mac80211: fix race condition between assoc_done and first EAP packet
[linux-2.6-microblaze.git] / net / mac80211 / rx.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010  Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32  * monitor mode reception
33  *
34  * This function cleans up the SKB, i.e. it removes all the stuff
35  * only useful for monitoring.
36  */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38                                            struct sk_buff *skb)
39 {
40         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41                 if (likely(skb->len > FCS_LEN))
42                         __pskb_trim(skb, skb->len - FCS_LEN);
43                 else {
44                         /* driver bug */
45                         WARN_ON(1);
46                         dev_kfree_skb(skb);
47                         skb = NULL;
48                 }
49         }
50
51         return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55                                     int present_fcs_len)
56 {
57         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61                 return 1;
62         if (unlikely(skb->len < 16 + present_fcs_len))
63                 return 1;
64         if (ieee80211_is_ctl(hdr->frame_control) &&
65             !ieee80211_is_pspoll(hdr->frame_control) &&
66             !ieee80211_is_back_req(hdr->frame_control))
67                 return 1;
68         return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73                           struct ieee80211_rx_status *status)
74 {
75         int len;
76
77         /* always present fields */
78         len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80         if (status->flag & RX_FLAG_MACTIME_MPDU)
81                 len += 8;
82         if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83                 len += 1;
84
85         if (len & 1) /* padding for RX_FLAGS if necessary */
86                 len++;
87
88         if (status->flag & RX_FLAG_HT) /* HT info */
89                 len += 3;
90
91         return len;
92 }
93
94 /*
95  * ieee80211_add_rx_radiotap_header - add radiotap header
96  *
97  * add a radiotap header containing all the fields which the hardware provided.
98  */
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101                                  struct sk_buff *skb,
102                                  struct ieee80211_rate *rate,
103                                  int rtap_len)
104 {
105         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106         struct ieee80211_radiotap_header *rthdr;
107         unsigned char *pos;
108         u16 rx_flags = 0;
109
110         rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111         memset(rthdr, 0, rtap_len);
112
113         /* radiotap header, set always present flags */
114         rthdr->it_present =
115                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116                             (1 << IEEE80211_RADIOTAP_CHANNEL) |
117                             (1 << IEEE80211_RADIOTAP_ANTENNA) |
118                             (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119         rthdr->it_len = cpu_to_le16(rtap_len);
120
121         pos = (unsigned char *)(rthdr+1);
122
123         /* the order of the following fields is important */
124
125         /* IEEE80211_RADIOTAP_TSFT */
126         if (status->flag & RX_FLAG_MACTIME_MPDU) {
127                 put_unaligned_le64(status->mactime, pos);
128                 rthdr->it_present |=
129                         cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130                 pos += 8;
131         }
132
133         /* IEEE80211_RADIOTAP_FLAGS */
134         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135                 *pos |= IEEE80211_RADIOTAP_F_FCS;
136         if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137                 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138         if (status->flag & RX_FLAG_SHORTPRE)
139                 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140         pos++;
141
142         /* IEEE80211_RADIOTAP_RATE */
143         if (status->flag & RX_FLAG_HT) {
144                 /*
145                  * MCS information is a separate field in radiotap,
146                  * added below. The byte here is needed as padding
147                  * for the channel though, so initialise it to 0.
148                  */
149                 *pos = 0;
150         } else {
151                 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152                 *pos = rate->bitrate / 5;
153         }
154         pos++;
155
156         /* IEEE80211_RADIOTAP_CHANNEL */
157         put_unaligned_le16(status->freq, pos);
158         pos += 2;
159         if (status->band == IEEE80211_BAND_5GHZ)
160                 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161                                    pos);
162         else if (status->flag & RX_FLAG_HT)
163                 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164                                    pos);
165         else if (rate->flags & IEEE80211_RATE_ERP_G)
166                 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167                                    pos);
168         else
169                 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170                                    pos);
171         pos += 2;
172
173         /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174         if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175                 *pos = status->signal;
176                 rthdr->it_present |=
177                         cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178                 pos++;
179         }
180
181         /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182
183         /* IEEE80211_RADIOTAP_ANTENNA */
184         *pos = status->antenna;
185         pos++;
186
187         /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188
189         /* IEEE80211_RADIOTAP_RX_FLAGS */
190         /* ensure 2 byte alignment for the 2 byte field as required */
191         if ((pos - (u8 *)rthdr) & 1)
192                 pos++;
193         if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194                 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195         put_unaligned_le16(rx_flags, pos);
196         pos += 2;
197
198         if (status->flag & RX_FLAG_HT) {
199                 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200                 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201                          IEEE80211_RADIOTAP_MCS_HAVE_GI |
202                          IEEE80211_RADIOTAP_MCS_HAVE_BW;
203                 *pos = 0;
204                 if (status->flag & RX_FLAG_SHORT_GI)
205                         *pos |= IEEE80211_RADIOTAP_MCS_SGI;
206                 if (status->flag & RX_FLAG_40MHZ)
207                         *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208                 pos++;
209                 *pos++ = status->rate_idx;
210         }
211 }
212
213 /*
214  * This function copies a received frame to all monitor interfaces and
215  * returns a cleaned-up SKB that no longer includes the FCS nor the
216  * radiotap header the driver might have added.
217  */
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220                      struct ieee80211_rate *rate)
221 {
222         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223         struct ieee80211_sub_if_data *sdata;
224         int needed_headroom = 0;
225         struct sk_buff *skb, *skb2;
226         struct net_device *prev_dev = NULL;
227         int present_fcs_len = 0;
228
229         /*
230          * First, we may need to make a copy of the skb because
231          *  (1) we need to modify it for radiotap (if not present), and
232          *  (2) the other RX handlers will modify the skb we got.
233          *
234          * We don't need to, of course, if we aren't going to return
235          * the SKB because it has a bad FCS/PLCP checksum.
236          */
237
238         /* room for the radiotap header based on driver features */
239         needed_headroom = ieee80211_rx_radiotap_len(local, status);
240
241         if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242                 present_fcs_len = FCS_LEN;
243
244         /* make sure hdr->frame_control is on the linear part */
245         if (!pskb_may_pull(origskb, 2)) {
246                 dev_kfree_skb(origskb);
247                 return NULL;
248         }
249
250         if (!local->monitors) {
251                 if (should_drop_frame(origskb, present_fcs_len)) {
252                         dev_kfree_skb(origskb);
253                         return NULL;
254                 }
255
256                 return remove_monitor_info(local, origskb);
257         }
258
259         if (should_drop_frame(origskb, present_fcs_len)) {
260                 /* only need to expand headroom if necessary */
261                 skb = origskb;
262                 origskb = NULL;
263
264                 /*
265                  * This shouldn't trigger often because most devices have an
266                  * RX header they pull before we get here, and that should
267                  * be big enough for our radiotap information. We should
268                  * probably export the length to drivers so that we can have
269                  * them allocate enough headroom to start with.
270                  */
271                 if (skb_headroom(skb) < needed_headroom &&
272                     pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273                         dev_kfree_skb(skb);
274                         return NULL;
275                 }
276         } else {
277                 /*
278                  * Need to make a copy and possibly remove radiotap header
279                  * and FCS from the original.
280                  */
281                 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
282
283                 origskb = remove_monitor_info(local, origskb);
284
285                 if (!skb)
286                         return origskb;
287         }
288
289         /* prepend radiotap information */
290         ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
291
292         skb_reset_mac_header(skb);
293         skb->ip_summed = CHECKSUM_UNNECESSARY;
294         skb->pkt_type = PACKET_OTHERHOST;
295         skb->protocol = htons(ETH_P_802_2);
296
297         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298                 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299                         continue;
300
301                 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302                         continue;
303
304                 if (!ieee80211_sdata_running(sdata))
305                         continue;
306
307                 if (prev_dev) {
308                         skb2 = skb_clone(skb, GFP_ATOMIC);
309                         if (skb2) {
310                                 skb2->dev = prev_dev;
311                                 netif_receive_skb(skb2);
312                         }
313                 }
314
315                 prev_dev = sdata->dev;
316                 sdata->dev->stats.rx_packets++;
317                 sdata->dev->stats.rx_bytes += skb->len;
318         }
319
320         if (prev_dev) {
321                 skb->dev = prev_dev;
322                 netif_receive_skb(skb);
323         } else
324                 dev_kfree_skb(skb);
325
326         return origskb;
327 }
328
329
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
331 {
332         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334         int tid, seqno_idx, security_idx;
335
336         /* does the frame have a qos control field? */
337         if (ieee80211_is_data_qos(hdr->frame_control)) {
338                 u8 *qc = ieee80211_get_qos_ctl(hdr);
339                 /* frame has qos control */
340                 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341                 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
342                         status->rx_flags |= IEEE80211_RX_AMSDU;
343
344                 seqno_idx = tid;
345                 security_idx = tid;
346         } else {
347                 /*
348                  * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
349                  *
350                  *      Sequence numbers for management frames, QoS data
351                  *      frames with a broadcast/multicast address in the
352                  *      Address 1 field, and all non-QoS data frames sent
353                  *      by QoS STAs are assigned using an additional single
354                  *      modulo-4096 counter, [...]
355                  *
356                  * We also use that counter for non-QoS STAs.
357                  */
358                 seqno_idx = NUM_RX_DATA_QUEUES;
359                 security_idx = 0;
360                 if (ieee80211_is_mgmt(hdr->frame_control))
361                         security_idx = NUM_RX_DATA_QUEUES;
362                 tid = 0;
363         }
364
365         rx->seqno_idx = seqno_idx;
366         rx->security_idx = security_idx;
367         /* Set skb->priority to 1d tag if highest order bit of TID is not set.
368          * For now, set skb->priority to 0 for other cases. */
369         rx->skb->priority = (tid > 7) ? 0 : tid;
370 }
371
372 /**
373  * DOC: Packet alignment
374  *
375  * Drivers always need to pass packets that are aligned to two-byte boundaries
376  * to the stack.
377  *
378  * Additionally, should, if possible, align the payload data in a way that
379  * guarantees that the contained IP header is aligned to a four-byte
380  * boundary. In the case of regular frames, this simply means aligning the
381  * payload to a four-byte boundary (because either the IP header is directly
382  * contained, or IV/RFC1042 headers that have a length divisible by four are
383  * in front of it).  If the payload data is not properly aligned and the
384  * architecture doesn't support efficient unaligned operations, mac80211
385  * will align the data.
386  *
387  * With A-MSDU frames, however, the payload data address must yield two modulo
388  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
389  * push the IP header further back to a multiple of four again. Thankfully, the
390  * specs were sane enough this time around to require padding each A-MSDU
391  * subframe to a length that is a multiple of four.
392  *
393  * Padding like Atheros hardware adds which is between the 802.11 header and
394  * the payload is not supported, the driver is required to move the 802.11
395  * header to be directly in front of the payload in that case.
