Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-microblaze.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter.  This is separated from,
2    but required by, the NAT layer; it can also be used by an iptables
3    extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #define NF_CONNTRACK_VERSION    "0.5.0"
60
61 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
62                                       enum nf_nat_manip_type manip,
63                                       const struct nlattr *attr) __read_mostly;
64 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
65
66 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
67 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
68
69 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
70 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
71
72 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
73 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
74
75 struct conntrack_gc_work {
76         struct delayed_work     dwork;
77         u32                     last_bucket;
78         bool                    exiting;
79         long                    next_gc_run;
80 };
81
82 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
83 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
84 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
85 static __read_mostly bool nf_conntrack_locks_all;
86
87 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
88 #define GC_MAX_BUCKETS_DIV      64u
89 /* upper bound of scan intervals */
90 #define GC_INTERVAL_MAX         (2 * HZ)
91 /* maximum conntracks to evict per gc run */
92 #define GC_MAX_EVICTS           256u
93
94 static struct conntrack_gc_work conntrack_gc_work;
95
96 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
97 {
98         spin_lock(lock);
99         while (unlikely(nf_conntrack_locks_all)) {
100                 spin_unlock(lock);
101
102                 /*
103                  * Order the 'nf_conntrack_locks_all' load vs. the
104                  * spin_unlock_wait() loads below, to ensure
105                  * that 'nf_conntrack_locks_all_lock' is indeed held:
106                  */
107                 smp_rmb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
108                 spin_unlock_wait(&nf_conntrack_locks_all_lock);
109                 spin_lock(lock);
110         }
111 }
112 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
113
114 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
115 {
116         h1 %= CONNTRACK_LOCKS;
117         h2 %= CONNTRACK_LOCKS;
118         spin_unlock(&nf_conntrack_locks[h1]);
119         if (h1 != h2)
120                 spin_unlock(&nf_conntrack_locks[h2]);
121 }
122
123 /* return true if we need to recompute hashes (in case hash table was resized) */
124 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
125                                      unsigned int h2, unsigned int sequence)
126 {
127         h1 %= CONNTRACK_LOCKS;
128         h2 %= CONNTRACK_LOCKS;
129         if (h1 <= h2) {
130                 nf_conntrack_lock(&nf_conntrack_locks[h1]);
131                 if (h1 != h2)
132                         spin_lock_nested(&nf_conntrack_locks[h2],
133                                          SINGLE_DEPTH_NESTING);
134         } else {
135                 nf_conntrack_lock(&nf_conntrack_locks[h2]);
136                 spin_lock_nested(&nf_conntrack_locks[h1],
137                                  SINGLE_DEPTH_NESTING);
138         }
139         if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
140                 nf_conntrack_double_unlock(h1, h2);
141                 return true;
142         }
143         return false;
144 }
145
146 static void nf_conntrack_all_lock(void)
147 {
148         int i;
149
150         spin_lock(&nf_conntrack_locks_all_lock);
151         nf_conntrack_locks_all = true;
152
153         /*
154          * Order the above store of 'nf_conntrack_locks_all' against
155          * the spin_unlock_wait() loads below, such that if
156          * nf_conntrack_lock() observes 'nf_conntrack_locks_all'
157          * we must observe nf_conntrack_locks[] held:
158          */
159         smp_mb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
160
161         for (i = 0; i < CONNTRACK_LOCKS; i++) {
162                 spin_unlock_wait(&nf_conntrack_locks[i]);
163         }
164 }
165
166 static void nf_conntrack_all_unlock(void)
167 {
168         /*
169          * All prior stores must be complete before we clear
170          * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
171          * might observe the false value but not the entire
172          * critical section:
173          */
174         smp_store_release(&nf_conntrack_locks_all, false);
175         spin_unlock(&nf_conntrack_locks_all_lock);
176 }
177
178 unsigned int nf_conntrack_htable_size __read_mostly;
179 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
180
181 unsigned int nf_conntrack_max __read_mostly;
182 seqcount_t nf_conntrack_generation __read_mostly;
183
184 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
185 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
186
187 static unsigned int nf_conntrack_hash_rnd __read_mostly;
188
189 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
190                               const struct net *net)
191 {
192         unsigned int n;
193         u32 seed;
194
195         get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
196
197         /* The direction must be ignored, so we hash everything up to the
198          * destination ports (which is a multiple of 4) and treat the last
199          * three bytes manually.
200          */
201         seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
202         n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
203         return jhash2((u32 *)tuple, n, seed ^
204                       (((__force __u16)tuple->dst.u.all << 16) |
205                       tuple->dst.protonum));
206 }
207
208 static u32 scale_hash(u32 hash)
209 {
210         return reciprocal_scale(hash, nf_conntrack_htable_size);
211 }
212
213 static u32 __hash_conntrack(const struct net *net,
214                             const struct nf_conntrack_tuple *tuple,
215                             unsigned int size)
216 {
217         return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
218 }
219
220 static u32 hash_conntrack(const struct net *net,
221                           const struct nf_conntrack_tuple *tuple)
222 {
223         return scale_hash(hash_conntrack_raw(tuple, net));
224 }
225
226 bool
227 nf_ct_get_tuple(const struct sk_buff *skb,
228                 unsigned int nhoff,
229                 unsigned int dataoff,
230                 u_int16_t l3num,
231                 u_int8_t protonum,
232                 struct net *net,
233                 struct nf_conntrack_tuple *tuple,
234                 const struct nf_conntrack_l3proto *l3proto,
235                 const struct nf_conntrack_l4proto *l4proto)
236 {
237         memset(tuple, 0, sizeof(*tuple));
238
239         tuple->src.l3num = l3num;
240         if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
241                 return false;
242
243         tuple->dst.protonum = protonum;
244         tuple->dst.dir = IP_CT_DIR_ORIGINAL;
245
246         return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
247 }
248 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
249
250 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
251                        u_int16_t l3num,
252                        struct net *net, struct nf_conntrack_tuple *tuple)
253 {
254         struct nf_conntrack_l3proto *l3proto;
255         struct nf_conntrack_l4proto *l4proto;
256         unsigned int protoff;
257         u_int8_t protonum;
258         int ret;
259
260         rcu_read_lock();
261
262         l3proto = __nf_ct_l3proto_find(l3num);
263         ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
264         if (ret != NF_ACCEPT) {
265                 rcu_read_unlock();
266                 return false;
267         }
268
269         l4proto = __nf_ct_l4proto_find(l3num, protonum);
270
271         ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
272                               l3proto, l4proto);
273
274         rcu_read_unlock();
275         return ret;
276 }
277 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
278
279 bool
280 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
281                    const struct nf_conntrack_tuple *orig,
282                    const struct nf_conntrack_l3proto *l3proto,
283                    const struct nf_conntrack_l4proto *l4proto)
284 {
285         memset(inverse, 0, sizeof(*inverse));
