Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / net / rds / ib_recv.c
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
46
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 {
49         struct rds_ib_recv_work *recv;
50         u32 i;
51
52         for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53                 struct ib_sge *sge;
54
55                 recv->r_ibinc = NULL;
56                 recv->r_frag = NULL;
57
58                 recv->r_wr.next = NULL;
59                 recv->r_wr.wr_id = i;
60                 recv->r_wr.sg_list = recv->r_sge;
61                 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62
63                 sge = &recv->r_sge[0];
64                 sge->addr = ic->i_recv_hdrs_dma[i];
65                 sge->length = sizeof(struct rds_header);
66                 sge->lkey = ic->i_pd->local_dma_lkey;
67
68                 sge = &recv->r_sge[1];
69                 sge->addr = 0;
70                 sge->length = RDS_FRAG_SIZE;
71                 sge->lkey = ic->i_pd->local_dma_lkey;
72         }
73 }
74
75 /*
76  * The entire 'from' list, including the from element itself, is put on
77  * to the tail of the 'to' list.
78  */
79 static void list_splice_entire_tail(struct list_head *from,
80                                     struct list_head *to)
81 {
82         struct list_head *from_last = from->prev;
83
84         list_splice_tail(from_last, to);
85         list_add_tail(from_last, to);
86 }
87
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 {
90         struct list_head *tmp;
91
92         tmp = xchg(&cache->xfer, NULL);
93         if (tmp) {
94                 if (cache->ready)
95                         list_splice_entire_tail(tmp, cache->ready);
96                 else
97                         cache->ready = tmp;
98         }
99 }
100
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
102 {
103         struct rds_ib_cache_head *head;
104         int cpu;
105
106         cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
107         if (!cache->percpu)
108                return -ENOMEM;
109
110         for_each_possible_cpu(cpu) {
111                 head = per_cpu_ptr(cache->percpu, cpu);
112                 head->first = NULL;
113                 head->count = 0;
114         }
115         cache->xfer = NULL;
116         cache->ready = NULL;
117
118         return 0;
119 }
120
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
122 {
123         int ret;
124
125         ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
126         if (!ret) {
127                 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
128                 if (ret)
129                         free_percpu(ic->i_cache_incs.percpu);
130         }
131
132         return ret;
133 }
134
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136                                           struct list_head *caller_list)
137 {
138         struct rds_ib_cache_head *head;
139         int cpu;
140
141         for_each_possible_cpu(cpu) {
142                 head = per_cpu_ptr(cache->percpu, cpu);
143                 if (head->first) {
144                         list_splice_entire_tail(head->first, caller_list);
145                         head->first = NULL;
146                 }
147         }
148
149         if (cache->ready) {
150                 list_splice_entire_tail(cache->ready, caller_list);
151                 cache->ready = NULL;
152         }
153 }
154
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 {
157         struct rds_ib_incoming *inc;
158         struct rds_ib_incoming *inc_tmp;
159         struct rds_page_frag *frag;
160         struct rds_page_frag *frag_tmp;
161         LIST_HEAD(list);
162
163         rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164         rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165         free_percpu(ic->i_cache_incs.percpu);
166
167         list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168                 list_del(&inc->ii_cache_entry);
169                 WARN_ON(!list_empty(&inc->ii_frags));
170                 kmem_cache_free(rds_ib_incoming_slab, inc);
171                 atomic_dec(&rds_ib_allocation);
172         }
173
174         rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
175         rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
176         free_percpu(ic->i_cache_frags.percpu);
177
178         list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
179                 list_del(&frag->f_cache_entry);
180                 WARN_ON(!list_empty(&frag->f_item));
181                 kmem_cache_free(rds_ib_frag_slab, frag);
182         }
183 }
184
185 /* fwd decl */
186 static void rds_ib_recv_cache_put(struct list_head *new_item,
187                                   struct rds_ib_refill_cache *cache);
188 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
189
190
191 /* Recycle frag and attached recv buffer f_sg */
192 static void rds_ib_frag_free(struct rds_ib_connection *ic,
193                              struct rds_page_frag *frag)
194 {
195         rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
196