396  */
397 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
398 {
399 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
400         WARN_ONCE((unsigned long)rx->skb->data & 1,
401                   "unaligned packet at 0x%p\n", rx->skb->data);
402 #endif
403 }
404
405
406 /* rx handlers */
407
408 static ieee80211_rx_result debug_noinline
409 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
410 {
411         struct ieee80211_local *local = rx->local;
412         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
413         struct sk_buff *skb = rx->skb;
414
415         if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
416                    !local->sched_scanning))
417                 return RX_CONTINUE;
418
419         if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
420             test_bit(SCAN_SW_SCANNING, &local->scanning) ||
421             local->sched_scanning)
422                 return ieee80211_scan_rx(rx->sdata, skb);
423
424         /* scanning finished during invoking of handlers */
425         I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
426         return RX_DROP_UNUSABLE;
427 }
428
429
430 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
431 {
432         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
433
434         if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
435                 return 0;
436
437         return ieee80211_is_robust_mgmt_frame(hdr);
438 }
439
440
441 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
442 {
443         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
444
445         if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
446                 return 0;
447
448         return ieee80211_is_robust_mgmt_frame(hdr);
449 }
450
451
452 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
453 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
454 {
455         struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
456         struct ieee80211_mmie *mmie;
457
458         if (skb->len < 24 + sizeof(*mmie) ||
459             !is_multicast_ether_addr(hdr->da))
460                 return -1;
461
462         if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
463                 return -1; /* not a robust management frame */
464
465         mmie = (struct ieee80211_mmie *)
466                 (skb->data + skb->len - sizeof(*mmie));
467         if (mmie->element_id != WLAN_EID_MMIE ||
468             mmie->length != sizeof(*mmie) - 2)
469                 return -1;
470
471         return le16_to_cpu(mmie->key_id);
472 }
473
474
475 static ieee80211_rx_result
476 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
477 {
478         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
479         unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
480         char *dev_addr = rx->sdata->vif.addr;
481
482         if (ieee80211_is_data(hdr->frame_control)) {
483                 if (is_multicast_ether_addr(hdr->addr1)) {
484                         if (ieee80211_has_tods(hdr->frame_control) ||
485                                 !ieee80211_has_fromds(hdr->frame_control))
486                                 return RX_DROP_MONITOR;
487                         if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
488                                 return RX_DROP_MONITOR;
489                 } else {
490                         if (!ieee80211_has_a4(hdr->frame_control))
491                                 return RX_DROP_MONITOR;
492                         if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
493                                 return RX_DROP_MONITOR;
494                 }
495         }
496
497         /* If there is not an established peer link and this is not a peer link
498          * establisment frame, beacon or probe, drop the frame.
499          */
500
501         if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
502                 struct ieee80211_mgmt *mgmt;
503
504                 if (!ieee80211_is_mgmt(hdr->frame_control))
505                         return RX_DROP_MONITOR;
506
507                 if (ieee80211_is_action(hdr->frame_control)) {
508                         u8 category;
509                         mgmt = (struct ieee80211_mgmt *)hdr;
510                         category = mgmt->u.action.category;
511                         if (category != WLAN_CATEGORY_MESH_ACTION &&
512                                 category != WLAN_CATEGORY_SELF_PROTECTED)
513                                 return RX_DROP_MONITOR;
514                         return RX_CONTINUE;
515                 }
516
517                 if (ieee80211_is_probe_req(hdr->frame_control) ||
518                     ieee80211_is_probe_resp(hdr->frame_control) ||
519                     ieee80211_is_beacon(hdr->frame_control) ||
520                     ieee80211_is_auth(hdr->frame_control))
521                         return RX_CONTINUE;
522
523                 return RX_DROP_MONITOR;
524
525         }
526
527 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
528
529         if (ieee80211_is_data(hdr->frame_control) &&
530             is_multicast_ether_addr(hdr->addr1) &&
531             mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
532                 return RX_DROP_MONITOR;
533 #undef msh_h_get
534
535         return RX_CONTINUE;
536 }
537
538 #define SEQ_MODULO 0x1000
539 #define SEQ_MASK   0xfff
540
541 static inline int seq_less(u16 sq1, u16 sq2)
542 {
543         return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
544 }
545
546 static inline u16 seq_inc(u16 sq)
547 {
548         return (sq + 1) & SEQ_MASK;
549 }
550
551 static inline u16 seq_sub(u16 sq1, u16 sq2)
552 {
553         return (sq1 - sq2) & SEQ_MASK;
554 }
555
556
557 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
558                                             struct tid_ampdu_rx *tid_agg_rx,
559                                             int index)
560 {
561         struct ieee80211_local *local = hw_to_local(hw);
562         struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
563         struct ieee80211_rx_status *status;
564
565         lockdep_assert_held(&tid_agg_rx->reorder_lock);
566
567         if (!skb)
568                 goto no_frame;
569
570         /* release the frame from the reorder ring buffer */
571         tid_agg_rx->stored_mpdu_num--;
572         tid_agg_rx->reorder_buf[index] = NULL;
573         status = IEEE80211_SKB_RXCB(skb);
574         status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
575         skb_queue_tail(&local->rx_skb_queue, skb);
576
577 no_frame:
578         tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
579 }
580
581 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
582                                              struct tid_ampdu_rx *tid_agg_rx,
583                                              u16 head_seq_num)
584 {
585         int index;
586
587         lockdep_assert_held(&tid_agg_rx->reorder_lock);
588
589         while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
590                 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
591                                                         tid_agg_rx->buf_size;
592                 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
593         }
594 }
595
596 /*
597  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
598  * the skb was added to the buffer longer than this time ago, the earlier
599  * frames that have not yet been received are assumed to be lost and the skb
600  * can be released for processing. This may also release other skb's from the
601  * reorder buffer if there are no additional gaps between the frames.
602  *
603  * Callers must hold tid_agg_rx->reorder_lock.
604  */
605 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
606
607 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
608                                           struct tid_ampdu_rx *tid_agg_rx)
609 {
610         int index, j;
611
612         lockdep_assert_held(&tid_agg_rx->reorder_lock);
613
614         /* release the buffer until next missing frame */
615         index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
616                                                 tid_agg_rx->buf_size;
617         if (!tid_agg_rx->reorder_buf[index] &&
618             tid_agg_rx->stored_mpdu_num > 1) {
619                 /*
620                  * No buffers ready to be released, but check whether any
621                  * frames in the reorder buffer have timed out.
622                  */
623                 int skipped = 1;
624                 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
625                      j = (j + 1) % tid_agg_rx->buf_size) {
626                         if (!tid_agg_rx->reorder_buf[j]) {
627                                 skipped++;
628                                 continue;
629                         }
630                         if (skipped &&
631                             !time_after(jiffies, tid_agg_rx->reorder_time[j] +
632                                         HT_RX_REORDER_BUF_TIMEOUT))
633                                 goto set_release_timer;
634
635 #ifdef CONFIG_MAC80211_HT_DEBUG
636                         if (net_ratelimit())
637                                 wiphy_debug(hw->wiphy,
638                                             "release an RX reorder frame due to timeout on earlier frames\n");
639 #endif
640                         ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
641
642                         /*
643                          * Increment the head seq# also for the skipped slots.
644                          */
645                         tid_agg_rx->head_seq_num =
646                                 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
647                         skipped = 0;
648                 }
649         } else while (tid_agg_rx->reorder_buf[index]) {
650                 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
651                 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
652                                                         tid_agg_rx->buf_size;
653         }
654
655         if (tid_agg_rx->stored_mpdu_num) {
656                 j = index = seq_sub(tid_agg_rx->head_seq_num,
657                                     tid_agg_rx->ssn) % tid_agg_rx->buf_size;
658
659                 for (; j != (index - 1) % tid_agg_rx->buf_size;
660                      j = (j + 1) % tid_agg_rx->buf_size) {
661                         if (tid_agg_rx->reorder_buf[j])
662                                 break;
663                 }
664
665  set_release_timer:
666
667                 mod_timer(&tid_agg_rx->reorder_timer,
668                           tid_agg_rx->reorder_time[j] + 1 +
669                           HT_RX_REORDER_BUF_TIMEOUT);
670         } else {
671                 del_timer(&tid_agg_rx->reorder_timer);
672         }
673 }
674
675 /*
676  * As this function belongs to the RX path it must be under
677  * rcu_read_lock protection. It returns false if the frame
678  * can be processed immediately, true if it was consumed.
679  */
680 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
681                                              struct tid_ampdu_rx *tid_agg_rx,
682                                              struct sk_buff *skb)
683 {
684         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
685         u16 sc = le16_to_cpu(hdr->seq_ctrl);
686         u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
687         u16 head_seq_num, buf_size;
688         int index;
689         bool ret = true;
690
691         spin_lock(&tid_agg_rx->reorder_lock);
692
693         buf_size = tid_agg_rx->buf_size;
694         head_seq_num = tid_agg_rx->head_seq_num;
695
696         /* frame with out of date sequence number */
697         if (seq_less(mpdu_seq_num, head_seq_num)) {
698                 dev_kfree_skb(skb);
699                 goto out;
700         }
701
702         /*
703          * If frame the sequence number exceeds our buffering window
704          * size release some previous frames to make room for this one.
705          */
706         if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
707                 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
708                 /* release stored frames up to new head to stack */
709                 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
710         }
711
712         /* Now the new frame is always in the range of the reordering buffer */
713
714         index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
715
716         /* check if we already stored this frame */
717         if (tid_agg_rx->reorder_buf[index]) {
718                 dev_kfree_skb(skb);
719                 goto out;
720         }
721
722         /*
723          * If the current MPDU is in the right order and nothing else
724          * is stored we can process it directly, no need to buffer it.
725          * If it is first but there's something stored, we may be able
726          * to release frames after this one.
727          */
728         if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
729             tid_agg_rx->stored_mpdu_num == 0) {
730                 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
731                 ret = false;
732                 goto out;
733         }
734
735         /* put the frame in the reordering buffer */
736         tid_agg_rx->reorder_buf[index] = skb;
737         tid_agg_rx->reorder_time[index] = jiffies;
738         tid_agg_rx->stored_mpdu_num++;
739         ieee80211_sta_reorder_release(hw, tid_agg_rx);
740
741  out:
742         spin_unlock(&tid_agg_rx->reorder_lock);
743         return ret;
744 }
745
746 /*
747  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
748  * true if the MPDU was buffered, false if it should be processed.
749  */
750 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
751 {
752         struct sk_buff *skb = rx->skb;
753         struct ieee80211_local *local = rx->local;
754         struct ieee80211_hw *hw = &local->hw;
755         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
756         struct sta_info *sta = rx->sta;
757         struct tid_ampdu_rx *tid_agg_rx;
758         u16 sc;
759         int tid;
760
761         if (!ieee80211_is_data_qos(hdr->frame_control))
762                 goto dont_reorder;
763
764         /*
765          * filter the QoS data rx stream according to
766          * STA/TID and check if this STA/TID is on aggregation
767          */
768
769         if (!sta)
770                 goto dont_reorder;
771
772         tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
773
774         tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
775         if (!tid_agg_rx)
776                 goto dont_reorder;
777
778         /* qos null data frames are excluded */
779         if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
780                 goto dont_reorder;
781
782         /* new, potentially un-ordered, ampdu frame - process it */
783
784         /* reset session timer */
785         if (tid_agg_rx->timeout)
786                 mod_timer(&tid_agg_rx->session_timer,
787                           TU_TO_EXP_TIME(tid_agg_rx->timeout));
788
789         /* if this mpdu is fragmented - terminate rx aggregation session */
790         sc = le16_to_cpu(hdr->seq_ctrl);
791         if (sc & IEEE80211_SCTL_FRAG) {
792                 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
793                 skb_queue_tail(&rx->sdata->skb_queue, skb);
794                 ieee80211_queue_work(&local->hw, &rx->sdata->work);
795                 return;
796         }
797
798         /*
799          * No locking needed -- we will only ever process one
800          * RX packet at a time, and thus own tid_agg_rx. All
801          * other code manipulating it needs to (and does) make
802          * sure that we cannot get to it any more before doing
803          * anything with it.
