYPE_ALL)
1305                                 rfkill_set_block(rfkill, ev.soft);
1306                 ret = 0;
1307                 break;
1308         case RFKILL_OP_CHANGE:
1309                 list_for_each_entry(rfkill, &rfkill_list, node)
1310                         if (rfkill->idx == ev.idx &&
1311                             (rfkill->type == ev.type ||
1312                              ev.type == RFKILL_TYPE_ALL))
1313                                 rfkill_set_block(rfkill, ev.soft);
1314                 ret = 0;
1315                 break;
1316         default:
1317                 ret = -EINVAL;
1318                 break;
1319         }
1320
1321         mutex_unlock(&rfkill_global_mutex);
1322
1323         return ret ?: count;
1324 }
1325
1326 static int rfkill_fop_release(struct inode *inode, struct file *file)
1327 {
1328         struct rfkill_data *data = file->private_data;
1329         struct rfkill_int_event *ev, *tmp;
1330
1331         mutex_lock(&rfkill_global_mutex);
1332         list_del(&data->list);
1333         mutex_unlock(&rfkill_global_mutex);
1334
1335         mutex_destroy(&data->mtx);
1336         list_for_each_entry_safe(ev, tmp, &data->events, list)
1337                 kfree(ev);
1338
1339 #ifdef CONFIG_RFKILL_INPUT
1340         if (data->input_handler)
1341                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1342                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1343 #endif
1344
1345         kfree(data);
1346
1347         return 0;
1348 }
1349
1350 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1351                              unsigned long arg)
1352 {
1353         struct rfkill_data *data = file->private_data;
1354         int ret = -ENOTTY;
1355         u32 size;
1356
1357         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1358                 return -ENOTTY;
1359
1360         mutex_lock(&data->mtx);
1361         switch (_IOC_NR(cmd)) {
1362 #ifdef CONFIG_RFKILL_INPUT
1363         case RFKILL_IOC_NOINPUT:
1364                 if (!data->input_handler) {
1365                         if (atomic_inc_return(&rfkill_input_disabled) == 1)
1366                                 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1367                         data->input_handler = true;
1368                 }
1369                 ret = 0;
1370                 break;
1371 #endif
1372         case RFKILL_IOC_MAX_SIZE:
1373                 if (get_user(size, (__u32 __user *)arg)) {
1374                         ret = -EFAULT;
1375                         break;
1376                 }
1377                 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1378                         ret = -EINVAL;
1379                         break;
1380                 }
1381                 data->max_size = size;
1382                 ret = 0;
1383                 break;
1384         default:
1385                 break;
1386         }
1387         mutex_unlock(&data->mtx);
1388
1389         return ret;
1390 }
1391
1392 static const struct file_operations rfkill_fops = {
1393         .owner          = THIS_MODULE,
1394         .open           = rfkill_fop_open,
1395         .read           = rfkill_fop_read,
1396         .write          = rfkill_fop_write,
1397         .poll           = rfkill_fop_poll,
1398         .release        = rfkill_fop_release,
1399         .unlocked_ioctl = rfkill_fop_ioctl,
1400         .compat_ioctl   = compat_ptr_ioctl,
1401         .llseek         = no_llseek,
1402 };
1403
1404 #define RFKILL_NAME "rfkill"
1405
1406 static struct miscdevice rfkill_miscdev = {
1407         .fops   = &rfkill_fops,
1408         .name   = RFKILL_NAME,
1409         .minor  = RFKILL_MINOR,
1410 };
1411
1412 static int __init rfkill_init(void)
1413 {
1414         int error;
1415
1416         rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1417
1418         error = class_register(&rfkill_class);
1419         if (error)
1420                 goto error_class;
1421
1422         error = misc_register(&rfkill_miscdev);
1423         if (error)
1424                 goto error_misc;
1425
1426         error = rfkill_global_led_trigger_register();
1427         if (error)
1428                 goto error_led_trigger;
1429
1430 #ifdef CONFIG_RFKILL_INPUT
1431         error = rfkill_handler_init();
1432         if (error)
1433                 goto error_input;
1434 #endif
1435
1436         return 0;
1437
1438 #ifdef CONFIG_RFKILL_INPUT
1439 error_input:
1440         rfkill_global_led_trigger_unregister();
1441 #endif
1442 error_led_trigger:
1443         misc_deregister(&rfkill_miscdev);
1444 error_misc:
1445         class_unregister(&rfkill_class);
1446 error_class:
1447         return error;
1448 }
1449 subsys_initcall(rfkill_init);
1450
1451 static void __exit rfkill_exit(void)
1452 {
1453 #ifdef CONFIG_RFKILL_INPUT
1454         rfkill_handler_exit();
1455 #endif
1456         rfkill_global_led_trigger_unregister();
1457         misc_deregister(&rfkill_miscdev);
1458         class_unregister(&rfkill_class);
1459 }
1460 module_exit(rfkill_exit);
1461
1462 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1463 MODULE_ALIAS("devname:" RFKILL_NAME);