197         rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
198         atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
199         rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
200 }
201
202 /* Recycle inc after freeing attached frags */
203 void rds_ib_inc_free(struct rds_incoming *inc)
204 {
205         struct rds_ib_incoming *ibinc;
206         struct rds_page_frag *frag;
207         struct rds_page_frag *pos;
208         struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
209
210         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
211
212         /* Free attached frags */
213         list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
214                 list_del_init(&frag->f_item);
215                 rds_ib_frag_free(ic, frag);
216         }
217         BUG_ON(!list_empty(&ibinc->ii_frags));
218
219         rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
220         rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
221 }
222
223 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
224                                   struct rds_ib_recv_work *recv)
225 {
226         if (recv->r_ibinc) {
227                 rds_inc_put(&recv->r_ibinc->ii_inc);
228                 recv->r_ibinc = NULL;
229         }
230         if (recv->r_frag) {
231                 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
232                 rds_ib_frag_free(ic, recv->r_frag);
233                 recv->r_frag = NULL;
234         }
235 }
236
237 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
238 {
239         u32 i;
240
241         for (i = 0; i < ic->i_recv_ring.w_nr; i++)
242                 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
243 }
244
245 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
246                                                      gfp_t slab_mask)
247 {
248         struct rds_ib_incoming *ibinc;
249         struct list_head *cache_item;
250         int avail_allocs;
251
252         cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
253         if (cache_item) {
254                 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
255         } else {
256                 avail_allocs = atomic_add_unless(&rds_ib_allocation,
257                                                  1, rds_ib_sysctl_max_recv_allocation);
258                 if (!avail_allocs) {
259                         rds_ib_stats_inc(s_ib_rx_alloc_limit);
260                         return NULL;
261                 }
262                 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
263                 if (!ibinc) {
264                         atomic_dec(&rds_ib_allocation);
265                         return NULL;
266                 }
267                 rds_ib_stats_inc(s_ib_rx_total_incs);
268         }
269         INIT_LIST_HEAD(&ibinc->ii_frags);
270         rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
271
272         return ibinc;
273 }
274
275 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
276                                                     gfp_t slab_mask, gfp_t page_mask)
277 {
278         struct rds_page_frag *frag;
279         struct list_head *cache_item;
280         int ret;
281
282         cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
283         if (cache_item) {
284                 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
285                 atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
286                 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
287         } else {
288                 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
289                 if (!frag)
290                         return NULL;
291
292                 sg_init_table(&frag->f_sg, 1);
293                 ret = rds_page_remainder_alloc(&frag->f_sg,
294                                                RDS_FRAG_SIZE, page_mask);
295                 if (ret) {
296                         kmem_cache_free(rds_ib_frag_slab, frag);
297                         return NULL;
298                 }
299                 rds_ib_stats_inc(s_ib_rx_total_frags);
300         }
301
302         INIT_LIST_HEAD(&frag->f_item);
303
304         return frag;
305 }
306
307 static int rds_ib_recv_refill_one(struct rds_connection *conn,
308                                   struct rds_ib_recv_work *recv, gfp_t gfp)
309 {
310         struct rds_ib_connection *ic = conn->c_transport_data;
311         struct ib_sge *sge;
312         int ret = -ENOMEM;
313         gfp_t slab_mask = gfp;
314         gfp_t page_mask = gfp;
315
316         if (gfp & __GFP_DIRECT_RECLAIM) {
317                 slab_mask = GFP_KERNEL;
318                 page_mask = GFP_HIGHUSER;
319         }
320
321         if (!ic->i_cache_incs.ready)
322                 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
323         if (!ic->i_cache_frags.ready)
324                 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
325
326         /*
327          * ibinc was taken from recv if recv contained the start of a message.
328          * recvs that were continuations will still have this allocated.