286
287         inverse->src.l3num = orig->src.l3num;
288         if (l3proto->invert_tuple(inverse, orig) == 0)
289                 return false;
290
291         inverse->dst.dir = !orig->dst.dir;
292
293         inverse->dst.protonum = orig->dst.protonum;
294         return l4proto->invert_tuple(inverse, orig);
295 }
296 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
297
298 static void
299 clean_from_lists(struct nf_conn *ct)
300 {
301         pr_debug("clean_from_lists(%p)\n", ct);
302         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
303         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
304
305         /* Destroy all pending expectations */
306         nf_ct_remove_expectations(ct);
307 }
308
309 /* must be called with local_bh_disable */
310 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
311 {
312         struct ct_pcpu *pcpu;
313
314         /* add this conntrack to the (per cpu) dying list */
315         ct->cpu = smp_processor_id();
316         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
317
318         spin_lock(&pcpu->lock);
319         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
320                              &pcpu->dying);
321         spin_unlock(&pcpu->lock);
322 }
323
324 /* must be called with local_bh_disable */
325 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
326 {
327         struct ct_pcpu *pcpu;
328
329         /* add this conntrack to the (per cpu) unconfirmed list */
330         ct->cpu = smp_processor_id();
331         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
332
333         spin_lock(&pcpu->lock);
334         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
335                              &pcpu->unconfirmed);
336         spin_unlock(&pcpu->lock);
337 }
338
339 /* must be called with local_bh_disable */
340 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
341 {
342         struct ct_pcpu *pcpu;
343
344         /* We overload first tuple to link into unconfirmed or dying list.*/
345         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
346
347         spin_lock(&pcpu->lock);
348         BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
349         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
350         spin_unlock(&pcpu->lock);
351 }
352
353 /* Released via destroy_conntrack() */
354 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
355                                  const struct nf_conntrack_zone *zone,
356                                  gfp_t flags)
357 {
358         struct nf_conn *tmpl;
359
360         tmpl = kzalloc(sizeof(*tmpl), flags);
361         if (tmpl == NULL)
362                 return NULL;
363
364         tmpl->status = IPS_TEMPLATE;
365         write_pnet(&tmpl->ct_net, net);
366         nf_ct_zone_add(tmpl, zone);
367         atomic_set(&tmpl->ct_general.use, 0);
368
369         return tmpl;
370 }
371 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
372
373 void nf_ct_tmpl_free(struct nf_conn *tmpl)
374 {
375         nf_ct_ext_destroy(tmpl);
376         nf_ct_ext_free(tmpl);
377         kfree(tmpl);
378 }
379 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
380
381 static void
382 destroy_conntrack(struct nf_conntrack *nfct)
383 {
384         struct nf_conn *ct = (struct nf_conn *)nfct;
385         struct nf_conntrack_l4proto *l4proto;
386
387         pr_debug("destroy_conntrack(%p)\n", ct);
388         NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
389
390         if (unlikely(nf_ct_is_template(ct))) {
391                 nf_ct_tmpl_free(ct);
392                 return;
393         }
394         rcu_read_lock();
395         l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
396         if (l4proto->destroy)
397                 l4proto->destroy(ct);
398
399         rcu_read_unlock();
400
401         local_bh_disable();
402         /* Expectations will have been removed in clean_from_lists,
403          * except TFTP can create an expectation on the first packet,
404          * before connection is in the list, so we need to clean here,
405          * too.
406          */
407         nf_ct_remove_expectations(ct);
408
409         nf_ct_del_from_dying_or_unconfirmed_list(ct);
410
411         local_bh_enable();
412
413         if (ct->master)
414                 nf_ct_put(ct->master);
415
416         pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
417         nf_conntrack_free(ct);
418 }
419
420 static void nf_ct_delete_from_lists(struct nf_conn *ct)
421 {
422         struct net *net = nf_ct_net(ct);
423         unsigned int hash, reply_hash;
424         unsigned int sequence;
425
426         nf_ct_helper_destroy(ct);
427
428         local_bh_disable();
429         do {
430                 sequence = read_seqcount_begin(&nf_conntrack_generation);
431                 hash = hash_conntrack(net,
432                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
433                 reply_hash = hash_conntrack(net,
434                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
435         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
436
437         clean_from_lists(ct);
438         nf_conntrack_double_unlock(hash, reply_hash);
439
440         nf_ct_add_to_dying_list(ct);
441
442         local_bh_enable();
443 }
444
445 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
446 {
447         struct nf_conn_tstamp *tstamp;
448
449         if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
450                 return false;
451
452         tstamp = nf_conn_tstamp_find(ct);
453         if (tstamp && tstamp->stop == 0)
454                 tstamp->stop = ktime_get_real_ns();
455
456         if (nf_conntrack_event_report(IPCT_DESTROY, ct,
457                                     portid, report) < 0) {
458                 /* destroy event was not delivered. nf_ct_put will
459                  * be done by event cache worker on redelivery.
460                  */
461                 nf_ct_delete_from_lists(ct);
462                 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
463                 return false;
464         }
465
466         nf_conntrack_ecache_work(nf_ct_net(ct));
467         nf_ct_delete_from_lists(ct);
468         nf_ct_put(ct);
469         return true;
470 }
471 EXPORT_SYMBOL_GPL(nf_ct_delete);
472
473 static inline bool
474 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
475                 const struct nf_conntrack_tuple *tuple,
476                 const struct nf_conntrack_zone *zone,
477                 const struct net *net)
478 {
479         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
480
481         /* A conntrack can be recreated with the equal tuple,
482          * so we need to check that the conntrack is confirmed
483          */
484         return nf_ct_tuple_equal(tuple, &h->tuple) &&
485                nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
486                nf_ct_is_confirmed(ct) &&
487                net_eq(net, nf_ct_net(ct));
488 }
489
490 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
491 static void nf_ct_gc_expired(struct nf_conn *ct)
492 {
493         if (!atomic_inc_not_zero(&ct->ct_general.use))
494                 return;
495
496         if (nf_ct_should_gc(ct))
497                 nf_ct_kill(ct);
498
499         nf_ct_put(ct);
500 }
501
502 /*
503  * Warning :
504  * - Caller must take a reference on returned object
505  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
506  */
507 static struct nf_conntrack_tuple_hash *
508 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
509                       const struct nf_conntrack_tuple *tuple, u32 hash)
510 {
511         struct nf_conntrack_tuple_hash *h;
512         struct hlist_nulls_head *ct_hash;
513         struct hlist_nulls_node *n;
514         unsigned int bucket, hsize;
515
516 begin:
517         nf_conntrack_get_ht(&ct_hash, &hsize);
518         bucket = reciprocal_scale(hash, hsize);
519
520         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
521                 struct nf_conn *ct;
522
523                 ct = nf_ct_tuplehash_to_ctrack(h);
524                 if (nf_ct_is_expired(ct)) {
525                         nf_ct_gc_expired(ct);
526                         continue;
527                 }
528
529                 if (nf_ct_is_dying(ct))
530                         continue;
531
532                 if (nf_ct_key_equal(h, tuple, zone, net))
533                         return h;
534         }
535         /*
536          * if the nulls value we got at the end of this lookup is
537          * not the expected one, we must restart lookup.
538          * We probably met an item that was moved to another chain.
