ipv6: fib6: avoid indirect calls from fib6_rule_lookup
[linux-2.6-microblaze.git] / net / ipv6 / ip6_fib.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      Linux INET6 implementation
4  *      Forwarding Information Database
5  *
6  *      Authors:
7  *      Pedro Roque             <roque@di.fc.ul.pt>
8  *
9  *      Changes:
10  *      Yuji SEKIYA @USAGI:     Support default route on router node;
11  *                              remove ip6_null_entry from the top of
12  *                              routing table.
13  *      Ville Nuorvala:         Fixed routing subtrees.
14  */
15
16 #define pr_fmt(fmt) "IPv6: " fmt
17
18 #include <linux/errno.h>
19 #include <linux/types.h>
20 #include <linux/net.h>
21 #include <linux/route.h>
22 #include <linux/netdevice.h>
23 #include <linux/in6.h>
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/slab.h>
27
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30 #include <net/ndisc.h>
31 #include <net/addrconf.h>
32 #include <net/lwtunnel.h>
33 #include <net/fib_notifier.h>
34
35 #include <net/ip6_fib.h>
36 #include <net/ip6_route.h>
37
38 static struct kmem_cache *fib6_node_kmem __read_mostly;
39
40 struct fib6_cleaner {
41         struct fib6_walker w;
42         struct net *net;
43         int (*func)(struct fib6_info *, void *arg);
44         int sernum;
45         void *arg;
46         bool skip_notify;
47 };
48
49 #ifdef CONFIG_IPV6_SUBTREES
50 #define FWS_INIT FWS_S
51 #else
52 #define FWS_INIT FWS_L
53 #endif
54
55 static struct fib6_info *fib6_find_prefix(struct net *net,
56                                          struct fib6_table *table,
57                                          struct fib6_node *fn);
58 static struct fib6_node *fib6_repair_tree(struct net *net,
59                                           struct fib6_table *table,
60                                           struct fib6_node *fn);
61 static int fib6_walk(struct net *net, struct fib6_walker *w);
62 static int fib6_walk_continue(struct fib6_walker *w);
63
64 /*
65  *      A routing update causes an increase of the serial number on the
66  *      affected subtree. This allows for cached routes to be asynchronously
67  *      tested when modifications are made to the destination cache as a
68  *      result of redirects, path MTU changes, etc.
69  */
70
71 static void fib6_gc_timer_cb(struct timer_list *t);
72
73 #define FOR_WALKERS(net, w) \
74         list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
75
76 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
77 {
78         write_lock_bh(&net->ipv6.fib6_walker_lock);
79         list_add(&w->lh, &net->ipv6.fib6_walkers);
80         write_unlock_bh(&net->ipv6.fib6_walker_lock);
81 }
82
83 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
84 {
85         write_lock_bh(&net->ipv6.fib6_walker_lock);
86         list_del(&w->lh);
87         write_unlock_bh(&net->ipv6.fib6_walker_lock);
88 }
89
90 static int fib6_new_sernum(struct net *net)
91 {
92         int new, old;
93
94         do {
95                 old = atomic_read(&net->ipv6.fib6_sernum);
96                 new = old < INT_MAX ? old + 1 : 1;
97         } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
98                                 old, new) != old);
99         return new;
100 }
101
102 enum {
103         FIB6_NO_SERNUM_CHANGE = 0,
104 };
105
106 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
107 {
108         struct fib6_node *fn;
109
110         fn = rcu_dereference_protected(f6i->fib6_node,
111                         lockdep_is_held(&f6i->fib6_table->tb6_lock));
112         if (fn)
113                 fn->fn_sernum = fib6_new_sernum(net);
114 }
115
116 /*
117  *      Auxiliary address test functions for the radix tree.
118  *
119  *      These assume a 32bit processor (although it will work on
120  *      64bit processors)
121  */
122
123 /*
124  *      test bit
125  */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE     0
130 #endif
131
132 static __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134         const __be32 *addr = token;
135         /*
136          * Here,
137          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138          * is optimized version of
139          *      htonl(1 << ((~fn_bit)&0x1F))
140          * See include/asm-generic/bitops/le.h.
141          */
142         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143                addr[fn_bit >> 5];
144 }
145
146 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
147 {
148         struct fib6_info *f6i;
149         size_t sz = sizeof(*f6i);
150
151         if (with_fib6_nh)
152                 sz += sizeof(struct fib6_nh);
153
154         f6i = kzalloc(sz, gfp_flags);
155         if (!f6i)
156                 return NULL;
157
158         /* fib6_siblings is a union with nh_list, so this initializes both */
159         INIT_LIST_HEAD(&f6i->fib6_siblings);
160         refcount_set(&f6i->fib6_ref, 1);
161
162         return f6i;
163 }
164
165 void fib6_info_destroy_rcu(struct rcu_head *head)
166 {
167         struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
168
169         WARN_ON(f6i->fib6_node);
170
171         if (f6i->nh)
172                 nexthop_put(f6i->nh);
173         else
174                 fib6_nh_release(f6i->fib6_nh);
175
176         ip_fib_metrics_put(f6i->fib6_metrics);
177         kfree(f6i);
178 }
179 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
180
181 static struct fib6_node *node_alloc(struct net *net)
182 {
183         struct fib6_node *fn;
184
185         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
186         if (fn)
187                 net->ipv6.rt6_stats->fib_nodes++;
188
189         return fn;
190 }
191
192 static void node_free_immediate(struct net *net, struct fib6_node *fn)
193 {
194         kmem_cache_free(fib6_node_kmem, fn);
195         net->ipv6.rt6_stats->fib_nodes--;
196 }
197
198 static void node_free_rcu(struct rcu_head *head)
199 {
200         struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
201
202         kmem_cache_free(fib6_node_kmem, fn);
203 }
204
205 static void node_free(struct net *net, struct fib6_node *fn)
206 {
207         call_rcu(&fn->rcu, node_free_rcu);
208         net->ipv6.rt6_stats->fib_nodes--;
209 }
210
211 static void fib6_free_table(struct fib6_table *table)
212 {
213         inetpeer_invalidate_tree(&table->tb6_peers);
214         kfree(table);
215 }
216
217 static void fib6_link_table(struct net *net, struct fib6_table *tb)
218 {
219         unsigned int h;
220
221         /*
222          * Initialize table lock at a single place to give lockdep a key,
223          * tables aren't visible prior to being linked to the list.
224          */
225         spin_lock_init(&tb->tb6_lock);
226         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
227
228         /*
229          * No protection necessary, this is the only list mutatation
230          * operation, tables never disappear once they exist.
