Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / net / rds / ib.c
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/dmapool.h>
34 #include <linux/kernel.h>
35 #include <linux/in.h>
36 #include <linux/if.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/if_arp.h>
40 #include <linux/delay.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <net/addrconf.h>
44
45 #include "rds_single_path.h"
46 #include "rds.h"
47 #include "ib.h"
48 #include "ib_mr.h"
49
50 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
51 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
52 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
53 static atomic_t rds_ib_unloading;
54
55 module_param(rds_ib_mr_1m_pool_size, int, 0444);
56 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
57 module_param(rds_ib_mr_8k_pool_size, int, 0444);
58 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
59 module_param(rds_ib_retry_count, int, 0444);
60 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
61
62 /*
63  * we have a clumsy combination of RCU and a rwsem protecting this list
64  * because it is used both in the get_mr fast path and while blocking in
65  * the FMR flushing path.
66  */
67 DECLARE_RWSEM(rds_ib_devices_lock);
68 struct list_head rds_ib_devices;
69
70 /* NOTE: if also grabbing ibdev lock, grab this first */
71 DEFINE_SPINLOCK(ib_nodev_conns_lock);
72 LIST_HEAD(ib_nodev_conns);
73
74 static void rds_ib_nodev_connect(void)
75 {
76         struct rds_ib_connection *ic;
77
78         spin_lock(&ib_nodev_conns_lock);
79         list_for_each_entry(ic, &ib_nodev_conns, ib_node)
80                 rds_conn_connect_if_down(ic->conn);
81         spin_unlock(&ib_nodev_conns_lock);
82 }
83
84 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
85 {
86         struct rds_ib_connection *ic;
87         unsigned long flags;
88
89         spin_lock_irqsave(&rds_ibdev->spinlock, flags);
90         list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
91                 rds_conn_path_drop(&ic->conn->c_path[0], true);
92         spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
93 }
94
95 /*
96  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
97  * from interrupt context so we push freing off into a work struct in krdsd.
98  */
99 static void rds_ib_dev_free(struct work_struct *work)
100 {
101         struct rds_ib_ipaddr *i_ipaddr, *i_next;
102         struct rds_ib_device *rds_ibdev = container_of(work,
103                                         struct rds_ib_device, free_work);
104
105         if (rds_ibdev->mr_8k_pool)
106                 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
107         if (rds_ibdev->mr_1m_pool)
108                 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
109         if (rds_ibdev->pd)
110                 ib_dealloc_pd(rds_ibdev->pd);
111         dma_pool_destroy(rds_ibdev->rid_hdrs_pool);
112
113         list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
114                 list_del(&i_ipaddr->list);
115                 kfree(i_ipaddr);
116         }
117
118         kfree(rds_ibdev->vector_load);
119
120         kfree(rds_ibdev);
121 }
122
123 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
124 {
125         BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
126         if (refcount_dec_and_test(&rds_ibdev->refcount))
127                 queue_work(rds_wq, &rds_ibdev->free_work);
128 }
129
130 static void rds_ib_add_one(struct ib_device *device)
131 {
132         struct rds_ib_device *rds_ibdev;
133         bool has_fr, has_fmr;
134
135         /* Only handle IB (no iWARP) devices */
136         if (device->node_type != RDMA_NODE_IB_CA)
137                 return;
138
139         rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
140                                  ibdev_to_node(device));
141         if (!rds_ibdev)
142                 return;
143
144         spin_lock_init(&rds_ibdev->spinlock);
145         refcount_set(&rds_ibdev->refcount, 1);
146         INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
147
148         INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
149         INIT_LIST_HEAD(&rds_ibdev->conn_list);
150
151         rds_ibdev->max_wrs = device->attrs.max_qp_wr;
152         rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
153
154         has_fr = (device->attrs.device_cap_flags &
155                   IB_DEVICE_MEM_MGT_EXTENSIONS);
156         has_fmr = (device->ops.alloc_fmr && device->ops.dealloc_fmr &&
157                    device->ops.map_phys_fmr && device->ops.unmap_fmr);
158         rds_ibdev->use_fastreg = (has_fr && !has_fmr);
159         rds_ibdev->odp_capable =
160                 !!(device->attrs.device_cap_flags &