329          */
330         if (!recv->r_ibinc) {
331                 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
332                 if (!recv->r_ibinc)
333                         goto out;
334         }
335
336         WARN_ON(recv->r_frag); /* leak! */
337         recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
338         if (!recv->r_frag)
339                 goto out;
340
341         ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
342                             1, DMA_FROM_DEVICE);
343         WARN_ON(ret != 1);
344
345         sge = &recv->r_sge[0];
346         sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
347         sge->length = sizeof(struct rds_header);
348
349         sge = &recv->r_sge[1];
350         sge->addr = sg_dma_address(&recv->r_frag->f_sg);
351         sge->length = sg_dma_len(&recv->r_frag->f_sg);
352
353         ret = 0;
354 out:
355         return ret;
356 }
357
358 static int acquire_refill(struct rds_connection *conn)
359 {
360         return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
361 }
362
363 static void release_refill(struct rds_connection *conn)
364 {
365         clear_bit(RDS_RECV_REFILL, &conn->c_flags);
366
367         /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
368          * hot path and finding waiters is very rare.  We don't want to walk
369          * the system-wide hashed waitqueue buckets in the fast path only to
370          * almost never find waiters.
371          */
372         if (waitqueue_active(&conn->c_waitq))
373                 wake_up_all(&conn->c_waitq);
374 }
375
376 /*
377  * This tries to allocate and post unused work requests after making sure that
378  * they have all the allocations they need to queue received fragments into
379  * sockets.
380  */
381 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
382 {
383         struct rds_ib_connection *ic = conn->c_transport_data;
384         struct rds_ib_recv_work *recv;
385         unsigned int posted = 0;
386         int ret = 0;
387         bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
388         bool must_wake = false;
389         u32 pos;
390
391         /* the goal here is to just make sure that someone, somewhere
392          * is posting buffers.  If we can't get the refill lock,
393          * let them do their thing
394          */
395         if (!acquire_refill(conn))
396                 return;
397
398         while ((prefill || rds_conn_up(conn)) &&
399                rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
400                 if (pos >= ic->i_recv_ring.w_nr) {
401                         printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
402                                         pos);
403                         break;
404                 }
405
406                 recv = &ic->i_recvs[pos];
407                 ret = rds_ib_recv_refill_one(conn, recv, gfp);
408                 if (ret) {
409                         must_wake = true;
410                         break;
411                 }
412
413                 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
414                          recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
415                          (long)sg_dma_address(&recv->r_frag->f_sg));
416
417                 /* XXX when can this fail? */
418                 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
419                 if (ret) {
420                         rds_ib_conn_error(conn, "recv post on "
421                                "%pI6c returned %d, disconnecting and "
422                                "reconnecting\n", &conn->c_faddr,
423                                ret);
424                         break;
425                 }
426
427                 posted++;
428
429                 if ((posted > 128 && need_resched()) || posted > 8192) {
430                         must_wake = true;
431                         break;
432                 }
433         }
434
435         /* We're doing flow control - update the window. */
436         if (ic->i_flowctl && posted)
437                 rds_ib_advertise_credits(conn, posted);
438
439         if (ret)
440                 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
441
442         release_refill(conn);
443
444         /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
445          * in this case the ring being low is going to lead to more interrupts
446          * and we can safely let the softirq code take care of it unless the
447          * ring is completely empty.
448          *
449          * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
450          * we might have raced with the softirq code while we had the refill
451          * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
452          * if we should requeue.
453          */
454         if (rds_conn_up(conn) &&
455             (must_wake ||
456             (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
457             rds_ib_ring_empty(&ic->i_recv_ring))) {
458                 queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
459         }
460         if (can_wait)
461                 cond_resched();
462 }
463
464 /*
465  * We want to recycle several types of recv allocations, like incs and frags.
466  * To use this, the *_free() function passes in the ptr to a list_head within
467  * the recyclee, as well as the cache to put it on.
468  *
469  * First, we put the memory on a percpu list. When this reaches a certain size,
470  * We move it to an intermediate non-percpu list in a lockless manner, with some
471  * xchg/compxchg wizardry.
