vfs: do bulk POLL* -> EPOLL* replacement
[linux-2.6-microblaze.git] / net / rfkill / core.c
1 /*
2  * Copyright (C) 2006 - 2007 Ivo van Doorn
3  * Copyright (C) 2007 Dmitry Torokhov
4  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/workqueue.h>
24 #include <linux/capability.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/rfkill.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/slab.h>
36
37 #include "rfkill.h"
38
39 #define POLL_INTERVAL           (5 * HZ)
40
41 #define RFKILL_BLOCK_HW         BIT(0)
42 #define RFKILL_BLOCK_SW         BIT(1)
43 #define RFKILL_BLOCK_SW_PREV    BIT(2)
44 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
45                                  RFKILL_BLOCK_SW |\
46                                  RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49 struct rfkill {
50         spinlock_t              lock;
51
52         enum rfkill_type        type;
53
54         unsigned long           state;
55
56         u32                     idx;
57
58         bool                    registered;
59         bool                    persistent;
60         bool                    polling_paused;
61         bool                    suspended;
62
63         const struct rfkill_ops *ops;
64         void                    *data;
65
66 #ifdef CONFIG_RFKILL_LEDS
67         struct led_trigger      led_trigger;
68         const char              *ledtrigname;
69 #endif
70
71         struct device           dev;
72         struct list_head        node;
73
74         struct delayed_work     poll_work;
75         struct work_struct      uevent_work;
76         struct work_struct      sync_work;
77         char                    name[];
78 };
79 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
80
81 struct rfkill_int_event {
82         struct list_head        list;
83         struct rfkill_event     ev;
84 };
85
86 struct rfkill_data {
87         struct list_head        list;
88         struct list_head        events;
89         struct mutex            mtx;
90         wait_queue_head_t       read_wait;
91         bool                    input_handler;
92 };
93
94
95 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97 MODULE_DESCRIPTION("RF switch support");
98 MODULE_LICENSE("GPL");
99
100
101 /*
102  * The locking here should be made much smarter, we currently have
103  * a bit of a stupid situation because drivers might want to register
104  * the rfkill struct under their own lock, and take this lock during
105  * rfkill method calls -- which will cause an AB-BA deadlock situation.
106  *
107  * To fix that, we need to rework this code here to be mostly lock-free
108  * and only use the mutex for list manipulations, not to protect the
109  * various other global variables. Then we can avoid holding the mutex
110  * around driver operations, and all is happy.
111  */
112 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
113 static DEFINE_MUTEX(rfkill_global_mutex);
114 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
115
116 static unsigned int rfkill_default_state = 1;
117 module_param_named(default_state, rfkill_default_state, uint, 0444);
118 MODULE_PARM_DESC(default_state,
119                  "Default initial state for all radio types, 0 = radio off");
120
121 static struct {
122         bool cur, sav;
123 } rfkill_global_states[NUM_RFKILL_TYPES];
124
125 static bool rfkill_epo_lock_active;
126
127
128 #ifdef CONFIG_RFKILL_LEDS
129 static void rfkill_led_trigger_event(struct rfkill *rfkill)
130 {
131         struct led_trigger *trigger;
132
133         if (!rfkill->registered)
134                 return;
135
136         trigger = &rfkill->led_trigger;
137
138         if (rfkill->state & RFKILL_BLOCK_ANY)
139                 led_trigger_event(trigger, LED_OFF);
140         else
141                 led_trigger_event(trigger, LED_FULL);
142 }
143
144 static void rfkill_led_trigger_activate(struct led_classdev *led)
145 {
146         struct rfkill *rfkill;
147
148         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150         rfkill_led_trigger_event(rfkill);
151 }
152
153 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154 {
155         return rfkill->led_trigger.name;
156 }
157 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160 {
161         BUG_ON(!rfkill);
162
163         rfkill->ledtrigname = name;
164 }
165 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167 static int rfkill_led_trigger_register(struct rfkill *rfkill)
168 {
169         rfkill->led_trigger.name = rfkill->ledtrigname
170                                         ? : dev_name(&rfkill->dev);
171         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172         return led_trigger_register(&rfkill->led_trigger);
173 }
174
175 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176 {
177         led_trigger_unregister(&rfkill->led_trigger);
178 }
179
180 static struct led_trigger rfkill_any_led_trigger;
181 static struct work_struct rfkill_any_work;
182
183 static void rfkill_any_led_trigger_worker(struct work_struct *work)
184 {
185         enum led_brightness brightness = LED_OFF;
186         struct rfkill *rfkill;
187
188         mutex_lock(&rfkill_global_mutex);
189         list_for_each_entry(rfkill, &rfkill_list, node) {
190                 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
191                         brightness = LED_FULL;
192                         break;
193                 }
194         }
195         mutex_unlock(&rfkill_global_mutex);
196
197         led_trigger_event(&rfkill_any_led_trigger, brightness);
198 }
199
200 static void rfkill_any_led_trigger_event(void)
201 {
202         schedule_work(&rfkill_any_work);
203 }
204
205 static void rfkill_any_led_trigger_activate(struct led_classdev *led_cdev)
206 {
207         rfkill_any_led_trigger_event();
208 }