161                    IB_DEVICE_ON_DEMAND_PAGING) &&
162                 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
163                    IB_ODP_SUPPORT_WRITE) &&
164                 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
165                    IB_ODP_SUPPORT_READ);
166
167         rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
168         rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
169                 min_t(unsigned int, (device->attrs.max_mr / 2),
170                       rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
171
172         rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
173                 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
174                       rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
175
176         rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
177         rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
178
179         rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
180                                          sizeof(int),
181                                          GFP_KERNEL);
182         if (!rds_ibdev->vector_load) {
183                 pr_err("RDS/IB: %s failed to allocate vector memory\n",
184                         __func__);
185                 goto put_dev;
186         }
187
188         rds_ibdev->dev = device;
189         rds_ibdev->pd = ib_alloc_pd(device, 0);
190         if (IS_ERR(rds_ibdev->pd)) {
191                 rds_ibdev->pd = NULL;
192                 goto put_dev;
193         }
194         rds_ibdev->rid_hdrs_pool = dma_pool_create(device->name,
195                                                    device->dma_device,
196                                                    sizeof(struct rds_header),
197                                                    L1_CACHE_BYTES, 0);
198         if (!rds_ibdev->rid_hdrs_pool)
199                 goto put_dev;
200
201         rds_ibdev->mr_1m_pool =
202                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
203         if (IS_ERR(rds_ibdev->mr_1m_pool)) {
204                 rds_ibdev->mr_1m_pool = NULL;
205                 goto put_dev;
206         }
207
208         rds_ibdev->mr_8k_pool =
209                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
210         if (IS_ERR(rds_ibdev->mr_8k_pool)) {
211                 rds_ibdev->mr_8k_pool = NULL;
212                 goto put_dev;
213         }
214
215         rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
216                  device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
217                  rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
218                  rds_ibdev->max_8k_mrs);
219
220         pr_info("RDS/IB: %s: %s supported and preferred\n",
221                 device->name,
222                 rds_ibdev->use_fastreg ? "FRMR" : "FMR");
223
224         down_write(&rds_ib_devices_lock);
225         list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
226         up_write(&rds_ib_devices_lock);
227         refcount_inc(&rds_ibdev->refcount);
228
229         ib_set_client_data(device, &rds_ib_client, rds_ibdev);
230         refcount_inc(&rds_ibdev->refcount);
231
232         rds_ib_nodev_connect();
233
234 put_dev:
235         rds_ib_dev_put(rds_ibdev);
236 }
237
238 /*
239  * New connections use this to find the device to associate with the
240  * connection.  It's not in the fast path so we're not concerned about the
241  * performance of the IB call.  (As of this writing, it uses an interrupt
242  * blocking spinlock to serialize walking a per-device list of all registered
243  * clients.)
244  *
245  * RCU is used to handle incoming connections racing with device teardown.
246  * Rather than use a lock to serialize removal from the client_data and
247  * getting a new reference, we use an RCU grace period.  The destruction
248  * path removes the device from client_data and then waits for all RCU
249  * readers to finish.
250  *
251  * A new connection can get NULL from this if its arriving on a
252  * device that is in the process of being removed.
253  */
254 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
255 {
256         struct rds_ib_device *rds_ibdev;
257
258         rcu_read_lock();
259         rds_ibdev = ib_get_client_data(device, &rds_ib_client);
260         if (rds_ibdev)
261                 refcount_inc(&rds_ibdev->refcount);
262         rcu_read_unlock();
263         return rds_ibdev;
264 }
265
266 /*
267  * The IB stack is letting us know that a device is going away.  This can
268  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
269  * the pci function, for example.