804          */
805         if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
806                 return;
807
808  dont_reorder:
809         skb_queue_tail(&local->rx_skb_queue, skb);
810 }
811
812 static ieee80211_rx_result debug_noinline
813 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
814 {
815         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
816         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
817
818         /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
819         if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
820                 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
821                              rx->sta->last_seq_ctrl[rx->seqno_idx] ==
822                              hdr->seq_ctrl)) {
823                         if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
824                                 rx->local->dot11FrameDuplicateCount++;
825                                 rx->sta->num_duplicates++;
826                         }
827                         return RX_DROP_UNUSABLE;
828                 } else
829                         rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
830         }
831
832         if (unlikely(rx->skb->len < 16)) {
833                 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
834                 return RX_DROP_MONITOR;
835         }
836
837         /* Drop disallowed frame classes based on STA auth/assoc state;
838          * IEEE 802.11, Chap 5.5.
839          *
840          * mac80211 filters only based on association state, i.e. it drops
841          * Class 3 frames from not associated stations. hostapd sends
842          * deauth/disassoc frames when needed. In addition, hostapd is
843          * responsible for filtering on both auth and assoc states.
844          */
845
846         if (ieee80211_vif_is_mesh(&rx->sdata->vif))
847                 return ieee80211_rx_mesh_check(rx);
848
849         if (unlikely((ieee80211_is_data(hdr->frame_control) ||
850                       ieee80211_is_pspoll(hdr->frame_control)) &&
851                      rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
852                      rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
853                      (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
854                 if (rx->sta && rx->sta->dummy &&
855                     ieee80211_is_data_present(hdr->frame_control)) {
856                         u16 ethertype;
857                         u8 *payload;
858
859                         payload = rx->skb->data +
860                                 ieee80211_hdrlen(hdr->frame_control);
861                         ethertype = (payload[6] << 8) | payload[7];
862                         if (cpu_to_be16(ethertype) ==
863                             rx->sdata->control_port_protocol)
864                                 return RX_CONTINUE;
865                 }
866                 return RX_DROP_MONITOR;
867         }
868
869         return RX_CONTINUE;
870 }
871
872
873 static ieee80211_rx_result debug_noinline
874 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
875 {
876         struct sk_buff *skb = rx->skb;
877         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
878         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
879         int keyidx;
880         int hdrlen;
881         ieee80211_rx_result result = RX_DROP_UNUSABLE;
882         struct ieee80211_key *sta_ptk = NULL;
883         int mmie_keyidx = -1;
884         __le16 fc;
885
886         /*
887          * Key selection 101
888          *
889          * There are four types of keys:
890          *  - GTK (group keys)
891          *  - IGTK (group keys for management frames)
892          *  - PTK (pairwise keys)
893          *  - STK (station-to-station pairwise keys)
894          *
895          * When selecting a key, we have to distinguish between multicast
896          * (including broadcast) and unicast frames, the latter can only
897          * use PTKs and STKs while the former always use GTKs and IGTKs.
898          * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
899          * unicast frames can also use key indices like GTKs. Hence, if we
900          * don't have a PTK/STK we check the key index for a WEP key.
901          *
902          * Note that in a regular BSS, multicast frames are sent by the
903          * AP only, associated stations unicast the frame to the AP first
904          * which then multicasts it on their behalf.
905          *
906          * There is also a slight problem in IBSS mode: GTKs are negotiated
907          * with each station, that is something we don't currently handle.
908          * The spec seems to expect that one negotiates the same key with
909          * every station but there's no such requirement; VLANs could be
910          * possible.
911          */
912
913         /*
914          * No point in finding a key and decrypting if the frame is neither
915          * addressed to us nor a multicast frame.
916          */
917         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
918                 return RX_CONTINUE;
919
920         /* start without a key */
921         rx->key = NULL;
922
923         if (rx->sta)
924                 sta_ptk = rcu_dereference(rx->sta->ptk);
925
926         fc = hdr->frame_control;
927
928         if (!ieee80211_has_protected(fc))
929                 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
930
931         if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
932                 rx->key = sta_ptk;
933                 if ((status->flag & RX_FLAG_DECRYPTED) &&
934                     (status->flag & RX_FLAG_IV_STRIPPED))
935                         return RX_CONTINUE;
936                 /* Skip decryption if the frame is not protected. */
937                 if (!ieee80211_has_protected(fc))
938                         return RX_CONTINUE;
939         } else if (mmie_keyidx >= 0) {
940                 /* Broadcast/multicast robust management frame / BIP */
941                 if ((status->flag & RX_FLAG_DECRYPTED) &&
942                     (status->flag & RX_FLAG_IV_STRIPPED))
943                         return RX_CONTINUE;
944
945                 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
946                     mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
947                         return RX_DROP_MONITOR; /* unexpected BIP keyidx */
948                 if (rx->sta)
949                         rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
950                 if (!rx->key)
951                         rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
952         } else if (!ieee80211_has_protected(fc)) {
953                 /*
954                  * The frame was not protected, so skip decryption. However, we
955                  * need to set rx->key if there is a key that could have been
956                  * used so that the frame may be dropped if encryption would
957                  * have been expected.
958                  */
959                 struct ieee80211_key *key = NULL;
960                 struct ieee80211_sub_if_data *sdata = rx->sdata;
961                 int i;
962
963                 if (ieee80211_is_mgmt(fc) &&
964                     is_multicast_ether_addr(hdr->addr1) &&
965                     (key = rcu_dereference(rx->sdata->default_mgmt_key)))
966                         rx->key = key;
967                 else {
968                         if (rx->sta) {
969                                 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
970                                         key = rcu_dereference(rx->sta->gtk[i]);
971                                         if (key)
972                                                 break;
973                                 }
974                         }
975                         if (!key) {
976                                 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
977                                         key = rcu_dereference(sdata->keys[i]);
978                                         if (key)
979                                                 break;
980                                 }
981                         }
982                         if (key)
983                                 rx->key = key;
984                 }
985                 return RX_CONTINUE;
986         } else {
987                 u8 keyid;
988                 /*
989                  * The device doesn't give us the IV so we won't be
990                  * able to look up the key. That's ok though, we
991                  * don't need to decrypt the frame, we just won't
992                  * be able to keep statistics accurate.
993                  * Except for key threshold notifications, should
994                  * we somehow allow the driver to tell us which key
995                  * the hardware used if this flag is set?
996                  */
997                 if ((status->flag & RX_FLAG_DECRYPTED) &&
998                     (status->flag & RX_FLAG_IV_STRIPPED))
999                         return RX_CONTINUE;
1000
1001                 hdrlen = ieee80211_hdrlen(fc);
1002
1003                 if (rx->skb->len < 8 + hdrlen)
1004                         return RX_DROP_UNUSABLE; /* TODO: count this? */
1005
1006                 /*
1007                  * no need to call ieee80211_wep_get_keyidx,
1008                  * it verifies a bunch of things we've done already
1009                  */
1010                 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1011                 keyidx = keyid >> 6;
1012
1013                 /* check per-station GTK first, if multicast packet */
1014                 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1015                         rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1016
1017                 /* if not found, try default key */
1018                 if (!rx->key) {
1019                         rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1020
1021                         /*
1022                          * RSNA-protected unicast frames should always be
1023                          * sent with pairwise or station-to-station keys,
1024                          * but for WEP we allow using a key index as well.
1025                          */
1026                         if (rx->key &&
1027                             rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1028                             rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1029                             !is_multicast_ether_addr(hdr->addr1))
1030                                 rx->key = NULL;
1031                 }
1032         }
1033
1034         if (rx->key) {
1035                 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1036                         return RX_DROP_MONITOR;
1037
1038                 rx->key->tx_rx_count++;
1039                 /* TODO: add threshold stuff again */
1040         } else {
1041                 return RX_DROP_MONITOR;
1042         }
1043
1044         if (skb_linearize(rx->skb))
1045                 return RX_DROP_UNUSABLE;
1046         /* the hdr variable is invalid now! */
1047
1048         switch (rx->key->conf.cipher) {
1049         case WLAN_CIPHER_SUITE_WEP40:
1050         case WLAN_CIPHER_SUITE_WEP104:
1051                 /* Check for weak IVs if possible */
1052                 if (rx->sta && ieee80211_is_data(fc) &&
1053                     (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1054                      !(status->flag & RX_FLAG_DECRYPTED)) &&
1055                     ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1056                         rx->sta->wep_weak_iv_count++;
1057
1058                 result = ieee80211_crypto_wep_decrypt(rx);
1059                 break;
1060         case WLAN_CIPHER_SUITE_TKIP:
1061                 result = ieee80211_crypto_tkip_decrypt(rx);
1062                 break;
1063         case WLAN_CIPHER_SUITE_CCMP:
1064                 result = ieee80211_crypto_ccmp_decrypt(rx);
1065                 break;
1066         case WLAN_CIPHER_SUITE_AES_CMAC:
1067                 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1068                 break;
1069         default:
1070                 /*
1071                  * We can reach here only with HW-only algorithms
1072                  * but why didn't it decrypt the frame?!
1073                  */
1074                 return RX_DROP_UNUSABLE;
1075         }
1076
1077         /* either the frame has been decrypted or will be dropped */
1078         status->flag |= RX_FLAG_DECRYPTED;
1079
1080         return result;
1081 }
1082
1083 static ieee80211_rx_result debug_noinline
1084 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1085 {
1086         struct ieee80211_local *local;
1087         struct ieee80211_hdr *hdr;
1088         struct sk_buff *skb;
1089
1090         local = rx->local;
1091         skb = rx->skb;
1092         hdr = (struct ieee80211_hdr *) skb->data;
1093
1094         if (!local->pspolling)
1095                 return RX_CONTINUE;
1096
1097         if (!ieee80211_has_fromds(hdr->frame_control))
1098                 /* this is not from AP */
1099                 return RX_CONTINUE;
1100
1101         if (!ieee80211_is_data(hdr->frame_control))
1102                 return RX_CONTINUE;
1103
1104         if (!ieee80211_has_moredata(hdr->frame_control)) {
1105                 /* AP has no more frames buffered for us */
1106                 local->pspolling = false;
1107                 return RX_CONTINUE;
1108         }
1109
1110         /* more data bit is set, let's request a new frame from the AP */
1111         ieee80211_send_pspoll(local, rx->sdata);
1112
1113         return RX_CONTINUE;
1114 }
1115
1116 static void ap_sta_ps_start(struct sta_info *sta)
1117 {
1118         struct ieee80211_sub_if_data *sdata = sta->sdata;
1119         struct ieee80211_local *local = sdata->local;
1120
1121         atomic_inc(&sdata->bss->num_sta_ps);
1122         set_sta_flags(sta, WLAN_STA_PS_STA);
1123         if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1124                 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1125 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1126         printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1127                sdata->name, sta->sta.addr, sta->sta.aid);
1128 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1129 }
1130
1131 static void ap_sta_ps_end(struct sta_info *sta)
1132 {
1133         struct ieee80211_sub_if_data *sdata = sta->sdata;
1134
1135         atomic_dec(&sdata->bss->num_sta_ps);
1136
1137 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1138         printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1139                sdata->name, sta->sta.addr, sta->sta.aid);
1140 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1141
1142         if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1143 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1144                 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1145                        sdata->name, sta->sta.addr, sta->sta.aid);
1146 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1147                 return;
1148         }
1149
1150         ieee80211_sta_ps_deliver_wakeup(sta);
1151 }
1152
1153 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1154 {
1155         struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1156         bool in_ps;
1157
1158         WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1159
1160         /* Don't let the same PS state be set twice */
1161         in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1162         if ((start && in_ps) || (!start && !in_ps))
1163                 return -EINVAL;
1164
1165         if (start)
1166                 ap_sta_ps_start(sta_inf);
1167         else
1168                 ap_sta_ps_end(sta_inf);
1169
1170         return 0;
1171 }
1172 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1173
1174 static ieee80211_rx_result debug_noinline
1175 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1176 {
1177         struct sta_info *sta = rx->sta;
1178         struct sk_buff *skb = rx->skb;
1179         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1180         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1181
1182         if (!sta)
1183                 return RX_CONTINUE;
1184
1185         /*
1186          * Update last_rx only for IBSS packets which are for the current
1187          * BSSID to avoid keeping the current IBSS network alive in cases
1188          * where other STAs start using different BSSID.
