Merge drm/drm-next into drm-intel-gt-next
[linux-2.6-microblaze.git] / net / rds / ib_recv.c
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
46
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 {
49         struct rds_ib_recv_work *recv;
50         u32 i;
51
52         for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53                 struct ib_sge *sge;
54
55                 recv->r_ibinc = NULL;
56                 recv->r_frag = NULL;
57
58                 recv->r_wr.next = NULL;
59                 recv->r_wr.wr_id = i;
60                 recv->r_wr.sg_list = recv->r_sge;
61                 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62
63                 sge = &recv->r_sge[0];
64                 sge->addr = ic->i_recv_hdrs_dma[i];
65                 sge->length = sizeof(struct rds_header);
66                 sge->lkey = ic->i_pd->local_dma_lkey;
67
68                 sge = &recv->r_sge[1];
69                 sge->addr = 0;
70                 sge->length = RDS_FRAG_SIZE;
71                 sge->lkey = ic->i_pd->local_dma_lkey;
72         }
73 }
74
75 /*
76  * The entire 'from' list, including the from element itself, is put on
77  * to the tail of the 'to' list.
78  */
79 static void list_splice_entire_tail(struct list_head *from,
80                                     struct list_head *to)
81 {
82         struct list_head *from_last = from->prev;
83
84         list_splice_tail(from_last, to);
85         list_add_tail(from_last, to);
86 }
87
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 {
90         struct list_head *tmp;
91
92         tmp = xchg(&cache->xfer, NULL);
93         if (tmp) {
94                 if (cache->ready)
95                         list_splice_entire_tail(tmp, cache->ready);
96                 else
97                         cache->ready = tmp;
98         }
99 }
100
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
102 {
103         struct rds_ib_cache_head *head;
104         int cpu;
105
106         cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
107         if (!cache->percpu)
108                return -ENOMEM;
109
110         for_each_possible_cpu(cpu) {
111                 head = per_cpu_ptr(cache->percpu, cpu);
112                 head->first = NULL;
113                 head->count = 0;
114         }
115         cache->xfer = NULL;
116         cache->ready = NULL;
117
118         return 0;
119 }
120
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
122 {
123         int ret;
124
125         ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
126         if (!ret) {
127                 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
128                 if (ret)
129                         free_percpu(ic->i_cache_incs.percpu);
130         }
131
132         return ret;
133 }
134
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136                                           struct list_head *caller_list)
137 {
138         struct rds_ib_cache_head *head;
139         int cpu;
140
141         for_each_possible_cpu(cpu) {
142                 head = per_cpu_ptr(cache->percpu, cpu);
143                 if (head->first) {
144                         list_splice_entire_tail(head->first, caller_list);
145                         head->first = NULL;
146                 }
147         }
148
149         if (cache->ready) {
150                 list_splice_entire_tail(cache->ready, caller_list);
151                 cache->ready = NULL;
152         }
153 }
154
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 {
157         struct rds_ib_incoming *inc;
158         struct rds_ib_incoming *inc_tmp;
159         struct rds_page_frag *frag;
160         struct rds_page_frag *frag_tmp;
161         LIST_HEAD(list);
162
163         rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164         rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165         free_percpu(ic->i_cache_incs.percpu);
166
167         list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168                 list_del(&inc->ii_cache_entry);
169                 WARN_ON(!list_empty(&inc->ii_frags));
170                 kmem_cache_free(rds_ib_incoming_slab, inc);
171                 atomic_dec(&rds_ib_allocation);
172         }
173
174         rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
175         rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
176         free_percpu(ic->i_cache_frags.percpu);
177
178         list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
179                 list_del(&frag->f_cache_entry);
180                 WARN_ON(!list_empty(&frag->f_item));
181                 kmem_cache_free(rds_ib_frag_slab, frag);
182         }
183 }
184
185 /* fwd decl */
186 static void rds_ib_recv_cache_put(struct list_head *new_item,
187                                   struct rds_ib_refill_cache *cache);
188 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
189
190
191 /* Recycle frag and attached recv buffer f_sg */
192 static void rds_ib_frag_free(struct rds_ib_connection *ic,
193                              struct rds_page_frag *frag)
194 {
195         rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