270  *
271  * This can be called at any time and can be racing with any other RDS path.
272  */
273 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
274 {
275         struct rds_ib_device *rds_ibdev = client_data;
276
277         if (!rds_ibdev)
278                 return;
279
280         rds_ib_dev_shutdown(rds_ibdev);
281
282         /* stop connection attempts from getting a reference to this device. */
283         ib_set_client_data(device, &rds_ib_client, NULL);
284
285         down_write(&rds_ib_devices_lock);
286         list_del_rcu(&rds_ibdev->list);
287         up_write(&rds_ib_devices_lock);
288
289         /*
290          * This synchronize rcu is waiting for readers of both the ib
291          * client data and the devices list to finish before we drop
292          * both of those references.
293          */
294         synchronize_rcu();
295         rds_ib_dev_put(rds_ibdev);
296         rds_ib_dev_put(rds_ibdev);
297 }
298
299 struct ib_client rds_ib_client = {
300         .name   = "rds_ib",
301         .add    = rds_ib_add_one,
302         .remove = rds_ib_remove_one
303 };
304
305 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
306                                     void *buffer)
307 {
308         struct rds_info_rdma_connection *iinfo = buffer;
309         struct rds_ib_connection *ic = conn->c_transport_data;
310
311         /* We will only ever look at IB transports */
312         if (conn->c_trans != &rds_ib_transport)
313                 return 0;
314         if (conn->c_isv6)
315                 return 0;
316
317         iinfo->src_addr = conn->c_laddr.s6_addr32[3];
318         iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
319         if (ic) {
320                 iinfo->tos = conn->c_tos;
321                 iinfo->sl = ic->i_sl;
322         }
323
324         memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
325         memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
326         if (rds_conn_state(conn) == RDS_CONN_UP) {
327                 struct rds_ib_device *rds_ibdev;
328
329                 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
330                                (union ib_gid *)&iinfo->dst_gid);
331
332                 rds_ibdev = ic->rds_ibdev;
333                 iinfo->max_send_wr = ic->i_send_ring.w_nr;
334                 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
335                 iinfo->max_send_sge = rds_ibdev->max_sge;
336                 rds_ib_get_mr_info(rds_ibdev, iinfo);
337                 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs);
338         }
339         return 1;
340 }
341
342 #if IS_ENABLED(CONFIG_IPV6)
343 /* IPv6 version of rds_ib_conn_info_visitor(). */
344 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
345                                      void *buffer)
346 {
347         struct rds6_info_rdma_connection *iinfo6 = buffer;
348         struct rds_ib_connection *ic = conn->c_transport_data;
349
350         /* We will only ever look at IB transports */
351         if (conn->c_trans != &rds_ib_transport)
352                 return 0;
353
354         iinfo6->src_addr = conn->c_laddr;
355         iinfo6->dst_addr = conn->c_faddr;
356         if (ic) {
357                 iinfo6->tos = conn->c_tos;
358                 iinfo6->sl = ic->i_sl;
359         }
360
361         memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
362         memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
363
364         if (rds_conn_state(conn) == RDS_CONN_UP) {
365                 struct rds_ib_device *rds_ibdev;
366
367                 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
368                                (union ib_gid *)&iinfo6->dst_gid);
369                 rds_ibdev = ic->rds_ibdev;
370                 iinfo6->max_send_wr = ic->i_send_ring.w_nr;
371                 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
372                 iinfo6->max_send_sge = rds_ibdev->max_sge;
373                 rds6_ib_get_mr_info(rds_ibdev, iinfo6);
374                 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs);
375         }
376         return 1;
377 }
378 #endif
379
380 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
381                            struct rds_info_iterator *iter,
382                            struct rds_info_lengths *lens)
383 {
384         u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
385
386         rds_for_each_conn_info(sock, len, iter, lens,
387                                 rds_ib_conn_info_visitor,
388                                 buffer,
389                                 sizeof(struct rds_info_rdma_connection));
390 }
391
392 #if IS_ENABLED(CONFIG_IPV6)
393 /* IPv6 version of rds_ib_ic_info(). */
394 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
395                             struct rds_info_iterator *iter,
396                             struct rds_info_lengths *lens)
397 {
398         u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
399
400         rds_for_each_conn_info(sock, len, iter, lens,
401                                rds6_ib_conn_info_visitor,
402                                buffer,
403                                sizeof(struct rds6_info_rdma_connection));
404 }
405 #endif
406
407 /*
408  * Early RDS/IB was built to only bind to an address if there is an IPoIB
409  * device with that address set.