209
210 static int rfkill_any_led_trigger_register(void)
211 {
212         INIT_WORK(&rfkill_any_work, rfkill_any_led_trigger_worker);
213         rfkill_any_led_trigger.name = "rfkill-any";
214         rfkill_any_led_trigger.activate = rfkill_any_led_trigger_activate;
215         return led_trigger_register(&rfkill_any_led_trigger);
216 }
217
218 static void rfkill_any_led_trigger_unregister(void)
219 {
220         led_trigger_unregister(&rfkill_any_led_trigger);
221         cancel_work_sync(&rfkill_any_work);
222 }
223 #else
224 static void rfkill_led_trigger_event(struct rfkill *rfkill)
225 {
226 }
227
228 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
229 {
230         return 0;
231 }
232
233 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
234 {
235 }
236
237 static void rfkill_any_led_trigger_event(void)
238 {
239 }
240
241 static int rfkill_any_led_trigger_register(void)
242 {
243         return 0;
244 }
245
246 static void rfkill_any_led_trigger_unregister(void)
247 {
248 }
249 #endif /* CONFIG_RFKILL_LEDS */
250
251 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
252                               enum rfkill_operation op)
253 {
254         unsigned long flags;
255
256         ev->idx = rfkill->idx;
257         ev->type = rfkill->type;
258         ev->op = op;
259
260         spin_lock_irqsave(&rfkill->lock, flags);
261         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
262         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
263                                         RFKILL_BLOCK_SW_PREV));
264         spin_unlock_irqrestore(&rfkill->lock, flags);
265 }
266
267 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
268 {
269         struct rfkill_data *data;
270         struct rfkill_int_event *ev;
271
272         list_for_each_entry(data, &rfkill_fds, list) {
273                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
274                 if (!ev)
275                         continue;
276                 rfkill_fill_event(&ev->ev, rfkill, op);
277                 mutex_lock(&data->mtx);
278                 list_add_tail(&ev->list, &data->events);
279                 mutex_unlock(&data->mtx);
280                 wake_up_interruptible(&data->read_wait);
281         }
282 }
283
284 static void rfkill_event(struct rfkill *rfkill)
285 {
286         if (!rfkill->registered)
287                 return;
288
289         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
290
291         /* also send event to /dev/rfkill */
292         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
293 }
294
295 /**
296  * rfkill_set_block - wrapper for set_block method
297  *
298  * @rfkill: the rfkill struct to use
299  * @blocked: the new software state
300  *
301  * Calls the set_block method (when applicable) and handles notifications
302  * etc. as well.
303  */
304 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
305 {
306         unsigned long flags;
307         bool prev, curr;
308         int err;
309
310         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
311                 return;
312
313         /*
314          * Some platforms (...!) generate input events which affect the
315          * _hard_ kill state -- whenever something tries to change the
316          * current software state query the hardware state too.
317          */
318         if (rfkill->ops->query)
319                 rfkill->ops->query(rfkill, rfkill->data);
320
321         spin_lock_irqsave(&rfkill->lock, flags);
322         prev = rfkill->state & RFKILL_BLOCK_SW;
323
324         if (prev)
325                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
326         else
327                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
328
329         if (blocked)
330                 rfkill->state |= RFKILL_BLOCK_SW;
331         else
332                 rfkill->state &= ~RFKILL_BLOCK_SW;
333
334         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
335         spin_unlock_irqrestore(&rfkill->lock, flags);
336
337         err = rfkill->ops->set_block(rfkill->data, blocked);
338
339         spin_lock_irqsave(&rfkill->lock, flags);
340         if (err) {
341                 /*
342                  * Failed -- reset status to _PREV, which may be different
343                  * from what we have set _PREV to earlier in this function
344                  * if rfkill_set_sw_state was invoked.
345                  */
346                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
347                         rfkill->state |= RFKILL_BLOCK_SW;
348                 else
349                         rfkill->state &= ~RFKILL_BLOCK_SW;
350         }
351         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
352         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
353         curr = rfkill->state & RFKILL_BLOCK_SW;
354         spin_unlock_irqrestore(&rfkill->lock, flags);
355
356         rfkill_led_trigger_event(rfkill);
357         rfkill_any_led_trigger_event();
358
359         if (prev != curr)
360                 rfkill_event(rfkill);
361 }
362
363 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
364 {
365         int i;
366
367         if (type != RFKILL_TYPE_ALL) {
368                 rfkill_global_states[type].cur = blocked;
369                 return;
370         }
371
372         for (i = 0; i < NUM_RFKILL_TYPES; i++)
373                 rfkill_global_states[i].cur = blocked;
374 }
375
376 #ifdef CONFIG_RFKILL_INPUT
377 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
378
379 /**
380  * __rfkill_switch_all - Toggle state of all switches of given type
381  * @type: type of interfaces to be affected
382  * @blocked: the new state
383  *
384  * This function sets the state of all switches of given type,
385  * unless a specific switch is suspended.