196
197         rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
198         atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
199         rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
200 }
201
202 /* Recycle inc after freeing attached frags */
203 void rds_ib_inc_free(struct rds_incoming *inc)
204 {
205         struct rds_ib_incoming *ibinc;
206         struct rds_page_frag *frag;
207         struct rds_page_frag *pos;
208         struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
209
210         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
211
212         /* Free attached frags */
213         list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
214                 list_del_init(&frag->f_item);
215                 rds_ib_frag_free(ic, frag);
216         }
217         BUG_ON(!list_empty(&ibinc->ii_frags));
218
219         rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
220         rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
221 }
222
223 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
224                                   struct rds_ib_recv_work *recv)
225 {
226         if (recv->r_ibinc) {
227                 rds_inc_put(&recv->r_ibinc->ii_inc);
228                 recv->r_ibinc = NULL;
229         }
230         if (recv->r_frag) {
231                 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
232                 rds_ib_frag_free(ic, recv->r_frag);
233                 recv->r_frag = NULL;
234         }
235 }
236
237 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
238 {
239         u32 i;
240
241         for (i = 0; i < ic->i_recv_ring.w_nr; i++)
242                 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
243 }
244
245 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
246                                                      gfp_t slab_mask)
247 {
248         struct rds_ib_incoming *ibinc;
249         struct list_head *cache_item;
250         int avail_allocs;
251
252         cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
253         if (cache_item) {
254                 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
255         } else {
256                 avail_allocs = atomic_add_unless(&rds_ib_allocation,
257                                                  1, rds_ib_sysctl_max_recv_allocation);
258                 if (!avail_allocs) {
259                         rds_ib_stats_inc(s_ib_rx_alloc_limit);
260                         return NULL;
261                 }
262                 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
263                 if (!ibinc) {
264                         atomic_dec(&rds_ib_allocation);
265                         return NULL;
266                 }
267                 rds_ib_stats_inc(s_ib_rx_total_incs);
268         }
269         INIT_LIST_HEAD(&ibinc->ii_frags);
270         rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
271
272         return ibinc;
273 }
274
275 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
276                                                     gfp_t slab_mask, gfp_t page_mask)
277 {
278         struct rds_page_frag *frag;
279         struct list_head *cache_item;
280         int ret;
281
282         cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
283         if (cache_item) {
284                 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
285                 atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
286                 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
287         } else {
288                 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
289                 if (!frag)
290                         return NULL;
291
292                 sg_init_table(&frag->f_sg, 1);
293                 ret = rds_page_remainder_alloc(&frag->f_sg,
294                                                RDS_FRAG_SIZE, page_mask);
295                 if (ret) {
296                         kmem_cache_free(rds_ib_frag_slab, frag);
297                         return NULL;
298                 }
299                 rds_ib_stats_inc(s_ib_rx_total_frags);
300         }
301
302         INIT_LIST_HEAD(&frag->f_item);
303
304         return frag;
305 }
306
307 static int rds_ib_recv_refill_one(struct rds_connection *conn,
308                                   struct rds_ib_recv_work *recv, gfp_t gfp)
309 {
310         struct rds_ib_connection *ic = conn->c_transport_data;
311         struct ib_sge *sge;
312         int ret = -ENOMEM;
313         gfp_t slab_mask = gfp;
314         gfp_t page_mask = gfp;
315
316         if (gfp & __GFP_DIRECT_RECLAIM) {
317                 slab_mask = GFP_KERNEL;
318                 page_mask = GFP_HIGHUSER;
319         }
320
321         if (!ic->i_cache_incs.ready)
322                 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
323         if (!ic->i_cache_frags.ready)
324                 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
325
326         /*
327          * ibinc was taken from recv if recv contained the start of a message.
328          * recvs that were continuations will still have this allocated.