539          */
540         if (get_nulls_value(n) != bucket) {
541                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
542                 goto begin;
543         }
544
545         return NULL;
546 }
547
548 /* Find a connection corresponding to a tuple. */
549 static struct nf_conntrack_tuple_hash *
550 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
551                         const struct nf_conntrack_tuple *tuple, u32 hash)
552 {
553         struct nf_conntrack_tuple_hash *h;
554         struct nf_conn *ct;
555
556         rcu_read_lock();
557 begin:
558         h = ____nf_conntrack_find(net, zone, tuple, hash);
559         if (h) {
560                 ct = nf_ct_tuplehash_to_ctrack(h);
561                 if (unlikely(nf_ct_is_dying(ct) ||
562                              !atomic_inc_not_zero(&ct->ct_general.use)))
563                         h = NULL;
564                 else {
565                         if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
566                                 nf_ct_put(ct);
567                                 goto begin;
568                         }
569                 }
570         }
571         rcu_read_unlock();
572
573         return h;
574 }
575
576 struct nf_conntrack_tuple_hash *
577 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
578                       const struct nf_conntrack_tuple *tuple)
579 {
580         return __nf_conntrack_find_get(net, zone, tuple,
581                                        hash_conntrack_raw(tuple, net));
582 }
583 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
584
585 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
586                                        unsigned int hash,
587                                        unsigned int reply_hash)
588 {
589         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
590                            &nf_conntrack_hash[hash]);
591         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
592                            &nf_conntrack_hash[reply_hash]);
593 }
594
595 int
596 nf_conntrack_hash_check_insert(struct nf_conn *ct)
597 {
598         const struct nf_conntrack_zone *zone;
599         struct net *net = nf_ct_net(ct);
600         unsigned int hash, reply_hash;
601         struct nf_conntrack_tuple_hash *h;
602         struct hlist_nulls_node *n;
603         unsigned int sequence;
604
605         zone = nf_ct_zone(ct);
606
607         local_bh_disable();
608         do {
609                 sequence = read_seqcount_begin(&nf_conntrack_generation);
610                 hash = hash_conntrack(net,
611                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
612                 reply_hash = hash_conntrack(net,
613                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
614         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
615
616         /* See if there's one in the list already, including reverse */
617         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
618                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
619                                     zone, net))
620                         goto out;
621
622         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
623                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
624                                     zone, net))
625                         goto out;
626
627         smp_wmb();
628         /* The caller holds a reference to this object */
629         atomic_set(&ct->ct_general.use, 2);
630         __nf_conntrack_hash_insert(ct, hash, reply_hash);
631         nf_conntrack_double_unlock(hash, reply_hash);
632         NF_CT_STAT_INC(net, insert);
633         local_bh_enable();
634         return 0;
635
636 out:
637         nf_conntrack_double_unlock(hash, reply_hash);
638         NF_CT_STAT_INC(net, insert_failed);
639         local_bh_enable();
640         return -EEXIST;
641 }
642 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
643
644 static inline void nf_ct_acct_update(struct nf_conn *ct,
645                                      enum ip_conntrack_info ctinfo,
646                                      unsigned int len)
647 {
648         struct nf_conn_acct *acct;
649
650         acct = nf_conn_acct_find(ct);
651         if (acct) {
652                 struct nf_conn_counter *counter = acct->counter;
653
654                 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
655                 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
656         }
657 }
658
659 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
660                              const struct nf_conn *loser_ct)
661 {
662         struct nf_conn_acct *acct;
663
664         acct = nf_conn_acct_find(loser_ct);
665         if (acct) {
666                 struct nf_conn_counter *counter = acct->counter;
667                 unsigned int bytes;
668
669                 /* u32 should be fine since we must have seen one packet. */
670                 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
671                 nf_ct_acct_update(ct, ctinfo, bytes);
672         }
673 }
674
675 /* Resolve race on insertion if this protocol allows this. */
676 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
677                                enum ip_conntrack_info ctinfo,
678                                struct nf_conntrack_tuple_hash *h)
679 {
680         /* This is the conntrack entry already in hashes that won race. */
681         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
682         struct nf_conntrack_l4proto *l4proto;
683
684         l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
685         if (l4proto->allow_clash &&
686             !nfct_nat(ct) &&
687             !nf_ct_is_dying(ct) &&
688             atomic_inc_not_zero(&ct->ct_general.use)) {
689                 nf_ct_acct_merge(ct, ctinfo, (struct nf_conn *)skb->nfct);
690                 nf_conntrack_put(skb->nfct);
691                 /* Assign conntrack already in hashes to this skbuff. Don't
692                  * modify skb->nfctinfo to ensure consistent stateful filtering.
693                  */
694                 skb->nfct = &ct->ct_general;
695                 return NF_ACCEPT;
696         }
697         NF_CT_STAT_INC(net, drop);
698         return NF_DROP;
699 }
700
701 /* Confirm a connection given skb; places it in hash table */
702 int
703 __nf_conntrack_confirm(struct sk_buff *skb)
704 {
705         const struct nf_conntrack_zone *zone;
706         unsigned int hash, reply_hash;
707         struct nf_conntrack_tuple_hash *h;
708         struct nf_conn *ct;
709         struct nf_conn_help *help;
710         struct nf_conn_tstamp *tstamp;
711         struct hlist_nulls_node *n;
712         enum ip_conntrack_info ctinfo;
713         struct net *net;
714         unsigned int sequence;
715         int ret = NF_DROP;
716
717         ct = nf_ct_get(skb, &ctinfo);
718         net = nf_ct_net(ct);
719
720         /* ipt_REJECT uses nf_conntrack_attach to attach related
721            ICMP/TCP RST packets in other direction.  Actual packet
722            which created connection will be IP_CT_NEW or for an
723            expected connection, IP_CT_RELATED. */
724         if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
725                 return NF_ACCEPT;
726
727         zone = nf_ct_zone(ct);
728         local_bh_disable();
729
730         do {
731                 sequence = read_seqcount_begin(&nf_conntrack_generation);
732                 /* reuse the hash saved before */
733                 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
734                 hash = scale_hash(hash);
735                 reply_hash = hash_conntrack(net,
736                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
737
738         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
739
740         /* We're not in hash table, and we refuse to set up related
741          * connections for unconfirmed conns.  But packet copies and
742          * REJECT will give spurious warnings here.
743          */
744         /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
745
746         /* No external references means no one else could have
747          * confirmed us.
748          */
749         NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
750         pr_debug("Confirming conntrack %p\n", ct);
751         /* We have to check the DYING flag after unlink to prevent
752          * a race against nf_ct_get_next_corpse() possibly called from
753          * user context, else we insert an already 'dead' hash, blocking
754          * further use of that particular connection -JM.
755          */
756         nf_ct_del_from_dying_or_unconfirmed_list(ct);
757
758         if (unlikely(nf_ct_is_dying(ct))) {
759                 nf_ct_add_to_dying_list(ct);
760                 goto dying;
761         }
762
763         /* See if there's one in the list already, including reverse:
764            NAT could have grabbed it without realizing, since we're
765            not in the hash.  If there is, we lost race. */
766         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
767                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
768                                     zone, net))
769                         goto out;
770
771         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
772                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
773                                     zone, net))
774                         goto out;
775
776         /* Timer relative to confirmation time, not original
777            setting time, otherwise we'd get timer wrap in
778            weird delay cases. */
779         ct->timeout += nfct_time_stamp;
780         atomic_inc(&ct->ct_general.use);
781         ct->status |= IPS_CONFIRMED;
782
783         /* set conntrack timestamp, if enabled. */
784         tstamp = nf_conn_tstamp_find(ct);
785         if (tstamp) {
786                 if (skb->tstamp.tv64 == 0)
787                         __net_timestamp(skb);
788
789                 tstamp->start = ktime_to_ns(skb->tstamp);
790         }
791         /* Since the lookup is lockless, hash insertion must be done after
792          * starting the timer and setting the CONFIRMED bit. The RCU barriers
793          * guarantee that no other CPU can find the conntrack before the above
794          * stores are visible.
795          */
796         __nf_conntrack_hash_insert(ct, hash, reply_hash);
797         nf_conntrack_double_unlock(hash, reply_hash);
798         local_bh_enable();
799
800         help = nfct_help(ct);
801         if (help && help->helper)
802                 nf_conntrack_event_cache(IPCT_HELPER, ct);
803
804         nf_conntrack_event_cache(master_ct(ct) ?