231          */
232         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
233 }
234
235 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
236
237 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
238 {
239         struct fib6_table *table;
240
241         table = kzalloc(sizeof(*table), GFP_ATOMIC);
242         if (table) {
243                 table->tb6_id = id;
244                 rcu_assign_pointer(table->tb6_root.leaf,
245                                    net->ipv6.fib6_null_entry);
246                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
247                 inet_peer_base_init(&table->tb6_peers);
248         }
249
250         return table;
251 }
252
253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255         struct fib6_table *tb;
256
257         if (id == 0)
258                 id = RT6_TABLE_MAIN;
259         tb = fib6_get_table(net, id);
260         if (tb)
261                 return tb;
262
263         tb = fib6_alloc_table(net, id);
264         if (tb)
265                 fib6_link_table(net, tb);
266
267         return tb;
268 }
269 EXPORT_SYMBOL_GPL(fib6_new_table);
270
271 struct fib6_table *fib6_get_table(struct net *net, u32 id)
272 {
273         struct fib6_table *tb;
274         struct hlist_head *head;
275         unsigned int h;
276
277         if (id == 0)
278                 id = RT6_TABLE_MAIN;
279         h = id & (FIB6_TABLE_HASHSZ - 1);
280         rcu_read_lock();
281         head = &net->ipv6.fib_table_hash[h];
282         hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
283                 if (tb->tb6_id == id) {
284                         rcu_read_unlock();
285                         return tb;
286                 }
287         }
288         rcu_read_unlock();
289
290         return NULL;
291 }
292 EXPORT_SYMBOL_GPL(fib6_get_table);
293
294 static void __net_init fib6_tables_init(struct net *net)
295 {
296         fib6_link_table(net, net->ipv6.fib6_main_tbl);
297         fib6_link_table(net, net->ipv6.fib6_local_tbl);
298 }
299 #else
300
301 struct fib6_table *fib6_new_table(struct net *net, u32 id)
302 {
303         return fib6_get_table(net, id);
304 }
305
306 struct fib6_table *fib6_get_table(struct net *net, u32 id)
307 {
308           return net->ipv6.fib6_main_tbl;
309 }
310
311 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
312                                    const struct sk_buff *skb,
313                                    int flags, pol_lookup_t lookup)
314 {
315         struct rt6_info *rt;
316
317         rt = pol_lookup_func(lookup,
318                         net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
319         if (rt->dst.error == -EAGAIN) {
320                 ip6_rt_put_flags(rt, flags);
321                 rt = net->ipv6.ip6_null_entry;
322                 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
323                         dst_hold(&rt->dst);
324         }
325
326         return &rt->dst;
327 }
328
329 /* called with rcu lock held; no reference taken on fib6_info */
330 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
331                 struct fib6_result *res, int flags)
332 {
333         return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
334                                  res, flags);
335 }
336
337 static void __net_init fib6_tables_init(struct net *net)
338 {
339         fib6_link_table(net, net->ipv6.fib6_main_tbl);
340 }
341
342 #endif
343
344 unsigned int fib6_tables_seq_read(struct net *net)
345 {
346         unsigned int h, fib_seq = 0;
347
348         rcu_read_lock();
349         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
350                 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
351                 struct fib6_table *tb;
352
353                 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
354                         fib_seq += tb->fib_seq;
355         }
356         rcu_read_unlock();
357
358         return fib_seq;
359 }
360
361 static int call_fib6_entry_notifier(struct notifier_block *nb,
362                                     enum fib_event_type event_type,
363                                     struct fib6_info *rt,
364                                     struct netlink_ext_ack *extack)
365 {
366         struct fib6_entry_notifier_info info = {
367                 .info.extack = extack,
368                 .rt = rt,
369         };
370
371         return call_fib6_notifier(nb, event_type, &info.info);
372 }
373
374 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
375                                               enum fib_event_type event_type,
376                                               struct fib6_info *rt,
377                                               unsigned int nsiblings,
378                                               struct netlink_ext_ack *extack)
379 {
380         struct fib6_entry_notifier_info info = {
381                 .info.extack = extack,
382                 .rt = rt,
383                 .nsiblings = nsiblings,
384         };
385
386         return call_fib6_notifier(nb, event_type, &info.info);
387 }
388
389 int call_fib6_entry_notifiers(struct net *net,
390                               enum fib_event_type event_type,
391                               struct fib6_info *rt,
392                               struct netlink_ext_ack *extack)
393 {
394         struct fib6_entry_notifier_info info = {
395                 .info.extack = extack,
396                 .rt = rt,
397         };
398
399         rt->fib6_table->fib_seq++;
400         return call_fib6_notifiers(net, event_type, &info.info);
401 }
402
403 int call_fib6_multipath_entry_notifiers(struct net *net,
404                                         enum fib_event_type event_type,
405                                         struct fib6_info *rt,
406                                         unsigned int nsiblings,
407                                         struct netlink_ext_ack *extack)
408 {
409         struct fib6_entry_notifier_info info = {
410                 .info.extack = extack,
411                 .rt = rt,
412                 .nsiblings = nsiblings,
413         };
414
415         rt->fib6_table->fib_seq++;
416         return call_fib6_notifiers(net, event_type, &info.info);
417 }
418
419 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
420 {
421         struct fib6_entry_notifier_info info = {
422                 .rt = rt,
423                 .nsiblings = rt->fib6_nsiblings,
424         };
425
426         rt->fib6_table->fib_seq++;
427         return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
428 }
429
430 struct fib6_dump_arg {
431         struct net *net;
432         struct notifier_block *nb;
433         struct netlink_ext_ack *extack;
434 };
435
436 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
437 {
438         enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
439         int err;
440
441         if (!rt || rt == arg->net->ipv6.fib6_null_entry)
442                 return 0;
443
444         if (rt->fib6_nsiblings)
445                 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
446                                                          rt,
447                                                          rt->fib6_nsiblings,
448                                                          arg->extack);
449         else
450                 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
451                                                arg->extack);
452
453         return err;
454 }
455
456 static int fib6_node_dump(struct fib6_walker *w)
457 {
458         int err;
459
460         err = fib6_rt_dump(w->leaf, w->args);
461         w->leaf = NULL;
462         return err;
463 }
464
465 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
466                            struct fib6_walker *w)
467 {
468         int err;
469
470         w->root = &tb->tb6_root;
471         spin_lock_bh(&tb->tb6_lock);
472         err = fib6_walk(net, w);
473         spin_unlock_bh(&tb->tb6_lock);
474         return err;
475 }
476
477 /* Called with rcu_read_lock() */
478 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
479                      struct netlink_ext_ack *extack)
480 {
481         struct fib6_dump_arg arg;
482         struct fib6_walker *w;
483         unsigned int h;
484         int err = 0;
485
486         w = kzalloc(sizeof(*w), GFP_ATOMIC);
487         if (!w)
488                 return -ENOMEM;
489
490         w->func = fib6_node_dump;
491         arg.net = net;
492         arg.nb = nb;
493         arg.extack = extack;
494         w->args = &arg;
495
496         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
497                 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
498                 struct fib6_table *tb;
499
500                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
501                         err = fib6_table_dump(net, tb, w);
502                         if (err < 0)
503                                 goto out;
504                 }
505         }
506
507 out:
508         kfree(w);
509
510         return err;
511 }
512
513 static int fib6_dump_node(struct fib6_walker *w)
514 {
515         int res;
516         struct fib6_info *rt;
517
518         for_each_fib6_walker_rt(w) {
519                 res = rt6_dump_route(rt, w->args, w->skip_in_node);
520                 if (res >= 0) {
521                         /* Frame is full, suspend walking */
522                         w->leaf = rt;
523
524                         /* We'll restart from this node, so if some routes were
525                          * already dumped, skip them next time.
526                          */
527                         w->skip_in_node += res;
528
529                         return 1;
530                 }
531                 w->skip_in_node = 0;
532
533                 /* Multipath routes are dumped in one route with the
534                  * RTA_MULTIPATH attribute. Jump 'rt' to point to the
535                  * last sibling of this route (no need to dump the
536                  * sibling routes again)
537                  */
538                 if (rt->fib6_nsiblings)
539                         rt = list_last_entry(&rt->fib6_siblings,
540                                              struct fib6_info,
541                                              fib6_siblings);
542         }
543         w->leaf = NULL;
544         return 0;
545 }
546
547 static void fib6_dump_end(struct netlink_callback *cb)
548 {
549         struct net *net = sock_net(cb->skb->sk);
550         struct fib6_walker *w = (void *)cb->args[2];
551
552         if (w) {
553                 if (cb->args[4]) {
554                         cb->args[4] = 0;
555                         fib6_walker_unlink(net, w);
556                 }
557                 cb->args[2] = 0;
558                 kfree(w);
559         }
560         cb->done = (void *)cb->args[3];
561         cb->args[1] = 3;
562 }
563
564 static int fib6_dump_done(struct netlink_callback *cb)
565 {
566         fib6_dump_end(cb);
567         return cb->done ? cb->done(cb) : 0;
568 }
569
570 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
571                            struct netlink_callback *cb)
572 {
573         struct net *net = sock_net(skb->sk);
574         struct fib6_walker *w;
575         int res;
576
577         w = (void *)cb->args[2];
578         w->root = &table->tb6_root;
579
580         if (cb->args[4] == 0) {
581                 w->count = 0;
582                 w->skip = 0;
583                 w->skip_in_node = 0;
584
585                 spin_lock_bh(&table->tb6_lock);
586                 res = fib6_walk(net, w);
587                 spin_unlock_bh(&table->tb6_lock);
588                 if (res > 0) {
589                         cb->args[4] = 1;
590                         cb->args[5] = w->root->fn_sernum;
591                 }
592         } else {
593                 if (cb->args[5] != w->root->fn_sernum) {
594                         /* Begin at the root if the tree changed */
595                         cb->args[5] = w->root->fn_sernum;
596                         w->state = FWS_INIT;
597                         w->node = w->root;
598                         w->skip = w->count;
599                         w->skip_in_node = 0;
600                 } else
601                         w->skip = 0;
602
603                 spin_lock_bh(&table->tb6_lock);
604                 res = fib6_walk_continue(w);
605                 spin_unlock_bh(&table->tb6_lock);
606                 if (res <= 0) {
607                         fib6_walker_unlink(net, w);
608                         cb->args[4] = 0;
609                 }
610         }
611
612         return res;
613 }
614
615 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
616 {
617         struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true,
618                                          .filter.dump_routes = true };
619         const struct nlmsghdr *nlh = cb->nlh;
620         struct net *net = sock_net(skb->sk);
621         unsigned int h, s_h;
622         unsigned int e = 0, s_e;
623         struct fib6_walker *w;
624         struct fib6_table *tb;
625         struct hlist_head *head;
626         int res = 0;
627
628         if (cb->strict_check) {
629                 int err;
630
631                 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
632                 if (err < 0)
633                         return err;
634         } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
635                 struct rtmsg *rtm = nlmsg_data(nlh);
636
637                 if (rtm->rtm_flags & RTM_F_PREFIX)
638                         arg.filter.flags = RTM_F_PREFIX;
639         }
640
641         w = (void *)cb->args[2];
642         if (!w) {
643                 /* New dump:
644                  *
645                  * 1. hook callback destructor.
