2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2015 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/if_ether.h>
15 #include <linux/etherdevice.h>
16 #include <linux/list.h>
17 #include <linux/rcupdate.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/slab.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <asm/unaligned.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "debugfs_key.h"
33 * DOC: Key handling basics
35 * Key handling in mac80211 is done based on per-interface (sub_if_data)
36 * keys and per-station keys. Since each station belongs to an interface,
37 * each station key also belongs to that interface.
39 * Hardware acceleration is done on a best-effort basis for algorithms
40 * that are implemented in software, for each key the hardware is asked
41 * to enable that key for offloading but if it cannot do that the key is
42 * simply kept for software encryption (unless it is for an algorithm
43 * that isn't implemented in software).
44 * There is currently no way of knowing whether a key is handled in SW
45 * or HW except by looking into debugfs.
47 * All key management is internally protected by a mutex. Within all
48 * other parts of mac80211, key references are, just as STA structure
49 * references, protected by RCU. Note, however, that some things are
50 * unprotected, namely the key->sta dereferences within the hardware
51 * acceleration functions. This means that sta_info_destroy() must
52 * remove the key which waits for an RCU grace period.
55 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
57 static void assert_key_lock(struct ieee80211_local *local)
59 lockdep_assert_held(&local->key_mtx);
63 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
65 struct ieee80211_sub_if_data *vlan;
67 if (sdata->vif.type != NL80211_IFTYPE_AP)
70 /* crypto_tx_tailroom_needed_cnt is protected by this */
71 assert_key_lock(sdata->local);
75 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
76 vlan->crypto_tx_tailroom_needed_cnt += delta;
81 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
84 * When this count is zero, SKB resizing for allocating tailroom
85 * for IV or MMIC is skipped. But, this check has created two race
86 * cases in xmit path while transiting from zero count to one:
88 * 1. SKB resize was skipped because no key was added but just before
89 * the xmit key is added and SW encryption kicks off.
91 * 2. SKB resize was skipped because all the keys were hw planted but
92 * just before xmit one of the key is deleted and SW encryption kicks
95 * In both the above case SW encryption will find not enough space for
96 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
98 * Solution has been explained at
99 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
102 assert_key_lock(sdata->local);
104 update_vlan_tailroom_need_count(sdata, 1);
106 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
108 * Flush all XMIT packets currently using HW encryption or no
109 * encryption at all if the count transition is from 0 -> 1.
115 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
118 assert_key_lock(sdata->local);
120 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
122 update_vlan_tailroom_need_count(sdata, -delta);
123 sdata->crypto_tx_tailroom_needed_cnt -= delta;
126 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
128 struct ieee80211_sub_if_data *sdata;
129 struct sta_info *sta;
130 int ret = -EOPNOTSUPP;
134 if (key->flags & KEY_FLAG_TAINTED) {
135 /* If we get here, it's during resume and the key is
136 * tainted so shouldn't be used/programmed any more.
137 * However, its flags may still indicate that it was
138 * programmed into the device (since we're in resume)
139 * so clear that flag now to avoid trying to remove
142 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
146 if (!key->local->ops->set_key)
147 goto out_unsupported;
149 assert_key_lock(key->local);
154 * If this is a per-STA GTK, check if it
155 * is supported; if not, return.
157 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
158 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
159 goto out_unsupported;
161 if (sta && !sta->uploaded)
162 goto out_unsupported;
165 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
167 * The driver doesn't know anything about VLAN interfaces.
168 * Hence, don't send GTKs for VLAN interfaces to the driver.