329          */
330         if (!recv->r_ibinc) {
331                 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
332                 if (!recv->r_ibinc)
333                         goto out;
334         }
335
336         WARN_ON(recv->r_frag); /* leak! */
337         recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
338         if (!recv->r_frag)
339                 goto out;
340
341         ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
342                             1, DMA_FROM_DEVICE);
343         WARN_ON(ret != 1);
344
345         sge = &recv->r_sge[0];
346         sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
347         sge->length = sizeof(struct rds_header);
348
349         sge = &recv->r_sge[1];
350         sge->addr = sg_dma_address(&recv->r_frag->f_sg);
351         sge->length = sg_dma_len(&recv->r_frag->f_sg);
352
353         ret = 0;
354 out:
355         return ret;
356 }
357
358 static int acquire_refill(struct rds_connection *conn)
359 {
360         return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
361 }
362
363 static void release_refill(struct rds_connection *conn)
364 {
365         clear_bit(RDS_RECV_REFILL, &conn->c_flags);
366
367         /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
368          * hot path and finding waiters is very rare.  We don't want to walk
369          * the system-wide hashed waitqueue buckets in the fast path only to
370          * almost never find waiters.
371          */
372         if (waitqueue_active(&conn->c_waitq))
373                 wake_up_all(&conn->c_waitq);
374 }
375
376 /*
377  * This tries to allocate and post unused work requests after making sure that
378  * they have all the allocations they need to queue received fragments into
379  * sockets.
380  */
381 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
382 {
383         struct rds_ib_connection *ic = conn->c_transport_data;
384         struct rds_ib_recv_work *recv;
385         unsigned int posted = 0;
386         int ret = 0;
387         bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
388         bool must_wake = false;
389         u32 pos;
390
391         /* the goal here is to just make sure that someone, somewhere
392          * is posting buffers.  If we can't get the refill lock,
393          * let them do their thing
394          */
395         if (!acquire_refill(conn))
396                 return;
397
398         while ((prefill || rds_conn_up(conn)) &&
399                rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
400                 if (pos >= ic->i_recv_ring.w_nr) {
401                         printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
402                                         pos);
403                         break;
404                 }
405
406                 recv = &ic->i_recvs[pos];
407                 ret = rds_ib_recv_refill_one(conn, recv, gfp);
408                 if (ret) {
409                         must_wake = true;
410                         break;
411                 }
412
413                 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
414                          recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
415                          (long)sg_dma_address(&recv->r_frag->f_sg));
416
417                 /* XXX when can this fail? */
418                 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
419                 if (ret) {
420                         rds_ib_conn_error(conn, "recv post on "
421                                "%pI6c returned %d, disconnecting and "
422                                "reconnecting\n", &conn->c_faddr,
423                                ret);
424                         break;
425                 }
426
427                 posted++;
428
429                 if ((posted > 128 && need_resched()) || posted > 8192) {
430                         must_wake = true;
431                         break;
432                 }
433         }
434
435         /* We're doing flow control - update the window. */
436         if (ic->i_flowctl && posted)
437                 rds_ib_advertise_credits(conn, posted);
438
439         if (ret)
440                 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
441
442         release_refill(conn);
443
444         /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
445          * in this case the ring being low is going to lead to more interrupts
446          * and we can safely let the softirq code take care of it unless the
447          * ring is completely empty.
448          *
449          * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
450          * we might have raced with the softirq code while we had the refill
451          * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
452          * if we should requeue.
453          */
454         if (rds_conn_up(conn) &&
455             (must_wake ||
456             (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
457             rds_ib_ring_empty(&ic->i_recv_ring))) {
458                 queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
459         }
460         if (can_wait)
461                 cond_resched();
462 }
463
464 /*
465  * We want to recycle several types of recv allocations, like incs and frags.
466  * To use this, the *_free() function passes in the ptr to a list_head within
467  * the recyclee, as well as the cache to put it on.
468  *
469  * First, we put the memory on a percpu list. When this reaches a certain size,
470  * We move it to an intermediate non-percpu list in a lockless manner, with some
471  * xchg/compxchg wizardry.
472  *
473  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
474  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
475  * list_empty() will return true with one element is actually present.