410  *
411  * If it were me, I'd advocate for something more flexible.  Sending and
412  * receiving should be device-agnostic.  Transports would try and maintain
413  * connections between peers who have messages queued.  Userspace would be
414  * allowed to influence which paths have priority.  We could call userspace
415  * asserting this policy "routing".
416  */
417 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
418                               __u32 scope_id)
419 {
420         int ret;
421         struct rdma_cm_id *cm_id;
422 #if IS_ENABLED(CONFIG_IPV6)
423         struct sockaddr_in6 sin6;
424 #endif
425         struct sockaddr_in sin;
426         struct sockaddr *sa;
427         bool isv4;
428
429         isv4 = ipv6_addr_v4mapped(addr);
430         /* Create a CMA ID and try to bind it. This catches both
431          * IB and iWARP capable NICs.
432          */
433         cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
434                                NULL, RDMA_PS_TCP, IB_QPT_RC);
435         if (IS_ERR(cm_id))
436                 return PTR_ERR(cm_id);
437
438         if (isv4) {
439                 memset(&sin, 0, sizeof(sin));
440                 sin.sin_family = AF_INET;
441                 sin.sin_addr.s_addr = addr->s6_addr32[3];
442                 sa = (struct sockaddr *)&sin;
443         } else {
444 #if IS_ENABLED(CONFIG_IPV6)
445                 memset(&sin6, 0, sizeof(sin6));
446                 sin6.sin6_family = AF_INET6;
447                 sin6.sin6_addr = *addr;
448                 sin6.sin6_scope_id = scope_id;
449                 sa = (struct sockaddr *)&sin6;
450
451                 /* XXX Do a special IPv6 link local address check here.  The
452                  * reason is that rdma_bind_addr() always succeeds with IPv6
453                  * link local address regardless it is indeed configured in a
454                  * system.
455                  */
456                 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
457                         struct net_device *dev;
458
459                         if (scope_id == 0) {
460                                 ret = -EADDRNOTAVAIL;
461                                 goto out;
462                         }
463
464                         /* Use init_net for now as RDS is not network
465                          * name space aware.
466                          */
467                         dev = dev_get_by_index(&init_net, scope_id);
468                         if (!dev) {
469                                 ret = -EADDRNOTAVAIL;
470                                 goto out;
471                         }
472                         if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
473                                 dev_put(dev);
474                                 ret = -EADDRNOTAVAIL;
475                                 goto out;
476                         }
477                         dev_put(dev);
478                 }
479 #else
480                 ret = -EADDRNOTAVAIL;
481                 goto out;
482 #endif
483         }
484
485         /* rdma_bind_addr will only succeed for IB & iWARP devices */
486         ret = rdma_bind_addr(cm_id, sa);
487         /* due to this, we will claim to support iWARP devices unless we
488            check node_type. */
489         if (ret || !cm_id->device ||
490             cm_id->device->node_type != RDMA_NODE_IB_CA)
491                 ret = -EADDRNOTAVAIL;
492
493         rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
494                  addr, scope_id, ret,
495                  cm_id->device ? cm_id->device->node_type : -1);
496
497 out:
498         rdma_destroy_id(cm_id);
499
500         return ret;
501 }
502
503 static void rds_ib_unregister_client(void)
504 {
505         ib_unregister_client(&rds_ib_client);
506         /* wait for rds_ib_dev_free() to complete */
507         flush_workqueue(rds_wq);
508 }
509
510 static void rds_ib_set_unloading(void)
511 {
512         atomic_set(&rds_ib_unloading, 1);
513 }
514
515 static bool rds_ib_is_unloading(struct rds_connection *conn)
516 {
517         struct rds_conn_path *cp = &conn->c_path[0];
518
519         return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
520                 atomic_read(&rds_ib_unloading) != 0);
521 }
522
523 void rds_ib_exit(void)
524 {
525         rds_ib_set_unloading();
526         synchronize_rcu();
527         rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
528 #if IS_ENABLED(CONFIG_IPV6)
529         rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
530 #endif
531         rds_ib_unregister_client();
532         rds_ib_destroy_nodev_conns();
533         rds_ib_sysctl_exit();
534         rds_ib_recv_exit();
535         rds_trans_unregister(&rds_ib_transport);
536         rds_ib_mr_exit();
537 }
538
539 static u8 rds_ib_get_tos_map(u8 tos)
540 {
541         /* 1:1 user to transport map for RDMA transport.