1189          */
1190         if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1191                 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1192                                                 NL80211_IFTYPE_ADHOC);
1193                 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1194                         sta->last_rx = jiffies;
1195                         if (ieee80211_is_data(hdr->frame_control)) {
1196                                 sta->last_rx_rate_idx = status->rate_idx;
1197                                 sta->last_rx_rate_flag = status->flag;
1198                         }
1199                 }
1200         } else if (!is_multicast_ether_addr(hdr->addr1)) {
1201                 /*
1202                  * Mesh beacons will update last_rx when if they are found to
1203                  * match the current local configuration when processed.
1204                  */
1205                 sta->last_rx = jiffies;
1206                 if (ieee80211_is_data(hdr->frame_control)) {
1207                         sta->last_rx_rate_idx = status->rate_idx;
1208                         sta->last_rx_rate_flag = status->flag;
1209                 }
1210         }
1211
1212         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1213                 return RX_CONTINUE;
1214
1215         if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1216                 ieee80211_sta_rx_notify(rx->sdata, hdr);
1217
1218         sta->rx_fragments++;
1219         sta->rx_bytes += rx->skb->len;
1220         sta->last_signal = status->signal;
1221         ewma_add(&sta->avg_signal, -status->signal);
1222
1223         /*
1224          * Change STA power saving mode only at the end of a frame
1225          * exchange sequence.
1226          */
1227         if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1228             !ieee80211_has_morefrags(hdr->frame_control) &&
1229             !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1230             (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1231              rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1232                 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1233                         /*
1234                          * Ignore doze->wake transitions that are
1235                          * indicated by non-data frames, the standard
1236                          * is unclear here, but for example going to
1237                          * PS mode and then scanning would cause a
1238                          * doze->wake transition for the probe request,
1239                          * and that is clearly undesirable.
1240                          */
1241                         if (ieee80211_is_data(hdr->frame_control) &&
1242                             !ieee80211_has_pm(hdr->frame_control))
1243                                 ap_sta_ps_end(sta);
1244                 } else {
1245                         if (ieee80211_has_pm(hdr->frame_control))
1246                                 ap_sta_ps_start(sta);
1247                 }
1248         }
1249
1250         /*
1251          * Drop (qos-)data::nullfunc frames silently, since they
1252          * are used only to control station power saving mode.
1253          */
1254         if (ieee80211_is_nullfunc(hdr->frame_control) ||
1255             ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1256                 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1257
1258                 /*
1259                  * If we receive a 4-addr nullfunc frame from a STA
1260                  * that was not moved to a 4-addr STA vlan yet, drop
1261                  * the frame to the monitor interface, to make sure
1262                  * that hostapd sees it
1263                  */
1264                 if (ieee80211_has_a4(hdr->frame_control) &&
1265                     (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1266                      (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1267                       !rx->sdata->u.vlan.sta)))
1268                         return RX_DROP_MONITOR;
1269                 /*
1270                  * Update counter and free packet here to avoid
1271                  * counting this as a dropped packed.
1272                  */
1273                 sta->rx_packets++;
1274                 dev_kfree_skb(rx->skb);
1275                 return RX_QUEUED;
1276         }
1277
1278         return RX_CONTINUE;
1279 } /* ieee80211_rx_h_sta_process */
1280
1281 static inline struct ieee80211_fragment_entry *
1282 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1283                          unsigned int frag, unsigned int seq, int rx_queue,
1284                          struct sk_buff **skb)
1285 {
1286         struct ieee80211_fragment_entry *entry;
1287         int idx;
1288
1289         idx = sdata->fragment_next;
1290         entry = &sdata->fragments[sdata->fragment_next++];
1291         if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1292                 sdata->fragment_next = 0;
1293
1294         if (!skb_queue_empty(&entry->skb_list)) {
1295 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1296                 struct ieee80211_hdr *hdr =
1297                         (struct ieee80211_hdr *) entry->skb_list.next->data;
1298                 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1299                        "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1300                        "addr1=%pM addr2=%pM\n",
1301                        sdata->name, idx,
1302                        jiffies - entry->first_frag_time, entry->seq,
1303                        entry->last_frag, hdr->addr1, hdr->addr2);
1304 #endif
1305                 __skb_queue_purge(&entry->skb_list);
1306         }
1307
1308         __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1309         *skb = NULL;
1310         entry->first_frag_time = jiffies;
1311         entry->seq = seq;
1312         entry->rx_queue = rx_queue;
1313         entry->last_frag = frag;
1314         entry->ccmp = 0;
1315         entry->extra_len = 0;
1316
1317         return entry;
1318 }
1319
1320 static inline struct ieee80211_fragment_entry *
1321 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1322                           unsigned int frag, unsigned int seq,
1323                           int rx_queue, struct ieee80211_hdr *hdr)
1324 {
1325         struct ieee80211_fragment_entry *entry;
1326         int i, idx;
1327
1328         idx = sdata->fragment_next;
1329         for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1330                 struct ieee80211_hdr *f_hdr;
1331
1332                 idx--;
1333                 if (idx < 0)
1334                         idx = IEEE80211_FRAGMENT_MAX - 1;
1335
1336                 entry = &sdata->fragments[idx];
1337                 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1338                     entry->rx_queue != rx_queue ||
1339                     entry->last_frag + 1 != frag)
1340                         continue;
1341
1342                 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1343
1344                 /*
1345                  * Check ftype and addresses are equal, else check next fragment
1346                  */
1347                 if (((hdr->frame_control ^ f_hdr->frame_control) &
1348                      cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1349                     compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1350                     compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1351                         continue;
1352
1353                 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1354                         __skb_queue_purge(&entry->skb_list);
1355                         continue;
1356                 }
1357                 return entry;
1358         }
1359
1360         return NULL;
1361 }
1362
1363 static ieee80211_rx_result debug_noinline
1364 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1365 {
1366         struct ieee80211_hdr *hdr;
1367         u16 sc;
1368         __le16 fc;
1369         unsigned int frag, seq;
1370         struct ieee80211_fragment_entry *entry;
1371         struct sk_buff *skb;
1372         struct ieee80211_rx_status *status;
1373
1374         hdr = (struct ieee80211_hdr *)rx->skb->data;
1375         fc = hdr->frame_control;
1376         sc = le16_to_cpu(hdr->seq_ctrl);
1377         frag = sc & IEEE80211_SCTL_FRAG;
1378
1379         if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1380                    (rx->skb)->len < 24 ||
1381                    is_multicast_ether_addr(hdr->addr1))) {
1382                 /* not fragmented */
1383                 goto out;
1384         }
1385         I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1386
1387         if (skb_linearize(rx->skb))
1388                 return RX_DROP_UNUSABLE;
1389
1390         /*
1391          *  skb_linearize() might change the skb->data and
1392          *  previously cached variables (in this case, hdr) need to
1393          *  be refreshed with the new data.
1394          */
1395         hdr = (struct ieee80211_hdr *)rx->skb->data;
1396         seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1397
1398         if (frag == 0) {
1399                 /* This is the first fragment of a new frame. */
1400                 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1401                                                  rx->seqno_idx, &(rx->skb));
1402                 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1403                     ieee80211_has_protected(fc)) {
1404                         int queue = rx->security_idx;
1405                         /* Store CCMP PN so that we can verify that the next
1406                          * fragment has a sequential PN value. */
1407                         entry->ccmp = 1;
1408                         memcpy(entry->last_pn,
1409                                rx->key->u.ccmp.rx_pn[queue],
1410                                CCMP_PN_LEN);
1411                 }
1412                 return RX_QUEUED;
1413         }
1414
1415         /* This is a fragment for a frame that should already be pending in
1416          * fragment cache. Add this fragment to the end of the pending entry.
1417          */
1418         entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1419                                           rx->seqno_idx, hdr);
1420         if (!entry) {
1421                 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1422                 return RX_DROP_MONITOR;
1423         }
1424
1425         /* Verify that MPDUs within one MSDU have sequential PN values.
1426          * (IEEE 802.11i, 8.3.3.4.5) */
1427         if (entry->ccmp) {
1428                 int i;
1429                 u8 pn[CCMP_PN_LEN], *rpn;
1430                 int queue;
1431                 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1432                         return RX_DROP_UNUSABLE;
1433                 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1434                 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1435                         pn[i]++;
1436                         if (pn[i])
1437                                 break;
1438                 }
1439                 queue = rx->security_idx;
1440                 rpn = rx->key->u.ccmp.rx_pn[queue];
1441                 if (memcmp(pn, rpn, CCMP_PN_LEN))
1442                         return RX_DROP_UNUSABLE;
1443                 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1444         }
1445
1446         skb_pull(rx->skb, ieee80211_hdrlen(fc));
1447         __skb_queue_tail(&entry->skb_list, rx->skb);
1448         entry->last_frag = frag;
1449         entry->extra_len += rx->skb->len;
1450         if (ieee80211_has_morefrags(fc)) {
1451                 rx->skb = NULL;
1452                 return RX_QUEUED;
1453         }
1454
1455         rx->skb = __skb_dequeue(&entry->skb_list);
1456         if (skb_tailroom(rx->skb) < entry->extra_len) {
1457                 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1458                 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1459                                               GFP_ATOMIC))) {
1460                         I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1461                         __skb_queue_purge(&entry->skb_list);
1462                         return RX_DROP_UNUSABLE;
1463                 }
1464         }
1465         while ((skb = __skb_dequeue(&entry->skb_list))) {
1466                 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1467                 dev_kfree_skb(skb);
1468         }
1469
1470         /* Complete frame has been reassembled - process it now */
1471         status = IEEE80211_SKB_RXCB(rx->skb);
1472         status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1473
1474  out:
1475         if (rx->sta)
1476                 rx->sta->rx_packets++;
1477         if (is_multicast_ether_addr(hdr->addr1))
1478                 rx->local->dot11MulticastReceivedFrameCount++;
1479         else
1480                 ieee80211_led_rx(rx->local);
1481         return RX_CONTINUE;
1482 }
1483
1484 static ieee80211_rx_result debug_noinline
1485 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1486 {
1487         struct ieee80211_sub_if_data *sdata = rx->sdata;
1488         __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1489         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1490
1491         if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1492                    !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1493                 return RX_CONTINUE;
1494
1495         if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1496             (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1497                 return RX_DROP_UNUSABLE;
1498
1499         if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1500                 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1501         else
1502                 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1503
1504         /* Free PS Poll skb here instead of returning RX_DROP that would
1505          * count as an dropped frame. */
1506         dev_kfree_skb(rx->skb);
1507
1508         return RX_QUEUED;
1509 }
1510
1511 static ieee80211_rx_result debug_noinline
1512 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1513 {
1514         u8 *data = rx->skb->data;
1515         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1516
1517         if (!ieee80211_is_data_qos(hdr->frame_control))
1518                 return RX_CONTINUE;
1519
1520         /* remove the qos control field, update frame type and meta-data */
1521         memmove(data + IEEE80211_QOS_CTL_LEN, data,
1522                 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1523         hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1524         /* change frame type to non QOS */
1525         hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1526
1527         return RX_CONTINUE;
1528 }
1529
1530 static int
1531 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1532 {
1533         if (unlikely(!rx->sta ||
1534             !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1535                 return -EACCES;
1536
1537         return 0;
1538 }
1539
1540 static int
1541 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1542 {
1543         struct sk_buff *skb = rx->skb;
1544         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1545
1546         /*
1547          * Pass through unencrypted frames if the hardware has
1548          * decrypted them already.