476  */
477 static void rds_ib_recv_cache_put(struct list_head *new_item,
478                                  struct rds_ib_refill_cache *cache)
479 {
480         unsigned long flags;
481         struct list_head *old, *chpfirst;
482
483         local_irq_save(flags);
484
485         chpfirst = __this_cpu_read(cache->percpu->first);
486         if (!chpfirst)
487                 INIT_LIST_HEAD(new_item);
488         else /* put on front */
489                 list_add_tail(new_item, chpfirst);
490
491         __this_cpu_write(cache->percpu->first, new_item);
492         __this_cpu_inc(cache->percpu->count);
493
494         if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
495                 goto end;
496
497         /*
498          * Return our per-cpu first list to the cache's xfer by atomically
499          * grabbing the current xfer list, appending it to our per-cpu list,
500          * and then atomically returning that entire list back to the
501          * cache's xfer list as long as it's still empty.
502          */
503         do {
504                 old = xchg(&cache->xfer, NULL);
505                 if (old)
506                         list_splice_entire_tail(old, chpfirst);
507                 old = cmpxchg(&cache->xfer, NULL, chpfirst);
508         } while (old);
509
510
511         __this_cpu_write(cache->percpu->first, NULL);
512         __this_cpu_write(cache->percpu->count, 0);
513 end:
514         local_irq_restore(flags);
515 }
516
517 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
518 {
519         struct list_head *head = cache->ready;
520
521         if (head) {
522                 if (!list_empty(head)) {
523                         cache->ready = head->next;
524                         list_del_init(head);
525                 } else
526                         cache->ready = NULL;
527         }
528
529         return head;
530 }
531
532 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
533 {
534         struct rds_ib_incoming *ibinc;
535         struct rds_page_frag *frag;
536         unsigned long to_copy;
537         unsigned long frag_off = 0;
538         int copied = 0;
539         int ret;
540         u32 len;
541
542         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
543         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
544         len = be32_to_cpu(inc->i_hdr.h_len);
545
546         while (iov_iter_count(to) && copied < len) {
547                 if (frag_off == RDS_FRAG_SIZE) {
548                         frag = list_entry(frag->f_item.next,
549                                           struct rds_page_frag, f_item);
550                         frag_off = 0;
551                 }
552                 to_copy = min_t(unsigned long, iov_iter_count(to),
553                                 RDS_FRAG_SIZE - frag_off);
554                 to_copy = min_t(unsigned long, to_copy, len - copied);
555
556                 /* XXX needs + offset for multiple recvs per page */
557                 rds_stats_add(s_copy_to_user, to_copy);
558                 ret = copy_page_to_iter(sg_page(&frag->f_sg),
559                                         frag->f_sg.offset + frag_off,
560                                         to_copy,
561                                         to);
562                 if (ret != to_copy)
563                         return -EFAULT;
564
565                 frag_off += to_copy;
566                 copied += to_copy;
567         }
568
569         return copied;
570 }
571
572 /* ic starts out kzalloc()ed */
573 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
574 {
575         struct ib_send_wr *wr = &ic->i_ack_wr;
576         struct ib_sge *sge = &ic->i_ack_sge;
577
578         sge->addr = ic->i_ack_dma;
579         sge->length = sizeof(struct rds_header);
580         sge->lkey = ic->i_pd->local_dma_lkey;
581
582         wr->sg_list = sge;
583         wr->num_sge = 1;
584         wr->opcode = IB_WR_SEND;
585         wr->wr_id = RDS_IB_ACK_WR_ID;
586         wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
587 }
588
589 /*
590  * You'd think that with reliable IB connections you wouldn't need to ack
591  * messages that have been received.  The problem is that IB hardware generates
592  * an ack message before it has DMAed the message into memory.  This creates a
593  * potential message loss if the HCA is disabled for any reason between when it
594  * sends the ack and before the message is DMAed and processed.  This is only a
595  * potential issue if another HCA is available for fail-over.
596  *
597  * When the remote host receives our ack they'll free the sent message from
598  * their send queue.  To decrease the latency of this we always send an ack
599  * immediately after we've received messages.
