Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / rds / ib.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42
43 #include "rds_single_path.h"
44 #include "rds.h"
45 #include "ib.h"
46 #include "ib_mr.h"
47
48 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
49 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
50 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
51 static atomic_t rds_ib_unloading;
52
53 module_param(rds_ib_mr_1m_pool_size, int, 0444);
54 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
55 module_param(rds_ib_mr_8k_pool_size, int, 0444);
56 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
57 module_param(rds_ib_retry_count, int, 0444);
58 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
59
60 /*
61  * we have a clumsy combination of RCU and a rwsem protecting this list
62  * because it is used both in the get_mr fast path and while blocking in
63  * the FMR flushing path.
64  */
65 DECLARE_RWSEM(rds_ib_devices_lock);
66 struct list_head rds_ib_devices;
67
68 /* NOTE: if also grabbing ibdev lock, grab this first */
69 DEFINE_SPINLOCK(ib_nodev_conns_lock);
70 LIST_HEAD(ib_nodev_conns);
71
72 static void rds_ib_nodev_connect(void)
73 {
74         struct rds_ib_connection *ic;
75
76         spin_lock(&ib_nodev_conns_lock);
77         list_for_each_entry(ic, &ib_nodev_conns, ib_node)
78                 rds_conn_connect_if_down(ic->conn);
79         spin_unlock(&ib_nodev_conns_lock);
80 }
81
82 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
83 {
84         struct rds_ib_connection *ic;
85         unsigned long flags;
86
87         spin_lock_irqsave(&rds_ibdev->spinlock, flags);
88         list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
89                 rds_conn_drop(ic->conn);
90         spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
91 }
92
93 /*
94  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
95  * from interrupt context so we push freing off into a work struct in krdsd.
96  */
97 static void rds_ib_dev_free(struct work_struct *work)
98 {
99         struct rds_ib_ipaddr *i_ipaddr, *i_next;
100         struct rds_ib_device *rds_ibdev = container_of(work,
101                                         struct rds_ib_device, free_work);
102
103         if (rds_ibdev->mr_8k_pool)
104                 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
105         if (rds_ibdev->mr_1m_pool)
106                 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
107         if (rds_ibdev->pd)
108                 ib_dealloc_pd(rds_ibdev->pd);
109
110         list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
111                 list_del(&i_ipaddr->list);
112                 kfree(i_ipaddr);
113         }
114
115         kfree(rds_ibdev->vector_load);
116
117         kfree(rds_ibdev);
118 }
119
120 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
121 {
122         BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
123         if (refcount_dec_and_test(&rds_ibdev->refcount))
124                 queue_work(rds_wq, &rds_ibdev->free_work);
125 }
126
127 static void rds_ib_add_one(struct ib_device *device)
128 {
129         struct rds_ib_device *rds_ibdev;
130         bool has_fr, has_fmr;
131
132         /* Only handle IB (no iWARP) devices */
133         if (device->node_type != RDMA_NODE_IB_CA)
134                 return;
135
136         rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
137                                  ibdev_to_node(device));
138         if (!rds_ibdev)
139                 return;
140
141         spin_lock_init(&rds_ibdev->spinlock);
142         refcount_set(&rds_ibdev->refcount, 1);
143         INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
144
145         rds_ibdev->max_wrs = device->attrs.max_qp_wr;
146         rds_ibdev->max_sge = min(device->attrs.max_sge, RDS_IB_MAX_SGE);
147
148         has_fr = (device->attrs.device_cap_flags &
149                   IB_DEVICE_MEM_MGT_EXTENSIONS);
150         has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
151                    device->map_phys_fmr && device->unmap_fmr);
152         rds_ibdev->use_fastreg = (has_fr && !has_fmr);
153
154         rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
155         rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
156                 min_t(unsigned int, (device->attrs.max_mr / 2),
157                       rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
158
159         rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
160                 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
161                       rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
162
163         rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
164         rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
165
166         rds_ibdev->vector_load = kzalloc(sizeof(int) * device->num_comp_vectors,
167                                          GFP_KERNEL);
168         if (!rds_ibdev->vector_load) {
169                 pr_err("RDS/IB: %s failed to allocate vector memory\n",
170                         __func__);
171                 goto put_dev;
172         }
173
174         rds_ibdev->dev = device;
175         rds_ibdev->pd = ib_alloc_pd(device, 0);
176         if (IS_ERR(rds_ibdev->pd)) {
177                 rds_ibdev->pd = NULL;
178                 goto put_dev;
179         }
180
181         rds_ibdev->mr_1m_pool =
182                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
183         if (IS_ERR(rds_ibdev->mr_1m_pool)) {
184                 rds_ibdev->mr_1m_pool = NULL;
185                 goto put_dev;
186         }
187
188         rds_ibdev->mr_8k_pool =
189                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
190         if (IS_ERR(rds_ibdev->mr_8k_pool)) {
191                 rds_ibdev->mr_8k_pool = NULL;
192                 goto put_dev;
193         }
194
195         rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
196                  device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
197                  rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
198                  rds_ibdev->max_8k_mrs);
199
200         pr_info("RDS/IB: %s: %s supported and preferred\n",
201                 device->name,
202                 rds_ibdev->use_fastreg ? "FRMR" : "FMR");
203
204         INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
205         INIT_LIST_HEAD(&rds_ibdev->conn_list);
206
207         down_write(&rds_ib_devices_lock);
208         list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
209         up_write(&rds_ib_devices_lock);
210         refcount_inc(&rds_ibdev->refcount);
211
212         ib_set_client_data(device, &rds_ib_client, rds_ibdev);
213         refcount_inc(&rds_ibdev->refcount);
214
215         rds_ib_nodev_connect();
216
217 put_dev:
218         rds_ib_dev_put(rds_ibdev);
219 }
220
221 /*
222  * New connections use this to find the device to associate with the
223  * connection.  It's not in the fast path so we're not concerned about the
224  * performance of the IB call.  (As of this writing, it uses an interrupt
225  * blocking spinlock to serialize walking a per-device list of all registered
226  * clients.)