386  *
387  * Caller must have acquired rfkill_global_mutex.
388  */
389 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
390 {
391         struct rfkill *rfkill;
392
393         rfkill_update_global_state(type, blocked);
394         list_for_each_entry(rfkill, &rfkill_list, node) {
395                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
396                         continue;
397
398                 rfkill_set_block(rfkill, blocked);
399         }
400 }
401
402 /**
403  * rfkill_switch_all - Toggle state of all switches of given type
404  * @type: type of interfaces to be affected
405  * @blocked: the new state
406  *
407  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
408  * Please refer to __rfkill_switch_all() for details.
409  *
410  * Does nothing if the EPO lock is active.
411  */
412 void rfkill_switch_all(enum rfkill_type type, bool blocked)
413 {
414         if (atomic_read(&rfkill_input_disabled))
415                 return;
416
417         mutex_lock(&rfkill_global_mutex);
418
419         if (!rfkill_epo_lock_active)
420                 __rfkill_switch_all(type, blocked);
421
422         mutex_unlock(&rfkill_global_mutex);
423 }
424
425 /**
426  * rfkill_epo - emergency power off all transmitters
427  *
428  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
429  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
430  *
431  * The global state before the EPO is saved and can be restored later
432  * using rfkill_restore_states().
433  */
434 void rfkill_epo(void)
435 {
436         struct rfkill *rfkill;
437         int i;
438
439         if (atomic_read(&rfkill_input_disabled))
440                 return;
441
442         mutex_lock(&rfkill_global_mutex);
443
444         rfkill_epo_lock_active = true;
445         list_for_each_entry(rfkill, &rfkill_list, node)
446                 rfkill_set_block(rfkill, true);
447
448         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
449                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
450                 rfkill_global_states[i].cur = true;
451         }
452
453         mutex_unlock(&rfkill_global_mutex);
454 }
455
456 /**
457  * rfkill_restore_states - restore global states
458  *
459  * Restore (and sync switches to) the global state from the
460  * states in rfkill_default_states.  This can undo the effects of
461  * a call to rfkill_epo().
462  */
463 void rfkill_restore_states(void)
464 {
465         int i;
466
467         if (atomic_read(&rfkill_input_disabled))
468                 return;
469
470         mutex_lock(&rfkill_global_mutex);
471
472         rfkill_epo_lock_active = false;
473         for (i = 0; i < NUM_RFKILL_TYPES; i++)
474                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
475         mutex_unlock(&rfkill_global_mutex);
476 }
477
478 /**
479  * rfkill_remove_epo_lock - unlock state changes
480  *
481  * Used by rfkill-input manually unlock state changes, when
482  * the EPO switch is deactivated.
483  */
484 void rfkill_remove_epo_lock(void)
485 {
486         if (atomic_read(&rfkill_input_disabled))
487                 return;
488
489         mutex_lock(&rfkill_global_mutex);
490         rfkill_epo_lock_active = false;
491         mutex_unlock(&rfkill_global_mutex);
492 }
493
494 /**
495  * rfkill_is_epo_lock_active - returns true EPO is active
496  *
497  * Returns 0 (false) if there is NOT an active EPO contidion,
498  * and 1 (true) if there is an active EPO contition, which
499  * locks all radios in one of the BLOCKED states.
500  *
501  * Can be called in atomic context.
502  */
503 bool rfkill_is_epo_lock_active(void)
504 {
505         return rfkill_epo_lock_active;
506 }
507
508 /**
509  * rfkill_get_global_sw_state - returns global state for a type
510  * @type: the type to get the global state of
511  *
512  * Returns the current global state for a given wireless
513  * device type.