1549          */
1550         if (status->flag & RX_FLAG_DECRYPTED)
1551                 return 0;
1552
1553         /* Drop unencrypted frames if key is set. */
1554         if (unlikely(!ieee80211_has_protected(fc) &&
1555                      !ieee80211_is_nullfunc(fc) &&
1556                      ieee80211_is_data(fc) &&
1557                      (rx->key || rx->sdata->drop_unencrypted)))
1558                 return -EACCES;
1559
1560         return 0;
1561 }
1562
1563 static int
1564 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1565 {
1566         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1567         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1568         __le16 fc = hdr->frame_control;
1569
1570         /*
1571          * Pass through unencrypted frames if the hardware has
1572          * decrypted them already.
1573          */
1574         if (status->flag & RX_FLAG_DECRYPTED)
1575                 return 0;
1576
1577         if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1578                 if (unlikely(!ieee80211_has_protected(fc) &&
1579                              ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1580                              rx->key)) {
1581                         if (ieee80211_is_deauth(fc))
1582                                 cfg80211_send_unprot_deauth(rx->sdata->dev,
1583                                                             rx->skb->data,
1584                                                             rx->skb->len);
1585                         else if (ieee80211_is_disassoc(fc))
1586                                 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1587                                                               rx->skb->data,
1588                                                               rx->skb->len);
1589                         return -EACCES;
1590                 }
1591                 /* BIP does not use Protected field, so need to check MMIE */
1592                 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1593                              ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1594                         if (ieee80211_is_deauth(fc))
1595                                 cfg80211_send_unprot_deauth(rx->sdata->dev,
1596                                                             rx->skb->data,
1597                                                             rx->skb->len);
1598                         else if (ieee80211_is_disassoc(fc))
1599                                 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1600                                                               rx->skb->data,
1601                                                               rx->skb->len);
1602                         return -EACCES;
1603                 }
1604                 /*
1605                  * When using MFP, Action frames are not allowed prior to
1606                  * having configured keys.
1607                  */
1608                 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1609                              ieee80211_is_robust_mgmt_frame(
1610                                      (struct ieee80211_hdr *) rx->skb->data)))
1611                         return -EACCES;
1612         }
1613
1614         return 0;
1615 }
1616
1617 static int
1618 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1619 {
1620         struct ieee80211_sub_if_data *sdata = rx->sdata;
1621         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1622         bool check_port_control = false;
1623         struct ethhdr *ehdr;
1624         int ret;
1625
1626         *port_control = false;
1627         if (ieee80211_has_a4(hdr->frame_control) &&
1628             sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1629                 return -1;
1630
1631         if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1632             !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1633
1634                 if (!sdata->u.mgd.use_4addr)
1635                         return -1;
1636                 else
1637                         check_port_control = true;
1638         }
1639
1640         if (is_multicast_ether_addr(hdr->addr1) &&
1641             sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1642                 return -1;
1643
1644         ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1645         if (ret < 0)
1646                 return ret;
1647
1648         ehdr = (struct ethhdr *) rx->skb->data;
1649         if (ehdr->h_proto == rx->sdata->control_port_protocol)
1650                 *port_control = true;
1651         else if (check_port_control)
1652                 return -1;
1653
1654         return 0;
1655 }
1656
1657 /*
1658  * requires that rx->skb is a frame with ethernet header
1659  */
1660 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1661 {
1662         static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1663                 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1664         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1665
1666         /*
1667          * Allow EAPOL frames to us/the PAE group address regardless
1668          * of whether the frame was encrypted or not.
1669          */
1670         if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1671             (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1672              compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1673                 return true;
1674
1675         if (ieee80211_802_1x_port_control(rx) ||
1676             ieee80211_drop_unencrypted(rx, fc))
1677                 return false;
1678
1679         return true;
1680 }
1681
1682 /*
1683  * requires that rx->skb is a frame with ethernet header
1684  */
1685 static void
1686 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1687 {
1688         struct ieee80211_sub_if_data *sdata = rx->sdata;
1689         struct net_device *dev = sdata->dev;
1690         struct sk_buff *skb, *xmit_skb;
1691         struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1692         struct sta_info *dsta;
1693         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1694
1695         skb = rx->skb;
1696         xmit_skb = NULL;
1697
1698         if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1699              sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1700             !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1701             (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1702             (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1703                 if (is_multicast_ether_addr(ehdr->h_dest)) {
1704                         /*
1705                          * send multicast frames both to higher layers in
1706                          * local net stack and back to the wireless medium
1707                          */
1708                         xmit_skb = skb_copy(skb, GFP_ATOMIC);
1709                         if (!xmit_skb && net_ratelimit())
1710                                 printk(KERN_DEBUG "%s: failed to clone "
1711                                        "multicast frame\n", dev->name);
1712                 } else {
1713                         dsta = sta_info_get(sdata, skb->data);
1714                         if (dsta) {
1715                                 /*
1716                                  * The destination station is associated to
1717                                  * this AP (in this VLAN), so send the frame
1718                                  * directly to it and do not pass it to local
1719                                  * net stack.
1720                                  */
1721                                 xmit_skb = skb;
1722                                 skb = NULL;
1723                         }
1724                 }
1725         }
1726
1727         if (skb) {
1728                 int align __maybe_unused;
1729
1730 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1731                 /*
1732                  * 'align' will only take the values 0 or 2 here
1733                  * since all frames are required to be aligned
1734                  * to 2-byte boundaries when being passed to
1735                  * mac80211. That also explains the __skb_push()
1736                  * below.
1737                  */
1738                 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1739                 if (align) {
1740                         if (WARN_ON(skb_headroom(skb) < 3)) {
1741                                 dev_kfree_skb(skb);
1742                                 skb = NULL;
1743                         } else {
1744                                 u8 *data = skb->data;
1745                                 size_t len = skb_headlen(skb);
1746                                 skb->data -= align;
1747                                 memmove(skb->data, data, len);
1748                                 skb_set_tail_pointer(skb, len);
1749                         }
1750                 }
1751 #endif
1752
1753                 if (skb) {
1754                         /* deliver to local stack */
1755                         skb->protocol = eth_type_trans(skb, dev);
1756                         memset(skb->cb, 0, sizeof(skb->cb));
1757                         netif_receive_skb(skb);
1758                 }
1759         }
1760
1761         if (xmit_skb) {
1762                 /* send to wireless media */
1763                 xmit_skb->protocol = htons(ETH_P_802_3);
1764                 skb_reset_network_header(xmit_skb);
1765                 skb_reset_mac_header(xmit_skb);
1766                 dev_queue_xmit(xmit_skb);
1767         }
1768 }
1769
1770 static ieee80211_rx_result debug_noinline
1771 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1772 {
1773         struct net_device *dev = rx->sdata->dev;
1774         struct sk_buff *skb = rx->skb;
1775         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1776         __le16 fc = hdr->frame_control;
1777         struct sk_buff_head frame_list;
1778         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1779
1780         if (unlikely(!ieee80211_is_data(fc)))
1781                 return RX_CONTINUE;
1782
1783         if (unlikely(!ieee80211_is_data_present(fc)))
1784                 return RX_DROP_MONITOR;
1785
1786         if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1787                 return RX_CONTINUE;
1788
1789         if (ieee80211_has_a4(hdr->frame_control) &&
1790             rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1791             !rx->sdata->u.vlan.sta)
1792                 return RX_DROP_UNUSABLE;
1793
1794         if (is_multicast_ether_addr(hdr->addr1) &&
1795             ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1796               rx->sdata->u.vlan.sta) ||
1797              (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1798               rx->sdata->u.mgd.use_4addr)))
1799                 return RX_DROP_UNUSABLE;
1800
1801         skb->dev = dev;
1802         __skb_queue_head_init(&frame_list);
1803
1804         if (skb_linearize(skb))
1805                 return RX_DROP_UNUSABLE;
1806
1807         ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1808                                  rx->sdata->vif.type,
1809                                  rx->local->hw.extra_tx_headroom, true);
1810
1811         while (!skb_queue_empty(&frame_list)) {
1812                 rx->skb = __skb_dequeue(&frame_list);
1813
1814                 if (!ieee80211_frame_allowed(rx, fc)) {
1815                         dev_kfree_skb(rx->skb);
1816                         continue;
1817                 }
1818                 dev->stats.rx_packets++;
1819                 dev->stats.rx_bytes += rx->skb->len;
1820
1821                 ieee80211_deliver_skb(rx);
1822         }
1823
1824         return RX_QUEUED;
1825 }
1826
1827 #ifdef CONFIG_MAC80211_MESH
1828 static ieee80211_rx_result
1829 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1830 {
1831         struct ieee80211_hdr *hdr;
1832         struct ieee80211s_hdr *mesh_hdr;
1833         unsigned int hdrlen;
1834         struct sk_buff *skb = rx->skb, *fwd_skb;
1835         struct ieee80211_local *local = rx->local;
1836         struct ieee80211_sub_if_data *sdata = rx->sdata;
1837         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1838
1839         hdr = (struct ieee80211_hdr *) skb->data;
1840         hdrlen = ieee80211_hdrlen(hdr->frame_control);
1841         mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1842
1843         if (!ieee80211_is_data(hdr->frame_control))
1844                 return RX_CONTINUE;
1845
1846         if (!mesh_hdr->ttl)
1847                 /* illegal frame */
1848                 return RX_DROP_MONITOR;
1849
1850         if (mesh_hdr->flags & MESH_FLAGS_AE) {
1851                 struct mesh_path *mppath;
1852                 char *proxied_addr;
1853                 char *mpp_addr;
1854
1855                 if (is_multicast_ether_addr(hdr->addr1)) {
1856                         mpp_addr = hdr->addr3;
1857                         proxied_addr = mesh_hdr->eaddr1;
1858                 } else {
1859                         mpp_addr = hdr->addr4;
1860                         proxied_addr = mesh_hdr->eaddr2;
1861                 }
1862
1863                 rcu_read_lock();
1864                 mppath = mpp_path_lookup(proxied_addr, sdata);
1865                 if (!mppath) {
1866                         mpp_path_add(proxied_addr, mpp_addr, sdata);
1867                 } else {
1868                         spin_lock_bh(&mppath->state_lock);
1869                         if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1870                                 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1871                         spin_unlock_bh(&mppath->state_lock);
1872                 }
1873                 rcu_read_unlock();
1874         }
1875
1876         /* Frame has reached destination.  Don't forward */
1877         if (!is_multicast_ether_addr(hdr->addr1) &&
1878             compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1879                 return RX_CONTINUE;
1880
1881         mesh_hdr->ttl--;
1882
1883         if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1884                 if (!mesh_hdr->ttl)
1885                         IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1886                                                      dropped_frames_ttl);
1887                 else {
1888                         struct ieee80211_hdr *fwd_hdr;
1889                         struct ieee80211_tx_info *info;
1890
1891                         fwd_skb = skb_copy(skb, GFP_ATOMIC);
1892
1893                         if (!fwd_skb && net_ratelimit())
1894                                 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1895                                                    sdata->name);
1896                         if (!fwd_skb)
1897                                 goto out;
1898
1899                         fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
1900                         memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1901                         info = IEEE80211_SKB_CB(fwd_skb);
1902                         memset(info, 0, sizeof(*info));
1903                         info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1904                         info->control.vif = &rx->sdata->vif;
1905                         skb_set_queue_mapping(skb,
1906                                 ieee80211_select_queue(rx->sdata, fwd_skb));
1907                         ieee80211_set_qos_hdr(local, skb);
1908                         if (is_multicast_ether_addr(fwd_hdr->addr1))
1909                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1910                                                                 fwded_mcast);
1911                         else {
1912                                 int err;
1913                                 /*
1914                                  * Save TA to addr1 to send TA a path error if a
1915                                  * suitable next hop is not found
1916                                  */