646                  */
647                 cb->args[3] = (long)cb->done;
648                 cb->done = fib6_dump_done;
649
650                 /*
651                  * 2. allocate and initialize walker.
652                  */
653                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
654                 if (!w)
655                         return -ENOMEM;
656                 w->func = fib6_dump_node;
657                 cb->args[2] = (long)w;
658         }
659
660         arg.skb = skb;
661         arg.cb = cb;
662         arg.net = net;
663         w->args = &arg;
664
665         if (arg.filter.table_id) {
666                 tb = fib6_get_table(net, arg.filter.table_id);
667                 if (!tb) {
668                         if (rtnl_msg_family(cb->nlh) != PF_INET6)
669                                 goto out;
670
671                         NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
672                         return -ENOENT;
673                 }
674
675                 if (!cb->args[0]) {
676                         res = fib6_dump_table(tb, skb, cb);
677                         if (!res)
678                                 cb->args[0] = 1;
679                 }
680                 goto out;
681         }
682
683         s_h = cb->args[0];
684         s_e = cb->args[1];
685
686         rcu_read_lock();
687         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
688                 e = 0;
689                 head = &net->ipv6.fib_table_hash[h];
690                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
691                         if (e < s_e)
692                                 goto next;
693                         res = fib6_dump_table(tb, skb, cb);
694                         if (res != 0)
695                                 goto out_unlock;
696 next:
697                         e++;
698                 }
699         }
700 out_unlock:
701         rcu_read_unlock();
702         cb->args[1] = e;
703         cb->args[0] = h;
704 out:
705         res = res < 0 ? res : skb->len;
706         if (res <= 0)
707                 fib6_dump_end(cb);
708         return res;
709 }
710
711 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
712 {
713         if (!f6i)
714                 return;
715
716         if (f6i->fib6_metrics == &dst_default_metrics) {
717                 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
718
719                 if (!p)
720                         return;
721
722                 refcount_set(&p->refcnt, 1);
723                 f6i->fib6_metrics = p;
724         }
725
726         f6i->fib6_metrics->metrics[metric - 1] = val;
727 }
728
729 /*
730  *      Routing Table
731  *
732  *      return the appropriate node for a routing tree "add" operation
733  *      by either creating and inserting or by returning an existing
734  *      node.
735  */
736
737 static struct fib6_node *fib6_add_1(struct net *net,
738                                     struct fib6_table *table,
739                                     struct fib6_node *root,
740                                     struct in6_addr *addr, int plen,
741                                     int offset, int allow_create,
742                                     int replace_required,
743                                     struct netlink_ext_ack *extack)
744 {
745         struct fib6_node *fn, *in, *ln;
746         struct fib6_node *pn = NULL;
747         struct rt6key *key;
748         int     bit;
749         __be32  dir = 0;
750
751         RT6_TRACE("fib6_add_1\n");
752
753         /* insert node in tree */
754
755         fn = root;
756
757         do {
758                 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
759                                             lockdep_is_held(&table->tb6_lock));
760                 key = (struct rt6key *)((u8 *)leaf + offset);
761
762                 /*
763                  *      Prefix match
764                  */
765                 if (plen < fn->fn_bit ||
766                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
767                         if (!allow_create) {
768                                 if (replace_required) {
769                                         NL_SET_ERR_MSG(extack,
770                                                        "Can not replace route - no match found");
771                                         pr_warn("Can't replace route, no match found\n");
772                                         return ERR_PTR(-ENOENT);
773                                 }
774                                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
775                         }
776                         goto insert_above;
777                 }
778
779                 /*
780                  *      Exact match ?
781                  */
782
783                 if (plen == fn->fn_bit) {
784                         /* clean up an intermediate node */
785                         if (!(fn->fn_flags & RTN_RTINFO)) {
786                                 RCU_INIT_POINTER(fn->leaf, NULL);
787                                 fib6_info_release(leaf);
788                         /* remove null_entry in the root node */
789                         } else if (fn->fn_flags & RTN_TL_ROOT &&
790                                    rcu_access_pointer(fn->leaf) ==
791                                    net->ipv6.fib6_null_entry) {
792                                 RCU_INIT_POINTER(fn->leaf, NULL);
793                         }
794
795                         return fn;
796                 }
797
798                 /*
799                  *      We have more bits to go
800                  */
801
802                 /* Try to walk down on tree. */
803                 dir = addr_bit_set(addr, fn->fn_bit);
804                 pn = fn;
805                 fn = dir ?
806                      rcu_dereference_protected(fn->right,
807                                         lockdep_is_held(&table->tb6_lock)) :
808                      rcu_dereference_protected(fn->left,
809                                         lockdep_is_held(&table->tb6_lock));
810         } while (fn);
811
812         if (!allow_create) {
813                 /* We should not create new node because
814                  * NLM_F_REPLACE was specified without NLM_F_CREATE
815                  * I assume it is safe to require NLM_F_CREATE when
816                  * REPLACE flag is used! Later we may want to remove the
817                  * check for replace_required, because according
818                  * to netlink specification, NLM_F_CREATE
819                  * MUST be specified if new route is created.
820                  * That would keep IPv6 consistent with IPv4
821                  */
822                 if (replace_required) {
823                         NL_SET_ERR_MSG(extack,
824                                        "Can not replace route - no match found");
825                         pr_warn("Can't replace route, no match found\n");
826                         return ERR_PTR(-ENOENT);
827                 }
828                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
829         }
830         /*
831          *      We walked to the bottom of tree.
832          *      Create new leaf node without children.
833          */
834
835         ln = node_alloc(net);
836
837         if (!ln)
838                 return ERR_PTR(-ENOMEM);
839         ln->fn_bit = plen;
840         RCU_INIT_POINTER(ln->parent, pn);
841
842         if (dir)
843                 rcu_assign_pointer(pn->right, ln);
844         else
845                 rcu_assign_pointer(pn->left, ln);
846
847         return ln;
848
849
850 insert_above:
851         /*
852          * split since we don't have a common prefix anymore or
853          * we have a less significant route.
854          * we've to insert an intermediate node on the list
855          * this new node will point to the one we need to create
856          * and the current
857          */
858
859         pn = rcu_dereference_protected(fn->parent,
860                                        lockdep_is_held(&table->tb6_lock));
861
862         /* find 1st bit in difference between the 2 addrs.
863
864            See comment in __ipv6_addr_diff: bit may be an invalid value,
865            but if it is >= plen, the value is ignored in any case.
866          */
867
868         bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
869
870         /*
871          *              (intermediate)[in]
872          *                /        \
873          *      (new leaf node)[ln] (old node)[fn]
874          */
875         if (plen > bit) {
876                 in = node_alloc(net);
877                 ln = node_alloc(net);
878
879                 if (!in || !ln) {
880                         if (in)
881                                 node_free_immediate(net, in);
882                         if (ln)
883                                 node_free_immediate(net, ln);
884                         return ERR_PTR(-ENOMEM);
885                 }
886
887                 /*
888                  * new intermediate node.
