Linux 6.9-rc1
[linux-2.6-microblaze.git] / net / openvswitch / actions.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18
19 #include <net/dst.h>
20 #include <net/gso.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28
29 #include "datapath.h"
30 #include "drop.h"
31 #include "flow.h"
32 #include "conntrack.h"
33 #include "vport.h"
34 #include "flow_netlink.h"
35 #include "openvswitch_trace.h"
36
37 struct deferred_action {
38         struct sk_buff *skb;
39         const struct nlattr *actions;
40         int actions_len;
41
42         /* Store pkt_key clone when creating deferred action. */
43         struct sw_flow_key pkt_key;
44 };
45
46 #define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
47 struct ovs_frag_data {
48         unsigned long dst;
49         struct vport *vport;
50         struct ovs_skb_cb cb;
51         __be16 inner_protocol;
52         u16 network_offset;     /* valid only for MPLS */
53         u16 vlan_tci;
54         __be16 vlan_proto;
55         unsigned int l2_len;
56         u8 mac_proto;
57         u8 l2_data[MAX_L2_LEN];
58 };
59
60 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
61
62 #define DEFERRED_ACTION_FIFO_SIZE 10
63 #define OVS_RECURSION_LIMIT 5
64 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
65 struct action_fifo {
66         int head;
67         int tail;
68         /* Deferred action fifo queue storage. */
69         struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70 };
71
72 struct action_flow_keys {
73         struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74 };
75
76 static struct action_fifo __percpu *action_fifos;
77 static struct action_flow_keys __percpu *flow_keys;
78 static DEFINE_PER_CPU(int, exec_actions_level);
79
80 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
81  * space. Return NULL if out of key spaces.
82  */
83 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
84 {
85         struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
86         int level = this_cpu_read(exec_actions_level);
87         struct sw_flow_key *key = NULL;
88
89         if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
90                 key = &keys->key[level - 1];
91                 *key = *key_;
92         }
93
94         return key;
95 }
96
97 static void action_fifo_init(struct action_fifo *fifo)
98 {
99         fifo->head = 0;
100         fifo->tail = 0;
101 }
102
103 static bool action_fifo_is_empty(const struct action_fifo *fifo)
104 {
105         return (fifo->head == fifo->tail);
106 }
107
108 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
109 {
110         if (action_fifo_is_empty(fifo))
111                 return NULL;
112
113         return &fifo->fifo[fifo->tail++];
114 }
115
116 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
117 {
118         if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
119                 return NULL;
120
121         return &fifo->fifo[fifo->head++];
122 }
123
124 /* Return true if fifo is not full */
125 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
126                                     const struct sw_flow_key *key,
127                                     const struct nlattr *actions,
128                                     const int actions_len)
129 {
130         struct action_fifo *fifo;
131         struct deferred_action *da;
132
133         fifo = this_cpu_ptr(action_fifos);
134         da = action_fifo_put(fifo);
135         if (da) {
136                 da->skb = skb;
137                 da->actions = actions;
138                 da->actions_len = actions_len;
139                 da->pkt_key = *key;
140         }
141
142         return da;
143 }
144
145 static void invalidate_flow_key(struct sw_flow_key *key)
146 {
147         key->mac_proto |= SW_FLOW_KEY_INVALID;
148 }
149
150 static bool is_flow_key_valid(const struct sw_flow_key *key)
151 {
152         return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153 }
154
155 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
156                          struct sw_flow_key *key,
157                          u32 recirc_id,
158                          const struct nlattr *actions, int len,
159                          bool last, bool clone_flow_key);
160
161 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
162                               struct sw_flow_key *key,
163                               const struct nlattr *attr, int len);
164
165 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
166                      __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
167 {
168         int err;
169
170         err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
171         if (err)
172                 return err;
173
174         if (!mac_len)
175                 key->mac_proto = MAC_PROTO_NONE;
176
177         invalidate_flow_key(key);
178         return 0;
179 }
180
181 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
182                     const __be16 ethertype)
183 {
184         int err;
185
186         err = skb_mpls_pop(skb, ethertype, skb->mac_len,
187                            ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
188         if (err)
189                 return err;
190
191         if (ethertype == htons(ETH_P_TEB))
192                 key->mac_proto = MAC_PROTO_ETHERNET;
193
194         invalidate_flow_key(key);
195         return 0;
196 }
197
198 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
199                     const __be32 *mpls_lse, const __be32 *mask)
200 {
201         struct mpls_shim_hdr *stack;
202         __be32 lse;
203         int err;
204
205         if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
206                 return -ENOMEM;
207
208         stack = mpls_hdr(skb);
209         lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
210         err = skb_mpls_update_lse(skb, lse);
211         if (err)
212                 return err;
213
214         flow_key->mpls.lse[0] = lse;
215         return 0;
216 }
217
218 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
219 {
220         int err;
221
222         err = skb_vlan_pop(skb);
223         if (skb_vlan_tag_present(skb)) {
224                 invalidate_flow_key(key);
225         } else {
226                 key->eth.vlan.tci = 0;
227                 key->eth.vlan.tpid = 0;
228         }
229         return err;
230 }
231
232 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233                      const struct ovs_action_push_vlan *vlan)
234 {
235         if (skb_vlan_tag_present(skb)) {
236                 invalidate_flow_key(key);
237         } else {
238                 key->eth.vlan.tci = vlan->vlan_tci;
239                 key->eth.vlan.tpid = vlan->vlan_tpid;
240         }
241         return skb_vlan_push(skb, vlan->vlan_tpid,
242                              ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
243 }
244
245 /* 'src' is already properly masked. */
246 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
247 {
248         u16 *dst = (u16 *)dst_;
249         const u16 *src = (const u16 *)src_;
250         const u16 *mask = (const u16 *)mask_;
251
252         OVS_SET_MASKED(dst[0], src[0], mask[0]);
253         OVS_SET_MASKED(dst[1], src[1], mask[1]);
254         OVS_SET_MASKED(dst[2], src[2], mask[2]);
255 }
256
257 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
258                         const struct ovs_key_ethernet *key,
259                         const struct ovs_key_ethernet *mask)
260 {
261         int err;
262
263         err = skb_ensure_writable(skb, ETH_HLEN);
264         if (unlikely(err))
265                 return err;
266
267         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
268
269         ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
270                                mask->eth_src);
271         ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
272                                mask->eth_dst);
273
274         skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275
276         ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
277         ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
278         return 0;
279 }
280
281 /* pop_eth does not support VLAN packets as this action is never called
282  * for them.