805                                  IPCT_RELATED : IPCT_NEW, ct);
806         return NF_ACCEPT;
807
808 out:
809         nf_ct_add_to_dying_list(ct);
810         ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
811 dying:
812         nf_conntrack_double_unlock(hash, reply_hash);
813         NF_CT_STAT_INC(net, insert_failed);
814         local_bh_enable();
815         return ret;
816 }
817 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
818
819 /* Returns true if a connection correspondings to the tuple (required
820    for NAT). */
821 int
822 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
823                          const struct nf_conn *ignored_conntrack)
824 {
825         struct net *net = nf_ct_net(ignored_conntrack);
826         const struct nf_conntrack_zone *zone;
827         struct nf_conntrack_tuple_hash *h;
828         struct hlist_nulls_head *ct_hash;
829         unsigned int hash, hsize;
830         struct hlist_nulls_node *n;
831         struct nf_conn *ct;
832
833         zone = nf_ct_zone(ignored_conntrack);
834
835         rcu_read_lock();
836  begin:
837         nf_conntrack_get_ht(&ct_hash, &hsize);
838         hash = __hash_conntrack(net, tuple, hsize);
839
840         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
841                 ct = nf_ct_tuplehash_to_ctrack(h);
842
843                 if (ct == ignored_conntrack)
844                         continue;
845
846                 if (nf_ct_is_expired(ct)) {
847                         nf_ct_gc_expired(ct);
848                         continue;
849                 }
850
851                 if (nf_ct_key_equal(h, tuple, zone, net)) {
852                         NF_CT_STAT_INC_ATOMIC(net, found);
853                         rcu_read_unlock();
854                         return 1;
855                 }
856         }
857
858         if (get_nulls_value(n) != hash) {
859                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
860                 goto begin;
861         }
862
863         rcu_read_unlock();
864
865         return 0;
866 }
867 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
868
869 #define NF_CT_EVICTION_RANGE    8
870
871 /* There's a small race here where we may free a just-assured
872    connection.  Too bad: we're in trouble anyway. */
873 static unsigned int early_drop_list(struct net *net,
874                                     struct hlist_nulls_head *head)
875 {
876         struct nf_conntrack_tuple_hash *h;
877         struct hlist_nulls_node *n;
878         unsigned int drops = 0;
879         struct nf_conn *tmp;
880
881         hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
882                 tmp = nf_ct_tuplehash_to_ctrack(h);
883
884                 if (nf_ct_is_expired(tmp)) {
885                         nf_ct_gc_expired(tmp);
886                         continue;
887                 }
888
889                 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
890                     !net_eq(nf_ct_net(tmp), net) ||
891                     nf_ct_is_dying(tmp))
892                         continue;
893
894                 if (!atomic_inc_not_zero(&tmp->ct_general.use))
895                         continue;
896
897                 /* kill only if still in same netns -- might have moved due to
898                  * SLAB_DESTROY_BY_RCU rules.
899                  *
900                  * We steal the timer reference.  If that fails timer has
901                  * already fired or someone else deleted it. Just drop ref
902                  * and move to next entry.
903                  */
904                 if (net_eq(nf_ct_net(tmp), net) &&
905                     nf_ct_is_confirmed(tmp) &&
906                     nf_ct_delete(tmp, 0, 0))
907                         drops++;
908
909                 nf_ct_put(tmp);
910         }
911
912         return drops;
913 }
914
915 static noinline int early_drop(struct net *net, unsigned int _hash)
916 {
917         unsigned int i;
918
919         for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
920                 struct hlist_nulls_head *ct_hash;
921                 unsigned int hash, hsize, drops;
922
923                 rcu_read_lock();
924                 nf_conntrack_get_ht(&ct_hash, &hsize);
925                 hash = reciprocal_scale(_hash++, hsize);
926
927                 drops = early_drop_list(net, &ct_hash[hash]);
928                 rcu_read_unlock();
929
930                 if (drops) {
931                         NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
932                         return true;
933                 }
934         }
935
936         return false;
937 }
938
939 static void gc_worker(struct work_struct *work)
940 {
941         unsigned int i, goal, buckets = 0, expired_count = 0;
942         struct conntrack_gc_work *gc_work;
943         unsigned int ratio, scanned = 0;
944         unsigned long next_run;
945
946         gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
947
948         goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
949         i = gc_work->last_bucket;
950
951         do {
952                 struct nf_conntrack_tuple_hash *h;
953                 struct hlist_nulls_head *ct_hash;
954                 struct hlist_nulls_node *n;
955                 unsigned int hashsz;
956                 struct nf_conn *tmp;
957
958                 i++;
959                 rcu_read_lock();
960
961                 nf_conntrack_get_ht(&ct_hash, &hashsz);
962                 if (i >= hashsz)
963                         i = 0;
964
965                 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
966                         tmp = nf_ct_tuplehash_to_ctrack(h);
967
968                         scanned++;
969                         if (nf_ct_is_expired(tmp)) {
970                                 nf_ct_gc_expired(tmp);
971                                 expired_count++;
972                                 continue;
973                         }
974                 }
975
976                 /* could check get_nulls_value() here and restart if ct
977                  * was moved to another chain.  But given gc is best-effort
978                  * we will just continue with next hash slot.
979                  */
980                 rcu_read_unlock();
981                 cond_resched_rcu_qs();
982         } while (++buckets < goal &&
983                  expired_count < GC_MAX_EVICTS);
984
985         if (gc_work->exiting)
986                 return;
987
988         /*
989          * Eviction will normally happen from the packet path, and not
990          * from this gc worker.
991          *
992          * This worker is only here to reap expired entries when system went
993          * idle after a busy period.
994          *
995          * The heuristics below are supposed to balance conflicting goals:
996          *
997          * 1. Minimize time until we notice a stale entry
998          * 2. Maximize scan intervals to not waste cycles
999          *
1000          * Normally, expired_count will be 0, this increases the next_run time
1001          * to priorize 2) above.
1002          *
1003          * As soon as a timed-out entry is found, move towards 1) and increase
1004          * the scan frequency.
1005          * In case we have lots of evictions next scan is done immediately.
1006          */
1007         ratio = scanned ? expired_count * 100 / scanned : 0;
1008         if (ratio >= 90 || expired_count == GC_MAX_EVICTS) {
1009                 gc_work->next_gc_run = 0;
1010                 next_run = 0;
1011         } else if (expired_count) {
1012                 gc_work->next_gc_run /= 2U;
1013                 next_run = msecs_to_jiffies(1);
1014         } else {
1015                 if (gc_work->next_gc_run < GC_INTERVAL_MAX)
1016                         gc_work->next_gc_run += msecs_to_jiffies(1);
1017
1018                 next_run = gc_work->next_gc_run;
1019         }
1020
1021         gc_work->last_bucket = i;
1022         queue_delayed_work(system_long_wq, &gc_work->dwork, next_run);
1023 }
1024
1025 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1026 {
1027         INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1028         gc_work->next_gc_run = GC_INTERVAL_MAX;
1029         gc_work->exiting = false;
1030 }
1031
1032 static struct nf_conn *
1033 __nf_conntrack_alloc(struct net *net,
1034                      const struct nf_conntrack_zone *zone,
1035                      const struct nf_conntrack_tuple *orig,
1036                      const struct nf_conntrack_tuple *repl,
1037                      gfp_t gfp, u32 hash)
1038 {
1039         struct nf_conn *ct;
1040
1041         /* We don't want any race condition at early drop stage */
1042         atomic_inc(&net->ct.count);
1043
1044         if (nf_conntrack_max &&
1045             unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1046                 if (!early_drop(net, hash)) {
1047                         atomic_dec(&net->ct.count);
1048                         net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1049                         return ERR_PTR(-ENOMEM);
1050                 }
1051         }
1052
1053         /*
1054          * Do not use kmem_cache_zalloc(), as this cache uses
1055          * SLAB_DESTROY_BY_RCU.
1056          */
1057         ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1058         if (ct == NULL)
1059                 goto out;
1060
1061         spin_lock_init(&ct->lock);
1062         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1063         ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1064         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1065         /* save hash for reusing when confirming */
1066         *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1067         ct->status = 0;
1068         write_pnet(&ct->ct_net, net);
1069         memset(&ct->__nfct_init_offset[0], 0,
1070                offsetof(struct nf_conn, proto) -
1071                offsetof(struct nf_conn, __nfct_init_offset[0]));
1072
1073         nf_ct_zone_add(ct, zone);
1074
1075         /* Because we use RCU lookups, we set ct_general.use to zero before
1076          * this is inserted in any list.