889                  * RTN_RTINFO will
890                  * be off since that an address that chooses one of
891                  * the branches would not match less specific routes
892                  * in the other branch
893                  */
894
895                 in->fn_bit = bit;
896
897                 RCU_INIT_POINTER(in->parent, pn);
898                 in->leaf = fn->leaf;
899                 fib6_info_hold(rcu_dereference_protected(in->leaf,
900                                 lockdep_is_held(&table->tb6_lock)));
901
902                 /* update parent pointer */
903                 if (dir)
904                         rcu_assign_pointer(pn->right, in);
905                 else
906                         rcu_assign_pointer(pn->left, in);
907
908                 ln->fn_bit = plen;
909
910                 RCU_INIT_POINTER(ln->parent, in);
911                 rcu_assign_pointer(fn->parent, in);
912
913                 if (addr_bit_set(addr, bit)) {
914                         rcu_assign_pointer(in->right, ln);
915                         rcu_assign_pointer(in->left, fn);
916                 } else {
917                         rcu_assign_pointer(in->left, ln);
918                         rcu_assign_pointer(in->right, fn);
919                 }
920         } else { /* plen <= bit */
921
922                 /*
923                  *              (new leaf node)[ln]
924                  *                /        \
925                  *           (old node)[fn] NULL
926                  */
927
928                 ln = node_alloc(net);
929
930                 if (!ln)
931                         return ERR_PTR(-ENOMEM);
932
933                 ln->fn_bit = plen;
934
935                 RCU_INIT_POINTER(ln->parent, pn);
936
937                 if (addr_bit_set(&key->addr, plen))
938                         RCU_INIT_POINTER(ln->right, fn);
939                 else
940                         RCU_INIT_POINTER(ln->left, fn);
941
942                 rcu_assign_pointer(fn->parent, ln);
943
944                 if (dir)
945                         rcu_assign_pointer(pn->right, ln);
946                 else
947                         rcu_assign_pointer(pn->left, ln);
948         }
949         return ln;
950 }
951
952 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
953                                   const struct fib6_info *match,
954                                   const struct fib6_table *table)
955 {
956         int cpu;
957
958         if (!fib6_nh->rt6i_pcpu)
959                 return;
960
961         /* release the reference to this fib entry from
962          * all of its cached pcpu routes
963          */
964         for_each_possible_cpu(cpu) {
965                 struct rt6_info **ppcpu_rt;
966                 struct rt6_info *pcpu_rt;
967
968                 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
969                 pcpu_rt = *ppcpu_rt;
970
971                 /* only dropping the 'from' reference if the cached route
972                  * is using 'match'. The cached pcpu_rt->from only changes
973                  * from a fib6_info to NULL (ip6_dst_destroy); it can never
974                  * change from one fib6_info reference to another
975                  */
976                 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
977                         struct fib6_info *from;
978
979                         from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
980                         fib6_info_release(from);
981                 }
982         }
983 }
984
985 struct fib6_nh_pcpu_arg {
986         struct fib6_info        *from;
987         const struct fib6_table *table;
988 };
989
990 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
991 {
992         struct fib6_nh_pcpu_arg *arg = _arg;
993
994         __fib6_drop_pcpu_from(nh, arg->from, arg->table);
995         return 0;
996 }
997
998 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
999                                 const struct fib6_table *table)
1000 {
1001         /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1002          * while we are cleaning them here.
1003          */
1004         f6i->fib6_destroying = 1;
1005         mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1006
1007         if (f6i->nh) {
1008                 struct fib6_nh_pcpu_arg arg = {
1009                         .from = f6i,
1010                         .table = table
1011                 };
1012
1013                 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1014                                          &arg);
1015         } else {
1016                 struct fib6_nh *fib6_nh;
1017
1018                 fib6_nh = f6i->fib6_nh;
1019                 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1020         }
1021 }
1022
1023 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1024                           struct net *net)
1025 {
1026         struct fib6_table *table = rt->fib6_table;
1027
1028         fib6_drop_pcpu_from(rt, table);
1029
1030         if (rt->nh && !list_empty(&rt->nh_list))
1031                 list_del_init(&rt->nh_list);
1032
1033         if (refcount_read(&rt->fib6_ref) != 1) {
1034                 /* This route is used as dummy address holder in some split
1035                  * nodes. It is not leaked, but it still holds other resources,
1036                  * which must be released in time. So, scan ascendant nodes
1037                  * and replace dummy references to this route with references
1038                  * to still alive ones.
1039                  */
1040                 while (fn) {
1041                         struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1042                                             lockdep_is_held(&table->tb6_lock));
1043                         struct fib6_info *new_leaf;
1044                         if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1045                                 new_leaf = fib6_find_prefix(net, table, fn);
1046                                 fib6_info_hold(new_leaf);
1047
1048                                 rcu_assign_pointer(fn->leaf, new_leaf);
1049                                 fib6_info_release(rt);
1050                         }
1051                         fn = rcu_dereference_protected(fn->parent,
1052                                     lockdep_is_held(&table->tb6_lock));
1053                 }
1054         }
1055 }
1056
1057 /*
1058  *      Insert routing information in a node.
1059  */
1060
1061 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1062                             struct nl_info *info,
1063                             struct netlink_ext_ack *extack)
1064 {
1065         struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1066                                     lockdep_is_held(&rt->fib6_table->tb6_lock));
1067         struct fib6_info *iter = NULL;
1068         struct fib6_info __rcu **ins;
1069         struct fib6_info __rcu **fallback_ins = NULL;
1070         int replace = (info->nlh &&
1071                        (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1072         int add = (!info->nlh ||
1073                    (info->nlh->nlmsg_flags & NLM_F_CREATE));
1074         int found = 0;
1075         bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1076         bool notify_sibling_rt = false;
1077         u16 nlflags = NLM_F_EXCL;
1078         int err;
1079
1080         if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1081                 nlflags |= NLM_F_APPEND;
1082
1083         ins = &fn->leaf;
1084
1085         for (iter = leaf; iter;
1086              iter = rcu_dereference_protected(iter->fib6_next,
1087                                 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1088                 /*
1089                  *      Search for duplicates
1090                  */
1091
1092                 if (iter->fib6_metric == rt->fib6_metric) {
1093                         /*
1094                          *      Same priority level
1095                          */
1096                         if (info->nlh &&
1097                             (info->nlh->nlmsg_flags & NLM_F_EXCL))
1098                                 return -EEXIST;
1099
1100                         nlflags &= ~NLM_F_EXCL;
1101                         if (replace) {
1102                                 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1103                                         found++;
1104                                         break;
1105                                 }
1106                                 fallback_ins = fallback_ins ?: ins;
1107                                 goto next_iter;
1108                         }
1109
1110                         if (rt6_duplicate_nexthop(iter, rt)) {
1111                                 if (rt->fib6_nsiblings)
1112                                         rt->fib6_nsiblings = 0;
1113                                 if (!(iter->fib6_flags & RTF_EXPIRES))
1114                                         return -EEXIST;
1115                                 if (!(rt->fib6_flags & RTF_EXPIRES))
1116                                         fib6_clean_expires(iter);
1117                                 else
1118                                         fib6_set_expires(iter, rt->expires);
1119
1120                                 if (rt->fib6_pmtu)
1121                                         fib6_metric_set(iter, RTAX_MTU,
1122                                                         rt->fib6_pmtu);
1123                                 return -EEXIST;
1124                         }
1125                         /* If we have the same destination and the same metric,
1126                          * but not the same gateway, then the route we try to
1127                          * add is sibling to this route, increment our counter
1128                          * of siblings, and later we will add our route to the
1129                          * list.
1130                          * Only static routes (which don't have flag
1131                          * RTF_EXPIRES) are used for ECMPv6.
1132                          *
1133                          * To avoid long list, we only had siblings if the
1134                          * route have a gateway.
1135                          */
1136                         if (rt_can_ecmp &&
1137                             rt6_qualify_for_ecmp(iter))
1138                                 rt->fib6_nsiblings++;
1139                 }
1140
1141                 if (iter->fib6_metric > rt->fib6_metric)
1142                         break;
1143
1144 next_iter:
1145                 ins = &iter->fib6_next;
1146         }
1147
1148         if (fallback_ins && !found) {
1149                 /* No matching route with same ecmp-able-ness found, replace
1150                  * first matching route
1151                  */
1152                 ins = fallback_ins;
1153                 iter = rcu_dereference_protected(*ins,
1154                                     lockdep_is_held(&rt->fib6_table->tb6_lock));
1155                 found++;
1156         }
1157
1158         /* Reset round-robin state, if necessary */
1159         if (ins == &fn->leaf)
1160                 fn->rr_ptr = NULL;
1161
1162         /* Link this route to others same route. */
1163         if (rt->fib6_nsiblings) {
1164                 unsigned int fib6_nsiblings;
1165                 struct fib6_info *sibling, *temp_sibling;
1166
1167                 /* Find the first route that have the same metric */
1168                 sibling = leaf;
1169                 notify_sibling_rt = true;
1170                 while (sibling) {
1171                         if (sibling->fib6_metric == rt->fib6_metric &&
1172                             rt6_qualify_for_ecmp(sibling)) {
1173                                 list_add_tail(&rt->fib6_siblings,
1174                                               &sibling->fib6_siblings);
1175                                 break;
1176                         }
1177                         sibling = rcu_dereference_protected(sibling->fib6_next,
1178                                     lockdep_is_held(&rt->fib6_table->tb6_lock));
1179                         notify_sibling_rt = false;
1180                 }
1181                 /* For each sibling in the list, increment the counter of
1182                  * siblings. BUG() if counters does not match, list of siblings
1183                  * is broken!