514  */
515 bool rfkill_get_global_sw_state(const enum rfkill_type type)
516 {
517         return rfkill_global_states[type].cur;
518 }
519 #endif
520
521 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
522 {
523         unsigned long flags;
524         bool ret, prev;
525
526         BUG_ON(!rfkill);
527
528         spin_lock_irqsave(&rfkill->lock, flags);
529         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
530         if (blocked)
531                 rfkill->state |= RFKILL_BLOCK_HW;
532         else
533                 rfkill->state &= ~RFKILL_BLOCK_HW;
534         ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
535         spin_unlock_irqrestore(&rfkill->lock, flags);
536
537         rfkill_led_trigger_event(rfkill);
538         rfkill_any_led_trigger_event();
539
540         if (rfkill->registered && prev != blocked)
541                 schedule_work(&rfkill->uevent_work);
542
543         return ret;
544 }
545 EXPORT_SYMBOL(rfkill_set_hw_state);
546
547 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
548 {
549         u32 bit = RFKILL_BLOCK_SW;
550
551         /* if in a ops->set_block right now, use other bit */
552         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
553                 bit = RFKILL_BLOCK_SW_PREV;
554
555         if (blocked)
556                 rfkill->state |= bit;
557         else
558                 rfkill->state &= ~bit;
559 }
560
561 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
562 {
563         unsigned long flags;
564         bool prev, hwblock;
565
566         BUG_ON(!rfkill);
567
568         spin_lock_irqsave(&rfkill->lock, flags);
569         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
570         __rfkill_set_sw_state(rfkill, blocked);
571         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
572         blocked = blocked || hwblock;
573         spin_unlock_irqrestore(&rfkill->lock, flags);
574
575         if (!rfkill->registered)
576                 return blocked;
577
578         if (prev != blocked && !hwblock)
579                 schedule_work(&rfkill->uevent_work);
580
581         rfkill_led_trigger_event(rfkill);
582         rfkill_any_led_trigger_event();
583
584         return blocked;
585 }
586 EXPORT_SYMBOL(rfkill_set_sw_state);
587
588 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
589 {
590         unsigned long flags;
591
592         BUG_ON(!rfkill);
593         BUG_ON(rfkill->registered);
594
595         spin_lock_irqsave(&rfkill->lock, flags);
596         __rfkill_set_sw_state(rfkill, blocked);
597         rfkill->persistent = true;
598         spin_unlock_irqrestore(&rfkill->lock, flags);
599 }
600 EXPORT_SYMBOL(rfkill_init_sw_state);
601
602 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
603 {
604         unsigned long flags;
605         bool swprev, hwprev;
606
607         BUG_ON(!rfkill);
608
609         spin_lock_irqsave(&rfkill->lock, flags);
610
611         /*
612          * No need to care about prev/setblock ... this is for uevent only
613          * and that will get triggered by rfkill_set_block anyway.
614          */
615         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
616         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
617         __rfkill_set_sw_state(rfkill, sw);
618         if (hw)
619                 rfkill->state |= RFKILL_BLOCK_HW;
620         else
621                 rfkill->state &= ~RFKILL_BLOCK_HW;
622
623         spin_unlock_irqrestore(&rfkill->lock, flags);
624
625         if (!rfkill->registered) {
626                 rfkill->persistent = true;
627         } else {
628                 if (swprev != sw || hwprev != hw)
629                         schedule_work(&rfkill->uevent_work);
630
631                 rfkill_led_trigger_event(rfkill);
632                 rfkill_any_led_trigger_event();
633         }
634 }
635 EXPORT_SYMBOL(rfkill_set_states);
636
637 static const char * const rfkill_types[] = {
638         NULL, /* RFKILL_TYPE_ALL */
639         "wlan",
640         "bluetooth",
641         "ultrawideband",
642         "wimax",
643         "wwan",
644         "gps",
645         "fm",
646         "nfc",
647 };
648
649 enum rfkill_type rfkill_find_type(const char *name)
650 {
651         int i;
652
653         BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
654
655         if (!name)
656                 return RFKILL_TYPE_ALL;
657
658         for (i = 1; i < NUM_RFKILL_TYPES; i++)
659                 if (!strcmp(name, rfkill_types[i]))
660                         return i;
661         return RFKILL_TYPE_ALL;
662 }
663 EXPORT_SYMBOL(rfkill_find_type);
664
665 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
666                          char *buf)
667 {
668         struct rfkill *rfkill = to_rfkill(dev);
669
670         return sprintf(buf, "%s\n", rfkill->name);
671 }
672 static DEVICE_ATTR_RO(name);
673
674 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
675                          char *buf)
676 {
677         struct rfkill *rfkill = to_rfkill(dev);
678
679         return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
680 }
681 static DEVICE_ATTR_RO(type);
682
683 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
684                           char *buf)
685 {
686         struct rfkill *rfkill = to_rfkill(dev);
687
688         return sprintf(buf, "%d\n", rfkill->idx);
689 }
690 static DEVICE_ATTR_RO(index);
691
692 static ssize_t persistent_show(struct device *dev,