472  *
473  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
474  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
475  * list_empty() will return true with one element is actually present.
476  */
477 static void rds_ib_recv_cache_put(struct list_head *new_item,
478                                  struct rds_ib_refill_cache *cache)
479 {
480         unsigned long flags;
481         struct list_head *old, *chpfirst;
482
483         local_irq_save(flags);
484
485         chpfirst = __this_cpu_read(cache->percpu->first);
486         if (!chpfirst)
487                 INIT_LIST_HEAD(new_item);
488         else /* put on front */
489                 list_add_tail(new_item, chpfirst);
490
491         __this_cpu_write(cache->percpu->first, new_item);
492         __this_cpu_inc(cache->percpu->count);
493
494         if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
495                 goto end;
496
497         /*
498          * Return our per-cpu first list to the cache's xfer by atomically
499          * grabbing the current xfer list, appending it to our per-cpu list,
500          * and then atomically returning that entire list back to the
501          * cache's xfer list as long as it's still empty.
502          */
503         do {
504                 old = xchg(&cache->xfer, NULL);
505                 if (old)
506                         list_splice_entire_tail(old, chpfirst);
507                 old = cmpxchg(&cache->xfer, NULL, chpfirst);
508         } while (old);
509
510
511         __this_cpu_write(cache->percpu->first, NULL);
512         __this_cpu_write(cache->percpu->count, 0);
513 end:
514         local_irq_restore(flags);
515 }
516
517 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
518 {
519         struct list_head *head = cache->ready;
520
521         if (head) {
522                 if (!list_empty(head)) {
523                         cache->ready = head->next;
524                         list_del_init(head);
525                 } else
526                         cache->ready = NULL;
527         }
528
529         return head;
530 }
531
532 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
533 {
534         struct rds_ib_incoming *ibinc;
535         struct rds_page_frag *frag;
536         unsigned long to_copy;
537         unsigned long frag_off = 0;
538         int copied = 0;
539         int ret;
540         u32 len;
541
542         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
543         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
544         len = be32_to_cpu(inc->i_hdr.h_len);
545
546         while (iov_iter_count(to) && copied < len) {
547                 if (frag_off == RDS_FRAG_SIZE) {
548                         frag = list_entry(frag->f_item.next,
549                                           struct rds_page_frag, f_item);
550                         frag_off = 0;
551                 }
552                 to_copy = min_t(unsigned long, iov_iter_count(to),
553                                 RDS_FRAG_SIZE - frag_off);
554                 to_copy = min_t(unsigned long, to_copy, len - copied);
555
556                 /* XXX needs + offset for multiple recvs per page */
557                 rds_stats_add(s_copy_to_user, to_copy);
558                 ret = copy_page_to_iter(sg_page(&frag->f_sg),
559                                         frag->f_sg.offset + frag_off,
560                                         to_copy,
561                                         to);
562                 if (ret != to_copy)
563                         return -EFAULT;
564
565                 frag_off += to_copy;
566                 copied += to_copy;
567         }
568
569         return copied;
570 }
571
572 /* ic starts out kzalloc()ed */
573 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
574 {
575         struct ib_send_wr *wr = &ic->i_ack_wr;
576         struct ib_sge *sge = &ic->i_ack_sge;
577
578         sge->addr = ic->i_ack_dma;
579         sge->length = sizeof(struct rds_header);
580         sge->lkey = ic->i_pd->local_dma_lkey;
581
582         wr->sg_list = sge;
583         wr->num_sge = 1;
584         wr->opcode = IB_WR_SEND;
585         wr->wr_id = RDS_IB_ACK_WR_ID;
586         wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
587 }
588
589 /*
590  * You'd think that with reliable IB connections you wouldn't need to ack
591  * messages that have been received.  The problem is that IB hardware generates
592  * an ack message before it has DMAed the message into memory.  This creates a
593  * potential message loss if the HCA is disabled for any reason between when it
594  * sends the ack and before the message is DMAed and processed.  This is only a
595  * potential issue if another HCA is available for fail-over.