227  *
228  * RCU is used to handle incoming connections racing with device teardown.
229  * Rather than use a lock to serialize removal from the client_data and
230  * getting a new reference, we use an RCU grace period.  The destruction
231  * path removes the device from client_data and then waits for all RCU
232  * readers to finish.
233  *
234  * A new connection can get NULL from this if its arriving on a
235  * device that is in the process of being removed.
236  */
237 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
238 {
239         struct rds_ib_device *rds_ibdev;
240
241         rcu_read_lock();
242         rds_ibdev = ib_get_client_data(device, &rds_ib_client);
243         if (rds_ibdev)
244                 refcount_inc(&rds_ibdev->refcount);
245         rcu_read_unlock();
246         return rds_ibdev;
247 }
248
249 /*
250  * The IB stack is letting us know that a device is going away.  This can
251  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
252  * the pci function, for example.
253  *
254  * This can be called at any time and can be racing with any other RDS path.
255  */
256 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
257 {
258         struct rds_ib_device *rds_ibdev = client_data;
259
260         if (!rds_ibdev)
261                 return;
262
263         rds_ib_dev_shutdown(rds_ibdev);
264
265         /* stop connection attempts from getting a reference to this device. */
266         ib_set_client_data(device, &rds_ib_client, NULL);
267
268         down_write(&rds_ib_devices_lock);
269         list_del_rcu(&rds_ibdev->list);
270         up_write(&rds_ib_devices_lock);
271
272         /*
273          * This synchronize rcu is waiting for readers of both the ib
274          * client data and the devices list to finish before we drop
275          * both of those references.
276          */
277         synchronize_rcu();
278         rds_ib_dev_put(rds_ibdev);
279         rds_ib_dev_put(rds_ibdev);
280 }
281
282 struct ib_client rds_ib_client = {
283         .name   = "rds_ib",
284         .add    = rds_ib_add_one,
285         .remove = rds_ib_remove_one
286 };
287
288 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
289                                     void *buffer)
290 {
291         struct rds_info_rdma_connection *iinfo = buffer;
292         struct rds_ib_connection *ic;
293
294         /* We will only ever look at IB transports */
295         if (conn->c_trans != &rds_ib_transport)
296                 return 0;
297
298         iinfo->src_addr = conn->c_laddr;
299         iinfo->dst_addr = conn->c_faddr;
300
301         memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
302         memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
303         if (rds_conn_state(conn) == RDS_CONN_UP) {
304                 struct rds_ib_device *rds_ibdev;
305
306                 ic = conn->c_transport_data;
307
308                 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
309                                (union ib_gid *)&iinfo->dst_gid);
310
311                 rds_ibdev = ic->rds_ibdev;
312                 iinfo->max_send_wr = ic->i_send_ring.w_nr;
313                 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
314                 iinfo->max_send_sge = rds_ibdev->max_sge;
315                 rds_ib_get_mr_info(rds_ibdev, iinfo);
316         }
317         return 1;
318 }
319
320 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
321                            struct rds_info_iterator *iter,
322                            struct rds_info_lengths *lens)
323 {
324         rds_for_each_conn_info(sock, len, iter, lens,
325                                 rds_ib_conn_info_visitor,
326                                 sizeof(struct rds_info_rdma_connection));
327 }
328
329
330 /*
331  * Early RDS/IB was built to only bind to an address if there is an IPoIB
332  * device with that address set.
333  *
334  * If it were me, I'd advocate for something more flexible.  Sending and
335  * receiving should be device-agnostic.  Transports would try and maintain
336  * connections between peers who have messages queued.  Userspace would be
337  * allowed to influence which paths have priority.  We could call userspace
338  * asserting this policy "routing".