283  */
284 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
285 {
286         int err;
287
288         err = skb_eth_pop(skb);
289         if (err)
290                 return err;
291
292         /* safe right before invalidate_flow_key */
293         key->mac_proto = MAC_PROTO_NONE;
294         invalidate_flow_key(key);
295         return 0;
296 }
297
298 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
299                     const struct ovs_action_push_eth *ethh)
300 {
301         int err;
302
303         err = skb_eth_push(skb, ethh->addresses.eth_dst,
304                            ethh->addresses.eth_src);
305         if (err)
306                 return err;
307
308         /* safe right before invalidate_flow_key */
309         key->mac_proto = MAC_PROTO_ETHERNET;
310         invalidate_flow_key(key);
311         return 0;
312 }
313
314 static noinline_for_stack int push_nsh(struct sk_buff *skb,
315                                        struct sw_flow_key *key,
316                                        const struct nlattr *a)
317 {
318         u8 buffer[NSH_HDR_MAX_LEN];
319         struct nshhdr *nh = (struct nshhdr *)buffer;
320         int err;
321
322         err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
323         if (err)
324                 return err;
325
326         err = nsh_push(skb, nh);
327         if (err)
328                 return err;
329
330         /* safe right before invalidate_flow_key */
331         key->mac_proto = MAC_PROTO_NONE;
332         invalidate_flow_key(key);
333         return 0;
334 }
335
336 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
337 {
338         int err;
339
340         err = nsh_pop(skb);
341         if (err)
342                 return err;
343
344         /* safe right before invalidate_flow_key */
345         if (skb->protocol == htons(ETH_P_TEB))
346                 key->mac_proto = MAC_PROTO_ETHERNET;
347         else
348                 key->mac_proto = MAC_PROTO_NONE;
349         invalidate_flow_key(key);
350         return 0;
351 }
352
353 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
354                                   __be32 addr, __be32 new_addr)
355 {
356         int transport_len = skb->len - skb_transport_offset(skb);
357
358         if (nh->frag_off & htons(IP_OFFSET))
359                 return;
360
361         if (nh->protocol == IPPROTO_TCP) {
362                 if (likely(transport_len >= sizeof(struct tcphdr)))
363                         inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
364                                                  addr, new_addr, true);
365         } else if (nh->protocol == IPPROTO_UDP) {
366                 if (likely(transport_len >= sizeof(struct udphdr))) {
367                         struct udphdr *uh = udp_hdr(skb);
368
369                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
370                                 inet_proto_csum_replace4(&uh->check, skb,
371                                                          addr, new_addr, true);
372                                 if (!uh->check)
373                                         uh->check = CSUM_MANGLED_0;
374                         }
375                 }
376         }
377 }
378
379 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
380                         __be32 *addr, __be32 new_addr)
381 {
382         update_ip_l4_checksum(skb, nh, *addr, new_addr);
383         csum_replace4(&nh->check, *addr, new_addr);
384         skb_clear_hash(skb);
385         ovs_ct_clear(skb, NULL);
386         *addr = new_addr;
387 }
388
389 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
390                                  __be32 addr[4], const __be32 new_addr[4])
391 {
392         int transport_len = skb->len - skb_transport_offset(skb);
393
394         if (l4_proto == NEXTHDR_TCP) {
395                 if (likely(transport_len >= sizeof(struct tcphdr)))
396                         inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
397                                                   addr, new_addr, true);
398         } else if (l4_proto == NEXTHDR_UDP) {
399                 if (likely(transport_len >= sizeof(struct udphdr))) {
400                         struct udphdr *uh = udp_hdr(skb);
401
402                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
403                                 inet_proto_csum_replace16(&uh->check, skb,
404                                                           addr, new_addr, true);
405                                 if (!uh->check)
406                                         uh->check = CSUM_MANGLED_0;
407                         }
408                 }
409         } else if (l4_proto == NEXTHDR_ICMP) {
410                 if (likely(transport_len >= sizeof(struct icmp6hdr)))
411                         inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
412                                                   skb, addr, new_addr, true);
413         }
414 }
415
416 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
417                            const __be32 mask[4], __be32 masked[4])
418 {
419         masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
420         masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
421         masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
422         masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
423 }
424
425 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
426                           __be32 addr[4], const __be32 new_addr[4],
427                           bool recalculate_csum)
428 {
429         if (recalculate_csum)
430                 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
431
432         skb_clear_hash(skb);
433         ovs_ct_clear(skb, NULL);
434         memcpy(addr, new_addr, sizeof(__be32[4]));
435 }
436
437 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
438 {
439         u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
440
441         ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
442
443         if (skb->ip_summed == CHECKSUM_COMPLETE)
444                 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
445                              (__force __wsum)(ipv6_tclass << 12));
446
447         ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
448 }
449
450 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
451 {
452         u32 ofl;
453
454         ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
455         fl = OVS_MASKED(ofl, fl, mask);
456
457         /* Bits 21-24 are always unmasked, so this retains their values. */
458         nh->flow_lbl[0] = (u8)(fl >> 16);
459         nh->flow_lbl[1] = (u8)(fl >> 8);
460         nh->flow_lbl[2] = (u8)fl;
461
462         if (skb->ip_summed == CHECKSUM_COMPLETE)
463                 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
464 }
465
466 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
467 {
468         new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
469
470         if (skb->ip_summed == CHECKSUM_COMPLETE)
471                 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
472                              (__force __wsum)(new_ttl << 8));
473         nh->hop_limit = new_ttl;
474 }
475
476 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
477                        u8 mask)
478 {
479         new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
480
481         csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
482         nh->ttl = new_ttl;
483 }
484
485 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
486                     const struct ovs_key_ipv4 *key,
487                     const struct ovs_key_ipv4 *mask)
488 {
489         struct iphdr *nh;
490         __be32 new_addr;
491         int err;
492
493         err = skb_ensure_writable(skb, skb_network_offset(skb) +
494                                   sizeof(struct iphdr));
495         if (unlikely(err))
496                 return err;
497
498         nh = ip_hdr(skb);
499
500         /* Setting an IP addresses is typically only a side effect of
501          * matching on them in the current userspace implementation, so it
502          * makes sense to check if the value actually changed.