596  *
597  * When the remote host receives our ack they'll free the sent message from
598  * their send queue.  To decrease the latency of this we always send an ack
599  * immediately after we've received messages.
600  *
601  * For simplicity, we only have one ack in flight at a time.  This puts
602  * pressure on senders to have deep enough send queues to absorb the latency of
603  * a single ack frame being in flight.  This might not be good enough.
604  *
605  * This is implemented by have a long-lived send_wr and sge which point to a
606  * statically allocated ack frame.  This ack wr does not fall under the ring
607  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
608  * room for it beyond the ring size.  Send completion notices its special
609  * wr_id and avoids working with the ring in that case.
610  */
611 #ifndef KERNEL_HAS_ATOMIC64
612 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
613 {
614         unsigned long flags;
615
616         spin_lock_irqsave(&ic->i_ack_lock, flags);
617         ic->i_ack_next = seq;
618         if (ack_required)
619                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
620         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
621 }
622
623 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
624 {
625         unsigned long flags;
626         u64 seq;
627
628         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
629
630         spin_lock_irqsave(&ic->i_ack_lock, flags);
631         seq = ic->i_ack_next;
632         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
633
634         return seq;
635 }
636 #else
637 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
638 {
639         atomic64_set(&ic->i_ack_next, seq);
640         if (ack_required) {
641                 smp_mb__before_atomic();
642                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
643         }
644 }
645
646 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
647 {
648         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
649         smp_mb__after_atomic();
650
651         return atomic64_read(&ic->i_ack_next);
652 }
653 #endif
654
655
656 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
657 {
658         struct rds_header *hdr = ic->i_ack;
659         u64 seq;
660         int ret;
661
662         seq = rds_ib_get_ack(ic);
663
664         rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
665         rds_message_populate_header(hdr, 0, 0, 0);
666         hdr->h_ack = cpu_to_be64(seq);
667         hdr->h_credit = adv_credits;
668         rds_message_make_checksum(hdr);
669         ic->i_ack_queued = jiffies;
670
671         ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
672         if (unlikely(ret)) {
673                 /* Failed to send. Release the WR, and
674                  * force another ACK.
675                  */
676                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
677                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
678
679                 rds_ib_stats_inc(s_ib_ack_send_failure);
680
681                 rds_ib_conn_error(ic->conn, "sending ack failed\n");
682         } else
683                 rds_ib_stats_inc(s_ib_ack_sent);
684 }
685
686 /*
687  * There are 3 ways of getting acknowledgements to the peer:
688  *  1.  We call rds_ib_attempt_ack from the recv completion handler
689  *      to send an ACK-only frame.
690  *      However, there can be only one such frame in the send queue
691  *      at any time, so we may have to postpone it.
692  *  2.  When another (data) packet is transmitted while there's
693  *      an ACK in the queue, we piggyback the ACK sequence number
694  *      on the data packet.
695  *  3.  If the ACK WR is done sending, we get called from the
696  *      send queue completion handler, and check whether there's
697  *      another ACK pending (postponed because the WR was on the
698  *      queue). If so, we transmit it.
699  *
700  * We maintain 2 variables:
701  *  -   i_ack_flags, which keeps track of whether the ACK WR
702  *      is currently in the send queue or not (IB_ACK_IN_FLIGHT)
703  *  -   i_ack_next, which is the last sequence number we received
704  *
705  * Potentially, send queue and receive queue handlers can run concurrently.
706  * It would be nice to not have to use a spinlock to synchronize things,
707  * but the one problem that rules this out is that 64bit updates are
708  * not atomic on all platforms. Things would be a lot simpler if
709  * we had atomic64 or maybe cmpxchg64 everywhere.
710  *
711  * Reconnecting complicates this picture just slightly. When we
712  * reconnect, we may be seeing duplicate packets. The peer
713  * is retransmitting them, because it hasn't seen an ACK for
714  * them. It is important that we ACK these.
715  *
716  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
717  * this flag set *MUST* be acknowledged immediately.