170 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
171 goto out_unsupported;
174 ret = drv_set_key(key->local, SET_KEY, sdata,
175 sta ? &sta->sta : NULL, &key->conf);
178 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
180 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
181 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
182 decrease_tailroom_need_count(sdata, 1);
184 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
185 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
190 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
192 "failed to set key (%d, %pM) to hardware (%d)\n",
194 sta ? sta->sta.addr : bcast_addr, ret);
197 switch (key->conf.cipher) {
198 case WLAN_CIPHER_SUITE_WEP40:
199 case WLAN_CIPHER_SUITE_WEP104:
200 case WLAN_CIPHER_SUITE_TKIP:
201 case WLAN_CIPHER_SUITE_CCMP:
202 case WLAN_CIPHER_SUITE_CCMP_256:
203 case WLAN_CIPHER_SUITE_AES_CMAC:
204 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
205 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
206 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
207 case WLAN_CIPHER_SUITE_GCMP:
208 case WLAN_CIPHER_SUITE_GCMP_256:
209 /* all of these we can do in software - if driver can */
212 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
220 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
222 struct ieee80211_sub_if_data *sdata;
223 struct sta_info *sta;
228 if (!key || !key->local->ops->set_key)
231 assert_key_lock(key->local);
233 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
239 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
240 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
241 increment_tailroom_need_count(sdata);
243 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
244 sta ? &sta->sta : NULL, &key->conf);
248 "failed to remove key (%d, %pM) from hardware (%d)\n",
250 sta ? sta->sta.addr : bcast_addr, ret);
252 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
255 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
256 int idx, bool uni, bool multi)
258 struct ieee80211_key *key = NULL;
260 assert_key_lock(sdata->local);
262 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
263 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
266 rcu_assign_pointer(sdata->default_unicast_key, key);
267 ieee80211_check_fast_xmit_iface(sdata);
268 drv_set_default_unicast_key(sdata->local, sdata, idx);
272 rcu_assign_pointer(sdata->default_multicast_key, key);
274 ieee80211_debugfs_key_update_default(sdata);
277 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
278 bool uni, bool multi)
280 mutex_lock(&sdata->local->key_mtx);
281 __ieee80211_set_default_key(sdata, idx, uni, multi);
282 mutex_unlock(&sdata->local->key_mtx);
286 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
288 struct ieee80211_key *key = NULL;
290 assert_key_lock(sdata->local);
292 if (idx >= NUM_DEFAULT_KEYS &&
293 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
294 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
296 rcu_assign_pointer(sdata->default_mgmt_key, key);
298 ieee80211_debugfs_key_update_default(sdata);
301 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
304 mutex_lock(&sdata->local->key_mtx);
305 __ieee80211_set_default_mgmt_key(sdata, idx);
306 mutex_unlock(&sdata->local->key_mtx);
310 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
311 struct sta_info *sta,
313 struct ieee80211_key *old,
314 struct ieee80211_key *new)
317 bool defunikey, defmultikey, defmgmtkey;
319 /* caller must provide at least one old/new */
320 if (WARN_ON(!new && !old))
324 list_add_tail_rcu(&new->list, &sdata->key_list);
326 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
329 idx = old->conf.keyidx;
331 idx = new->conf.keyidx;
335 rcu_assign_pointer(sta->ptk[idx], new);
337 ieee80211_check_fast_xmit(sta);
339 rcu_assign_pointer(sta->gtk[idx], new);
343 old == key_mtx_dereference(sdata->local,
344 sdata->default_unicast_key);
346 old == key_mtx_dereference(sdata->local,
347 sdata->default_multicast_key);
349 old == key_mtx_dereference(sdata->local,
350 sdata->default_mgmt_key);
352 if (defunikey && !new)
353 __ieee80211_set_default_key(sdata, -1, true, false);
354 if (defmultikey && !new)
355 __ieee80211_set_default_key(sdata, -1, false, true);
356 if (defmgmtkey && !new)
357 __ieee80211_set_default_mgmt_key(sdata, -1);
359 rcu_assign_pointer(sdata->keys[idx], new);
360 if (defunikey && new)
361 __ieee80211_set_default_key(sdata, new->conf.keyidx,
363 if (defmultikey && new)
364 __ieee80211_set_default_key(sdata, new->conf.keyidx,
366 if (defmgmtkey && new)
367 __ieee80211_set_default_mgmt_key(sdata,
372 list_del_rcu(&old->list);
375 struct ieee80211_key *
376 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
378 size_t seq_len, const u8 *seq,
379 const struct ieee80211_cipher_scheme *cs)
381 struct ieee80211_key *key;
384 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
385 return ERR_PTR(-EINVAL);
387 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
389 return ERR_PTR(-ENOMEM);
392 * Default to software encryption; we'll later upload the
393 * key to the hardware if possible.