1184                  */
1185                 fib6_nsiblings = 0;
1186                 list_for_each_entry_safe(sibling, temp_sibling,
1187                                          &rt->fib6_siblings, fib6_siblings) {
1188                         sibling->fib6_nsiblings++;
1189                         BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1190                         fib6_nsiblings++;
1191                 }
1192                 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1193                 rt6_multipath_rebalance(temp_sibling);
1194         }
1195
1196         /*
1197          *      insert node
1198          */
1199         if (!replace) {
1200                 if (!add)
1201                         pr_warn("NLM_F_CREATE should be set when creating new route\n");
1202
1203 add:
1204                 nlflags |= NLM_F_CREATE;
1205
1206                 /* The route should only be notified if it is the first
1207                  * route in the node or if it is added as a sibling
1208                  * route to the first route in the node.
1209                  */
1210                 if (!info->skip_notify_kernel &&
1211                     (notify_sibling_rt || ins == &fn->leaf)) {
1212                         enum fib_event_type fib_event;
1213
1214                         if (notify_sibling_rt)
1215                                 fib_event = FIB_EVENT_ENTRY_APPEND;
1216                         else
1217                                 fib_event = FIB_EVENT_ENTRY_REPLACE;
1218                         err = call_fib6_entry_notifiers(info->nl_net,
1219                                                         fib_event, rt,
1220                                                         extack);
1221                         if (err) {
1222                                 struct fib6_info *sibling, *next_sibling;
1223
1224                                 /* If the route has siblings, then it first
1225                                  * needs to be unlinked from them.
1226                                  */
1227                                 if (!rt->fib6_nsiblings)
1228                                         return err;
1229
1230                                 list_for_each_entry_safe(sibling, next_sibling,
1231                                                          &rt->fib6_siblings,
1232                                                          fib6_siblings)
1233                                         sibling->fib6_nsiblings--;
1234                                 rt->fib6_nsiblings = 0;
1235                                 list_del_init(&rt->fib6_siblings);
1236                                 rt6_multipath_rebalance(next_sibling);
1237                                 return err;
1238                         }
1239                 }
1240
1241                 rcu_assign_pointer(rt->fib6_next, iter);
1242                 fib6_info_hold(rt);
1243                 rcu_assign_pointer(rt->fib6_node, fn);
1244                 rcu_assign_pointer(*ins, rt);
1245                 if (!info->skip_notify)
1246                         inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1247                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1248
1249                 if (!(fn->fn_flags & RTN_RTINFO)) {
1250                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1251                         fn->fn_flags |= RTN_RTINFO;
1252                 }
1253
1254         } else {
1255                 int nsiblings;
1256
1257                 if (!found) {
1258                         if (add)
1259                                 goto add;
1260                         pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1261                         return -ENOENT;
1262                 }
1263
1264                 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1265                         err = call_fib6_entry_notifiers(info->nl_net,
1266                                                         FIB_EVENT_ENTRY_REPLACE,
1267                                                         rt, extack);
1268                         if (err)
1269                                 return err;
1270                 }
1271
1272                 fib6_info_hold(rt);
1273                 rcu_assign_pointer(rt->fib6_node, fn);
1274                 rt->fib6_next = iter->fib6_next;
1275                 rcu_assign_pointer(*ins, rt);
1276                 if (!info->skip_notify)
1277                         inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1278                 if (!(fn->fn_flags & RTN_RTINFO)) {
1279                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1280                         fn->fn_flags |= RTN_RTINFO;
1281                 }
1282                 nsiblings = iter->fib6_nsiblings;
1283                 iter->fib6_node = NULL;
1284                 fib6_purge_rt(iter, fn, info->nl_net);
1285                 if (rcu_access_pointer(fn->rr_ptr) == iter)
1286                         fn->rr_ptr = NULL;
1287                 fib6_info_release(iter);
1288
1289                 if (nsiblings) {
1290                         /* Replacing an ECMP route, remove all siblings */
1291                         ins = &rt->fib6_next;
1292                         iter = rcu_dereference_protected(*ins,
1293                                     lockdep_is_held(&rt->fib6_table->tb6_lock));
1294                         while (iter) {
1295                                 if (iter->fib6_metric > rt->fib6_metric)
1296                                         break;
1297                                 if (rt6_qualify_for_ecmp(iter)) {
1298                                         *ins = iter->fib6_next;
1299                                         iter->fib6_node = NULL;
1300                                         fib6_purge_rt(iter, fn, info->nl_net);
1301                                         if (rcu_access_pointer(fn->rr_ptr) == iter)
1302                                                 fn->rr_ptr = NULL;
1303                                         fib6_info_release(iter);
1304                                         nsiblings--;
1305                                         info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1306                                 } else {
1307                                         ins = &iter->fib6_next;
1308                                 }
1309                                 iter = rcu_dereference_protected(*ins,
1310                                         lockdep_is_held(&rt->fib6_table->tb6_lock));
1311                         }
1312                         WARN_ON(nsiblings != 0);
1313                 }
1314         }
1315
1316         return 0;
1317 }
1318
1319 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1320 {
1321         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1322             (rt->fib6_flags & RTF_EXPIRES))
1323                 mod_timer(&net->ipv6.ip6_fib_timer,
1324                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1325 }
1326
1327 void fib6_force_start_gc(struct net *net)
1328 {
1329         if (!timer_pending(&net->ipv6.ip6_fib_timer))
1330                 mod_timer(&net->ipv6.ip6_fib_timer,
1331                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1332 }
1333
1334 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1335                                            int sernum)
1336 {
1337         struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1338                                 lockdep_is_held(&rt->fib6_table->tb6_lock));
1339
1340         /* paired with smp_rmb() in rt6_get_cookie_safe() */
1341         smp_wmb();
1342         while (fn) {
1343                 fn->fn_sernum = sernum;
1344                 fn = rcu_dereference_protected(fn->parent,
1345                                 lockdep_is_held(&rt->fib6_table->tb6_lock));
1346         }
1347 }
1348
1349 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1350 {
1351         __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1352 }
1353
1354 /* allow ipv4 to update sernum via ipv6_stub */
1355 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1356 {
1357         spin_lock_bh(&f6i->fib6_table->tb6_lock);
1358         fib6_update_sernum_upto_root(net, f6i);
1359         spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1360 }
1361
1362 /*
1363  *      Add routing information to the routing tree.
1364  *      <destination addr>/<source addr>
1365  *      with source addr info in sub-trees
1366  *      Need to own table->tb6_lock
1367  */
1368
1369 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1370              struct nl_info *info, struct netlink_ext_ack *extack)
1371 {
1372         struct fib6_table *table = rt->fib6_table;
1373         struct fib6_node *fn, *pn = NULL;
1374         int err = -ENOMEM;
1375         int allow_create = 1;
1376         int replace_required = 0;
1377         int sernum = fib6_new_sernum(info->nl_net);
1378
1379         if (info->nlh) {
1380                 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1381                         allow_create = 0;
1382                 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1383                         replace_required = 1;
1384         }
1385         if (!allow_create && !replace_required)
1386                 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1387
1388         fn = fib6_add_1(info->nl_net, table, root,
1389                         &rt->fib6_dst.addr, rt->fib6_dst.plen,
1390                         offsetof(struct fib6_info, fib6_dst), allow_create,
1391                         replace_required, extack);
1392         if (IS_ERR(fn)) {
1393                 err = PTR_ERR(fn);
1394                 fn = NULL;
1395                 goto out;
1396         }
1397
1398         pn = fn;
1399
1400 #ifdef CONFIG_IPV6_SUBTREES
1401         if (rt->fib6_src.plen) {
1402                 struct fib6_node *sn;
1403
1404                 if (!rcu_access_pointer(fn->subtree)) {
1405                         struct fib6_node *sfn;
1406
1407                         /*
1408                          * Create subtree.