600  *
601  * For simplicity, we only have one ack in flight at a time.  This puts
602  * pressure on senders to have deep enough send queues to absorb the latency of
603  * a single ack frame being in flight.  This might not be good enough.
604  *
605  * This is implemented by have a long-lived send_wr and sge which point to a
606  * statically allocated ack frame.  This ack wr does not fall under the ring
607  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
608  * room for it beyond the ring size.  Send completion notices its special
609  * wr_id and avoids working with the ring in that case.
610  */
611 #ifndef KERNEL_HAS_ATOMIC64
612 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
613 {
614         unsigned long flags;
615
616         spin_lock_irqsave(&ic->i_ack_lock, flags);
617         ic->i_ack_next = seq;
618         if (ack_required)
619                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
620         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
621 }
622
623 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
624 {
625         unsigned long flags;
626         u64 seq;
627
628         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
629
630         spin_lock_irqsave(&ic->i_ack_lock, flags);
631         seq = ic->i_ack_next;
632         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
633
634         return seq;
635 }
636 #else
637 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
638 {
639         atomic64_set(&ic->i_ack_next, seq);
640         if (ack_required) {
641                 smp_mb__before_atomic();
642                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
643         }
644 }
645
646 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
647 {
648         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
649         smp_mb__after_atomic();
650
651         return atomic64_read(&ic->i_ack_next);
652 }
653 #endif
654
655
656 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
657 {
658         struct rds_header *hdr = ic->i_ack;
659         u64 seq;
660         int ret;
661
662         seq = rds_ib_get_ack(ic);
663
664         rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
665
666         ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma,
667                                    sizeof(*hdr), DMA_TO_DEVICE);
668         rds_message_populate_header(hdr, 0, 0, 0);
669         hdr->h_ack = cpu_to_be64(seq);
670         hdr->h_credit = adv_credits;
671         rds_message_make_checksum(hdr);
672         ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma,
673                                       sizeof(*hdr), DMA_TO_DEVICE);
674
675         ic->i_ack_queued = jiffies;
676
677         ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
678         if (unlikely(ret)) {
679                 /* Failed to send. Release the WR, and
680                  * force another ACK.
681                  */
682                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
683                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
684
685                 rds_ib_stats_inc(s_ib_ack_send_failure);
686
687                 rds_ib_conn_error(ic->conn, "sending ack failed\n");
688         } else
689                 rds_ib_stats_inc(s_ib_ack_sent);
690 }
691
692 /*
693  * There are 3 ways of getting acknowledgements to the peer:
694  *  1.  We call rds_ib_attempt_ack from the recv completion handler
695  *      to send an ACK-only frame.
696  *      However, there can be only one such frame in the send queue
697  *      at any time, so we may have to postpone it.
698  *  2.  When another (data) packet is transmitted while there's
699  *      an ACK in the queue, we piggyback the ACK sequence number
700  *      on the data packet.
701  *  3.  If the ACK WR is done sending, we get called from the
702  *      send queue completion handler, and check whether there's
703  *      another ACK pending (postponed because the WR was on the
704  *      queue). If so, we transmit it.
705  *
706  * We maintain 2 variables:
707  *  -   i_ack_flags, which keeps track of whether the ACK WR
708  *      is currently in the send queue or not (IB_ACK_IN_FLIGHT)
709  *  -   i_ack_next, which is the last sequence number we received
710  *
711  * Potentially, send queue and receive queue handlers can run concurrently.
712  * It would be nice to not have to use a spinlock to synchronize things,
713  * but the one problem that rules this out is that 64bit updates are
714  * not atomic on all platforms. Things would be a lot simpler if
715  * we had atomic64 or maybe cmpxchg64 everywhere.
716  *
717  * Reconnecting complicates this picture just slightly. When we
718  * reconnect, we may be seeing duplicate packets. The peer
719  * is retransmitting them, because it hasn't seen an ACK for
720  * them. It is important that we ACK these.
721  *
722  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
723  * this flag set *MUST* be acknowledged immediately.
724  */
725
726 /*
727  * When we get here, we're called from the recv queue handler.