398 key->conf.cipher = cipher;
399 key->conf.keyidx = idx;
400 key->conf.keylen = key_len;
402 case WLAN_CIPHER_SUITE_WEP40:
403 case WLAN_CIPHER_SUITE_WEP104:
404 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
405 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
407 case WLAN_CIPHER_SUITE_TKIP:
408 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
409 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
411 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
412 key->u.tkip.rx[i].iv32 =
413 get_unaligned_le32(&seq[2]);
414 key->u.tkip.rx[i].iv16 =
415 get_unaligned_le16(seq);
418 spin_lock_init(&key->u.tkip.txlock);
420 case WLAN_CIPHER_SUITE_CCMP:
421 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
422 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
424 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
425 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
426 key->u.ccmp.rx_pn[i][j] =
427 seq[IEEE80211_CCMP_PN_LEN - j - 1];
430 * Initialize AES key state here as an optimization so that
431 * it does not need to be initialized for every packet.
433 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
434 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
435 if (IS_ERR(key->u.ccmp.tfm)) {
436 err = PTR_ERR(key->u.ccmp.tfm);
441 case WLAN_CIPHER_SUITE_CCMP_256:
442 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
443 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
444 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
445 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
446 key->u.ccmp.rx_pn[i][j] =
447 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
448 /* Initialize AES key state here as an optimization so that
449 * it does not need to be initialized for every packet.
451 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
452 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
453 if (IS_ERR(key->u.ccmp.tfm)) {
454 err = PTR_ERR(key->u.ccmp.tfm);
459 case WLAN_CIPHER_SUITE_AES_CMAC:
460 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
461 key->conf.iv_len = 0;
462 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
463 key->conf.icv_len = sizeof(struct ieee80211_mmie);
465 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
467 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
468 key->u.aes_cmac.rx_pn[j] =
469 seq[IEEE80211_CMAC_PN_LEN - j - 1];
471 * Initialize AES key state here as an optimization so that
472 * it does not need to be initialized for every packet.
474 key->u.aes_cmac.tfm =
475 ieee80211_aes_cmac_key_setup(key_data, key_len);
476 if (IS_ERR(key->u.aes_cmac.tfm)) {
477 err = PTR_ERR(key->u.aes_cmac.tfm);
482 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
483 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
484 key->conf.iv_len = 0;
485 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
487 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
488 key->u.aes_gmac.rx_pn[j] =
489 seq[IEEE80211_GMAC_PN_LEN - j - 1];
490 /* Initialize AES key state here as an optimization so that
491 * it does not need to be initialized for every packet.
493 key->u.aes_gmac.tfm =
494 ieee80211_aes_gmac_key_setup(key_data, key_len);
495 if (IS_ERR(key->u.aes_gmac.tfm)) {
496 err = PTR_ERR(key->u.aes_gmac.tfm);
501 case WLAN_CIPHER_SUITE_GCMP:
502 case WLAN_CIPHER_SUITE_GCMP_256:
503 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
504 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
505 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
506 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
507 key->u.gcmp.rx_pn[i][j] =
508 seq[IEEE80211_GCMP_PN_LEN - j - 1];
509 /* Initialize AES key state here as an optimization so that
510 * it does not need to be initialized for every packet.