718  */
719
720 /*
721  * When we get here, we're called from the recv queue handler.
722  * Check whether we ought to transmit an ACK.
723  */
724 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
725 {
726         unsigned int adv_credits;
727
728         if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
729                 return;
730
731         if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
732                 rds_ib_stats_inc(s_ib_ack_send_delayed);
733                 return;
734         }
735
736         /* Can we get a send credit? */
737         if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
738                 rds_ib_stats_inc(s_ib_tx_throttle);
739                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
740                 return;
741         }
742
743         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
744         rds_ib_send_ack(ic, adv_credits);
745 }
746
747 /*
748  * We get here from the send completion handler, when the
749  * adapter tells us the ACK frame was sent.
750  */
751 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
752 {
753         clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
754         rds_ib_attempt_ack(ic);
755 }
756
757 /*
758  * This is called by the regular xmit code when it wants to piggyback
759  * an ACK on an outgoing frame.
760  */
761 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
762 {
763         if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
764                 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
765         return rds_ib_get_ack(ic);
766 }
767
768 /*
769  * It's kind of lame that we're copying from the posted receive pages into
770  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
771  * them.  But receiving new congestion bitmaps should be a *rare* event, so
772  * hopefully we won't need to invest that complexity in making it more
773  * efficient.  By copying we can share a simpler core with TCP which has to
774  * copy.
775  */
776 static void rds_ib_cong_recv(struct rds_connection *conn,
777                               struct rds_ib_incoming *ibinc)
778 {
779         struct rds_cong_map *map;
780         unsigned int map_off;
781         unsigned int map_page;
782         struct rds_page_frag *frag;
783         unsigned long frag_off;
784         unsigned long to_copy;
785         unsigned long copied;
786         __le64 uncongested = 0;
787         void *addr;
788
789         /* catch completely corrupt packets */
790         if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
791                 return;
792
793         map = conn->c_fcong;
794         map_page = 0;
795         map_off = 0;
796
797         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
798         frag_off = 0;
799
800         copied = 0;
801
802         while (copied < RDS_CONG_MAP_BYTES) {
803                 __le64 *src, *dst;
804                 unsigned int k;
805
806                 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
807                 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
808
809                 addr = kmap_atomic(sg_page(&frag->f_sg));
810
811                 src = addr + frag->f_sg.offset + frag_off;
812                 dst = (void *)map->m_page_addrs[map_page] + map_off;
813                 for (k = 0; k < to_copy; k += 8) {
814                         /* Record ports that became uncongested, ie
815                          * bits that changed from 0 to 1. */
816                         uncongested |= ~(*src) & *dst;
817                         *dst++ = *src++;
818                 }
819                 kunmap_atomic(addr);
820
821                 copied += to_copy;
822
823                 map_off += to_copy;
824                 if (map_off == PAGE_SIZE) {
825                         map_off = 0;
826                         map_page++;
827                 }
828
829                 frag_off += to_copy;
830                 if (frag_off == RDS_FRAG_SIZE) {
831                         frag = list_entry(frag->f_item.next,
832                                           struct rds_page_frag, f_item);
833                         frag_off = 0;
834                 }
835         }
836
837         /* the congestion map is in little endian order */
838         rds_cong_map_updated(map, le64_to_cpu(uncongested));
839 }
840
841 static void rds_ib_process_recv(struct rds_connection *conn,
842                                 struct rds_ib_recv_work *recv, u32 data_len,
843                                 struct rds_ib_ack_state *state)
844 {
845         struct rds_ib_connection *ic = conn->c_transport_data;
846         struct rds_ib_incoming *ibinc = ic->i_ibinc;
847         struct rds_header *ihdr, *hdr;
848
849         /* XXX shut down the connection if port 0,0 are seen? */
850
851         rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
852                  data_len);
853
854         if (data_len < sizeof(struct rds_header)) {
855                 rds_ib_conn_error(conn, "incoming message "
856                        "from %pI6c didn't include a "
857                        "header, disconnecting and "
858                        "reconnecting\n",
859                        &conn->c_faddr);
860                 return;
861         }
862         data_len -= sizeof(struct rds_header);
863
864         ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
865
866         /* Validate the checksum. */
867         if (!rds_message_verify_checksum(ihdr)) {
868                 rds_ib_conn_error(conn, "incoming message "
869                        "from %pI6c has corrupted header - "
870                        "forcing a reconnect\n",
871                        &conn->c_faddr);
872                 rds_stats_inc(s_recv_drop_bad_checksum);
873                 return;
874         }
875
876         /* Process the ACK sequence which comes with every packet */
877         state->ack_recv = be64_to_cpu(ihdr->h_ack);
878         state->ack_recv_valid = 1;
879
880         /* Process the credits update if there was one */
881         if (ihdr->h_credit)
882                 rds_ib_send_add_credits(conn, ihdr->h_credit);
883
884         if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
885                 /* This is an ACK-only packet. The fact that it gets
886                  * special treatment here is that historically, ACKs
887                  * were rather special beasts.