1077          */
1078         atomic_set(&ct->ct_general.use, 0);
1079         return ct;
1080 out:
1081         atomic_dec(&net->ct.count);
1082         return ERR_PTR(-ENOMEM);
1083 }
1084
1085 struct nf_conn *nf_conntrack_alloc(struct net *net,
1086                                    const struct nf_conntrack_zone *zone,
1087                                    const struct nf_conntrack_tuple *orig,
1088                                    const struct nf_conntrack_tuple *repl,
1089                                    gfp_t gfp)
1090 {
1091         return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1092 }
1093 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1094
1095 void nf_conntrack_free(struct nf_conn *ct)
1096 {
1097         struct net *net = nf_ct_net(ct);
1098
1099         /* A freed object has refcnt == 0, that's
1100          * the golden rule for SLAB_DESTROY_BY_RCU
1101          */
1102         NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
1103
1104         nf_ct_ext_destroy(ct);
1105         nf_ct_ext_free(ct);
1106         kmem_cache_free(nf_conntrack_cachep, ct);
1107         smp_mb__before_atomic();
1108         atomic_dec(&net->ct.count);
1109 }
1110 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1111
1112
1113 /* Allocate a new conntrack: we return -ENOMEM if classification
1114    failed due to stress.  Otherwise it really is unclassifiable. */
1115 static struct nf_conntrack_tuple_hash *
1116 init_conntrack(struct net *net, struct nf_conn *tmpl,
1117                const struct nf_conntrack_tuple *tuple,
1118                struct nf_conntrack_l3proto *l3proto,
1119                struct nf_conntrack_l4proto *l4proto,
1120                struct sk_buff *skb,
1121                unsigned int dataoff, u32 hash)
1122 {
1123         struct nf_conn *ct;
1124         struct nf_conn_help *help;
1125         struct nf_conntrack_tuple repl_tuple;
1126         struct nf_conntrack_ecache *ecache;
1127         struct nf_conntrack_expect *exp = NULL;
1128         const struct nf_conntrack_zone *zone;
1129         struct nf_conn_timeout *timeout_ext;
1130         struct nf_conntrack_zone tmp;
1131         unsigned int *timeouts;
1132
1133         if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1134                 pr_debug("Can't invert tuple.\n");
1135                 return NULL;
1136         }
1137
1138         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1139         ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1140                                   hash);
1141         if (IS_ERR(ct))
1142                 return (struct nf_conntrack_tuple_hash *)ct;
1143
1144         if (!nf_ct_add_synproxy(ct, tmpl)) {
1145                 nf_conntrack_free(ct);
1146                 return ERR_PTR(-ENOMEM);
1147         }
1148
1149         timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1150         if (timeout_ext) {
1151                 timeouts = nf_ct_timeout_data(timeout_ext);
1152                 if (unlikely(!timeouts))
1153                         timeouts = l4proto->get_timeouts(net);
1154         } else {
1155                 timeouts = l4proto->get_timeouts(net);
1156         }
1157
1158         if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1159                 nf_conntrack_free(ct);
1160                 pr_debug("can't track with proto module\n");
1161                 return NULL;
1162         }
1163
1164         if (timeout_ext)
1165                 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1166                                       GFP_ATOMIC);
1167
1168         nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1169         nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1170         nf_ct_labels_ext_add(ct);
1171
1172         ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1173         nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1174                                  ecache ? ecache->expmask : 0,
1175                              GFP_ATOMIC);
1176
1177         local_bh_disable();
1178         if (net->ct.expect_count) {
1179                 spin_lock(&nf_conntrack_expect_lock);
1180                 exp = nf_ct_find_expectation(net, zone, tuple);
1181                 if (exp) {
1182                         pr_debug("expectation arrives ct=%p exp=%p\n",
1183                                  ct, exp);
1184                         /* Welcome, Mr. Bond.  We've been expecting you... */
1185                         __set_bit(IPS_EXPECTED_BIT, &ct->status);
1186                         /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1187                         ct->master = exp->master;
1188                         if (exp->helper) {
1189                                 help = nf_ct_helper_ext_add(ct, exp->helper,
1190                                                             GFP_ATOMIC);
1191                                 if (help)
1192                                         rcu_assign_pointer(help->helper, exp->helper);
1193                         }
1194
1195 #ifdef CONFIG_NF_CONNTRACK_MARK
1196                         ct->mark = exp->master->mark;
1197 #endif
1198 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1199                         ct->secmark = exp->master->secmark;
1200 #endif
1201                         NF_CT_STAT_INC(net, expect_new);
1202                 }
1203                 spin_unlock(&nf_conntrack_expect_lock);
1204         }
1205         if (!exp)
1206                 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1207
1208         /* Now it is inserted into the unconfirmed list, bump refcount */
1209         nf_conntrack_get(&ct->ct_general);
1210         nf_ct_add_to_unconfirmed_list(ct);
1211
1212         local_bh_enable();
1213
1214         if (exp) {
1215                 if (exp->expectfn)
1216                         exp->expectfn(ct, exp);
1217                 nf_ct_expect_put(exp);
1218         }
1219
1220         return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1221 }
1222
1223 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1224 static inline struct nf_conn *
1225 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1226                   struct sk_buff *skb,
1227                   unsigned int dataoff,
1228                   u_int16_t l3num,
1229                   u_int8_t protonum,
1230                   struct nf_conntrack_l3proto *l3proto,
1231                   struct nf_conntrack_l4proto *l4proto,
1232                   int *set_reply,
1233                   enum ip_conntrack_info *ctinfo)
1234 {
1235         const struct nf_conntrack_zone *zone;
1236         struct nf_conntrack_tuple tuple;
1237         struct nf_conntrack_tuple_hash *h;
1238         struct nf_conntrack_zone tmp;
1239         struct nf_conn *ct;
1240         u32 hash;
1241
1242         if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1243                              dataoff, l3num, protonum, net, &tuple, l3proto,
1244                              l4proto)) {
1245                 pr_debug("Can't get tuple\n");
1246                 return NULL;
1247         }
1248
1249         /* look for tuple match */
1250         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1251         hash = hash_conntrack_raw(&tuple, net);
1252         h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1253         if (!h) {
1254                 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1255                                    skb, dataoff, hash);
1256                 if (!h)
1257                         return NULL;
1258                 if (IS_ERR(h))
1259                         return (void *)h;
1260         }
1261         ct = nf_ct_tuplehash_to_ctrack(h);
1262
1263         /* It exists; we have (non-exclusive) reference. */
1264         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1265                 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1266                 /* Please set reply bit if this packet OK */
1267                 *set_reply = 1;
1268         } else {
1269                 /* Once we've had two way comms, always ESTABLISHED. */
1270                 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1271                         pr_debug("normal packet for %p\n", ct);
1272                         *ctinfo = IP_CT_ESTABLISHED;
1273                 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1274                         pr_debug("related packet for %p\n", ct);
1275                         *ctinfo = IP_CT_RELATED;
1276                 } else {
1277                         pr_debug("new packet for %p\n", ct);
1278                         *ctinfo = IP_CT_NEW;
1279                 }
1280                 *set_reply = 0;
1281         }
1282         skb->nfct = &ct->ct_general;
1283         skb->nfctinfo = *ctinfo;
1284         return ct;
1285 }
1286
1287 unsigned int
1288 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1289                 struct sk_buff *skb)
1290 {
1291         struct nf_conn *ct, *tmpl = NULL;
1292         enum ip_conntrack_info ctinfo;
1293         struct nf_conntrack_l3proto *l3proto;
1294         struct nf_conntrack_l4proto *l4proto;
1295         unsigned int *timeouts;
1296         unsigned int dataoff;
1297         u_int8_t protonum;
1298         int set_reply = 0;
1299         int ret;
1300
1301         if (skb->nfct) {
1302                 /* Previously seen (loopback or untracked)?  Ignore. */
1303                 tmpl = (struct nf_conn *)skb->nfct;
1304                 if (!nf_ct_is_template(tmpl)) {
1305                         NF_CT_STAT_INC_ATOMIC(net, ignore);
1306                         return NF_ACCEPT;
1307                 }
1308                 skb->nfct = NULL;
1309         }
1310
1311         /* rcu_read_lock()ed by nf_hook_thresh */
1312         l3proto = __nf_ct_l3proto_find(pf);
1313         ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1314                                    &dataoff, &protonum);
1315         if (ret <= 0) {
1316                 pr_debug("not prepared to track yet or error occurred\n");
1317                 NF_CT_STAT_INC_ATOMIC(net, error);
1318                 NF_CT_STAT_INC_ATOMIC(net, invalid);
1319                 ret = -ret;
1320                 goto out;
1321         }
1322
1323         l4proto = __nf_ct_l4proto_find(pf, protonum);
1324
1325         /* It may be an special packet, error, unclean...