728  * Check whether we ought to transmit an ACK.
729  */
730 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
731 {
732         unsigned int adv_credits;
733
734         if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
735                 return;
736
737         if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
738                 rds_ib_stats_inc(s_ib_ack_send_delayed);
739                 return;
740         }
741
742         /* Can we get a send credit? */
743         if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
744                 rds_ib_stats_inc(s_ib_tx_throttle);
745                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
746                 return;
747         }
748
749         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
750         rds_ib_send_ack(ic, adv_credits);
751 }
752
753 /*
754  * We get here from the send completion handler, when the
755  * adapter tells us the ACK frame was sent.
756  */
757 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
758 {
759         clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
760         rds_ib_attempt_ack(ic);
761 }
762
763 /*
764  * This is called by the regular xmit code when it wants to piggyback
765  * an ACK on an outgoing frame.
766  */
767 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
768 {
769         if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
770                 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
771         return rds_ib_get_ack(ic);
772 }
773
774 /*
775  * It's kind of lame that we're copying from the posted receive pages into
776  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
777  * them.  But receiving new congestion bitmaps should be a *rare* event, so
778  * hopefully we won't need to invest that complexity in making it more
779  * efficient.  By copying we can share a simpler core with TCP which has to
780  * copy.
781  */
782 static void rds_ib_cong_recv(struct rds_connection *conn,
783                               struct rds_ib_incoming *ibinc)
784 {
785         struct rds_cong_map *map;
786         unsigned int map_off;
787         unsigned int map_page;
788         struct rds_page_frag *frag;
789         unsigned long frag_off;
790         unsigned long to_copy;
791         unsigned long copied;
792         __le64 uncongested = 0;
793         void *addr;
794
795         /* catch completely corrupt packets */
796         if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
797                 return;
798
799         map = conn->c_fcong;
800         map_page = 0;
801         map_off = 0;
802
803         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
804         frag_off = 0;
805
806         copied = 0;
807
808         while (copied < RDS_CONG_MAP_BYTES) {
809                 __le64 *src, *dst;
810                 unsigned int k;
811
812                 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
813                 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
814
815                 addr = kmap_atomic(sg_page(&frag->f_sg));
816
817                 src = addr + frag->f_sg.offset + frag_off;
818                 dst = (void *)map->m_page_addrs[map_page] + map_off;
819                 for (k = 0; k < to_copy; k += 8) {
820                         /* Record ports that became uncongested, ie
821                          * bits that changed from 0 to 1. */
822                         uncongested |= ~(*src) & *dst;
823                         *dst++ = *src++;
824                 }
825                 kunmap_atomic(addr);
826
827                 copied += to_copy;
828
829                 map_off += to_copy;
830                 if (map_off == PAGE_SIZE) {
831                         map_off = 0;
832                         map_page++;
833                 }
834
835                 frag_off += to_copy;
836                 if (frag_off == RDS_FRAG_SIZE) {
837                         frag = list_entry(frag->f_item.next,
838                                           struct rds_page_frag, f_item);
839                         frag_off = 0;
840                 }
841         }
842
843         /* the congestion map is in little endian order */
844         rds_cong_map_updated(map, le64_to_cpu(uncongested));
845 }
846
847 static void rds_ib_process_recv(struct rds_connection *conn,
848                                 struct rds_ib_recv_work *recv, u32 data_len,
849                                 struct rds_ib_ack_state *state)
850 {
851         struct rds_ib_connection *ic = conn->c_transport_data;
852         struct rds_ib_incoming *ibinc = ic->i_ibinc;
853         struct rds_header *ihdr, *hdr;
854         dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
855
856         /* XXX shut down the connection if port 0,0 are seen? */
857
858         rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
859                  data_len);
860
861         if (data_len < sizeof(struct rds_header)) {
862                 rds_ib_conn_error(conn, "incoming message "
863                        "from %pI6c didn't include a "
864                        "header, disconnecting and "
865                        "reconnecting\n",
866                        &conn->c_faddr);
867                 return;
868         }
869         data_len -= sizeof(struct rds_header);
870
871         ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
872
873         ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr,
874                                    sizeof(*ihdr), DMA_FROM_DEVICE);
875         /* Validate the checksum. */
876         if (!rds_message_verify_checksum(ihdr)) {
877                 rds_ib_conn_error(conn, "incoming message "
878                        "from %pI6c has corrupted header - "
879                        "forcing a reconnect\n",
880                        &conn->c_faddr);
881                 rds_stats_inc(s_recv_drop_bad_checksum);
882                 goto done;
883         }
884
885         /* Process the ACK sequence which comes with every packet */
886         state->ack_recv = be64_to_cpu(ihdr->h_ack);
887         state->ack_recv_valid = 1;
888
889         /* Process the credits update if there was one */
890         if (ihdr->h_credit)
891                 rds_ib_send_add_credits(conn, ihdr->h_credit);
892
893         if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
894                 /* This is an ACK-only packet. The fact that it gets
895                  * special treatment here is that historically, ACKs
896                  * were rather special beasts.