1917                                 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1918                                                 ETH_ALEN);
1919                                 err = mesh_nexthop_lookup(fwd_skb, sdata);
1920                                 /* Failed to immediately resolve next hop:
1921                                  * fwded frame was dropped or will be added
1922                                  * later to the pending skb queue.  */
1923                                 if (err)
1924                                         return RX_DROP_MONITOR;
1925
1926                                 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1927                                                                 fwded_unicast);
1928                         }
1929                         IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1930                                                      fwded_frames);
1931                         ieee80211_add_pending_skb(local, fwd_skb);
1932                 }
1933         }
1934
1935  out:
1936         if (is_multicast_ether_addr(hdr->addr1) ||
1937             sdata->dev->flags & IFF_PROMISC)
1938                 return RX_CONTINUE;
1939         else
1940                 return RX_DROP_MONITOR;
1941 }
1942 #endif
1943
1944 static ieee80211_rx_result debug_noinline
1945 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1946 {
1947         struct ieee80211_sub_if_data *sdata = rx->sdata;
1948         struct ieee80211_local *local = rx->local;
1949         struct net_device *dev = sdata->dev;
1950         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1951         __le16 fc = hdr->frame_control;
1952         bool port_control;
1953         int err;
1954
1955         if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1956                 return RX_CONTINUE;
1957
1958         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1959                 return RX_DROP_MONITOR;
1960
1961         /*
1962          * Allow the cooked monitor interface of an AP to see 4-addr frames so
1963          * that a 4-addr station can be detected and moved into a separate VLAN
1964          */
1965         if (ieee80211_has_a4(hdr->frame_control) &&
1966             sdata->vif.type == NL80211_IFTYPE_AP)
1967                 return RX_DROP_MONITOR;
1968
1969         err = __ieee80211_data_to_8023(rx, &port_control);
1970         if (unlikely(err))
1971                 return RX_DROP_UNUSABLE;
1972
1973         if (!ieee80211_frame_allowed(rx, fc))
1974                 return RX_DROP_MONITOR;
1975
1976         if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1977             unlikely(port_control) && sdata->bss) {
1978                 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1979                                      u.ap);
1980                 dev = sdata->dev;
1981                 rx->sdata = sdata;
1982         }
1983
1984         rx->skb->dev = dev;
1985
1986         dev->stats.rx_packets++;
1987         dev->stats.rx_bytes += rx->skb->len;
1988
1989         if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1990             !is_multicast_ether_addr(
1991                     ((struct ethhdr *)rx->skb->data)->h_dest) &&
1992             (!local->scanning &&
1993              !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1994                         mod_timer(&local->dynamic_ps_timer, jiffies +
1995                          msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1996         }
1997
1998         ieee80211_deliver_skb(rx);
1999
2000         return RX_QUEUED;
2001 }
2002
2003 static ieee80211_rx_result debug_noinline
2004 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2005 {
2006         struct ieee80211_local *local = rx->local;
2007         struct ieee80211_hw *hw = &local->hw;
2008         struct sk_buff *skb = rx->skb;
2009         struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2010         struct tid_ampdu_rx *tid_agg_rx;
2011         u16 start_seq_num;
2012         u16 tid;
2013
2014         if (likely(!ieee80211_is_ctl(bar->frame_control)))
2015                 return RX_CONTINUE;
2016
2017         if (ieee80211_is_back_req(bar->frame_control)) {
2018                 struct {
2019                         __le16 control, start_seq_num;
2020                 } __packed bar_data;
2021
2022                 if (!rx->sta)
2023                         return RX_DROP_MONITOR;
2024
2025                 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2026                                   &bar_data, sizeof(bar_data)))
2027                         return RX_DROP_MONITOR;
2028
2029                 tid = le16_to_cpu(bar_data.control) >> 12;
2030
2031                 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2032                 if (!tid_agg_rx)
2033                         return RX_DROP_MONITOR;
2034
2035                 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2036
2037                 /* reset session timer */
2038                 if (tid_agg_rx->timeout)
2039                         mod_timer(&tid_agg_rx->session_timer,
2040                                   TU_TO_EXP_TIME(tid_agg_rx->timeout));
2041
2042                 spin_lock(&tid_agg_rx->reorder_lock);
2043                 /* release stored frames up to start of BAR */
2044                 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2045                 spin_unlock(&tid_agg_rx->reorder_lock);
2046
2047                 kfree_skb(skb);
2048                 return RX_QUEUED;
2049         }
2050
2051         /*
2052          * After this point, we only want management frames,
2053          * so we can drop all remaining control frames to
2054          * cooked monitor interfaces.
2055          */
2056         return RX_DROP_MONITOR;
2057 }
2058
2059 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2060                                            struct ieee80211_mgmt *mgmt,
2061                                            size_t len)
2062 {
2063         struct ieee80211_local *local = sdata->local;
2064         struct sk_buff *skb;
2065         struct ieee80211_mgmt *resp;
2066
2067         if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2068                 /* Not to own unicast address */
2069                 return;
2070         }
2071
2072         if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2073             compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2074                 /* Not from the current AP or not associated yet. */
2075                 return;
2076         }
2077
2078         if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2079                 /* Too short SA Query request frame */
2080                 return;
2081         }
2082
2083         skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2084         if (skb == NULL)
2085                 return;
2086
2087         skb_reserve(skb, local->hw.extra_tx_headroom);
2088         resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2089         memset(resp, 0, 24);
2090         memcpy(resp->da, mgmt->sa, ETH_ALEN);
2091         memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2092         memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2093         resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2094                                           IEEE80211_STYPE_ACTION);
2095         skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2096         resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2097         resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2098         memcpy(resp->u.action.u.sa_query.trans_id,
2099                mgmt->u.action.u.sa_query.trans_id,
2100                WLAN_SA_QUERY_TR_ID_LEN);
2101
2102         ieee80211_tx_skb(sdata, skb);
2103 }
2104
2105 static ieee80211_rx_result debug_noinline
2106 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2107 {
2108         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2109         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2110
2111         /*
2112          * From here on, look only at management frames.
2113          * Data and control frames are already handled,
2114          * and unknown (reserved) frames are useless.
2115          */
2116         if (rx->skb->len < 24)
2117                 return RX_DROP_MONITOR;
2118
2119         if (!ieee80211_is_mgmt(mgmt->frame_control))
2120                 return RX_DROP_MONITOR;
2121
2122         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2123                 return RX_DROP_MONITOR;
2124
2125         if (ieee80211_drop_unencrypted_mgmt(rx))
2126                 return RX_DROP_UNUSABLE;
2127
2128         return RX_CONTINUE;
2129 }
2130
2131 static ieee80211_rx_result debug_noinline
2132 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2133 {
2134         struct ieee80211_local *local = rx->local;
2135         struct ieee80211_sub_if_data *sdata = rx->sdata;
2136         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2137         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2138         int len = rx->skb->len;
2139
2140         if (!ieee80211_is_action(mgmt->frame_control))
2141                 return RX_CONTINUE;
2142
2143         /* drop too small frames */
2144         if (len < IEEE80211_MIN_ACTION_SIZE)
2145                 return RX_DROP_UNUSABLE;
2146
2147         if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2148                 return RX_DROP_UNUSABLE;
2149
2150         if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2151                 return RX_DROP_UNUSABLE;
2152
2153         switch (mgmt->u.action.category) {
2154         case WLAN_CATEGORY_BACK:
2155                 /*
2156                  * The aggregation code is not prepared to handle
2157                  * anything but STA/AP due to the BSSID handling;
2158                  * IBSS could work in the code but isn't supported
2159                  * by drivers or the standard.
2160                  */
2161                 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2162                     sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2163                     sdata->vif.type != NL80211_IFTYPE_AP)
2164                         break;
2165
2166                 /* verify action_code is present */
2167                 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2168                         break;
2169
2170                 switch (mgmt->u.action.u.addba_req.action_code) {
2171                 case WLAN_ACTION_ADDBA_REQ:
2172                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2173                                    sizeof(mgmt->u.action.u.addba_req)))
2174                                 goto invalid;
2175                         break;
2176                 case WLAN_ACTION_ADDBA_RESP:
2177                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2178                                    sizeof(mgmt->u.action.u.addba_resp)))
2179                                 goto invalid;
2180                         break;
2181                 case WLAN_ACTION_DELBA:
2182                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2183                                    sizeof(mgmt->u.action.u.delba)))
2184                                 goto invalid;
2185                         break;
2186                 default:
2187                         goto invalid;
2188                 }
2189
2190                 goto queue;
2191         case WLAN_CATEGORY_SPECTRUM_MGMT:
2192                 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2193                         break;
2194
2195                 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2196                         break;
2197
2198                 /* verify action_code is present */
2199                 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2200                         break;
2201
2202                 switch (mgmt->u.action.u.measurement.action_code) {
2203                 case WLAN_ACTION_SPCT_MSR_REQ:
2204                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2205                                    sizeof(mgmt->u.action.u.measurement)))
2206                                 break;
2207                         ieee80211_process_measurement_req(sdata, mgmt, len);
2208                         goto handled;
2209                 case WLAN_ACTION_SPCT_CHL_SWITCH:
2210                         if (len < (IEEE80211_MIN_ACTION_SIZE +
2211                                    sizeof(mgmt->u.action.u.chan_switch)))
2212                                 break;
2213
2214                         if (sdata->vif.type != NL80211_IFTYPE_STATION)
2215                                 break;
2216
2217                         if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2218                                 break;
2219
2220                         goto queue;
2221                 }
2222                 break;
2223         case WLAN_CATEGORY_SA_QUERY:
2224                 if (len < (IEEE80211_MIN_ACTION_SIZE +
2225                            sizeof(mgmt->u.action.u.sa_query)))
2226                         break;
2227
2228                 switch (mgmt->u.action.u.sa_query.action) {
2229                 case WLAN_ACTION_SA_QUERY_REQUEST:
2230                         if (sdata->vif.type != NL80211_IFTYPE_STATION)
2231                                 break;
2232                         ieee80211_process_sa_query_req(sdata, mgmt, len);
2233                         goto handled;
2234                 }
2235                 break;
2236         case WLAN_CATEGORY_SELF_PROTECTED:
2237                 switch (mgmt->u.action.u.self_prot.action_code) {
2238                 case WLAN_SP_MESH_PEERING_OPEN:
2239                 case WLAN_SP_MESH_PEERING_CLOSE:
2240                 case WLAN_SP_MESH_PEERING_CONFIRM:
2241                         if (!ieee80211_vif_is_mesh(&sdata->vif))
2242                                 goto invalid;
2243                         if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2244                                 /* userspace handles this frame */
2245                                 break;
2246                         goto queue;
2247                 case WLAN_SP_MGK_INFORM:
2248                 case WLAN_SP_MGK_ACK:
2249                         if (!ieee80211_vif_is_mesh(&sdata->vif))
2250                                 goto invalid;
2251                         break;
2252                 }
2253                 break;
2254         case WLAN_CATEGORY_MESH_ACTION:
2255                 if (!ieee80211_vif_is_mesh(&sdata->vif))
2256                         break;
2257                 if (mesh_action_is_path_sel(mgmt) &&
2258                   (!mesh_path_sel_is_hwmp(sdata)))
2259                         break;
2260                 goto queue;
2261         }
2262
2263         return RX_CONTINUE;
2264
2265  invalid:
2266         status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2267         /* will return in the next handlers */
2268         return RX_CONTINUE;
2269
2270  handled:
2271         if (rx->sta)
2272                 rx->sta->rx_packets++;
2273         dev_kfree_skb(rx->skb);
2274         return RX_QUEUED;
2275
2276  queue:
2277         rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2278         skb_queue_tail(&sdata->skb_queue, rx->skb);
2279         ieee80211_queue_work(&local->hw, &sdata->work);
2280         if (rx->sta)
2281                 rx->sta->rx_packets++;
2282         return RX_QUEUED;
2283 }
2284
2285 static ieee80211_rx_result debug_noinline
2286 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2287 {
2288         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2289
2290         /* skip known-bad action frames and return them in the next handler */
2291         if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2292                 return RX_CONTINUE;
2293
2294         /*
2295          * Getting here means the kernel doesn't know how to handle
2296          * it, but maybe userspace does ... include returned frames
2297          * so userspace can register for those to know whether ones
2298          * it transmitted were processed or returned.