1326          * inverse of the return code tells to the netfilter
1327          * core what to do with the packet. */
1328         if (l4proto->error != NULL) {
1329                 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1330                                      pf, hooknum);
1331                 if (ret <= 0) {
1332                         NF_CT_STAT_INC_ATOMIC(net, error);
1333                         NF_CT_STAT_INC_ATOMIC(net, invalid);
1334                         ret = -ret;
1335                         goto out;
1336                 }
1337                 /* ICMP[v6] protocol trackers may assign one conntrack. */
1338                 if (skb->nfct)
1339                         goto out;
1340         }
1341 repeat:
1342         ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1343                                l3proto, l4proto, &set_reply, &ctinfo);
1344         if (!ct) {
1345                 /* Not valid part of a connection */
1346                 NF_CT_STAT_INC_ATOMIC(net, invalid);
1347                 ret = NF_ACCEPT;
1348                 goto out;
1349         }
1350
1351         if (IS_ERR(ct)) {
1352                 /* Too stressed to deal. */
1353                 NF_CT_STAT_INC_ATOMIC(net, drop);
1354                 ret = NF_DROP;
1355                 goto out;
1356         }
1357
1358         NF_CT_ASSERT(skb->nfct);
1359
1360         /* Decide what timeout policy we want to apply to this flow. */
1361         timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1362
1363         ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1364         if (ret <= 0) {
1365                 /* Invalid: inverse of the return code tells
1366                  * the netfilter core what to do */
1367                 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1368                 nf_conntrack_put(skb->nfct);
1369                 skb->nfct = NULL;
1370                 NF_CT_STAT_INC_ATOMIC(net, invalid);
1371                 if (ret == -NF_DROP)
1372                         NF_CT_STAT_INC_ATOMIC(net, drop);
1373                 /* Special case: TCP tracker reports an attempt to reopen a
1374                  * closed/aborted connection. We have to go back and create a
1375                  * fresh conntrack.
1376                  */
1377                 if (ret == -NF_REPEAT)
1378                         goto repeat;
1379                 ret = -ret;
1380                 goto out;
1381         }
1382
1383         if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1384                 nf_conntrack_event_cache(IPCT_REPLY, ct);
1385 out:
1386         if (tmpl)
1387                 nf_ct_put(tmpl);
1388
1389         return ret;
1390 }
1391 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1392
1393 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1394                           const struct nf_conntrack_tuple *orig)
1395 {
1396         bool ret;
1397
1398         rcu_read_lock();
1399         ret = nf_ct_invert_tuple(inverse, orig,
1400                                  __nf_ct_l3proto_find(orig->src.l3num),
1401                                  __nf_ct_l4proto_find(orig->src.l3num,
1402                                                       orig->dst.protonum));
1403         rcu_read_unlock();
1404         return ret;
1405 }
1406 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1407
1408 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1409    implicitly racy: see __nf_conntrack_confirm */
1410 void nf_conntrack_alter_reply(struct nf_conn *ct,
1411                               const struct nf_conntrack_tuple *newreply)
1412 {
1413         struct nf_conn_help *help = nfct_help(ct);
1414
1415         /* Should be unconfirmed, so not in hash table yet */
1416         NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1417
1418         pr_debug("Altering reply tuple of %p to ", ct);
1419         nf_ct_dump_tuple(newreply);
1420
1421         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1422         if (ct->master || (help && !hlist_empty(&help->expectations)))
1423                 return;
1424
1425         rcu_read_lock();
1426         __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1427         rcu_read_unlock();
1428 }
1429 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1430
1431 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1432 void __nf_ct_refresh_acct(struct nf_conn *ct,
1433                           enum ip_conntrack_info ctinfo,
1434                           const struct sk_buff *skb,
1435                           unsigned long extra_jiffies,
1436                           int do_acct)
1437 {
1438         NF_CT_ASSERT(skb);
1439
1440         /* Only update if this is not a fixed timeout */
1441         if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1442                 goto acct;
1443
1444         /* If not in hash table, timer will not be active yet */
1445         if (nf_ct_is_confirmed(ct))
1446                 extra_jiffies += nfct_time_stamp;
1447
1448         ct->timeout = extra_jiffies;
1449 acct:
1450         if (do_acct)
1451                 nf_ct_acct_update(ct, ctinfo, skb->len);
1452 }
1453 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1454
1455 bool nf_ct_kill_acct(struct nf_conn *ct,
1456                      enum ip_conntrack_info ctinfo,
1457                      const struct sk_buff *skb)
1458 {
1459         nf_ct_acct_update(ct, ctinfo, skb->len);
1460
1461         return nf_ct_delete(ct, 0, 0);
1462 }
1463 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1464
1465 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1466
1467 #include <linux/netfilter/nfnetlink.h>
1468 #include <linux/netfilter/nfnetlink_conntrack.h>
1469 #include <linux/mutex.h>
1470
1471 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1472  * in ip_conntrack_core, since we don't want the protocols to autoload
1473  * or depend on ctnetlink */
1474 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1475                                const struct nf_conntrack_tuple *tuple)
1476 {
1477         if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1478             nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1479                 goto nla_put_failure;
1480         return 0;
1481
1482 nla_put_failure:
1483         return -1;
1484 }
1485 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1486
1487 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1488         [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1489         [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1490 };
1491 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1492
1493 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1494                                struct nf_conntrack_tuple *t)
1495 {
1496         if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1497                 return -EINVAL;
1498
1499         t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1500         t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1501
1502         return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1505
1506 int nf_ct_port_nlattr_tuple_size(void)
1507 {
1508         return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1509 }
1510 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1511 #endif
1512
1513 /* Used by ipt_REJECT and ip6t_REJECT. */
1514 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1515 {
1516         struct nf_conn *ct;
1517         enum ip_conntrack_info ctinfo;
1518
1519         /* This ICMP is in reverse direction to the packet which caused it */
1520         ct = nf_ct_get(skb, &ctinfo);
1521         if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1522                 ctinfo = IP_CT_RELATED_REPLY;
1523         else
1524                 ctinfo = IP_CT_RELATED;
1525
1526         /* Attach to new skbuff, and increment count */
1527         nskb->nfct = &ct->ct_general;
1528         nskb->nfctinfo = ctinfo;
1529         nf_conntrack_get(nskb->nfct);
1530 }
1531
1532 /* Bring out ya dead! */
1533 static struct nf_conn *
1534 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1535                 void *data, unsigned int *bucket)