897                  */
898                 rds_ib_stats_inc(s_ib_ack_received);
899
900                 /*
901                  * Usually the frags make their way on to incs and are then freed as
902                  * the inc is freed.  We don't go that route, so we have to drop the
903                  * page ref ourselves.  We can't just leave the page on the recv
904                  * because that confuses the dma mapping of pages and each recv's use
905                  * of a partial page.
906                  *
907                  * FIXME: Fold this into the code path below.
908                  */
909                 rds_ib_frag_free(ic, recv->r_frag);
910                 recv->r_frag = NULL;
911                 goto done;
912         }
913
914         /*
915          * If we don't already have an inc on the connection then this
916          * fragment has a header and starts a message.. copy its header
917          * into the inc and save the inc so we can hang upcoming fragments
918          * off its list.
919          */
920         if (!ibinc) {
921                 ibinc = recv->r_ibinc;
922                 recv->r_ibinc = NULL;
923                 ic->i_ibinc = ibinc;
924
925                 hdr = &ibinc->ii_inc.i_hdr;
926                 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
927                                 local_clock();
928                 memcpy(hdr, ihdr, sizeof(*hdr));
929                 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
930                 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
931                                 local_clock();
932
933                 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
934                          ic->i_recv_data_rem, hdr->h_flags);
935         } else {
936                 hdr = &ibinc->ii_inc.i_hdr;
937                 /* We can't just use memcmp here; fragments of a
938                  * single message may carry different ACKs */
939                 if (hdr->h_sequence != ihdr->h_sequence ||
940                     hdr->h_len != ihdr->h_len ||
941                     hdr->h_sport != ihdr->h_sport ||
942                     hdr->h_dport != ihdr->h_dport) {
943                         rds_ib_conn_error(conn,
944                                 "fragment header mismatch; forcing reconnect\n");
945                         goto done;
946                 }
947         }
948
949         list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
950         recv->r_frag = NULL;
951
952         if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
953                 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
954         else {
955                 ic->i_recv_data_rem = 0;
956                 ic->i_ibinc = NULL;
957
958                 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
959                         rds_ib_cong_recv(conn, ibinc);
960                 } else {
961                         rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
962                                           &ibinc->ii_inc, GFP_ATOMIC);
963                         state->ack_next = be64_to_cpu(hdr->h_sequence);
964                         state->ack_next_valid = 1;
965                 }
966
967                 /* Evaluate the ACK_REQUIRED flag *after* we received
968                  * the complete frame, and after bumping the next_rx
969                  * sequence. */
970                 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
971                         rds_stats_inc(s_recv_ack_required);
972                         state->ack_required = 1;
973                 }
974
975                 rds_inc_put(&ibinc->ii_inc);
976         }
977 done:
978         ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr,
979                                       sizeof(*ihdr), DMA_FROM_DEVICE);
980 }
981
982 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
983                              struct ib_wc *wc,
984                              struct rds_ib_ack_state *state)
985 {
986         struct rds_connection *conn = ic->conn;
987         struct rds_ib_recv_work *recv;
988
989         rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
990                  (unsigned long long)wc->wr_id, wc->status,
991                  ib_wc_status_msg(wc->status), wc->byte_len,
992                  be32_to_cpu(wc->ex.imm_data));
993
994         rds_ib_stats_inc(s_ib_rx_cq_event);
995         recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
996         ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
997                         DMA_FROM_DEVICE);
998
999         /* Also process recvs in connecting state because it is possible
1000          * to get a recv completion _before_ the rdmacm ESTABLISHED
1001          * event is processed.