1409                          *
1410                          *              fn[main tree]
1411                          *              |
1412                          *              sfn[subtree root]
1413                          *                 \
1414                          *                  sn[new leaf node]
1415                          */
1416
1417                         /* Create subtree root node */
1418                         sfn = node_alloc(info->nl_net);
1419                         if (!sfn)
1420                                 goto failure;
1421
1422                         fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1423                         rcu_assign_pointer(sfn->leaf,
1424                                            info->nl_net->ipv6.fib6_null_entry);
1425                         sfn->fn_flags = RTN_ROOT;
1426
1427                         /* Now add the first leaf node to new subtree */
1428
1429                         sn = fib6_add_1(info->nl_net, table, sfn,
1430                                         &rt->fib6_src.addr, rt->fib6_src.plen,
1431                                         offsetof(struct fib6_info, fib6_src),
1432                                         allow_create, replace_required, extack);
1433
1434                         if (IS_ERR(sn)) {
1435                                 /* If it is failed, discard just allocated
1436                                    root, and then (in failure) stale node
1437                                    in main tree.
1438                                  */
1439                                 node_free_immediate(info->nl_net, sfn);
1440                                 err = PTR_ERR(sn);
1441                                 goto failure;
1442                         }
1443
1444                         /* Now link new subtree to main tree */
1445                         rcu_assign_pointer(sfn->parent, fn);
1446                         rcu_assign_pointer(fn->subtree, sfn);
1447                 } else {
1448                         sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1449                                         &rt->fib6_src.addr, rt->fib6_src.plen,
1450                                         offsetof(struct fib6_info, fib6_src),
1451                                         allow_create, replace_required, extack);
1452
1453                         if (IS_ERR(sn)) {
1454                                 err = PTR_ERR(sn);
1455                                 goto failure;
1456                         }
1457                 }
1458
1459                 if (!rcu_access_pointer(fn->leaf)) {
1460                         if (fn->fn_flags & RTN_TL_ROOT) {
1461                                 /* put back null_entry for root node */
1462                                 rcu_assign_pointer(fn->leaf,
1463                                             info->nl_net->ipv6.fib6_null_entry);
1464                         } else {
1465                                 fib6_info_hold(rt);
1466                                 rcu_assign_pointer(fn->leaf, rt);
1467                         }
1468                 }
1469                 fn = sn;
1470         }
1471 #endif
1472
1473         err = fib6_add_rt2node(fn, rt, info, extack);
1474         if (!err) {
1475                 if (rt->nh)
1476                         list_add(&rt->nh_list, &rt->nh->f6i_list);
1477                 __fib6_update_sernum_upto_root(rt, sernum);
1478                 fib6_start_gc(info->nl_net, rt);
1479         }
1480
1481 out:
1482         if (err) {
1483 #ifdef CONFIG_IPV6_SUBTREES
1484                 /*
1485                  * If fib6_add_1 has cleared the old leaf pointer in the
1486                  * super-tree leaf node we have to find a new one for it.
1487                  */
1488                 if (pn != fn) {
1489                         struct fib6_info *pn_leaf =
1490                                 rcu_dereference_protected(pn->leaf,
1491                                     lockdep_is_held(&table->tb6_lock));
1492                         if (pn_leaf == rt) {
1493                                 pn_leaf = NULL;
1494                                 RCU_INIT_POINTER(pn->leaf, NULL);
1495                                 fib6_info_release(rt);
1496                         }
1497                         if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1498                                 pn_leaf = fib6_find_prefix(info->nl_net, table,
1499                                                            pn);
1500 #if RT6_DEBUG >= 2
1501                                 if (!pn_leaf) {
1502                                         WARN_ON(!pn_leaf);
1503                                         pn_leaf =
1504                                             info->nl_net->ipv6.fib6_null_entry;
1505                                 }
1506 #endif
1507                                 fib6_info_hold(pn_leaf);
1508                                 rcu_assign_pointer(pn->leaf, pn_leaf);
1509                         }
1510                 }
1511 #endif
1512                 goto failure;
1513         } else if (fib6_requires_src(rt)) {
1514                 fib6_routes_require_src_inc(info->nl_net);
1515         }
1516         return err;
1517
1518 failure:
1519         /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1520          * 1. fn is an intermediate node and we failed to add the new
1521          * route to it in both subtree creation failure and fib6_add_rt2node()
1522          * failure case.
1523          * 2. fn is the root node in the table and we fail to add the first
1524          * default route to it.
1525          */
1526         if (fn &&
1527             (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1528              (fn->fn_flags & RTN_TL_ROOT &&
1529               !rcu_access_pointer(fn->leaf))))
1530                 fib6_repair_tree(info->nl_net, table, fn);
1531         return err;
1532 }
1533
1534 /*
1535  *      Routing tree lookup
1536  *
1537  */
1538
1539 struct lookup_args {
1540         int                     offset;         /* key offset on fib6_info */
1541         const struct in6_addr   *addr;          /* search key                   */
1542 };
1543
1544 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1545                                             struct lookup_args *args)
1546 {
1547         struct fib6_node *fn;
1548         __be32 dir;
1549
1550         if (unlikely(args->offset == 0))
1551                 return NULL;
1552
1553         /*
1554          *      Descend on a tree
1555          */
1556
1557         fn = root;
1558
1559         for (;;) {
1560                 struct fib6_node *next;
1561
1562                 dir = addr_bit_set(args->addr, fn->fn_bit);
1563
1564                 next = dir ? rcu_dereference(fn->right) :
1565                              rcu_dereference(fn->left);
1566
1567                 if (next) {
1568                         fn = next;
1569                         continue;
1570                 }
1571                 break;
1572         }
1573
1574         while (fn) {
1575                 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1576
1577                 if (subtree || fn->fn_flags & RTN_RTINFO) {
1578                         struct fib6_info *leaf = rcu_dereference(fn->leaf);
1579                         struct rt6key *key;
1580
1581                         if (!leaf)
1582                                 goto backtrack;
1583
1584                         key = (struct rt6key *) ((u8 *)leaf + args->offset);
1585
1586                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1587 #ifdef CONFIG_IPV6_SUBTREES
1588                                 if (subtree) {
1589                                         struct fib6_node *sfn;
1590                                         sfn = fib6_node_lookup_1(subtree,
1591                                                                  args + 1);
1592                                         if (!sfn)
1593                                                 goto backtrack;
1594                                         fn = sfn;
1595                                 }
1596 #endif
1597                                 if (fn->fn_flags & RTN_RTINFO)
1598                                         return fn;
1599                         }
1600                 }
1601 backtrack:
1602                 if (fn->fn_flags & RTN_ROOT)
1603                         break;
1604
1605                 fn = rcu_dereference(fn->parent);
1606         }
1607
1608         return NULL;
1609 }
1610
1611 /* called with rcu_read_lock() held
1612  */
1613 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1614                                    const struct in6_addr *daddr,
1615                                    const struct in6_addr *saddr)
1616 {
1617         struct fib6_node *fn;
1618         struct lookup_args args[] = {
1619                 {
1620                         .offset = offsetof(struct fib6_info, fib6_dst),
1621                         .addr = daddr,
1622                 },
1623 #ifdef CONFIG_IPV6_SUBTREES
1624                 {
1625                         .offset = offsetof(struct fib6_info, fib6_src),
1626                         .addr = saddr,
1627                 },
1628 #endif
1629                 {
1630                         .offset = 0,    /* sentinel */
1631                 }
1632         };
1633
1634         fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1635         if (!fn || fn->fn_flags & RTN_TL_ROOT)
1636                 fn = root;
1637
1638         return fn;
1639 }
1640
1641 /*
1642  *      Get node with specified destination prefix (and source prefix,
1643  *      if subtrees are used)
1644  *      exact_match == true means we try to find fn with exact match of
1645  *      the passed in prefix addr
1646  *      exact_match == false means we try to find fn with longest prefix
1647  *      match of the passed in prefix addr. This is useful for finding fn
1648  *      for cached route as it will be stored in the exception table under
1649  *      the node with longest prefix length.