339  */
340 static int rds_ib_laddr_check(struct net *net, __be32 addr)
341 {
342         int ret;
343         struct rdma_cm_id *cm_id;
344         struct sockaddr_in sin;
345
346         /* Create a CMA ID and try to bind it. This catches both
347          * IB and iWARP capable NICs.
348          */
349         cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
350                                NULL, RDMA_PS_TCP, IB_QPT_RC);
351         if (IS_ERR(cm_id))
352                 return PTR_ERR(cm_id);
353
354         memset(&sin, 0, sizeof(sin));
355         sin.sin_family = AF_INET;
356         sin.sin_addr.s_addr = addr;
357
358         /* rdma_bind_addr will only succeed for IB & iWARP devices */
359         ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin);
360         /* due to this, we will claim to support iWARP devices unless we
361            check node_type. */
362         if (ret || !cm_id->device ||
363             cm_id->device->node_type != RDMA_NODE_IB_CA)
364                 ret = -EADDRNOTAVAIL;
365
366         rdsdebug("addr %pI4 ret %d node type %d\n",
367                 &addr, ret,
368                 cm_id->device ? cm_id->device->node_type : -1);
369
370         rdma_destroy_id(cm_id);
371
372         return ret;
373 }
374
375 static void rds_ib_unregister_client(void)
376 {
377         ib_unregister_client(&rds_ib_client);
378         /* wait for rds_ib_dev_free() to complete */
379         flush_workqueue(rds_wq);
380 }
381
382 static void rds_ib_set_unloading(void)
383 {
384         atomic_set(&rds_ib_unloading, 1);
385 }
386
387 static bool rds_ib_is_unloading(struct rds_connection *conn)
388 {
389         struct rds_conn_path *cp = &conn->c_path[0];
390
391         return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
392                 atomic_read(&rds_ib_unloading) != 0);
393 }
394
395 void rds_ib_exit(void)
396 {
397         rds_ib_set_unloading();
398         synchronize_rcu();
399         rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
400         rds_ib_unregister_client();
401         rds_ib_destroy_nodev_conns();
402         rds_ib_sysctl_exit();
403         rds_ib_recv_exit();
404         rds_trans_unregister(&rds_ib_transport);
405         rds_ib_mr_exit();
406 }
407
408 struct rds_transport rds_ib_transport = {
409         .laddr_check            = rds_ib_laddr_check,
410         .xmit_path_complete     = rds_ib_xmit_path_complete,
411         .xmit                   = rds_ib_xmit,
412         .xmit_rdma              = rds_ib_xmit_rdma,
413         .xmit_atomic            = rds_ib_xmit_atomic,
414         .recv_path              = rds_ib_recv_path,
415         .conn_alloc             = rds_ib_conn_alloc,
416         .conn_free              = rds_ib_conn_free,
417         .conn_path_connect      = rds_ib_conn_path_connect,
418         .conn_path_shutdown     = rds_ib_conn_path_shutdown,
419         .inc_copy_to_user       = rds_ib_inc_copy_to_user,
420         .inc_free               = rds_ib_inc_free,
421         .cm_initiate_connect    = rds_ib_cm_initiate_connect,
422         .cm_handle_connect      = rds_ib_cm_handle_connect,
423         .cm_connect_complete    = rds_ib_cm_connect_complete,
424         .stats_info_copy        = rds_ib_stats_info_copy,
425         .exit                   = rds_ib_exit,
426         .get_mr                 = rds_ib_get_mr,
427         .sync_mr                = rds_ib_sync_mr,
428         .free_mr                = rds_ib_free_mr,
429         .flush_mrs              = rds_ib_flush_mrs,
430         .t_owner                = THIS_MODULE,
431         .t_name                 = "infiniband",
432         .t_unloading            = rds_ib_is_unloading,
433         .t_type                 = RDS_TRANS_IB
434 };
435
436 int rds_ib_init(void)
437 {
438         int ret;
439
440         INIT_LIST_HEAD(&rds_ib_devices);
441
442         ret = rds_ib_mr_init();
443         if (ret)
444                 goto out;
445
446         ret = ib_register_client(&rds_ib_client);
447         if (ret)
448                 goto out_mr_exit;
449
450         ret = rds_ib_sysctl_init();
451         if (ret)
452                 goto out_ibreg;
453
454         ret = rds_ib_recv_init();
455         if (ret)
456                 goto out_sysctl;
457
458         rds_trans_register(&rds_ib_transport);
459
460         rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
461
462         goto out;
463
464 out_sysctl:
465         rds_ib_sysctl_exit();
466 out_ibreg:
467         rds_ib_unregister_client();
468 out_mr_exit:
469         rds_ib_mr_exit();
470 out:
471         return ret;
472 }
473
474 MODULE_LICENSE("GPL");
475