1002          */
1003         if (wc->status == IB_WC_SUCCESS) {
1004                 rds_ib_process_recv(conn, recv, wc->byte_len, state);
1005         } else {
1006                 /* We expect errors as the qp is drained during shutdown */
1007                 if (rds_conn_up(conn) || rds_conn_connecting(conn))
1008                         rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
1009                                           &conn->c_laddr, &conn->c_faddr,
1010                                           conn->c_tos, wc->status,
1011                                           ib_wc_status_msg(wc->status),
1012                                           wc->vendor_err);
1013         }
1014
1015         /* rds_ib_process_recv() doesn't always consume the frag, and
1016          * we might not have called it at all if the wc didn't indicate
1017          * success. We already unmapped the frag's pages, though, and
1018          * the following rds_ib_ring_free() call tells the refill path
1019          * that it will not find an allocated frag here. Make sure we
1020          * keep that promise by freeing a frag that's still on the ring.
1021          */
1022         if (recv->r_frag) {
1023                 rds_ib_frag_free(ic, recv->r_frag);
1024                 recv->r_frag = NULL;
1025         }
1026         rds_ib_ring_free(&ic->i_recv_ring, 1);
1027
1028         /* If we ever end up with a really empty receive ring, we're
1029          * in deep trouble, as the sender will definitely see RNR
1030          * timeouts. */
1031         if (rds_ib_ring_empty(&ic->i_recv_ring))
1032                 rds_ib_stats_inc(s_ib_rx_ring_empty);
1033
1034         if (rds_ib_ring_low(&ic->i_recv_ring)) {
1035                 rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
1036                 rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1037         }
1038 }
1039
1040 int rds_ib_recv_path(struct rds_conn_path *cp)
1041 {
1042         struct rds_connection *conn = cp->cp_conn;
1043         struct rds_ib_connection *ic = conn->c_transport_data;
1044
1045         rdsdebug("conn %p\n", conn);
1046         if (rds_conn_up(conn)) {
1047                 rds_ib_attempt_ack(ic);
1048                 rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1049                 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1050         }
1051
1052         return 0;
1053 }
1054
1055 int rds_ib_recv_init(void)
1056 {
1057         struct sysinfo si;
1058         int ret = -ENOMEM;
1059
1060         /* Default to 30% of all available RAM for recv memory */
1061         si_meminfo(&si);
1062         rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1063
1064         rds_ib_incoming_slab =
1065                 kmem_cache_create_usercopy("rds_ib_incoming",
1066                                            sizeof(struct rds_ib_incoming),
1067                                            0, SLAB_HWCACHE_ALIGN,
1068                                            offsetof(struct rds_ib_incoming,
1069                                                     ii_inc.i_usercopy),
1070                                            sizeof(struct rds_inc_usercopy),
1071                                            NULL);
1072         if (!rds_ib_incoming_slab)
1073                 goto out;
1074
1075         rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1076                                         sizeof(struct rds_page_frag),
1077                                         0, SLAB_HWCACHE_ALIGN, NULL);
1078         if (!rds_ib_frag_slab) {
1079                 kmem_cache_destroy(rds_ib_incoming_slab);
1080                 rds_ib_incoming_slab = NULL;
1081         } else
1082                 ret = 0;
1083 out:
1084         return ret;
1085 }
1086
1087 void rds_ib_recv_exit(void)
1088 {
1089         WARN_ON(atomic_read(&rds_ib_allocation));
1090
1091         kmem_cache_destroy(rds_ib_incoming_slab);
1092         kmem_cache_destroy(rds_ib_frag_slab);
1093 }