888                  */
889                 rds_ib_stats_inc(s_ib_ack_received);
890
891                 /*
892                  * Usually the frags make their way on to incs and are then freed as
893                  * the inc is freed.  We don't go that route, so we have to drop the
894                  * page ref ourselves.  We can't just leave the page on the recv
895                  * because that confuses the dma mapping of pages and each recv's use
896                  * of a partial page.
897                  *
898                  * FIXME: Fold this into the code path below.
899                  */
900                 rds_ib_frag_free(ic, recv->r_frag);
901                 recv->r_frag = NULL;
902                 return;
903         }
904
905         /*
906          * If we don't already have an inc on the connection then this
907          * fragment has a header and starts a message.. copy its header
908          * into the inc and save the inc so we can hang upcoming fragments
909          * off its list.
910          */
911         if (!ibinc) {
912                 ibinc = recv->r_ibinc;
913                 recv->r_ibinc = NULL;
914                 ic->i_ibinc = ibinc;
915
916                 hdr = &ibinc->ii_inc.i_hdr;
917                 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
918                                 local_clock();
919                 memcpy(hdr, ihdr, sizeof(*hdr));
920                 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
921                 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
922                                 local_clock();
923
924                 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
925                          ic->i_recv_data_rem, hdr->h_flags);
926         } else {
927                 hdr = &ibinc->ii_inc.i_hdr;
928                 /* We can't just use memcmp here; fragments of a
929                  * single message may carry different ACKs */
930                 if (hdr->h_sequence != ihdr->h_sequence ||
931                     hdr->h_len != ihdr->h_len ||
932                     hdr->h_sport != ihdr->h_sport ||
933                     hdr->h_dport != ihdr->h_dport) {
934                         rds_ib_conn_error(conn,
935                                 "fragment header mismatch; forcing reconnect\n");
936                         return;
937                 }
938         }
939
940         list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
941         recv->r_frag = NULL;
942
943         if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
944                 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
945         else {
946                 ic->i_recv_data_rem = 0;
947                 ic->i_ibinc = NULL;
948
949                 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
950                         rds_ib_cong_recv(conn, ibinc);
951                 } else {
952                         rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
953                                           &ibinc->ii_inc, GFP_ATOMIC);
954                         state->ack_next = be64_to_cpu(hdr->h_sequence);
955                         state->ack_next_valid = 1;
956                 }
957
958                 /* Evaluate the ACK_REQUIRED flag *after* we received
959                  * the complete frame, and after bumping the next_rx
960                  * sequence. */
961                 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
962                         rds_stats_inc(s_recv_ack_required);
963                         state->ack_required = 1;
964                 }
965
966                 rds_inc_put(&ibinc->ii_inc);
967         }
968 }
969
970 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
971                              struct ib_wc *wc,
972                              struct rds_ib_ack_state *state)
973 {
974         struct rds_connection *conn = ic->conn;
975         struct rds_ib_recv_work *recv;
976
977         rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
978                  (unsigned long long)wc->wr_id, wc->status,
979                  ib_wc_status_msg(wc->status), wc->byte_len,
980                  be32_to_cpu(wc->ex.imm_data));
981
982         rds_ib_stats_inc(s_ib_rx_cq_event);
983         recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
984         ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
985                         DMA_FROM_DEVICE);
986
987         /* Also process recvs in connecting state because it is possible
988          * to get a recv completion _before_ the rdmacm ESTABLISHED
989          * event is processed.