1650  */
1651
1652
1653 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1654                                        const struct in6_addr *addr,
1655                                        int plen, int offset,
1656                                        bool exact_match)
1657 {
1658         struct fib6_node *fn, *prev = NULL;
1659
1660         for (fn = root; fn ; ) {
1661                 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1662                 struct rt6key *key;
1663
1664                 /* This node is being deleted */
1665                 if (!leaf) {
1666                         if (plen <= fn->fn_bit)
1667                                 goto out;
1668                         else
1669                                 goto next;
1670                 }
1671
1672                 key = (struct rt6key *)((u8 *)leaf + offset);
1673
1674                 /*
1675                  *      Prefix match
1676                  */
1677                 if (plen < fn->fn_bit ||
1678                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1679                         goto out;
1680
1681                 if (plen == fn->fn_bit)
1682                         return fn;
1683
1684                 if (fn->fn_flags & RTN_RTINFO)
1685                         prev = fn;
1686
1687 next:
1688                 /*
1689                  *      We have more bits to go
1690                  */
1691                 if (addr_bit_set(addr, fn->fn_bit))
1692                         fn = rcu_dereference(fn->right);
1693                 else
1694                         fn = rcu_dereference(fn->left);
1695         }
1696 out:
1697         if (exact_match)
1698                 return NULL;
1699         else
1700                 return prev;
1701 }
1702
1703 struct fib6_node *fib6_locate(struct fib6_node *root,
1704                               const struct in6_addr *daddr, int dst_len,
1705                               const struct in6_addr *saddr, int src_len,
1706                               bool exact_match)
1707 {
1708         struct fib6_node *fn;
1709
1710         fn = fib6_locate_1(root, daddr, dst_len,
1711                            offsetof(struct fib6_info, fib6_dst),
1712                            exact_match);
1713
1714 #ifdef CONFIG_IPV6_SUBTREES
1715         if (src_len) {
1716                 WARN_ON(saddr == NULL);
1717                 if (fn) {
1718                         struct fib6_node *subtree = FIB6_SUBTREE(fn);
1719
1720                         if (subtree) {
1721                                 fn = fib6_locate_1(subtree, saddr, src_len,
1722                                            offsetof(struct fib6_info, fib6_src),
1723                                            exact_match);
1724                         }
1725                 }
1726         }
1727 #endif
1728
1729         if (fn && fn->fn_flags & RTN_RTINFO)
1730                 return fn;
1731
1732         return NULL;
1733 }
1734
1735
1736 /*
1737  *      Deletion
1738  *
1739  */
1740
1741 static struct fib6_info *fib6_find_prefix(struct net *net,
1742                                          struct fib6_table *table,
1743                                          struct fib6_node *fn)
1744 {
1745         struct fib6_node *child_left, *child_right;
1746
1747         if (fn->fn_flags & RTN_ROOT)
1748                 return net->ipv6.fib6_null_entry;
1749
1750         while (fn) {
1751                 child_left = rcu_dereference_protected(fn->left,
1752                                     lockdep_is_held(&table->tb6_lock));
1753                 child_right = rcu_dereference_protected(fn->right,
1754                                     lockdep_is_held(&table->tb6_lock));
1755                 if (child_left)
1756                         return rcu_dereference_protected(child_left->leaf,
1757                                         lockdep_is_held(&table->tb6_lock));
1758                 if (child_right)
1759                         return rcu_dereference_protected(child_right->leaf,
1760                                         lockdep_is_held(&table->tb6_lock));
1761
1762                 fn = FIB6_SUBTREE(fn);
1763         }
1764         return NULL;
1765 }
1766
1767 /*
1768  *      Called to trim the tree of intermediate nodes when possible. "fn"
1769  *      is the node we want to try and remove.
1770  *      Need to own table->tb6_lock
1771  */
1772
1773 static struct fib6_node *fib6_repair_tree(struct net *net,
1774                                           struct fib6_table *table,
1775                                           struct fib6_node *fn)
1776 {
1777         int children;
1778         int nstate;
1779         struct fib6_node *child;
1780         struct fib6_walker *w;
1781         int iter = 0;
1782
1783         /* Set fn->leaf to null_entry for root node. */
1784         if (fn->fn_flags & RTN_TL_ROOT) {
1785                 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1786                 return fn;
1787         }
1788
1789         for (;;) {
1790                 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1791                                             lockdep_is_held(&table->tb6_lock));
1792                 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1793                                             lockdep_is_held(&table->tb6_lock));
1794                 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1795                                             lockdep_is_held(&table->tb6_lock));
1796                 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1797                                             lockdep_is_held(&table->tb6_lock));
1798                 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1799                                             lockdep_is_held(&table->tb6_lock));
1800                 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1801                                             lockdep_is_held(&table->tb6_lock));
1802                 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1803                                             lockdep_is_held(&table->tb6_lock));
1804                 struct fib6_info *new_fn_leaf;
1805
1806                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1807                 iter++;
1808
1809                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1810                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1811                 WARN_ON(fn_leaf);
1812
1813                 children = 0;
1814                 child = NULL;
1815                 if (fn_r)
1816                         child = fn_r, children |= 1;
1817                 if (fn_l)
1818                         child = fn_l, children |= 2;
1819
1820                 if (children == 3 || FIB6_SUBTREE(fn)
1821 #ifdef CONFIG_IPV6_SUBTREES
1822                     /* Subtree root (i.e. fn) may have one child */
1823                     || (children && fn->fn_flags & RTN_ROOT)
1824 #endif
1825                     ) {
1826                         new_fn_leaf = fib6_find_prefix(net, table, fn);
1827 #if RT6_DEBUG >= 2
1828                         if (!new_fn_leaf) {
1829                                 WARN_ON(!new_fn_leaf);
1830                                 new_fn_leaf = net->ipv6.fib6_null_entry;
1831                         }
1832 #endif
1833                         fib6_info_hold(new_fn_leaf);
1834                         rcu_assign_pointer(fn->leaf, new_fn_leaf);
1835                         return pn;
1836                 }
1837
1838 #ifdef CONFIG_IPV6_SUBTREES
1839                 if (FIB6_SUBTREE(pn) == fn) {
1840                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1841                         RCU_INIT_POINTER(pn->subtree, NULL);
1842                         nstate = FWS_L;
1843                 } else {
1844                         WARN_ON(fn->fn_flags & RTN_ROOT);
1845 #endif
1846                         if (pn_r == fn)
1847                                 rcu_assign_pointer(pn->right, child);
1848                         else if (pn_l == fn)
1849                                 rcu_assign_pointer(pn->left, child);
1850 #if RT6_DEBUG >= 2
1851                         else
1852                                 WARN_ON(1);
1853 #endif
1854                         if (child)
1855                                 rcu_assign_pointer(child->parent, pn);
1856                         nstate = FWS_R;
1857 #ifdef CONFIG_IPV6_SUBTREES
1858                 }
1859 #endif
1860
1861                 read_lock(&net->ipv6.fib6_walker_lock);
1862                 FOR_WALKERS(net, w) {
1863                         if (!child) {
1864                                 if (w->node == fn) {
1865                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1866                                         w->node = pn;
1867                                         w->state = nstate;
1868                                 }
1869                         } else {
1870                                 if (w->node == fn) {
1871                                         w->node = child;
1872                                         if (children&2) {
1873                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1874                                                 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1875                                         } else {
1876                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1877                                                 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1878                                         }
1879                                 }
1880                         }
1881                 }
1882                 read_unlock(&net->ipv6.fib6_walker_lock);
1883
1884                 node_free(net, fn);
1885                 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1886                         return pn;
1887
1888                 RCU_INIT_POINTER(pn->leaf, NULL);
1889                 fib6_info_release(pn_leaf);
1890                 fn = pn;
1891         }
1892 }
1893
1894 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1895                            struct fib6_info __rcu **rtp, struct nl_info *info)
1896 {
1897         struct fib6_info *leaf, *replace_rt = NULL;
1898         struct fib6_walker *w;
1899         struct fib6_info *rt = rcu_dereference_protected(*rtp,
1900                                     lockdep_is_held(&table->tb6_lock));
1901         struct net *net = info->nl_net;
1902         bool notify_del = false;
1903
1904         RT6_TRACE("fib6_del_route\n");
1905
1906         /* If the deleted route is the first in the node and it is not part of
1907          * a multipath route, then we need to replace it with the next route
1908          * in the node, if exists.