2299          */
2300
2301         if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2302                              rx->skb->data, rx->skb->len,
2303                              GFP_ATOMIC)) {
2304                 if (rx->sta)
2305                         rx->sta->rx_packets++;
2306                 dev_kfree_skb(rx->skb);
2307                 return RX_QUEUED;
2308         }
2309
2310
2311         return RX_CONTINUE;
2312 }
2313
2314 static ieee80211_rx_result debug_noinline
2315 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2316 {
2317         struct ieee80211_local *local = rx->local;
2318         struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2319         struct sk_buff *nskb;
2320         struct ieee80211_sub_if_data *sdata = rx->sdata;
2321         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2322
2323         if (!ieee80211_is_action(mgmt->frame_control))
2324                 return RX_CONTINUE;
2325
2326         /*
2327          * For AP mode, hostapd is responsible for handling any action
2328          * frames that we didn't handle, including returning unknown
2329          * ones. For all other modes we will return them to the sender,
2330          * setting the 0x80 bit in the action category, as required by
2331          * 802.11-2007 7.3.1.11.
2332          * Newer versions of hostapd shall also use the management frame
2333          * registration mechanisms, but older ones still use cooked
2334          * monitor interfaces so push all frames there.
2335          */
2336         if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2337             (sdata->vif.type == NL80211_IFTYPE_AP ||
2338              sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2339                 return RX_DROP_MONITOR;
2340
2341         /* do not return rejected action frames */
2342         if (mgmt->u.action.category & 0x80)
2343                 return RX_DROP_UNUSABLE;
2344
2345         nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2346                                GFP_ATOMIC);
2347         if (nskb) {
2348                 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2349
2350                 nmgmt->u.action.category |= 0x80;
2351                 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2352                 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2353
2354                 memset(nskb->cb, 0, sizeof(nskb->cb));
2355
2356                 ieee80211_tx_skb(rx->sdata, nskb);
2357         }
2358         dev_kfree_skb(rx->skb);
2359         return RX_QUEUED;
2360 }
2361
2362 static ieee80211_rx_result debug_noinline
2363 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2364 {
2365         struct ieee80211_sub_if_data *sdata = rx->sdata;
2366         ieee80211_rx_result rxs;
2367         struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2368         __le16 stype;
2369
2370         rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2371         if (rxs != RX_CONTINUE)
2372                 return rxs;
2373
2374         stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2375
2376         if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2377             sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2378             sdata->vif.type != NL80211_IFTYPE_STATION)
2379                 return RX_DROP_MONITOR;
2380
2381         switch (stype) {
2382         case cpu_to_le16(IEEE80211_STYPE_BEACON):
2383         case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2384                 /* process for all: mesh, mlme, ibss */
2385                 break;
2386         case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2387         case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2388                 if (is_multicast_ether_addr(mgmt->da) &&
2389                     !is_broadcast_ether_addr(mgmt->da))
2390                         return RX_DROP_MONITOR;
2391
2392                 /* process only for station */
2393                 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2394                         return RX_DROP_MONITOR;
2395                 break;
2396         case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2397         case cpu_to_le16(IEEE80211_STYPE_AUTH):
2398                 /* process only for ibss */
2399                 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2400                         return RX_DROP_MONITOR;
2401                 break;
2402         default:
2403                 return RX_DROP_MONITOR;
2404         }
2405
2406         /* queue up frame and kick off work to process it */
2407         rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2408         skb_queue_tail(&sdata->skb_queue, rx->skb);
2409         ieee80211_queue_work(&rx->local->hw, &sdata->work);
2410         if (rx->sta)
2411                 rx->sta->rx_packets++;
2412
2413         return RX_QUEUED;
2414 }
2415
2416 /* TODO: use IEEE80211_RX_FRAGMENTED */
2417 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2418                                         struct ieee80211_rate *rate)
2419 {
2420         struct ieee80211_sub_if_data *sdata;
2421         struct ieee80211_local *local = rx->local;
2422         struct ieee80211_rtap_hdr {
2423                 struct ieee80211_radiotap_header hdr;
2424                 u8 flags;
2425                 u8 rate_or_pad;
2426                 __le16 chan_freq;
2427                 __le16 chan_flags;
2428         } __packed *rthdr;
2429         struct sk_buff *skb = rx->skb, *skb2;
2430         struct net_device *prev_dev = NULL;
2431         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2432
2433         /*
2434          * If cooked monitor has been processed already, then
2435          * don't do it again. If not, set the flag.
2436          */
2437         if (rx->flags & IEEE80211_RX_CMNTR)
2438                 goto out_free_skb;
2439         rx->flags |= IEEE80211_RX_CMNTR;
2440
2441         if (skb_headroom(skb) < sizeof(*rthdr) &&
2442             pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2443                 goto out_free_skb;
2444
2445         rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2446         memset(rthdr, 0, sizeof(*rthdr));
2447         rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2448         rthdr->hdr.it_present =
2449                 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2450                             (1 << IEEE80211_RADIOTAP_CHANNEL));
2451
2452         if (rate) {
2453                 rthdr->rate_or_pad = rate->bitrate / 5;
2454                 rthdr->hdr.it_present |=
2455                         cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2456         }
2457         rthdr->chan_freq = cpu_to_le16(status->freq);
2458
2459         if (status->band == IEEE80211_BAND_5GHZ)
2460                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2461                                                 IEEE80211_CHAN_5GHZ);
2462         else
2463                 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2464                                                 IEEE80211_CHAN_2GHZ);
2465
2466         skb_set_mac_header(skb, 0);
2467         skb->ip_summed = CHECKSUM_UNNECESSARY;
2468         skb->pkt_type = PACKET_OTHERHOST;
2469         skb->protocol = htons(ETH_P_802_2);
2470
2471         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2472                 if (!ieee80211_sdata_running(sdata))
2473                         continue;
2474
2475                 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2476                     !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2477                         continue;
2478
2479                 if (prev_dev) {
2480                         skb2 = skb_clone(skb, GFP_ATOMIC);
2481                         if (skb2) {
2482                                 skb2->dev = prev_dev;
2483                                 netif_receive_skb(skb2);
2484                         }
2485                 }
2486
2487                 prev_dev = sdata->dev;
2488                 sdata->dev->stats.rx_packets++;
2489                 sdata->dev->stats.rx_bytes += skb->len;
2490         }
2491
2492         if (prev_dev) {
2493                 skb->dev = prev_dev;
2494                 netif_receive_skb(skb);
2495                 return;
2496         }
2497
2498  out_free_skb:
2499         dev_kfree_skb(skb);
2500 }
2501
2502 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2503                                          ieee80211_rx_result res)
2504 {
2505         switch (res) {
2506         case RX_DROP_MONITOR:
2507                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2508                 if (rx->sta)
2509                         rx->sta->rx_dropped++;
2510                 /* fall through */
2511         case RX_CONTINUE: {
2512                 struct ieee80211_rate *rate = NULL;
2513                 struct ieee80211_supported_band *sband;
2514                 struct ieee80211_rx_status *status;
2515
2516                 status = IEEE80211_SKB_RXCB((rx->skb));
2517
2518                 sband = rx->local->hw.wiphy->bands[status->band];
2519                 if (!(status->flag & RX_FLAG_HT))
2520                         rate = &sband->bitrates[status->rate_idx];
2521
2522                 ieee80211_rx_cooked_monitor(rx, rate);
2523                 break;
2524                 }
2525         case RX_DROP_UNUSABLE:
2526                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2527                 if (rx->sta)
2528                         rx->sta->rx_dropped++;
2529                 dev_kfree_skb(rx->skb);
2530                 break;
2531         case RX_QUEUED:
2532                 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2533                 break;
2534         }
2535 }
2536
2537 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2538 {
2539         ieee80211_rx_result res = RX_DROP_MONITOR;
2540         struct sk_buff *skb;
2541
2542 #define CALL_RXH(rxh)                   \
2543         do {                            \
2544                 res = rxh(rx);          \
2545                 if (res != RX_CONTINUE) \
2546                         goto rxh_next;  \
2547         } while (0);
2548
2549         spin_lock(&rx->local->rx_skb_queue.lock);
2550         if (rx->local->running_rx_handler)
2551                 goto unlock;
2552
2553         rx->local->running_rx_handler = true;
2554
2555         while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2556                 spin_unlock(&rx->local->rx_skb_queue.lock);
2557
2558                 /*
2559                  * all the other fields are valid across frames
2560                  * that belong to an aMPDU since they are on the
2561                  * same TID from the same station
2562                  */
2563                 rx->skb = skb;
2564
2565                 CALL_RXH(ieee80211_rx_h_decrypt)
2566                 CALL_RXH(ieee80211_rx_h_check_more_data)
2567                 CALL_RXH(ieee80211_rx_h_sta_process)
2568                 CALL_RXH(ieee80211_rx_h_defragment)
2569                 CALL_RXH(ieee80211_rx_h_ps_poll)
2570                 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2571                 /* must be after MMIC verify so header is counted in MPDU mic */
2572                 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2573                 CALL_RXH(ieee80211_rx_h_amsdu)
2574 #ifdef CONFIG_MAC80211_MESH
2575                 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2576                         CALL_RXH(ieee80211_rx_h_mesh_fwding);
2577 #endif
2578                 CALL_RXH(ieee80211_rx_h_data)
2579                 CALL_RXH(ieee80211_rx_h_ctrl);
2580                 CALL_RXH(ieee80211_rx_h_mgmt_check)
2581                 CALL_RXH(ieee80211_rx_h_action)
2582                 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2583                 CALL_RXH(ieee80211_rx_h_action_return)
2584                 CALL_RXH(ieee80211_rx_h_mgmt)
2585
2586  rxh_next:
2587                 ieee80211_rx_handlers_result(rx, res);
2588                 spin_lock(&rx->local->rx_skb_queue.lock);
2589 #undef CALL_RXH
2590         }
2591
2592         rx->local->running_rx_handler = false;
2593
2594  unlock:
2595         spin_unlock(&rx->local->rx_skb_queue.lock);
2596 }
2597
2598 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2599 {
2600         ieee80211_rx_result res = RX_DROP_MONITOR;
2601
2602 #define CALL_RXH(rxh)                   \
2603         do {                            \
2604                 res = rxh(rx);          \
2605                 if (res != RX_CONTINUE) \
2606                         goto rxh_next;  \
2607         } while (0);
2608
2609         CALL_RXH(ieee80211_rx_h_passive_scan)
2610         CALL_RXH(ieee80211_rx_h_check)
2611
2612         ieee80211_rx_reorder_ampdu(rx);
2613
2614         ieee80211_rx_handlers(rx);
2615         return;
2616
2617  rxh_next:
2618         ieee80211_rx_handlers_result(rx, res);
2619
2620 #undef CALL_RXH
2621 }
2622
2623 /*
2624  * This function makes calls into the RX path, therefore
2625  * it has to be invoked under RCU read lock.