693                                struct device_attribute *attr, char *buf)
694 {
695         struct rfkill *rfkill = to_rfkill(dev);
696
697         return sprintf(buf, "%d\n", rfkill->persistent);
698 }
699 static DEVICE_ATTR_RO(persistent);
700
701 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
702                          char *buf)
703 {
704         struct rfkill *rfkill = to_rfkill(dev);
705
706         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
707 }
708 static DEVICE_ATTR_RO(hard);
709
710 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
711                          char *buf)
712 {
713         struct rfkill *rfkill = to_rfkill(dev);
714
715         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
716 }
717
718 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
719                           const char *buf, size_t count)
720 {
721         struct rfkill *rfkill = to_rfkill(dev);
722         unsigned long state;
723         int err;
724
725         if (!capable(CAP_NET_ADMIN))
726                 return -EPERM;
727
728         err = kstrtoul(buf, 0, &state);
729         if (err)
730                 return err;
731
732         if (state > 1 )
733                 return -EINVAL;
734
735         mutex_lock(&rfkill_global_mutex);
736         rfkill_set_block(rfkill, state);
737         mutex_unlock(&rfkill_global_mutex);
738
739         return count;
740 }
741 static DEVICE_ATTR_RW(soft);
742
743 static u8 user_state_from_blocked(unsigned long state)
744 {
745         if (state & RFKILL_BLOCK_HW)
746                 return RFKILL_USER_STATE_HARD_BLOCKED;
747         if (state & RFKILL_BLOCK_SW)
748                 return RFKILL_USER_STATE_SOFT_BLOCKED;
749
750         return RFKILL_USER_STATE_UNBLOCKED;
751 }
752
753 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
754                           char *buf)
755 {
756         struct rfkill *rfkill = to_rfkill(dev);
757
758         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
759 }
760
761 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
762                            const char *buf, size_t count)
763 {
764         struct rfkill *rfkill = to_rfkill(dev);
765         unsigned long state;
766         int err;
767
768         if (!capable(CAP_NET_ADMIN))
769                 return -EPERM;
770
771         err = kstrtoul(buf, 0, &state);
772         if (err)
773                 return err;
774
775         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
776             state != RFKILL_USER_STATE_UNBLOCKED)
777                 return -EINVAL;
778
779         mutex_lock(&rfkill_global_mutex);
780         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
781         mutex_unlock(&rfkill_global_mutex);
782
783         return count;
784 }
785 static DEVICE_ATTR_RW(state);
786
787 static struct attribute *rfkill_dev_attrs[] = {
788         &dev_attr_name.attr,
789         &dev_attr_type.attr,
790         &dev_attr_index.attr,
791         &dev_attr_persistent.attr,
792         &dev_attr_state.attr,
793         &dev_attr_soft.attr,
794         &dev_attr_hard.attr,
795         NULL,
796 };
797 ATTRIBUTE_GROUPS(rfkill_dev);
798
799 static void rfkill_release(struct device *dev)
800 {
801         struct rfkill *rfkill = to_rfkill(dev);
802
803         kfree(rfkill);
804 }
805
806 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
807 {
808         struct rfkill *rfkill = to_rfkill(dev);
809         unsigned long flags;
810         u32 state;
811         int error;
812
813         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
814         if (error)
815                 return error;
816         error = add_uevent_var(env, "RFKILL_TYPE=%s",
817                                rfkill_types[rfkill->type]);
818         if (error)
819                 return error;
820         spin_lock_irqsave(&rfkill->lock, flags);
821         state = rfkill->state;
822         spin_unlock_irqrestore(&rfkill->lock, flags);
823         error = add_uevent_var(env, "RFKILL_STATE=%d",
824                                user_state_from_blocked(state));
825         return error;
826 }
827
828 void rfkill_pause_polling(struct rfkill *rfkill)
829 {
830         BUG_ON(!rfkill);
831
832         if (!rfkill->ops->poll)
833                 return;
834
835         rfkill->polling_paused = true;
836         cancel_delayed_work_sync(&rfkill->poll_work);
837 }
838 EXPORT_SYMBOL(rfkill_pause_polling);
839
840 void rfkill_resume_polling(struct rfkill *rfkill)
841 {
842         BUG_ON(!rfkill);
843
844         if (!rfkill->ops->poll)
845                 return;
846
847         rfkill->polling_paused = false;
848
849         if (rfkill->suspended)
850                 return;
851
852         queue_delayed_work(system_power_efficient_wq,
853                            &rfkill->poll_work, 0);
854 }
855 EXPORT_SYMBOL(rfkill_resume_polling);
856
857 #ifdef CONFIG_PM_SLEEP
858 static int rfkill_suspend(struct device *dev)
859 {
860         struct rfkill *rfkill = to_rfkill(dev);
861
862         rfkill->suspended = true;
863         cancel_delayed_work_sync(&rfkill->poll_work);
864
865         return 0;
866 }
867
868 static int rfkill_resume(struct device *dev)
869 {
870         struct rfkill *rfkill = to_rfkill(dev);
871         bool cur;
872
873         rfkill->suspended = false;
874
875         if (!rfkill->persistent) {
876                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
877                 rfkill_set_block(rfkill, cur);