1536 {
1537         struct nf_conntrack_tuple_hash *h;
1538         struct nf_conn *ct;
1539         struct hlist_nulls_node *n;
1540         int cpu;
1541         spinlock_t *lockp;
1542
1543         for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1544                 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1545                 local_bh_disable();
1546                 nf_conntrack_lock(lockp);
1547                 if (*bucket < nf_conntrack_htable_size) {
1548                         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1549                                 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1550                                         continue;
1551                                 ct = nf_ct_tuplehash_to_ctrack(h);
1552                                 if (net_eq(nf_ct_net(ct), net) &&
1553                                     iter(ct, data))
1554                                         goto found;
1555                         }
1556                 }
1557                 spin_unlock(lockp);
1558                 local_bh_enable();
1559                 cond_resched();
1560         }
1561
1562         for_each_possible_cpu(cpu) {
1563                 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1564
1565                 spin_lock_bh(&pcpu->lock);
1566                 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1567                         ct = nf_ct_tuplehash_to_ctrack(h);
1568                         if (iter(ct, data))
1569                                 set_bit(IPS_DYING_BIT, &ct->status);
1570                 }
1571                 spin_unlock_bh(&pcpu->lock);
1572                 cond_resched();
1573         }
1574         return NULL;
1575 found:
1576         atomic_inc(&ct->ct_general.use);
1577         spin_unlock(lockp);
1578         local_bh_enable();
1579         return ct;
1580 }
1581
1582 void nf_ct_iterate_cleanup(struct net *net,
1583                            int (*iter)(struct nf_conn *i, void *data),
1584                            void *data, u32 portid, int report)
1585 {
1586         struct nf_conn *ct;
1587         unsigned int bucket = 0;
1588
1589         might_sleep();
1590
1591         if (atomic_read(&net->ct.count) == 0)
1592                 return;
1593
1594         while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1595                 /* Time to push up daises... */
1596
1597                 nf_ct_delete(ct, portid, report);
1598                 nf_ct_put(ct);
1599                 cond_resched();
1600         }
1601 }
1602 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1603
1604 static int kill_all(struct nf_conn *i, void *data)
1605 {
1606         return 1;
1607 }
1608
1609 void nf_ct_free_hashtable(void *hash, unsigned int size)
1610 {
1611         if (is_vmalloc_addr(hash))
1612                 vfree(hash);
1613         else
1614                 free_pages((unsigned long)hash,
1615                            get_order(sizeof(struct hlist_head) * size));
1616 }
1617 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1618
1619 static int untrack_refs(void)
1620 {
1621         int cnt = 0, cpu;
1622
1623         for_each_possible_cpu(cpu) {
1624                 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1625
1626                 cnt += atomic_read(&ct->ct_general.use) - 1;
1627         }
1628         return cnt;
1629 }
1630
1631 void nf_conntrack_cleanup_start(void)
1632 {
1633         conntrack_gc_work.exiting = true;
1634         RCU_INIT_POINTER(ip_ct_attach, NULL);
1635 }
1636
1637 void nf_conntrack_cleanup_end(void)
1638 {
1639         RCU_INIT_POINTER(nf_ct_destroy, NULL);
1640         while (untrack_refs() > 0)
1641                 schedule();
1642
1643         cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1644         nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1645
1646         nf_conntrack_proto_fini();
1647         nf_conntrack_seqadj_fini();
1648         nf_conntrack_labels_fini();
1649         nf_conntrack_helper_fini();
1650         nf_conntrack_timeout_fini();
1651         nf_conntrack_ecache_fini();
1652         nf_conntrack_tstamp_fini();
1653         nf_conntrack_acct_fini();
1654         nf_conntrack_expect_fini();
1655
1656         kmem_cache_destroy(nf_conntrack_cachep);
1657 }
1658
1659 /*
1660  * Mishearing the voices in his head, our hero wonders how he's
1661  * supposed to kill the mall.
1662  */
1663 void nf_conntrack_cleanup_net(struct net *net)
1664 {
1665         LIST_HEAD(single);
1666
1667         list_add(&net->exit_list, &single);
1668         nf_conntrack_cleanup_net_list(&single);
1669 }
1670
1671 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1672 {
1673         int busy;
1674         struct net *net;
1675
1676         /*
1677          * This makes sure all current packets have passed through
1678          *  netfilter framework.  Roll on, two-stage module
1679          *  delete...
1680          */
1681         synchronize_net();
1682 i_see_dead_people:
1683         busy = 0;
1684         list_for_each_entry(net, net_exit_list, exit_list) {
1685                 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1686                 if (atomic_read(&net->ct.count) != 0)
1687                         busy = 1;
1688         }
1689         if (busy) {
1690                 schedule();
1691                 goto i_see_dead_people;
1692         }
1693
1694         list_for_each_entry(net, net_exit_list, exit_list) {
1695                 nf_conntrack_proto_pernet_fini(net);
1696                 nf_conntrack_helper_pernet_fini(net);
1697                 nf_conntrack_ecache_pernet_fini(net);
1698                 nf_conntrack_tstamp_pernet_fini(net);
1699                 nf_conntrack_acct_pernet_fini(net);
1700                 nf_conntrack_expect_pernet_fini(net);
1701                 free_percpu(net->ct.stat);
1702                 free_percpu(net->ct.pcpu_lists);
1703         }
1704 }
1705
1706 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1707 {
1708         struct hlist_nulls_head *hash;
1709         unsigned int nr_slots, i;
1710         size_t sz;
1711
1712         if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1713                 return NULL;
1714
1715         BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1716         nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1717
1718         if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1719                 return NULL;
1720
1721         sz = nr_slots * sizeof(struct hlist_nulls_head);
1722         hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1723                                         get_order(sz));
1724         if (!hash)
1725                 hash = vzalloc(sz);
1726
1727         if (hash && nulls)
1728                 for (i = 0; i < nr_slots; i++)
1729                         INIT_HLIST_NULLS_HEAD(&hash[i], i);
1730
1731         return hash;
1732 }
1733 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1734
1735 int nf_conntrack_hash_resize(unsigned int hashsize)
1736 {
1737         int i, bucket;
1738         unsigned int old_size;
1739         struct hlist_nulls_head *hash, *old_hash;
1740         struct nf_conntrack_tuple_hash *h;
1741         struct nf_conn *ct;
1742
1743         if (!hashsize)
1744                 return -EINVAL;
1745
1746         hash = nf_ct_alloc_hashtable(&hashsize, 1);
1747         if (!hash)
1748                 return -ENOMEM;
1749
1750         old_size = nf_conntrack_htable_size;
1751         if (old_size == hashsize) {
1752                 nf_ct_free_hashtable(hash, hashsize);
1753                 return 0;
1754         }
1755
1756         local_bh_disable();
1757         nf_conntrack_all_lock();
1758         write_seqcount_begin(&nf_conntrack_generation);
1759
1760         /* Lookups in the old hash might happen in parallel, which means we
1761          * might get false negatives during connection lookup. New connections
1762          * created because of a false negative won't make it into the hash
1763          * though since that required taking the locks.