512 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
514 if (IS_ERR(key->u.gcmp.tfm)) {
515 err = PTR_ERR(key->u.gcmp.tfm);
522 if (seq_len && seq_len != cs->pn_len) {
524 return ERR_PTR(-EINVAL);
527 key->conf.iv_len = cs->hdr_len;
528 key->conf.icv_len = cs->mic_len;
529 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
530 for (j = 0; j < seq_len; j++)
531 key->u.gen.rx_pn[i][j] =
532 seq[seq_len - j - 1];
533 key->flags |= KEY_FLAG_CIPHER_SCHEME;
536 memcpy(key->conf.key, key_data, key_len);
537 INIT_LIST_HEAD(&key->list);
542 static void ieee80211_key_free_common(struct ieee80211_key *key)
544 switch (key->conf.cipher) {
545 case WLAN_CIPHER_SUITE_CCMP:
546 case WLAN_CIPHER_SUITE_CCMP_256:
547 ieee80211_aes_key_free(key->u.ccmp.tfm);
549 case WLAN_CIPHER_SUITE_AES_CMAC:
550 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
551 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
553 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
554 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
555 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
557 case WLAN_CIPHER_SUITE_GCMP:
558 case WLAN_CIPHER_SUITE_GCMP_256:
559 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
565 static void __ieee80211_key_destroy(struct ieee80211_key *key,
569 ieee80211_key_disable_hw_accel(key);
572 struct ieee80211_sub_if_data *sdata = key->sdata;
574 ieee80211_debugfs_key_remove(key);
576 if (delay_tailroom) {
577 /* see ieee80211_delayed_tailroom_dec */
578 sdata->crypto_tx_tailroom_pending_dec++;
579 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
582 decrease_tailroom_need_count(sdata, 1);
586 ieee80211_key_free_common(key);
589 static void ieee80211_key_destroy(struct ieee80211_key *key,
596 * Synchronize so the TX path and rcu key iterators
597 * can no longer be using this key before we free/remove it.
601 __ieee80211_key_destroy(key, delay_tailroom);
604 void ieee80211_key_free_unused(struct ieee80211_key *key)
606 WARN_ON(key->sdata || key->local);
607 ieee80211_key_free_common(key);
610 int ieee80211_key_link(struct ieee80211_key *key,
611 struct ieee80211_sub_if_data *sdata,
612 struct sta_info *sta)
614 struct ieee80211_local *local = sdata->local;
615 struct ieee80211_key *old_key;
619 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
620 idx = key->conf.keyidx;
621 key->local = sdata->local;
625 mutex_lock(&sdata->local->key_mtx);
628 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
630 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
632 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
634 increment_tailroom_need_count(sdata);
636 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
637 ieee80211_key_destroy(old_key, true);
639 ieee80211_debugfs_key_add(key);
641 if (!local->wowlan) {
642 ret = ieee80211_key_enable_hw_accel(key);
644 ieee80211_key_free(key, true);
649 mutex_unlock(&sdata->local->key_mtx);
654 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
660 * Replace key with nothingness if it was ever used.
663 ieee80211_key_replace(key->sdata, key->sta,
664 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
666 ieee80211_key_destroy(key, delay_tailroom);
669 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
671 struct ieee80211_key *key;
672 struct ieee80211_sub_if_data *vlan;
676 if (WARN_ON(!ieee80211_sdata_running(sdata)))
679 mutex_lock(&sdata->local->key_mtx);
681 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
682 sdata->crypto_tx_tailroom_pending_dec);
684 if (sdata->vif.type == NL80211_IFTYPE_AP) {
685 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
686 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
687 vlan->crypto_tx_tailroom_pending_dec);
690 list_for_each_entry(key, &sdata->key_list, list) {
691 increment_tailroom_need_count(sdata);
692 ieee80211_key_enable_hw_accel(key);
695 mutex_unlock(&sdata->local->key_mtx);
698 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
700 struct ieee80211_sub_if_data *vlan;
702 mutex_lock(&sdata->local->key_mtx);
704 sdata->crypto_tx_tailroom_needed_cnt = 0;
706 if (sdata->vif.type == NL80211_IFTYPE_AP) {
707 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
708 vlan->crypto_tx_tailroom_needed_cnt = 0;
711 mutex_unlock(&sdata->local->key_mtx);
714 void ieee80211_iter_keys(struct ieee80211_hw *hw,
715 struct ieee80211_vif *vif,
716 void (*iter)(struct ieee80211_hw *hw,
717 struct ieee80211_vif *vif,
718 struct ieee80211_sta *sta,
719 struct ieee80211_key_conf *key,
723 struct ieee80211_local *local = hw_to_local(hw);
724 struct ieee80211_key *key, *tmp;
725 struct ieee80211_sub_if_data *sdata;
729 mutex_lock(&local->key_mtx);
731 sdata = vif_to_sdata(vif);
732 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