878         }
879
880         if (rfkill->ops->poll && !rfkill->polling_paused)
881                 queue_delayed_work(system_power_efficient_wq,
882                                    &rfkill->poll_work, 0);
883
884         return 0;
885 }
886
887 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
888 #define RFKILL_PM_OPS (&rfkill_pm_ops)
889 #else
890 #define RFKILL_PM_OPS NULL
891 #endif
892
893 static struct class rfkill_class = {
894         .name           = "rfkill",
895         .dev_release    = rfkill_release,
896         .dev_groups     = rfkill_dev_groups,
897         .dev_uevent     = rfkill_dev_uevent,
898         .pm             = RFKILL_PM_OPS,
899 };
900
901 bool rfkill_blocked(struct rfkill *rfkill)
902 {
903         unsigned long flags;
904         u32 state;
905
906         spin_lock_irqsave(&rfkill->lock, flags);
907         state = rfkill->state;
908         spin_unlock_irqrestore(&rfkill->lock, flags);
909
910         return !!(state & RFKILL_BLOCK_ANY);
911 }
912 EXPORT_SYMBOL(rfkill_blocked);
913
914
915 struct rfkill * __must_check rfkill_alloc(const char *name,
916                                           struct device *parent,
917                                           const enum rfkill_type type,
918                                           const struct rfkill_ops *ops,
919                                           void *ops_data)
920 {
921         struct rfkill *rfkill;
922         struct device *dev;
923
924         if (WARN_ON(!ops))
925                 return NULL;
926
927         if (WARN_ON(!ops->set_block))
928                 return NULL;
929
930         if (WARN_ON(!name))
931                 return NULL;
932
933         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
934                 return NULL;
935
936         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
937         if (!rfkill)
938                 return NULL;
939
940         spin_lock_init(&rfkill->lock);
941         INIT_LIST_HEAD(&rfkill->node);
942         rfkill->type = type;
943         strcpy(rfkill->name, name);
944         rfkill->ops = ops;
945         rfkill->data = ops_data;
946
947         dev = &rfkill->dev;
948         dev->class = &rfkill_class;
949         dev->parent = parent;
950         device_initialize(dev);
951
952         return rfkill;
953 }
954 EXPORT_SYMBOL(rfkill_alloc);
955
956 static void rfkill_poll(struct work_struct *work)
957 {
958         struct rfkill *rfkill;
959
960         rfkill = container_of(work, struct rfkill, poll_work.work);
961
962         /*
963          * Poll hardware state -- driver will use one of the
964          * rfkill_set{,_hw,_sw}_state functions and use its
965          * return value to update the current status.
966          */
967         rfkill->ops->poll(rfkill, rfkill->data);
968
969         queue_delayed_work(system_power_efficient_wq,
970                 &rfkill->poll_work,
971                 round_jiffies_relative(POLL_INTERVAL));
972 }
973
974 static void rfkill_uevent_work(struct work_struct *work)
975 {
976         struct rfkill *rfkill;
977
978         rfkill = container_of(work, struct rfkill, uevent_work);
979
980         mutex_lock(&rfkill_global_mutex);
981         rfkill_event(rfkill);
982         mutex_unlock(&rfkill_global_mutex);
983 }
984
985 static void rfkill_sync_work(struct work_struct *work)
986 {
987         struct rfkill *rfkill;
988         bool cur;
989
990         rfkill = container_of(work, struct rfkill, sync_work);
991
992         mutex_lock(&rfkill_global_mutex);
993         cur = rfkill_global_states[rfkill->type].cur;
994         rfkill_set_block(rfkill, cur);
995         mutex_unlock(&rfkill_global_mutex);
996 }
997
998 int __must_check rfkill_register(struct rfkill *rfkill)
999 {
1000         static unsigned long rfkill_no;
1001         struct device *dev = &rfkill->dev;
1002         int error;
1003
1004         BUG_ON(!rfkill);
1005
1006         mutex_lock(&rfkill_global_mutex);
1007
1008         if (rfkill->registered) {
1009                 error = -EALREADY;
1010                 goto unlock;
1011         }
1012
1013         rfkill->idx = rfkill_no;
1014         dev_set_name(dev, "rfkill%lu", rfkill_no);
1015         rfkill_no++;
1016
1017         list_add_tail(&rfkill->node, &rfkill_list);
1018
1019         error = device_add(dev);
1020         if (error)
1021                 goto remove;
1022
1023         error = rfkill_led_trigger_register(rfkill);
1024         if (error)
1025                 goto devdel;
1026
1027         rfkill->registered = true;
1028
1029         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1030         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1031         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1032
1033         if (rfkill->ops->poll)
1034                 queue_delayed_work(system_power_efficient_wq,
1035                         &rfkill->poll_work,
1036                         round_jiffies_relative(POLL_INTERVAL));
1037
1038         if (!rfkill->persistent || rfkill_epo_lock_active) {
1039                 schedule_work(&rfkill->sync_work);
1040         } else {
1041 #ifdef CONFIG_RFKILL_INPUT
1042                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1043
1044                 if (!atomic_read(&rfkill_input_disabled))
1045                         __rfkill_switch_all(rfkill->type, soft_blocked);
1046 #endif
1047         }
1048
1049         rfkill_any_led_trigger_event();