2626  */
2627 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2628 {
2629         struct ieee80211_rx_data rx = {
2630                 .sta = sta,
2631                 .sdata = sta->sdata,
2632                 .local = sta->local,
2633                 /* This is OK -- must be QoS data frame */
2634                 .security_idx = tid,
2635                 .seqno_idx = tid,
2636                 .flags = 0,
2637         };
2638         struct tid_ampdu_rx *tid_agg_rx;
2639
2640         tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2641         if (!tid_agg_rx)
2642                 return;
2643
2644         spin_lock(&tid_agg_rx->reorder_lock);
2645         ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2646         spin_unlock(&tid_agg_rx->reorder_lock);
2647
2648         ieee80211_rx_handlers(&rx);
2649 }
2650
2651 /* main receive path */
2652
2653 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2654                                 struct ieee80211_hdr *hdr)
2655 {
2656         struct ieee80211_sub_if_data *sdata = rx->sdata;
2657         struct sk_buff *skb = rx->skb;
2658         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2659         u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2660         int multicast = is_multicast_ether_addr(hdr->addr1);
2661
2662         switch (sdata->vif.type) {
2663         case NL80211_IFTYPE_STATION:
2664                 if (!bssid && !sdata->u.mgd.use_4addr)
2665                         return 0;
2666                 if (!multicast &&
2667                     compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2668                         if (!(sdata->dev->flags & IFF_PROMISC) ||
2669                             sdata->u.mgd.use_4addr)
2670                                 return 0;
2671                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2672                 }
2673                 break;
2674         case NL80211_IFTYPE_ADHOC:
2675                 if (!bssid)
2676                         return 0;
2677                 if (ieee80211_is_beacon(hdr->frame_control)) {
2678                         return 1;
2679                 }
2680                 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2681                         if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2682                                 return 0;
2683                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2684                 } else if (!multicast &&
2685                            compare_ether_addr(sdata->vif.addr,
2686                                               hdr->addr1) != 0) {
2687                         if (!(sdata->dev->flags & IFF_PROMISC))
2688                                 return 0;
2689                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2690                 } else if (!rx->sta) {
2691                         int rate_idx;
2692                         if (status->flag & RX_FLAG_HT)
2693                                 rate_idx = 0; /* TODO: HT rates */
2694                         else
2695                                 rate_idx = status->rate_idx;
2696                         rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2697                                         hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2698                 }
2699                 break;
2700         case NL80211_IFTYPE_MESH_POINT:
2701                 if (!multicast &&
2702                     compare_ether_addr(sdata->vif.addr,
2703                                        hdr->addr1) != 0) {
2704                         if (!(sdata->dev->flags & IFF_PROMISC))
2705                                 return 0;
2706
2707                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2708                 }
2709                 break;
2710         case NL80211_IFTYPE_AP_VLAN:
2711         case NL80211_IFTYPE_AP:
2712                 if (!bssid) {
2713                         if (compare_ether_addr(sdata->vif.addr,
2714                                                hdr->addr1))
2715                                 return 0;
2716                 } else if (!ieee80211_bssid_match(bssid,
2717                                         sdata->vif.addr)) {
2718                         if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2719                             !ieee80211_is_beacon(hdr->frame_control))
2720                                 return 0;
2721                         status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2722                 }
2723                 break;
2724         case NL80211_IFTYPE_WDS:
2725                 if (bssid || !ieee80211_is_data(hdr->frame_control))
2726                         return 0;
2727                 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2728                         return 0;
2729                 break;
2730         default:
2731                 /* should never get here */
2732                 WARN_ON(1);
2733                 break;
2734         }
2735
2736         return 1;
2737 }
2738
2739 /*
2740  * This function returns whether or not the SKB
2741  * was destined for RX processing or not, which,
2742  * if consume is true, is equivalent to whether
2743  * or not the skb was consumed.
2744  */
2745 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2746                                             struct sk_buff *skb, bool consume)
2747 {
2748         struct ieee80211_local *local = rx->local;
2749         struct ieee80211_sub_if_data *sdata = rx->sdata;
2750         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2751         struct ieee80211_hdr *hdr = (void *)skb->data;
2752         int prepares;
2753
2754         rx->skb = skb;
2755         status->rx_flags |= IEEE80211_RX_RA_MATCH;
2756         prepares = prepare_for_handlers(rx, hdr);
2757
2758         if (!prepares)
2759                 return false;
2760
2761         if (!consume) {
2762                 skb = skb_copy(skb, GFP_ATOMIC);
2763                 if (!skb) {
2764                         if (net_ratelimit())
2765                                 wiphy_debug(local->hw.wiphy,
2766                                         "failed to copy skb for %s\n",
2767                                         sdata->name);
2768                         return true;
2769                 }
2770
2771                 rx->skb = skb;
2772         }
2773
2774         ieee80211_invoke_rx_handlers(rx);
2775         return true;
2776 }
2777
2778 /*
2779  * This is the actual Rx frames handler. as it blongs to Rx path it must
2780  * be called with rcu_read_lock protection.
2781  */
2782 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2783                                          struct sk_buff *skb)
2784 {
2785         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2786         struct ieee80211_local *local = hw_to_local(hw);
2787         struct ieee80211_sub_if_data *sdata;
2788         struct ieee80211_hdr *hdr;
2789         __le16 fc;
2790         struct ieee80211_rx_data rx;
2791         struct ieee80211_sub_if_data *prev;
2792         struct sta_info *sta, *tmp, *prev_sta;
2793         int err = 0;
2794
2795         fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2796         memset(&rx, 0, sizeof(rx));
2797         rx.skb = skb;
2798         rx.local = local;
2799
2800         if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2801                 local->dot11ReceivedFragmentCount++;
2802
2803         if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2804                      test_bit(SCAN_SW_SCANNING, &local->scanning)))
2805                 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2806
2807         if (ieee80211_is_mgmt(fc))
2808                 err = skb_linearize(skb);
2809         else
2810                 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2811
2812         if (err) {
2813                 dev_kfree_skb(skb);
2814                 return;
2815         }
2816
2817         hdr = (struct ieee80211_hdr *)skb->data;
2818         ieee80211_parse_qos(&rx);
2819         ieee80211_verify_alignment(&rx);
2820
2821         if (ieee80211_is_data(fc)) {
2822                 prev_sta = NULL;
2823
2824                 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
2825                         if (!prev_sta) {
2826                                 prev_sta = sta;
2827                                 continue;
2828                         }
2829
2830                         rx.sta = prev_sta;
2831                         rx.sdata = prev_sta->sdata;
2832                         ieee80211_prepare_and_rx_handle(&rx, skb, false);
2833
2834                         prev_sta = sta;
2835                 }
2836
2837                 if (prev_sta) {
2838                         rx.sta = prev_sta;
2839                         rx.sdata = prev_sta->sdata;
2840
2841                         if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2842                                 return;
2843                         goto out;
2844                 }
2845         }
2846
2847         prev = NULL;
2848
2849         list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2850                 if (!ieee80211_sdata_running(sdata))
2851                         continue;
2852
2853                 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2854                     sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2855                         continue;
2856
2857                 /*
2858                  * frame is destined for this interface, but if it's
2859                  * not also for the previous one we handle that after
2860                  * the loop to avoid copying the SKB once too much
2861                  */
2862
2863                 if (!prev) {
2864                         prev = sdata;
2865                         continue;
2866                 }
2867
2868                 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2869                 rx.sdata = prev;
2870                 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2871
2872                 prev = sdata;
2873         }
2874
2875         if (prev) {
2876                 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2877                 rx.sdata = prev;
2878
2879                 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2880                         return;
2881         }
2882
2883  out:
2884         dev_kfree_skb(skb);
2885 }
2886
2887 /*
2888  * This is the receive path handler. It is called by a low level driver when an
2889  * 802.11 MPDU is received from the hardware.
2890  */
2891 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2892 {
2893         struct ieee80211_local *local = hw_to_local(hw);
2894         struct ieee80211_rate *rate = NULL;
2895         struct ieee80211_supported_band *sband;
2896         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2897
2898         WARN_ON_ONCE(softirq_count() == 0);
2899
2900         if (WARN_ON(status->band < 0 ||
2901                     status->band >= IEEE80211_NUM_BANDS))
2902                 goto drop;
2903
2904         sband = local->hw.wiphy->bands[status->band];
2905         if (WARN_ON(!sband))
2906                 goto drop;
2907
2908         /*
2909          * If we're suspending, it is possible although not too likely
2910          * that we'd be receiving frames after having already partially
2911          * quiesced the stack. We can't process such frames then since
2912          * that might, for example, cause stations to be added or other
2913          * driver callbacks be invoked.
2914          */
2915         if (unlikely(local->quiescing || local->suspended))
2916                 goto drop;
2917
2918         /*
2919          * The same happens when we're not even started,
2920          * but that's worth a warning.
2921          */
2922         if (WARN_ON(!local->started))
2923                 goto drop;
2924
2925         if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2926                 /*
2927                  * Validate the rate, unless a PLCP error means that
2928                  * we probably can't have a valid rate here anyway.
2929                  */
2930
2931                 if (status->flag & RX_FLAG_HT) {
2932                         /*
2933                          * rate_idx is MCS index, which can be [0-76]
2934                          * as documented on:
2935                          *
2936                          * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2937                          *
2938                          * Anything else would be some sort of driver or
2939                          * hardware error. The driver should catch hardware
2940                          * errors.
2941                          */
2942                         if (WARN((status->rate_idx < 0 ||
2943                                  status->rate_idx > 76),
2944                                  "Rate marked as an HT rate but passed "
2945                                  "status->rate_idx is not "
2946                                  "an MCS index [0-76]: %d (0x%02x)\n",
2947                                  status->rate_idx,
2948                                  status->rate_idx))
2949                                 goto drop;
2950                 } else {
2951                         if (WARN_ON(status->rate_idx < 0 ||
2952                                     status->rate_idx >= sband->n_bitrates))
2953                                 goto drop;
2954                         rate = &sband->bitrates[status->rate_idx];
2955                 }
2956         }
2957
2958         status->rx_flags = 0;
2959
2960         /*
2961          * key references and virtual interfaces are protected using RCU
2962          * and this requires that we are in a read-side RCU section during
2963          * receive processing
2964          */
2965         rcu_read_lock();
2966
2967         /*
2968          * Frames with failed FCS/PLCP checksum are not returned,
2969          * all other frames are returned without radiotap header
2970          * if it was previously present.
2971          * Also, frames with less than 16 bytes are dropped.
2972          */
2973         skb = ieee80211_rx_monitor(local, skb, rate);
2974         if (!skb) {
2975                 rcu_read_unlock();
2976                 return;
2977         }
2978
2979         ieee80211_tpt_led_trig_rx(local,
2980                         ((struct ieee80211_hdr *)skb->data)->frame_control,
2981                         skb->len);
2982         __ieee80211_rx_handle_packet(hw, skb);
2983
2984         rcu_read_unlock();
2985
2986         return;
2987  drop:
2988         kfree_skb(skb);
2989 }
2990 EXPORT_SYMBOL(ieee80211_rx);
2991
2992 /* This is a version of the rx handler that can be called from hard irq
2993  * context. Post the skb on the queue and schedule the tasklet */
2994 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2995 {
2996         struct ieee80211_local *local = hw_to_local(hw);
2997
2998         BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2999
3000         skb->pkt_type = IEEE80211_RX_MSG;
3001         skb_queue_tail(&local->skb_queue, skb);
3002         tasklet_schedule(&local->tasklet);
3003 }
3004 EXPORT_SYMBOL(ieee80211_rx_irqsafe);