990          */
991         if (wc->status == IB_WC_SUCCESS) {
992                 rds_ib_process_recv(conn, recv, wc->byte_len, state);
993         } else {
994                 /* We expect errors as the qp is drained during shutdown */
995                 if (rds_conn_up(conn) || rds_conn_connecting(conn))
996                         rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
997                                           &conn->c_laddr, &conn->c_faddr,
998                                           conn->c_tos, wc->status,
999                                           ib_wc_status_msg(wc->status),
1000                                           wc->vendor_err);
1001         }
1002
1003         /* rds_ib_process_recv() doesn't always consume the frag, and
1004          * we might not have called it at all if the wc didn't indicate
1005          * success. We already unmapped the frag's pages, though, and
1006          * the following rds_ib_ring_free() call tells the refill path
1007          * that it will not find an allocated frag here. Make sure we
1008          * keep that promise by freeing a frag that's still on the ring.
1009          */
1010         if (recv->r_frag) {
1011                 rds_ib_frag_free(ic, recv->r_frag);
1012                 recv->r_frag = NULL;
1013         }
1014         rds_ib_ring_free(&ic->i_recv_ring, 1);
1015
1016         /* If we ever end up with a really empty receive ring, we're
1017          * in deep trouble, as the sender will definitely see RNR
1018          * timeouts. */
1019         if (rds_ib_ring_empty(&ic->i_recv_ring))
1020                 rds_ib_stats_inc(s_ib_rx_ring_empty);
1021
1022         if (rds_ib_ring_low(&ic->i_recv_ring)) {
1023                 rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
1024                 rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1025         }
1026 }
1027
1028 int rds_ib_recv_path(struct rds_conn_path *cp)
1029 {
1030         struct rds_connection *conn = cp->cp_conn;
1031         struct rds_ib_connection *ic = conn->c_transport_data;
1032
1033         rdsdebug("conn %p\n", conn);
1034         if (rds_conn_up(conn)) {
1035                 rds_ib_attempt_ack(ic);
1036                 rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1037                 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1038         }
1039
1040         return 0;
1041 }
1042
1043 int rds_ib_recv_init(void)
1044 {
1045         struct sysinfo si;
1046         int ret = -ENOMEM;
1047
1048         /* Default to 30% of all available RAM for recv memory */
1049         si_meminfo(&si);
1050         rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1051
1052         rds_ib_incoming_slab =
1053                 kmem_cache_create_usercopy("rds_ib_incoming",
1054                                            sizeof(struct rds_ib_incoming),
1055                                            0, SLAB_HWCACHE_ALIGN,
1056                                            offsetof(struct rds_ib_incoming,
1057                                                     ii_inc.i_usercopy),
1058                                            sizeof(struct rds_inc_usercopy),
1059                                            NULL);
1060         if (!rds_ib_incoming_slab)
1061                 goto out;
1062
1063         rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1064                                         sizeof(struct rds_page_frag),
1065                                         0, SLAB_HWCACHE_ALIGN, NULL);
1066         if (!rds_ib_frag_slab) {
1067                 kmem_cache_destroy(rds_ib_incoming_slab);
1068                 rds_ib_incoming_slab = NULL;
1069         } else
1070                 ret = 0;
1071 out:
1072         return ret;
1073 }
1074
1075 void rds_ib_recv_exit(void)
1076 {
1077         WARN_ON(atomic_read(&rds_ib_allocation));
1078
1079         kmem_cache_destroy(rds_ib_incoming_slab);
1080         kmem_cache_destroy(rds_ib_frag_slab);
1081 }