1050         rfkill_send_events(rfkill, RFKILL_OP_ADD);
1051
1052         mutex_unlock(&rfkill_global_mutex);
1053         return 0;
1054
1055  devdel:
1056         device_del(&rfkill->dev);
1057  remove:
1058         list_del_init(&rfkill->node);
1059  unlock:
1060         mutex_unlock(&rfkill_global_mutex);
1061         return error;
1062 }
1063 EXPORT_SYMBOL(rfkill_register);
1064
1065 void rfkill_unregister(struct rfkill *rfkill)
1066 {
1067         BUG_ON(!rfkill);
1068
1069         if (rfkill->ops->poll)
1070                 cancel_delayed_work_sync(&rfkill->poll_work);
1071
1072         cancel_work_sync(&rfkill->uevent_work);
1073         cancel_work_sync(&rfkill->sync_work);
1074
1075         rfkill->registered = false;
1076
1077         device_del(&rfkill->dev);
1078
1079         mutex_lock(&rfkill_global_mutex);
1080         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1081         list_del_init(&rfkill->node);
1082         rfkill_any_led_trigger_event();
1083         mutex_unlock(&rfkill_global_mutex);
1084
1085         rfkill_led_trigger_unregister(rfkill);
1086 }
1087 EXPORT_SYMBOL(rfkill_unregister);
1088
1089 void rfkill_destroy(struct rfkill *rfkill)
1090 {
1091         if (rfkill)
1092                 put_device(&rfkill->dev);
1093 }
1094 EXPORT_SYMBOL(rfkill_destroy);
1095
1096 static int rfkill_fop_open(struct inode *inode, struct file *file)
1097 {
1098         struct rfkill_data *data;
1099         struct rfkill *rfkill;
1100         struct rfkill_int_event *ev, *tmp;
1101
1102         data = kzalloc(sizeof(*data), GFP_KERNEL);
1103         if (!data)
1104                 return -ENOMEM;
1105
1106         INIT_LIST_HEAD(&data->events);
1107         mutex_init(&data->mtx);
1108         init_waitqueue_head(&data->read_wait);
1109
1110         mutex_lock(&rfkill_global_mutex);
1111         mutex_lock(&data->mtx);
1112         /*
1113          * start getting events from elsewhere but hold mtx to get
1114          * startup events added first
1115          */
1116
1117         list_for_each_entry(rfkill, &rfkill_list, node) {
1118                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1119                 if (!ev)
1120                         goto free;
1121                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1122                 list_add_tail(&ev->list, &data->events);
1123         }
1124         list_add(&data->list, &rfkill_fds);
1125         mutex_unlock(&data->mtx);
1126         mutex_unlock(&rfkill_global_mutex);
1127
1128         file->private_data = data;
1129
1130         return nonseekable_open(inode, file);
1131
1132  free:
1133         mutex_unlock(&data->mtx);
1134         mutex_unlock(&rfkill_global_mutex);
1135         mutex_destroy(&data->mtx);
1136         list_for_each_entry_safe(ev, tmp, &data->events, list)
1137                 kfree(ev);
1138         kfree(data);
1139         return -ENOMEM;
1140 }
1141
1142 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1143 {
1144         struct rfkill_data *data = file->private_data;
1145         __poll_t res = EPOLLOUT | EPOLLWRNORM;
1146
1147         poll_wait(file, &data->read_wait, wait);
1148
1149         mutex_lock(&data->mtx);
1150         if (!list_empty(&data->events))
1151                 res = EPOLLIN | EPOLLRDNORM;
1152         mutex_unlock(&data->mtx);
1153
1154         return res;
1155 }
1156
1157 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1158                                size_t count, loff_t *pos)
1159 {
1160         struct rfkill_data *data = file->private_data;
1161         struct rfkill_int_event *ev;
1162         unsigned long sz;
1163         int ret;
1164
1165         mutex_lock(&data->mtx);
1166
1167         while (list_empty(&data->events)) {
1168                 if (file->f_flags & O_NONBLOCK) {
1169                         ret = -EAGAIN;
1170                         goto out;
1171                 }
1172                 mutex_unlock(&data->mtx);
1173                 /* since we re-check and it just compares pointers,
1174                  * using !list_empty() without locking isn't a problem
1175                  */
1176                 ret = wait_event_interruptible(data->read_wait,
1177                                                !list_empty(&data->events));
1178                 mutex_lock(&data->mtx);
1179
1180                 if (ret)
1181                         goto out;
1182         }
1183
1184         ev = list_first_entry(&data->events, struct rfkill_int_event,
1185                                 list);
1186
1187         sz = min_t(unsigned long, sizeof(ev->ev), count);
1188         ret = sz;
1189         if (copy_to_user(buf, &ev->ev, sz))
1190                 ret = -EFAULT;
1191
1192         list_del(&ev->list);
1193         kfree(ev);
1194  out:
1195         mutex_unlock(&data->mtx);
1196         return ret;
1197 }
1198
1199 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1200                                 size_t count, loff_t *pos)
1201 {
1202         struct rfkill *rfkill;
1203         struct rfkill_event ev;
1204         int ret;
1205
1206         /* we don't need the 'hard' variable but accept it */
1207         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1208                 return -EINVAL;
1209
1210         /*
1211          * Copy as much data as we can accept into our 'ev' buffer,
1212          * but tell userspace how much we've copied so it can determine
1213          * our API version even in a write() call, if it cares.