503          */
504         if (mask->ipv4_src) {
505                 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
506
507                 if (unlikely(new_addr != nh->saddr)) {
508                         set_ip_addr(skb, nh, &nh->saddr, new_addr);
509                         flow_key->ipv4.addr.src = new_addr;
510                 }
511         }
512         if (mask->ipv4_dst) {
513                 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
514
515                 if (unlikely(new_addr != nh->daddr)) {
516                         set_ip_addr(skb, nh, &nh->daddr, new_addr);
517                         flow_key->ipv4.addr.dst = new_addr;
518                 }
519         }
520         if (mask->ipv4_tos) {
521                 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
522                 flow_key->ip.tos = nh->tos;
523         }
524         if (mask->ipv4_ttl) {
525                 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
526                 flow_key->ip.ttl = nh->ttl;
527         }
528
529         return 0;
530 }
531
532 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
533 {
534         return !!(addr[0] | addr[1] | addr[2] | addr[3]);
535 }
536
537 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
538                     const struct ovs_key_ipv6 *key,
539                     const struct ovs_key_ipv6 *mask)
540 {
541         struct ipv6hdr *nh;
542         int err;
543
544         err = skb_ensure_writable(skb, skb_network_offset(skb) +
545                                   sizeof(struct ipv6hdr));
546         if (unlikely(err))
547                 return err;
548
549         nh = ipv6_hdr(skb);
550
551         /* Setting an IP addresses is typically only a side effect of
552          * matching on them in the current userspace implementation, so it
553          * makes sense to check if the value actually changed.
554          */
555         if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
556                 __be32 *saddr = (__be32 *)&nh->saddr;
557                 __be32 masked[4];
558
559                 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
560
561                 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
562                         set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
563                                       true);
564                         memcpy(&flow_key->ipv6.addr.src, masked,
565                                sizeof(flow_key->ipv6.addr.src));
566                 }
567         }
568         if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
569                 unsigned int offset = 0;
570                 int flags = IP6_FH_F_SKIP_RH;
571                 bool recalc_csum = true;
572                 __be32 *daddr = (__be32 *)&nh->daddr;
573                 __be32 masked[4];
574
575                 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
576
577                 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
578                         if (ipv6_ext_hdr(nh->nexthdr))
579                                 recalc_csum = (ipv6_find_hdr(skb, &offset,
580                                                              NEXTHDR_ROUTING,
581                                                              NULL, &flags)
582                                                != NEXTHDR_ROUTING);
583
584                         set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
585                                       recalc_csum);
586                         memcpy(&flow_key->ipv6.addr.dst, masked,
587                                sizeof(flow_key->ipv6.addr.dst));
588                 }
589         }
590         if (mask->ipv6_tclass) {
591                 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
592                 flow_key->ip.tos = ipv6_get_dsfield(nh);
593         }
594         if (mask->ipv6_label) {
595                 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
596                             ntohl(mask->ipv6_label));
597                 flow_key->ipv6.label =
598                     *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
599         }
600         if (mask->ipv6_hlimit) {
601                 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
602                 flow_key->ip.ttl = nh->hop_limit;
603         }
604         return 0;
605 }
606
607 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
608                    const struct nlattr *a)
609 {
610         struct nshhdr *nh;
611         size_t length;
612         int err;
613         u8 flags;
614         u8 ttl;
615         int i;
616
617         struct ovs_key_nsh key;
618         struct ovs_key_nsh mask;
619
620         err = nsh_key_from_nlattr(a, &key, &mask);
621         if (err)
622                 return err;
623
624         /* Make sure the NSH base header is there */
625         if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
626                 return -ENOMEM;
627
628         nh = nsh_hdr(skb);
629         length = nsh_hdr_len(nh);
630
631         /* Make sure the whole NSH header is there */
632         err = skb_ensure_writable(skb, skb_network_offset(skb) +
633                                        length);
634         if (unlikely(err))
635                 return err;
636
637         nh = nsh_hdr(skb);
638         skb_postpull_rcsum(skb, nh, length);
639         flags = nsh_get_flags(nh);
640         flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
641         flow_key->nsh.base.flags = flags;
642         ttl = nsh_get_ttl(nh);
643         ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
644         flow_key->nsh.base.ttl = ttl;
645         nsh_set_flags_and_ttl(nh, flags, ttl);
646         nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
647                                   mask.base.path_hdr);
648         flow_key->nsh.base.path_hdr = nh->path_hdr;
649         switch (nh->mdtype) {
650         case NSH_M_TYPE1:
651                 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
652                         nh->md1.context[i] =
653                             OVS_MASKED(nh->md1.context[i], key.context[i],
654                                        mask.context[i]);
655                 }
656                 memcpy(flow_key->nsh.context, nh->md1.context,
657                        sizeof(nh->md1.context));
658                 break;
659         case NSH_M_TYPE2:
660                 memset(flow_key->nsh.context, 0,
661                        sizeof(flow_key->nsh.context));
662                 break;
663         default:
664                 return -EINVAL;
665         }
666         skb_postpush_rcsum(skb, nh, length);
667         return 0;
668 }
669
670 /* Must follow skb_ensure_writable() since that can move the skb data. */
671 static void set_tp_port(struct sk_buff *skb, __be16 *port,
672                         __be16 new_port, __sum16 *check)
673 {
674         ovs_ct_clear(skb, NULL);
675         inet_proto_csum_replace2(check, skb, *port, new_port, false);
676         *port = new_port;
677 }
678
679 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
680                    const struct ovs_key_udp *key,
681                    const struct ovs_key_udp *mask)
682 {
683         struct udphdr *uh;
684         __be16 src, dst;
685         int err;
686
687         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
688                                   sizeof(struct udphdr));
689         if (unlikely(err))
690                 return err;
691
692         uh = udp_hdr(skb);
693         /* Either of the masks is non-zero, so do not bother checking them. */
694         src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
695         dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