1764          */
1765
1766         for (i = 0; i < nf_conntrack_htable_size; i++) {
1767                 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1768                         h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1769                                               struct nf_conntrack_tuple_hash, hnnode);
1770                         ct = nf_ct_tuplehash_to_ctrack(h);
1771                         hlist_nulls_del_rcu(&h->hnnode);
1772                         bucket = __hash_conntrack(nf_ct_net(ct),
1773                                                   &h->tuple, hashsize);
1774                         hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1775                 }
1776         }
1777         old_size = nf_conntrack_htable_size;
1778         old_hash = nf_conntrack_hash;
1779
1780         nf_conntrack_hash = hash;
1781         nf_conntrack_htable_size = hashsize;
1782
1783         write_seqcount_end(&nf_conntrack_generation);
1784         nf_conntrack_all_unlock();
1785         local_bh_enable();
1786
1787         synchronize_net();
1788         nf_ct_free_hashtable(old_hash, old_size);
1789         return 0;
1790 }
1791
1792 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1793 {
1794         unsigned int hashsize;
1795         int rc;
1796
1797         if (current->nsproxy->net_ns != &init_net)
1798                 return -EOPNOTSUPP;
1799
1800         /* On boot, we can set this without any fancy locking. */
1801         if (!nf_conntrack_htable_size)
1802                 return param_set_uint(val, kp);
1803
1804         rc = kstrtouint(val, 0, &hashsize);
1805         if (rc)
1806                 return rc;
1807
1808         return nf_conntrack_hash_resize(hashsize);
1809 }
1810 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1811
1812 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1813                   &nf_conntrack_htable_size, 0600);
1814
1815 void nf_ct_untracked_status_or(unsigned long bits)
1816 {
1817         int cpu;
1818
1819         for_each_possible_cpu(cpu)
1820                 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1821 }
1822 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1823
1824 int nf_conntrack_init_start(void)
1825 {
1826         int max_factor = 8;
1827         int ret = -ENOMEM;
1828         int i, cpu;
1829
1830         seqcount_init(&nf_conntrack_generation);
1831
1832         for (i = 0; i < CONNTRACK_LOCKS; i++)
1833                 spin_lock_init(&nf_conntrack_locks[i]);
1834
1835         if (!nf_conntrack_htable_size) {
1836                 /* Idea from tcp.c: use 1/16384 of memory.
1837                  * On i386: 32MB machine has 512 buckets.
1838                  * >= 1GB machines have 16384 buckets.
1839                  * >= 4GB machines have 65536 buckets.
1840                  */
1841                 nf_conntrack_htable_size
1842                         = (((totalram_pages << PAGE_SHIFT) / 16384)
1843                            / sizeof(struct hlist_head));
1844                 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1845                         nf_conntrack_htable_size = 65536;
1846                 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1847                         nf_conntrack_htable_size = 16384;
1848                 if (nf_conntrack_htable_size < 32)
1849                         nf_conntrack_htable_size = 32;
1850
1851                 /* Use a max. factor of four by default to get the same max as
1852                  * with the old struct list_heads. When a table size is given
1853                  * we use the old value of 8 to avoid reducing the max.
1854                  * entries. */
1855                 max_factor = 4;
1856         }
1857
1858         nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
1859         if (!nf_conntrack_hash)
1860                 return -ENOMEM;
1861
1862         nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1863
1864         nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1865                                                 sizeof(struct nf_conn), 0,
1866                                                 SLAB_DESTROY_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
1867         if (!nf_conntrack_cachep)
1868                 goto err_cachep;
1869
1870         printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1871                NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1872                nf_conntrack_max);
1873
1874         ret = nf_conntrack_expect_init();
1875         if (ret < 0)
1876                 goto err_expect;
1877
1878         ret = nf_conntrack_acct_init();
1879         if (ret < 0)
1880                 goto err_acct;
1881
1882         ret = nf_conntrack_tstamp_init();
1883         if (ret < 0)
1884                 goto err_tstamp;
1885
1886         ret = nf_conntrack_ecache_init();
1887         if (ret < 0)
1888                 goto err_ecache;
1889
1890         ret = nf_conntrack_timeout_init();
1891         if (ret < 0)
1892                 goto err_timeout;
1893
1894         ret = nf_conntrack_helper_init();
1895         if (ret < 0)
1896                 goto err_helper;
1897
1898         ret = nf_conntrack_labels_init();
1899         if (ret < 0)
1900                 goto err_labels;
1901
1902         ret = nf_conntrack_seqadj_init();
1903         if (ret < 0)
1904                 goto err_seqadj;
1905
1906         ret = nf_conntrack_proto_init();
1907         if (ret < 0)
1908                 goto err_proto;
1909
1910         /* Set up fake conntrack: to never be deleted, not in any hashes */
1911         for_each_possible_cpu(cpu) {
1912                 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1913                 write_pnet(&ct->ct_net, &init_net);
1914                 atomic_set(&ct->ct_general.use, 1);
1915         }
1916         /*  - and look it like as a confirmed connection */
1917         nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1918
1919         conntrack_gc_work_init(&conntrack_gc_work);
1920         queue_delayed_work(system_long_wq, &conntrack_gc_work.dwork, GC_INTERVAL_MAX);
1921
1922         return 0;
1923
1924 err_proto:
1925         nf_conntrack_seqadj_fini();
1926 err_seqadj:
1927         nf_conntrack_labels_fini();
1928 err_labels:
1929         nf_conntrack_helper_fini();
1930 err_helper:
1931         nf_conntrack_timeout_fini();
1932 err_timeout:
1933         nf_conntrack_ecache_fini();
1934 err_ecache:
1935         nf_conntrack_tstamp_fini();
1936 err_tstamp:
1937         nf_conntrack_acct_fini();
1938 err_acct:
1939         nf_conntrack_expect_fini();
1940 err_expect:
1941         kmem_cache_destroy(nf_conntrack_cachep);
1942 err_cachep:
1943         nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1944         return ret;
1945 }
1946
1947 void nf_conntrack_init_end(void)
1948 {
1949         /* For use by REJECT target */
1950         RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1951         RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1952 }
1953
1954 /*
1955  * We need to use special "null" values, not used in hash table
1956  */
1957 #define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
1958 #define DYING_NULLS_VAL         ((1<<30)+1)
1959 #define TEMPLATE_NULLS_VAL      ((1<<30)+2)
1960
1961 int nf_conntrack_init_net(struct net *net)
1962 {
1963         int ret = -ENOMEM;
1964         int cpu;
1965
1966         atomic_set(&net->ct.count, 0);
1967
1968         net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1969         if (!net->ct.pcpu_lists)
1970                 goto err_stat;
1971
1972         for_each_possible_cpu(cpu) {
1973                 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1974
1975                 spin_lock_init(&pcpu->lock);
1976                 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1977                 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1978         }
1979
1980         net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1981         if (!net->ct.stat)
1982                 goto err_pcpu_lists;
1983
1984         ret = nf_conntrack_expect_pernet_init(net);
1985         if (ret < 0)
1986                 goto err_expect;
1987         ret = nf_conntrack_acct_pernet_init(net);
1988         if (ret < 0)
1989                 goto err_acct;
1990         ret = nf_conntrack_tstamp_pernet_init(net);
1991         if (ret < 0)
1992                 goto err_tstamp;
1993         ret = nf_conntrack_ecache_pernet_init(net);
1994         if (ret < 0)
1995                 goto err_ecache;
1996         ret = nf_conntrack_helper_pernet_init(net);
1997         if (ret < 0)
1998                 goto err_helper;
1999         ret = nf_conntrack_proto_pernet_init(net);
2000         if (ret < 0)
2001                 goto err_proto;
2002         return 0;
2003
2004 err_proto:
2005         nf_conntrack_helper_pernet_fini(net);
2006 err_helper:
2007         nf_conntrack_ecache_pernet_fini(net);
2008 err_ecache:
2009         nf_conntrack_tstamp_pernet_fini(net);
2010 err_tstamp:
2011         nf_conntrack_acct_pernet_fini(net);
2012 err_acct:
2013         nf_conntrack_expect_pernet_fini(net);
2014 err_expect:
2015         free_percpu(net->ct.stat);
2016 err_pcpu_lists:
2017         free_percpu(net->ct.pcpu_lists);
2018 err_stat:
2019         return ret;
2020 }