1214          */
1215         count = min(count, sizeof(ev));
1216         if (copy_from_user(&ev, buf, count))
1217                 return -EFAULT;
1218
1219         if (ev.type >= NUM_RFKILL_TYPES)
1220                 return -EINVAL;
1221
1222         mutex_lock(&rfkill_global_mutex);
1223
1224         switch (ev.op) {
1225         case RFKILL_OP_CHANGE_ALL:
1226                 rfkill_update_global_state(ev.type, ev.soft);
1227                 list_for_each_entry(rfkill, &rfkill_list, node)
1228                         if (rfkill->type == ev.type ||
1229                             ev.type == RFKILL_TYPE_ALL)
1230                                 rfkill_set_block(rfkill, ev.soft);
1231                 ret = 0;
1232                 break;
1233         case RFKILL_OP_CHANGE:
1234                 list_for_each_entry(rfkill, &rfkill_list, node)
1235                         if (rfkill->idx == ev.idx &&
1236                             (rfkill->type == ev.type ||
1237                              ev.type == RFKILL_TYPE_ALL))
1238                                 rfkill_set_block(rfkill, ev.soft);
1239                 ret = 0;
1240                 break;
1241         default:
1242                 ret = -EINVAL;
1243                 break;
1244         }
1245
1246         mutex_unlock(&rfkill_global_mutex);
1247
1248         return ret ?: count;
1249 }
1250
1251 static int rfkill_fop_release(struct inode *inode, struct file *file)
1252 {
1253         struct rfkill_data *data = file->private_data;
1254         struct rfkill_int_event *ev, *tmp;
1255
1256         mutex_lock(&rfkill_global_mutex);
1257         list_del(&data->list);
1258         mutex_unlock(&rfkill_global_mutex);
1259
1260         mutex_destroy(&data->mtx);
1261         list_for_each_entry_safe(ev, tmp, &data->events, list)
1262                 kfree(ev);
1263
1264 #ifdef CONFIG_RFKILL_INPUT
1265         if (data->input_handler)
1266                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1267                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1268 #endif
1269
1270         kfree(data);
1271
1272         return 0;
1273 }
1274
1275 #ifdef CONFIG_RFKILL_INPUT
1276 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1277                              unsigned long arg)
1278 {
1279         struct rfkill_data *data = file->private_data;
1280
1281         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1282                 return -ENOSYS;
1283
1284         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1285                 return -ENOSYS;
1286
1287         mutex_lock(&data->mtx);
1288
1289         if (!data->input_handler) {
1290                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1291                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1292                 data->input_handler = true;
1293         }
1294
1295         mutex_unlock(&data->mtx);
1296
1297         return 0;
1298 }
1299 #endif
1300
1301 static const struct file_operations rfkill_fops = {
1302         .owner          = THIS_MODULE,
1303         .open           = rfkill_fop_open,
1304         .read           = rfkill_fop_read,
1305         .write          = rfkill_fop_write,
1306         .poll           = rfkill_fop_poll,
1307         .release        = rfkill_fop_release,
1308 #ifdef CONFIG_RFKILL_INPUT
1309         .unlocked_ioctl = rfkill_fop_ioctl,
1310         .compat_ioctl   = rfkill_fop_ioctl,
1311 #endif
1312         .llseek         = no_llseek,
1313 };
1314
1315 static struct miscdevice rfkill_miscdev = {
1316         .name   = "rfkill",
1317         .fops   = &rfkill_fops,
1318         .minor  = MISC_DYNAMIC_MINOR,
1319 };
1320
1321 static int __init rfkill_init(void)
1322 {
1323         int error;
1324
1325         rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1326
1327         error = class_register(&rfkill_class);
1328         if (error)
1329                 goto error_class;
1330
1331         error = misc_register(&rfkill_miscdev);
1332         if (error)
1333                 goto error_misc;
1334
1335         error = rfkill_any_led_trigger_register();
1336         if (error)
1337                 goto error_led_trigger;
1338
1339 #ifdef CONFIG_RFKILL_INPUT
1340         error = rfkill_handler_init();
1341         if (error)
1342                 goto error_input;
1343 #endif
1344
1345         return 0;
1346
1347 #ifdef CONFIG_RFKILL_INPUT
1348 error_input:
1349         rfkill_any_led_trigger_unregister();
1350 #endif
1351 error_led_trigger:
1352         misc_deregister(&rfkill_miscdev);
1353 error_misc:
1354         class_unregister(&rfkill_class);
1355 error_class:
1356         return error;
1357 }
1358 subsys_initcall(rfkill_init);
1359
1360 static void __exit rfkill_exit(void)
1361 {
1362 #ifdef CONFIG_RFKILL_INPUT
1363         rfkill_handler_exit();
1364 #endif
1365         rfkill_any_led_trigger_unregister();
1366         misc_deregister(&rfkill_miscdev);
1367         class_unregister(&rfkill_class);
1368 }
1369 module_exit(rfkill_exit);