733 iter(hw, &sdata->vif,
734 key->sta ? &key->sta->sta : NULL,
735 &key->conf, iter_data);
737 list_for_each_entry(sdata, &local->interfaces, list)
738 list_for_each_entry_safe(key, tmp,
739 &sdata->key_list, list)
740 iter(hw, &sdata->vif,
741 key->sta ? &key->sta->sta : NULL,
742 &key->conf, iter_data);
744 mutex_unlock(&local->key_mtx);
746 EXPORT_SYMBOL(ieee80211_iter_keys);
749 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
750 struct ieee80211_sub_if_data *sdata,
751 void (*iter)(struct ieee80211_hw *hw,
752 struct ieee80211_vif *vif,
753 struct ieee80211_sta *sta,
754 struct ieee80211_key_conf *key,
758 struct ieee80211_key *key;
760 list_for_each_entry_rcu(key, &sdata->key_list, list) {
761 /* skip keys of station in removal process */
762 if (key->sta && key->sta->removed)
764 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
767 iter(hw, &sdata->vif,
768 key->sta ? &key->sta->sta : NULL,
769 &key->conf, iter_data);
773 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
774 struct ieee80211_vif *vif,
775 void (*iter)(struct ieee80211_hw *hw,
776 struct ieee80211_vif *vif,
777 struct ieee80211_sta *sta,
778 struct ieee80211_key_conf *key,
782 struct ieee80211_local *local = hw_to_local(hw);
783 struct ieee80211_sub_if_data *sdata;
786 sdata = vif_to_sdata(vif);
787 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
789 list_for_each_entry_rcu(sdata, &local->interfaces, list)
790 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
793 EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
795 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
796 struct list_head *keys)
798 struct ieee80211_key *key, *tmp;
800 decrease_tailroom_need_count(sdata,
801 sdata->crypto_tx_tailroom_pending_dec);
802 sdata->crypto_tx_tailroom_pending_dec = 0;
804 ieee80211_debugfs_key_remove_mgmt_default(sdata);
806 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
807 ieee80211_key_replace(key->sdata, key->sta,
808 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
810 list_add_tail(&key->list, keys);
813 ieee80211_debugfs_key_update_default(sdata);
816 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
817 bool force_synchronize)
819 struct ieee80211_local *local = sdata->local;
820 struct ieee80211_sub_if_data *vlan;
821 struct ieee80211_sub_if_data *master;
822 struct ieee80211_key *key, *tmp;
825 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
827 mutex_lock(&local->key_mtx);
829 ieee80211_free_keys_iface(sdata, &keys);
831 if (sdata->vif.type == NL80211_IFTYPE_AP) {
832 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
833 ieee80211_free_keys_iface(vlan, &keys);
836 if (!list_empty(&keys) || force_synchronize)
838 list_for_each_entry_safe(key, tmp, &keys, list)
839 __ieee80211_key_destroy(key, false);
841 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
843 master = container_of(sdata->bss,
844 struct ieee80211_sub_if_data,
847 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
848 master->crypto_tx_tailroom_needed_cnt);
851 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
852 sdata->crypto_tx_tailroom_pending_dec);
855 if (sdata->vif.type == NL80211_IFTYPE_AP) {
856 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
857 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
858 vlan->crypto_tx_tailroom_pending_dec);
861 mutex_unlock(&local->key_mtx);
864 void ieee80211_free_sta_keys(struct ieee80211_local *local,
865 struct sta_info *sta)
867 struct ieee80211_key *key;
870 mutex_lock(&local->key_mtx);
871 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
872 key = key_mtx_dereference(local, sta->gtk[i]);
875 ieee80211_key_replace(key->sdata, key->sta,
876 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
878 __ieee80211_key_destroy(key, true);
881 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
882 key = key_mtx_dereference(local, sta->ptk[i]);
885 ieee80211_key_replace(key->sdata, key->sta,
886 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
888 __ieee80211_key_destroy(key, true);
891 mutex_unlock(&local->key_mtx);
894 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
896 struct ieee80211_sub_if_data *sdata;
898 sdata = container_of(wk, struct ieee80211_sub_if_data,
899 dec_tailroom_needed_wk.work);
902 * The reason for the delayed tailroom needed decrementing is to
903 * make roaming faster: during roaming, all keys are first deleted
904 * and then new keys are installed. The first new key causes the
905 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
906 * the cost of synchronize_net() (which can be slow). Avoid this
907 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
908 * key removal for a while, so if we roam the value is larger than
909 * zero and no 0->1 transition happens.