696
697         if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
698                 if (likely(src != uh->source)) {
699                         set_tp_port(skb, &uh->source, src, &uh->check);
700                         flow_key->tp.src = src;
701                 }
702                 if (likely(dst != uh->dest)) {
703                         set_tp_port(skb, &uh->dest, dst, &uh->check);
704                         flow_key->tp.dst = dst;
705                 }
706
707                 if (unlikely(!uh->check))
708                         uh->check = CSUM_MANGLED_0;
709         } else {
710                 uh->source = src;
711                 uh->dest = dst;
712                 flow_key->tp.src = src;
713                 flow_key->tp.dst = dst;
714                 ovs_ct_clear(skb, NULL);
715         }
716
717         skb_clear_hash(skb);
718
719         return 0;
720 }
721
722 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
723                    const struct ovs_key_tcp *key,
724                    const struct ovs_key_tcp *mask)
725 {
726         struct tcphdr *th;
727         __be16 src, dst;
728         int err;
729
730         err = skb_ensure_writable(skb, skb_transport_offset(skb) +
731                                   sizeof(struct tcphdr));
732         if (unlikely(err))
733                 return err;
734
735         th = tcp_hdr(skb);
736         src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
737         if (likely(src != th->source)) {
738                 set_tp_port(skb, &th->source, src, &th->check);
739                 flow_key->tp.src = src;
740         }
741         dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
742         if (likely(dst != th->dest)) {
743                 set_tp_port(skb, &th->dest, dst, &th->check);
744                 flow_key->tp.dst = dst;
745         }
746         skb_clear_hash(skb);
747
748         return 0;
749 }
750
751 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
752                     const struct ovs_key_sctp *key,
753                     const struct ovs_key_sctp *mask)
754 {
755         unsigned int sctphoff = skb_transport_offset(skb);
756         struct sctphdr *sh;
757         __le32 old_correct_csum, new_csum, old_csum;
758         int err;
759
760         err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
761         if (unlikely(err))
762                 return err;
763
764         sh = sctp_hdr(skb);
765         old_csum = sh->checksum;
766         old_correct_csum = sctp_compute_cksum(skb, sctphoff);
767
768         sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
769         sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
770
771         new_csum = sctp_compute_cksum(skb, sctphoff);
772
773         /* Carry any checksum errors through. */
774         sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
775
776         skb_clear_hash(skb);
777         ovs_ct_clear(skb, NULL);
778
779         flow_key->tp.src = sh->source;
780         flow_key->tp.dst = sh->dest;
781
782         return 0;
783 }
784
785 static int ovs_vport_output(struct net *net, struct sock *sk,
786                             struct sk_buff *skb)
787 {
788         struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
789         struct vport *vport = data->vport;
790
791         if (skb_cow_head(skb, data->l2_len) < 0) {
792                 kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
793                 return -ENOMEM;
794         }
795
796         __skb_dst_copy(skb, data->dst);
797         *OVS_CB(skb) = data->cb;
798         skb->inner_protocol = data->inner_protocol;
799         if (data->vlan_tci & VLAN_CFI_MASK)
800                 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
801         else
802                 __vlan_hwaccel_clear_tag(skb);
803
804         /* Reconstruct the MAC header.  */
805         skb_push(skb, data->l2_len);
806         memcpy(skb->data, &data->l2_data, data->l2_len);
807         skb_postpush_rcsum(skb, skb->data, data->l2_len);
808         skb_reset_mac_header(skb);
809
810         if (eth_p_mpls(skb->protocol)) {
811                 skb->inner_network_header = skb->network_header;
812                 skb_set_network_header(skb, data->network_offset);
813                 skb_reset_mac_len(skb);
814         }
815
816         ovs_vport_send(vport, skb, data->mac_proto);
817         return 0;
818 }
819
820 static unsigned int
821 ovs_dst_get_mtu(const struct dst_entry *dst)
822 {
823         return dst->dev->mtu;
824 }
825
826 static struct dst_ops ovs_dst_ops = {
827         .family = AF_UNSPEC,
828         .mtu = ovs_dst_get_mtu,
829 };
830
831 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
832  * ovs_vport_output(), which is called once per fragmented packet.
833  */
834 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
835                          u16 orig_network_offset, u8 mac_proto)
836 {
837         unsigned int hlen = skb_network_offset(skb);
838         struct ovs_frag_data *data;
839
840         data = this_cpu_ptr(&ovs_frag_data_storage);
841         data->dst = skb->_skb_refdst;
842         data->vport = vport;
843         data->cb = *OVS_CB(skb);
844         data->inner_protocol = skb->inner_protocol;
845         data->network_offset = orig_network_offset;
846         if (skb_vlan_tag_present(skb))
847                 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
848         else
849                 data->vlan_tci = 0;
850         data->vlan_proto = skb->vlan_proto;
851         data->mac_proto = mac_proto;
852         data->l2_len = hlen;
853         memcpy(&data->l2_data, skb->data, hlen);
854
855         memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
856         skb_pull(skb, hlen);
857 }
858
859 static void ovs_fragment(struct net *net, struct vport *vport,
860                          struct sk_buff *skb, u16 mru,
861                          struct sw_flow_key *key)
862 {
863         enum ovs_drop_reason reason;
864         u16 orig_network_offset = 0;
865
866         if (eth_p_mpls(skb->protocol)) {
867                 orig_network_offset = skb_network_offset(skb);
868                 skb->network_header = skb->inner_network_header;
869         }
870
871         if (skb_network_offset(skb) > MAX_L2_LEN) {
872                 OVS_NLERR(1, "L2 header too long to fragment");
873                 reason = OVS_DROP_FRAG_L2_TOO_LONG;
874                 goto err;
875         }
876
877         if (key->eth.type == htons(ETH_P_IP)) {
878                 struct rtable ovs_rt = { 0 };
879                 unsigned long orig_dst;
880
881                 prepare_frag(vport, skb, orig_network_offset,
882                              ovs_key_mac_proto(key));
883                 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
884                          DST_OBSOLETE_NONE, DST_NOCOUNT);
885                 ovs_rt.dst.dev = vport->dev;
886
887                 orig_dst = skb->_skb_refdst;
888                 skb_dst_set_noref(skb, &ovs_rt.dst);
889                 IPCB(skb)->frag_max_size = mru;
890
891                 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
892                 refdst_drop(orig_dst);
893         } else if (key->eth.type == htons(ETH_P_IPV6)) {
894                 unsigned long orig_dst;
895                 struct rt6_info ovs_rt;
896
897                 prepare_frag(vport, skb, orig_network_offset,
898                              ovs_key_mac_proto(key));
899                 memset(&ovs_rt, 0, sizeof(ovs_rt));
900                 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
901                          DST_OBSOLETE_NONE, DST_NOCOUNT);
902                 ovs_rt.dst.dev = vport->dev;
903
904                 orig_dst = skb->_skb_refdst;