542          * In future, if custom map is desired, hook can export
543          * user configurable map.
544          */
545         return tos;
546 }
547
548 struct rds_transport rds_ib_transport = {
549         .laddr_check            = rds_ib_laddr_check,
550         .xmit_path_complete     = rds_ib_xmit_path_complete,
551         .xmit                   = rds_ib_xmit,
552         .xmit_rdma              = rds_ib_xmit_rdma,
553         .xmit_atomic            = rds_ib_xmit_atomic,
554         .recv_path              = rds_ib_recv_path,
555         .conn_alloc             = rds_ib_conn_alloc,
556         .conn_free              = rds_ib_conn_free,
557         .conn_path_connect      = rds_ib_conn_path_connect,
558         .conn_path_shutdown     = rds_ib_conn_path_shutdown,
559         .inc_copy_to_user       = rds_ib_inc_copy_to_user,
560         .inc_free               = rds_ib_inc_free,
561         .cm_initiate_connect    = rds_ib_cm_initiate_connect,
562         .cm_handle_connect      = rds_ib_cm_handle_connect,
563         .cm_connect_complete    = rds_ib_cm_connect_complete,
564         .stats_info_copy        = rds_ib_stats_info_copy,
565         .exit                   = rds_ib_exit,
566         .get_mr                 = rds_ib_get_mr,
567         .sync_mr                = rds_ib_sync_mr,
568         .free_mr                = rds_ib_free_mr,
569         .flush_mrs              = rds_ib_flush_mrs,
570         .get_tos_map            = rds_ib_get_tos_map,
571         .t_owner                = THIS_MODULE,
572         .t_name                 = "infiniband",
573         .t_unloading            = rds_ib_is_unloading,
574         .t_type                 = RDS_TRANS_IB
575 };
576
577 int rds_ib_init(void)
578 {
579         int ret;
580
581         INIT_LIST_HEAD(&rds_ib_devices);
582
583         ret = rds_ib_mr_init();
584         if (ret)
585                 goto out;
586
587         ret = ib_register_client(&rds_ib_client);
588         if (ret)
589                 goto out_mr_exit;
590
591         ret = rds_ib_sysctl_init();
592         if (ret)
593                 goto out_ibreg;
594
595         ret = rds_ib_recv_init();
596         if (ret)
597                 goto out_sysctl;
598
599         rds_trans_register(&rds_ib_transport);
600
601         rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
602 #if IS_ENABLED(CONFIG_IPV6)
603         rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
604 #endif
605
606         goto out;
607
608 out_sysctl:
609         rds_ib_sysctl_exit();
610 out_ibreg:
611         rds_ib_unregister_client();
612 out_mr_exit:
613         rds_ib_mr_exit();
614 out:
615         return ret;
616 }
617
618 MODULE_LICENSE("GPL");