911 * The cost is that if the AP switching was from an AP with keys
912 * to one without, we still allocate tailroom while it would no
913 * longer be needed. However, in the typical (fast) roaming case
914 * within an ESS this usually won't happen.
917 mutex_lock(&sdata->local->key_mtx);
918 decrease_tailroom_need_count(sdata,
919 sdata->crypto_tx_tailroom_pending_dec);
920 sdata->crypto_tx_tailroom_pending_dec = 0;
921 mutex_unlock(&sdata->local->key_mtx);
924 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
925 const u8 *replay_ctr, gfp_t gfp)
927 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
929 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
931 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
933 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
935 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
936 int tid, struct ieee80211_key_seq *seq)
938 struct ieee80211_key *key;
941 key = container_of(keyconf, struct ieee80211_key, conf);
943 switch (key->conf.cipher) {
944 case WLAN_CIPHER_SUITE_TKIP:
945 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
947 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
948 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
950 case WLAN_CIPHER_SUITE_CCMP:
951 case WLAN_CIPHER_SUITE_CCMP_256:
952 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
955 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
957 pn = key->u.ccmp.rx_pn[tid];
958 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
960 case WLAN_CIPHER_SUITE_AES_CMAC:
961 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
962 if (WARN_ON(tid != 0))
964 pn = key->u.aes_cmac.rx_pn;
965 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
967 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
968 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
969 if (WARN_ON(tid != 0))
971 pn = key->u.aes_gmac.rx_pn;
972 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
974 case WLAN_CIPHER_SUITE_GCMP:
975 case WLAN_CIPHER_SUITE_GCMP_256:
976 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
979 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
981 pn = key->u.gcmp.rx_pn[tid];
982 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
986 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
988 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
989 int tid, struct ieee80211_key_seq *seq)
991 struct ieee80211_key *key;
994 key = container_of(keyconf, struct ieee80211_key, conf);
996 switch (key->conf.cipher) {
997 case WLAN_CIPHER_SUITE_TKIP:
998 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1000 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1001 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1003 case WLAN_CIPHER_SUITE_CCMP:
1004 case WLAN_CIPHER_SUITE_CCMP_256:
1005 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1008 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1010 pn = key->u.ccmp.rx_pn[tid];
1011 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1013 case WLAN_CIPHER_SUITE_AES_CMAC:
1014 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1015 if (WARN_ON(tid != 0))
1017 pn = key->u.aes_cmac.rx_pn;
1018 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1020 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1021 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1022 if (WARN_ON(tid != 0))
1024 pn = key->u.aes_gmac.rx_pn;
1025 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1027 case WLAN_CIPHER_SUITE_GCMP:
1028 case WLAN_CIPHER_SUITE_GCMP_256:
1029 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1032 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1034 pn = key->u.gcmp.rx_pn[tid];
1035 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1042 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1044 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1046 struct ieee80211_key *key;
1048 key = container_of(keyconf, struct ieee80211_key, conf);
1050 assert_key_lock(key->local);
1053 * if key was uploaded, we assume the driver will/has remove(d)
1054 * it, so adjust bookkeeping accordingly
1056 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1057 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1059 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1060 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1061 increment_tailroom_need_count(key->sdata);
1064 ieee80211_key_free(key, false);
1066 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1068 struct ieee80211_key_conf *
1069 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1070 struct ieee80211_key_conf *keyconf)
1072 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1073 struct ieee80211_local *local = sdata->local;
1074 struct ieee80211_key *key;
1077 if (WARN_ON(!local->wowlan))
1078 return ERR_PTR(-EINVAL);
1080 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1081 return ERR_PTR(-EINVAL);
1083 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1084 keyconf->keylen, keyconf->key,
1087 return ERR_CAST(key);
1089 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1090 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1092 err = ieee80211_key_link(key, sdata, NULL);
1094 return ERR_PTR(err);
1098 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);