905                 skb_dst_set_noref(skb, &ovs_rt.dst);
906                 IP6CB(skb)->frag_max_size = mru;
907
908                 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
909                 refdst_drop(orig_dst);
910         } else {
911                 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
912                           ovs_vport_name(vport), ntohs(key->eth.type), mru,
913                           vport->dev->mtu);
914                 reason = OVS_DROP_FRAG_INVALID_PROTO;
915                 goto err;
916         }
917
918         return;
919 err:
920         ovs_kfree_skb_reason(skb, reason);
921 }
922
923 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
924                       struct sw_flow_key *key)
925 {
926         struct vport *vport = ovs_vport_rcu(dp, out_port);
927
928         if (likely(vport && netif_carrier_ok(vport->dev))) {
929                 u16 mru = OVS_CB(skb)->mru;
930                 u32 cutlen = OVS_CB(skb)->cutlen;
931
932                 if (unlikely(cutlen > 0)) {
933                         if (skb->len - cutlen > ovs_mac_header_len(key))
934                                 pskb_trim(skb, skb->len - cutlen);
935                         else
936                                 pskb_trim(skb, ovs_mac_header_len(key));
937                 }
938
939                 if (likely(!mru ||
940                            (skb->len <= mru + vport->dev->hard_header_len))) {
941                         ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
942                 } else if (mru <= vport->dev->mtu) {
943                         struct net *net = read_pnet(&dp->net);
944
945                         ovs_fragment(net, vport, skb, mru, key);
946                 } else {
947                         kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
948                 }
949         } else {
950                 kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
951         }
952 }
953
954 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
955                             struct sw_flow_key *key, const struct nlattr *attr,
956                             const struct nlattr *actions, int actions_len,
957                             uint32_t cutlen)
958 {
959         struct dp_upcall_info upcall;
960         const struct nlattr *a;
961         int rem;
962
963         memset(&upcall, 0, sizeof(upcall));
964         upcall.cmd = OVS_PACKET_CMD_ACTION;
965         upcall.mru = OVS_CB(skb)->mru;
966
967         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
968              a = nla_next(a, &rem)) {
969                 switch (nla_type(a)) {
970                 case OVS_USERSPACE_ATTR_USERDATA:
971                         upcall.userdata = a;
972                         break;
973
974                 case OVS_USERSPACE_ATTR_PID:
975                         if (dp->user_features &
976                             OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
977                                 upcall.portid =
978                                   ovs_dp_get_upcall_portid(dp,
979                                                            smp_processor_id());
980                         else
981                                 upcall.portid = nla_get_u32(a);
982                         break;
983
984                 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
985                         /* Get out tunnel info. */
986                         struct vport *vport;
987
988                         vport = ovs_vport_rcu(dp, nla_get_u32(a));
989                         if (vport) {
990                                 int err;
991
992                                 err = dev_fill_metadata_dst(vport->dev, skb);
993                                 if (!err)
994                                         upcall.egress_tun_info = skb_tunnel_info(skb);
995                         }
996
997                         break;
998                 }
999
1000                 case OVS_USERSPACE_ATTR_ACTIONS: {
1001                         /* Include actions. */
1002                         upcall.actions = actions;
1003                         upcall.actions_len = actions_len;
1004                         break;
1005                 }
1006
1007                 } /* End of switch. */
1008         }
1009
1010         return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1011 }
1012
1013 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1014                                      struct sw_flow_key *key,
1015                                      const struct nlattr *attr)
1016 {
1017         /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1018         struct nlattr *actions = nla_data(attr);
1019
1020         if (nla_len(actions))
1021                 return clone_execute(dp, skb, key, 0, nla_data(actions),
1022                                      nla_len(actions), true, false);
1023
1024         ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1025         return 0;
1026 }
1027
1028 /* When 'last' is true, sample() should always consume the 'skb'.
1029  * Otherwise, sample() should keep 'skb' intact regardless what
1030  * actions are executed within sample().
1031  */
1032 static int sample(struct datapath *dp, struct sk_buff *skb,
1033                   struct sw_flow_key *key, const struct nlattr *attr,
1034                   bool last)
1035 {
1036         struct nlattr *actions;
1037         struct nlattr *sample_arg;
1038         int rem = nla_len(attr);
1039         const struct sample_arg *arg;
1040         bool clone_flow_key;
1041
1042         /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1043         sample_arg = nla_data(attr);
1044         arg = nla_data(sample_arg);
1045         actions = nla_next(sample_arg, &rem);
1046
1047         if ((arg->probability != U32_MAX) &&
1048             (!arg->probability || get_random_u32() > arg->probability)) {
1049                 if (last)
1050                         ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1051                 return 0;
1052         }
1053
1054         clone_flow_key = !arg->exec;
1055         return clone_execute(dp, skb, key, 0, actions, rem, last,
1056                              clone_flow_key);
1057 }
1058
1059 /* When 'last' is true, clone() should always consume the 'skb'.
1060  * Otherwise, clone() should keep 'skb' intact regardless what
1061  * actions are executed within clone().
1062  */
1063 static int clone(struct datapath *dp, struct sk_buff *skb,
1064                  struct sw_flow_key *key, const struct nlattr *attr,
1065                  bool last)
1066 {
1067         struct nlattr *actions;
1068         struct nlattr *clone_arg;
1069         int rem = nla_len(attr);
1070         bool dont_clone_flow_key;
1071
1072         /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1073         clone_arg = nla_data(attr);
1074         dont_clone_flow_key = nla_get_u32(clone_arg);
1075         actions = nla_next(clone_arg, &rem);
1076
1077         return clone_execute(dp, skb, key, 0, actions, rem, last,
1078                              !dont_clone_flow_key);
1079 }
1080
1081 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1082                          const struct nlattr *attr)
1083 {
1084         struct ovs_action_hash *hash_act = nla_data(attr);
1085         u32 hash = 0;
1086
1087         if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1088                 /* OVS_HASH_ALG_L4 hasing type. */
1089                 hash = skb_get_hash(skb);
1090         } else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1091                 /* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1092                  * extend past an encapsulated header.
1093                  */
1094                 hash = __skb_get_hash_symmetric(skb);
1095         }
1096
1097         hash = jhash_1word(hash, hash_act->hash_basis);
1098         if (!hash)
1099                 hash = 0x1;
1100
1101         key->ovs_flow_hash = hash;
1102 }
1103
1104 static int execute_set_action(struct sk_buff *skb,
1105                               struct sw_flow_key *flow_key,
1106                               const struct nlattr *a)
1107 {
1108         /* Only tunnel set execution is supported without a mask. */
1109         if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1110                 struct ovs_tunnel_info *tun = nla_data(a);
1111
1112                 skb_dst_drop(skb);
1113                 dst_hold((struct dst_entry *)tun->tun_dst);
1114                 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1115                 return 0;
1116         }
1117
1118         return -EINVAL;
1119 }
1120
1121 /* Mask is at the midpoint of the data. */
1122 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1123
1124 static int execute_masked_set_action(struct sk_buff *skb,
1125                                      struct sw_flow_key *flow_key,
1126                                      const struct nlattr *a)
1127 {
1128         int err = 0;
1129
1130         switch (nla_type(a)) {
1131         case OVS_KEY_ATTR_PRIORITY:
1132                 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1133                                *get_mask(a, u32 *));
1134                 flow_key->phy.priority = skb->priority;
1135                 break;
1136
1137         case OVS_KEY_ATTR_SKB_MARK:
1138                 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1139                 flow_key->phy.skb_mark = skb->mark;
1140                 break;
1141
1142         case OVS_KEY_ATTR_TUNNEL_INFO:
1143                 /* Masked data not supported for tunnel. */
1144                 err = -EINVAL;
1145                 break;
1146
1147         case OVS_KEY_ATTR_ETHERNET:
1148                 err = set_eth_addr(skb, flow_key, nla_data(a),
1149                                    get_mask(a, struct ovs_key_ethernet *));
1150                 break;
1151
1152         case OVS_KEY_ATTR_NSH:
1153                 err = set_nsh(skb, flow_key, a);
1154                 break;
1155
1156         case OVS_KEY_ATTR_IPV4:
1157                 err = set_ipv4(skb, flow_key, nla_data(a),
1158                                get_mask(a, struct ovs_key_ipv4 *));
1159                 break;
1160
1161         case OVS_KEY_ATTR_IPV6:
1162                 err = set_ipv6(skb, flow_key, nla_data(a),
1163                                get_mask(a, struct ovs_key_ipv6 *));
1164                 break;
1165
1166         case OVS_KEY_ATTR_TCP:
1167                 err = set_tcp(skb, flow_key, nla_data(a),
1168                               get_mask(a, struct ovs_key_tcp *));
1169                 break;
1170
1171         case OVS_KEY_ATTR_UDP:
1172                 err = set_udp(skb, flow_key, nla_data(a),
1173                               get_mask(a, struct ovs_key_udp *));
1174                 break;
1175
1176         case OVS_KEY_ATTR_SCTP:
1177                 err = set_sctp(skb, flow_key, nla_data(a),
1178                                get_mask(a, struct ovs_key_sctp *));
1179                 break;
1180
1181         case OVS_KEY_ATTR_MPLS:
1182                 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1183                                                                     __be32 *));
1184                 break;
1185
1186         case OVS_KEY_ATTR_CT_STATE:
1187         case OVS_KEY_ATTR_CT_ZONE:
1188         case OVS_KEY_ATTR_CT_MARK:
1189         case OVS_KEY_ATTR_CT_LABELS:
1190         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1191         case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1192                 err = -EINVAL;
1193                 break;
1194         }
1195
1196         return err;
1197 }
1198
1199 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1200                           struct sw_flow_key *key,
1201                           const struct nlattr *a, bool last)
1202 {
1203         u32 recirc_id;
1204
1205         if (!is_flow_key_valid(key)) {
1206                 int err;
1207
1208                 err = ovs_flow_key_update(skb, key);
1209                 if (err)
1210                         return err;
1211         }
1212         BUG_ON(!is_flow_key_valid(key));
1213
1214         recirc_id = nla_get_u32(a);
1215         return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1216 }
1217
1218 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1219                                  struct sw_flow_key *key,
1220                                  const struct nlattr *attr, bool last)
1221 {
1222         struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1223         const struct nlattr *actions, *cpl_arg;
1224         int len, max_len, rem = nla_len(attr);
1225         const struct check_pkt_len_arg *arg;
1226         bool clone_flow_key;
1227
1228         /* The first netlink attribute in 'attr' is always
1229          * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1230          */
1231         cpl_arg = nla_data(attr);
1232         arg = nla_data(cpl_arg);
1233
1234         len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1235         max_len = arg->pkt_len;
1236
1237         if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1238             len <= max_len) {
1239                 /* Second netlink attribute in 'attr' is always
1240                  * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1241                  */
1242                 actions = nla_next(cpl_arg, &rem);
1243                 clone_flow_key = !arg->exec_for_lesser_equal;
1244         } else {
1245                 /* Third netlink attribute in 'attr' is always
1246                  * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1247                  */
1248                 actions = nla_next(cpl_arg, &rem);
1249                 actions = nla_next(actions, &rem);
1250                 clone_flow_key = !arg->exec_for_greater;
1251         }
1252
1253         return clone_execute(dp, skb, key, 0, nla_data(actions),
1254                              nla_len(actions), last, clone_flow_key);
1255 }
1256
1257 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1258 {
1259         int err;
1260
1261         if (skb->protocol == htons(ETH_P_IPV6)) {
1262                 struct ipv6hdr *nh;
1263
1264                 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1265                                           sizeof(*nh));
1266                 if (unlikely(err))
1267                         return err;
1268
1269                 nh = ipv6_hdr(skb);
1270
1271                 if (nh->hop_limit <= 1)
1272                         return -EHOSTUNREACH;
1273
1274                 key->ip.ttl = --nh->hop_limit;
1275         } else if (skb->protocol == htons(ETH_P_IP)) {
1276                 struct iphdr *nh;
1277                 u8 old_ttl;
1278
1279                 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1280                                           sizeof(*nh));
1281                 if (unlikely(err))
1282                         return err;
1283
1284                 nh = ip_hdr(skb);
1285                 if (nh->ttl <= 1)
1286                         return -EHOSTUNREACH;
1287
1288                 old_ttl = nh->ttl--;
1289                 csum_replace2(&nh->check, htons(old_ttl << 8),
1290                               htons(nh->ttl << 8));
1291                 key->ip.ttl = nh->ttl;
1292         }
1293         return 0;
1294 }
1295
1296 /* Execute a list of actions against 'skb'. */
1297 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1298                               struct sw_flow_key *key,
1299                               const struct nlattr *attr, int len)
1300 {
1301         const struct nlattr *a;
1302         int rem;
1303
1304         for (a = attr, rem = len; rem > 0;
1305              a = nla_next(a, &rem)) {
1306                 int err = 0;
1307
1308                 if (trace_ovs_do_execute_action_enabled())
1309                         trace_ovs_do_execute_action(dp, skb, key, a, rem);
1310
1311                 /* Actions that rightfully have to consume the skb should do it
1312                  * and return directly.
1313                  */
1314                 switch (nla_type(a)) {
1315                 case OVS_ACTION_ATTR_OUTPUT: {
1316                         int port = nla_get_u32(a);
1317                         struct sk_buff *clone;
1318
1319                         /* Every output action needs a separate clone
1320                          * of 'skb', In case the output action is the
1321                          * last action, cloning can be avoided.
1322                          */
1323                         if (nla_is_last(a, rem)) {
1324                                 do_output(dp, skb, port, key);
1325                                 /* 'skb' has been used for output.
1326                                  */
1327                                 return 0;
1328                         }
1329
1330                         clone = skb_clone(skb, GFP_ATOMIC);
1331                         if (clone)
1332                                 do_output(dp, clone, port, key);
1333                         OVS_CB(skb)->cutlen = 0;
1334                         break;
1335                 }
1336
1337                 case OVS_ACTION_ATTR_TRUNC: {
1338                         struct ovs_action_trunc *trunc = nla_data(a);
1339
1340                         if (skb->len > trunc->max_len)
1341                                 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1342                         break;
1343                 }
1344
1345                 case OVS_ACTION_ATTR_USERSPACE:
1346                         output_userspace(dp, skb, key, a, attr,
1347                                                      len, OVS_CB(skb)->cutlen);
1348                         OVS_CB(skb)->cutlen = 0;
1349                         if (nla_is_last(a, rem)) {
1350                                 consume_skb(skb);
1351                                 return 0;
1352                         }
1353                         break;
1354
1355                 case OVS_ACTION_ATTR_HASH:
1356                         execute_hash(skb, key, a);
1357                         break;
1358
1359                 case OVS_ACTION_ATTR_PUSH_MPLS: {
1360                         struct ovs_action_push_mpls *mpls = nla_data(a);
1361
1362                         err = push_mpls(skb, key, mpls->mpls_lse,
1363                                         mpls->mpls_ethertype, skb->mac_len);
1364                         break;
1365                 }
1366                 case OVS_ACTION_ATTR_ADD_MPLS: {
1367                         struct ovs_action_add_mpls *mpls = nla_data(a);
1368                         __u16 mac_len = 0;
1369
1370                         if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1371                                 mac_len = skb->mac_len;
1372
1373                         err = push_mpls(skb, key, mpls->mpls_lse,
1374                                         mpls->mpls_ethertype, mac_len);
1375                         break;
1376                 }
1377                 case OVS_ACTION_ATTR_POP_MPLS:
1378                         err = pop_mpls(skb, key, nla_get_be16(a));
1379                         break;
1380
1381                 case OVS_ACTION_ATTR_PUSH_VLAN:
1382                         err = push_vlan(skb, key, nla_data(a));
1383                         break;
1384
1385                 case OVS_ACTION_ATTR_POP_VLAN:
1386                         err = pop_vlan(skb, key);
1387                         break;
1388
1389                 case OVS_ACTION_ATTR_RECIRC: {
1390                         bool last = nla_is_last(a, rem);
1391
1392                         err = execute_recirc(dp, skb, key, a, last);
1393                         if (last) {
1394                                 /* If this is the last action, the skb has
1395                                  * been consumed or freed.
1396                                  * Return immediately.
1397                                  */
1398                                 return err;
1399                         }
1400                         break;
1401                 }
1402
1403                 case OVS_ACTION_ATTR_SET:
1404                         err = execute_set_action(skb, key, nla_data(a));
1405                         break;
1406
1407                 case OVS_ACTION_ATTR_SET_MASKED:
1408                 case OVS_ACTION_ATTR_SET_TO_MASKED:
1409                         err = execute_masked_set_action(skb, key, nla_data(a));
1410                         break;
1411
1412                 case OVS_ACTION_ATTR_SAMPLE: {
1413                         bool last = nla_is_last(a, rem);
1414
1415                         err = sample(dp, skb, key, a, last);
1416                         if (last)
1417                                 return err;
1418
1419                         break;
1420                 }
1421
1422                 case OVS_ACTION_ATTR_CT:
1423                         if (!is_flow_key_valid(key)) {
1424                                 err = ovs_flow_key_update(skb, key);
1425                                 if (err)
1426                                         return err;
1427                         }
1428
1429                         err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1430                                              nla_data(a));
1431
1432                         /* Hide stolen IP fragments from user space. */
1433                         if (err)
1434                                 return err == -EINPROGRESS ? 0 : err;
1435                         break;
1436
1437                 case OVS_ACTION_ATTR_CT_CLEAR:
1438                         err = ovs_ct_clear(skb, key);
1439                         break;
1440
1441                 case OVS_ACTION_ATTR_PUSH_ETH:
1442                         err = push_eth(skb, key, nla_data(a));
1443                         break;
1444
1445                 case OVS_ACTION_ATTR_POP_ETH:
1446                         err = pop_eth(skb, key);
1447                         break;
1448
1449                 case OVS_ACTION_ATTR_PUSH_NSH:
1450                         err = push_nsh(skb, key, nla_data(a));
1451                         break;
1452
1453                 case OVS_ACTION_ATTR_POP_NSH:
1454                         err = pop_nsh(skb, key);
1455                         break;
1456
1457                 case OVS_ACTION_ATTR_METER:
1458                         if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1459                                 ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1460                                 return 0;
1461                         }
1462                         break;
1463
1464                 case OVS_ACTION_ATTR_CLONE: {
1465                         bool last = nla_is_last(a, rem);
1466
1467                         err = clone(dp, skb, key, a, last);
1468                         if (last)
1469                                 return err;
1470
1471                         break;
1472                 }
1473
1474                 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1475                         bool last = nla_is_last(a, rem);
1476
1477                         err = execute_check_pkt_len(dp, skb, key, a, last);
1478                         if (last)
1479                                 return err;
1480
1481                         break;
1482                 }
1483
1484                 case OVS_ACTION_ATTR_DEC_TTL:
1485                         err = execute_dec_ttl(skb, key);
1486                         if (err == -EHOSTUNREACH)
1487                                 return dec_ttl_exception_handler(dp, skb,
1488                                                                  key, a);
1489                         break;
1490
1491                 case OVS_ACTION_ATTR_DROP: {
1492                         enum ovs_drop_reason reason = nla_get_u32(a)
1493                                 ? OVS_DROP_EXPLICIT_WITH_ERROR
1494                                 : OVS_DROP_EXPLICIT;
1495
1496                         ovs_kfree_skb_reason(skb, reason);
1497                         return 0;
1498                 }
1499                 }
1500
1501                 if (unlikely(err)) {
1502                         ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1503                         return err;
1504                 }
1505         }
1506
1507         ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1508         return 0;
1509 }
1510
1511 /* Execute the actions on the clone of the packet. The effect of the
1512  * execution does not affect the original 'skb' nor the original 'key'.
1513  *
1514  * The execution may be deferred in case the actions can not be executed
1515  * immediately.
1516  */
1517 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1518                          struct sw_flow_key *key, u32 recirc_id,
1519                          const struct nlattr *actions, int len,
1520                          bool last, bool clone_flow_key)
1521 {
1522         struct deferred_action *da;
1523         struct sw_flow_key *clone;
1524
1525         skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1526         if (!skb) {
1527                 /* Out of memory, skip this action.
1528                  */
1529                 return 0;
1530         }
1531
1532         /* When clone_flow_key is false, the 'key' will not be change
1533          * by the actions, then the 'key' can be used directly.
1534          * Otherwise, try to clone key from the next recursion level of
1535          * 'flow_keys'. If clone is successful, execute the actions
1536          * without deferring.
1537          */
1538         clone = clone_flow_key ? clone_key(key) : key;
1539         if (clone) {
1540                 int err = 0;
1541
1542                 if (actions) { /* Sample action */
1543                         if (clone_flow_key)
1544                                 __this_cpu_inc(exec_actions_level);
1545
1546                         err = do_execute_actions(dp, skb, clone,
1547                                                  actions, len);
1548
1549                         if (clone_flow_key)
1550                                 __this_cpu_dec(exec_actions_level);
1551                 } else { /* Recirc action */
1552                         clone->recirc_id = recirc_id;
1553                         ovs_dp_process_packet(skb, clone);
1554                 }
1555                 return err;
1556         }
1557
1558         /* Out of 'flow_keys' space. Defer actions */
1559         da = add_deferred_actions(skb, key, actions, len);
1560         if (da) {
1561                 if (!actions) { /* Recirc action */
1562                         key = &da->pkt_key;
1563                         key->recirc_id = recirc_id;
1564                 }
1565         } else {
1566                 /* Out of per CPU action FIFO space. Drop the 'skb' and
1567                  * log an error.
1568                  */
1569                 ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1570
1571                 if (net_ratelimit()) {
1572                         if (actions) { /* Sample action */
1573                                 pr_warn("%s: deferred action limit reached, drop sample action\n",
1574                                         ovs_dp_name(dp));
1575                         } else {  /* Recirc action */
1576                                 pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1577                                         ovs_dp_name(dp), recirc_id);
1578                         }
1579                 }
1580         }
1581         return 0;
1582 }
1583
1584 static void process_deferred_actions(struct datapath *dp)
1585 {
1586         struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1587
1588         /* Do not touch the FIFO in case there is no deferred actions. */
1589         if (action_fifo_is_empty(fifo))
1590                 return;
1591
1592         /* Finishing executing all deferred actions. */
1593         do {
1594                 struct deferred_action *da = action_fifo_get(fifo);
1595                 struct sk_buff *skb = da->skb;
1596                 struct sw_flow_key *key = &da->pkt_key;
1597                 const struct nlattr *actions = da->actions;
1598                 int actions_len = da->actions_len;
1599
1600                 if (actions)
1601                         do_execute_actions(dp, skb, key, actions, actions_len);
1602                 else
1603                         ovs_dp_process_packet(skb, key);
1604         } while (!action_fifo_is_empty(fifo));
1605
1606         /* Reset FIFO for the next packet.  */
1607         action_fifo_init(fifo);
1608 }
1609
1610 /* Execute a list of actions against 'skb'. */
1611 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1612                         const struct sw_flow_actions *acts,
1613                         struct sw_flow_key *key)
1614 {
1615         int err, level;
1616
1617         level = __this_cpu_inc_return(exec_actions_level);
1618         if (unlikely(level > OVS_RECURSION_LIMIT)) {
1619                 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1620                                      ovs_dp_name(dp));
1621                 ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1622                 err = -ENETDOWN;
1623                 goto out;
1624         }
1625
1626         OVS_CB(skb)->acts_origlen = acts->orig_len;
1627         err = do_execute_actions(dp, skb, key,
1628                                  acts->actions, acts->actions_len);
1629
1630         if (level == 1)
1631                 process_deferred_actions(dp);
1632
1633 out:
1634         __this_cpu_dec(exec_actions_level);
1635         return err;
1636 }
1637
1638 int action_fifos_init(void)
1639 {
1640         action_fifos = alloc_percpu(struct action_fifo);
1641         if (!action_fifos)
1642                 return -ENOMEM;
1643
1644         flow_keys = alloc_percpu(struct action_flow_keys);
1645         if (!flow_keys) {
1646                 free_percpu(action_fifos);
1647                 return -ENOMEM;
1648         }
1649
1650         return 0;
1651 }
1652
1653 void action_fifos_exit(void)
1654 {
1655         free_percpu(action_fifos);
1656         free_percpu(flow_keys);
1657 }