1909          */
1910         leaf = rcu_dereference_protected(fn->leaf,
1911                                          lockdep_is_held(&table->tb6_lock));
1912         if (leaf == rt && !rt->fib6_nsiblings) {
1913                 if (rcu_access_pointer(rt->fib6_next))
1914                         replace_rt = rcu_dereference_protected(rt->fib6_next,
1915                                             lockdep_is_held(&table->tb6_lock));
1916                 else
1917                         notify_del = true;
1918         }
1919
1920         /* Unlink it */
1921         *rtp = rt->fib6_next;
1922         rt->fib6_node = NULL;
1923         net->ipv6.rt6_stats->fib_rt_entries--;
1924         net->ipv6.rt6_stats->fib_discarded_routes++;
1925
1926         /* Flush all cached dst in exception table */
1927         rt6_flush_exceptions(rt);
1928
1929         /* Reset round-robin state, if necessary */
1930         if (rcu_access_pointer(fn->rr_ptr) == rt)
1931                 fn->rr_ptr = NULL;
1932
1933         /* Remove this entry from other siblings */
1934         if (rt->fib6_nsiblings) {
1935                 struct fib6_info *sibling, *next_sibling;
1936
1937                 /* The route is deleted from a multipath route. If this
1938                  * multipath route is the first route in the node, then we need
1939                  * to emit a delete notification. Otherwise, we need to skip
1940                  * the notification.
1941                  */
1942                 if (rt->fib6_metric == leaf->fib6_metric &&
1943                     rt6_qualify_for_ecmp(leaf))
1944                         notify_del = true;
1945                 list_for_each_entry_safe(sibling, next_sibling,
1946                                          &rt->fib6_siblings, fib6_siblings)
1947                         sibling->fib6_nsiblings--;
1948                 rt->fib6_nsiblings = 0;
1949                 list_del_init(&rt->fib6_siblings);
1950                 rt6_multipath_rebalance(next_sibling);
1951         }
1952
1953         /* Adjust walkers */
1954         read_lock(&net->ipv6.fib6_walker_lock);
1955         FOR_WALKERS(net, w) {
1956                 if (w->state == FWS_C && w->leaf == rt) {
1957                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1958                         w->leaf = rcu_dereference_protected(rt->fib6_next,
1959                                             lockdep_is_held(&table->tb6_lock));
1960                         if (!w->leaf)
1961                                 w->state = FWS_U;
1962                 }
1963         }
1964         read_unlock(&net->ipv6.fib6_walker_lock);
1965
1966         /* If it was last route, call fib6_repair_tree() to:
1967          * 1. For root node, put back null_entry as how the table was created.
1968          * 2. For other nodes, expunge its radix tree node.
1969          */
1970         if (!rcu_access_pointer(fn->leaf)) {
1971                 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1972                         fn->fn_flags &= ~RTN_RTINFO;
1973                         net->ipv6.rt6_stats->fib_route_nodes--;
1974                 }
1975                 fn = fib6_repair_tree(net, table, fn);
1976         }
1977
1978         fib6_purge_rt(rt, fn, net);
1979
1980         if (!info->skip_notify_kernel) {
1981                 if (notify_del)
1982                         call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1983                                                   rt, NULL);
1984                 else if (replace_rt)
1985                         call_fib6_entry_notifiers_replace(net, replace_rt);
1986         }
1987         if (!info->skip_notify)
1988                 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1989
1990         fib6_info_release(rt);
1991 }
1992
1993 /* Need to own table->tb6_lock */
1994 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1995 {
1996         struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1997                                     lockdep_is_held(&rt->fib6_table->tb6_lock));
1998         struct fib6_table *table = rt->fib6_table;
1999         struct net *net = info->nl_net;
2000         struct fib6_info __rcu **rtp;
2001         struct fib6_info __rcu **rtp_next;
2002
2003         if (!fn || rt == net->ipv6.fib6_null_entry)
2004                 return -ENOENT;
2005
2006         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2007
2008         /*
2009          *      Walk the leaf entries looking for ourself
2010          */
2011
2012         for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2013                 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2014                                         lockdep_is_held(&table->tb6_lock));
2015                 if (rt == cur) {
2016                         if (fib6_requires_src(cur))
2017                                 fib6_routes_require_src_dec(info->nl_net);
2018                         fib6_del_route(table, fn, rtp, info);
2019                         return 0;
2020                 }
2021                 rtp_next = &cur->fib6_next;
2022         }
2023         return -ENOENT;
2024 }
2025
2026 /*
2027  *      Tree traversal function.
2028  *
2029  *      Certainly, it is not interrupt safe.
2030  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2031  *      It means, that we can modify tree during walking
2032  *      and use this function for garbage collection, clone pruning,
2033  *      cleaning tree when a device goes down etc. etc.
2034  *
2035  *      It guarantees that every node will be traversed,
2036  *      and that it will be traversed only once.
2037  *
2038  *      Callback function w->func may return:
2039  *      0 -> continue walking.
2040  *      positive value -> walking is suspended (used by tree dumps,
2041  *      and probably by gc, if it will be split to several slices)
2042  *      negative value -> terminate walking.
2043  *
2044  *      The function itself returns:
2045  *      0   -> walk is complete.
2046  *      >0  -> walk is incomplete (i.e. suspended)
2047  *      <0  -> walk is terminated by an error.
2048  *
2049  *      This function is called with tb6_lock held.
2050  */
2051
2052 static int fib6_walk_continue(struct fib6_walker *w)
2053 {
2054         struct fib6_node *fn, *pn, *left, *right;
2055
2056         /* w->root should always be table->tb6_root */
2057         WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2058
2059         for (;;) {
2060                 fn = w->node;
2061                 if (!fn)
2062                         return 0;
2063
2064                 switch (w->state) {
2065 #ifdef CONFIG_IPV6_SUBTREES
2066                 case FWS_S:
2067                         if (FIB6_SUBTREE(fn)) {
2068                                 w->node = FIB6_SUBTREE(fn);
2069                                 continue;
2070                         }
2071                         w->state = FWS_L;
2072                         fallthrough;
2073 #endif
2074                 case FWS_L:
2075                         left = rcu_dereference_protected(fn->left, 1);
2076                         if (left) {
2077                                 w->node = left;
2078                                 w->state = FWS_INIT;
2079                                 continue;
2080                         }
2081                         w->state = FWS_R;
2082                         fallthrough;
2083                 case FWS_R:
2084                         right = rcu_dereference_protected(fn->right, 1);
2085                         if (right) {
2086                                 w->node = right;
2087                                 w->state = FWS_INIT;
2088                                 continue;
2089                         }
2090                         w->state = FWS_C;
2091                         w->leaf = rcu_dereference_protected(fn->leaf, 1);
2092                         fallthrough;
2093                 case FWS_C:
2094                         if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2095                                 int err;
2096
2097                                 if (w->skip) {
2098                                         w->skip--;
2099                                         goto skip;
2100                                 }
2101
2102                                 err = w->func(w);
2103                                 if (err)
2104                                         return err;
2105
2106                                 w->count++;
2107                                 continue;
2108                         }
2109 skip:
2110                         w->state = FWS_U;
2111                         fallthrough;
2112                 case FWS_U:
2113                         if (fn == w->root)
2114                                 return 0;
2115                         pn = rcu_dereference_protected(fn->parent, 1);
2116                         left = rcu_dereference_protected(pn->left, 1);
2117                         right = rcu_dereference_protected(pn->right, 1);
2118                         w->node = pn;
2119 #ifdef CONFIG_IPV6_SUBTREES
2120                         if (FIB6_SUBTREE(pn) == fn) {
2121                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2122                                 w->state = FWS_L;
2123                                 continue;
2124                         }
2125 #endif
2126                         if (left == fn) {
2127                                 w->state = FWS_R;
2128                                 continue;
2129                         }
2130                         if (right == fn) {
2131                                 w->state = FWS_C;
2132                                 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2133                                 continue;
2134                         }
2135 #if RT6_DEBUG >= 2
2136                         WARN_ON(1);
2137 #endif
2138                 }
2139         }
2140 }
2141
2142 static int fib6_walk(struct net *net, struct fib6_walker *w)
2143 {
2144         int res;
2145
2146         w->state = FWS_INIT;
2147         w->node = w->root;
2148
2149         fib6_walker_link(net, w);
2150         res = fib6_walk_continue(w);
2151         if (res <= 0)
2152                 fib6_walker_unlink(net, w);
2153         return res;
2154 }
2155
2156 static int fib6_clean_node(struct fib6_walker *w)
2157 {
2158         int res;
2159         struct fib6_info *rt;
2160         struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2161         struct nl_info info = {
2162                 .nl_net = c->net,
2163                 .skip_notify = c->skip_notify,
2164         };
2165
2166         if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2167             w->node->fn_sernum != c->sernum)
2168                 w->node->fn_sernum = c->sernum;
2169
2170         if (!c->func) {
2171                 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2172                 w->leaf = NULL;
2173                 return 0;
2174         }
2175
2176         for_each_fib6_walker_rt(w) {
2177                 res = c->func(rt, c->arg);
2178                 if (res == -1) {
2179                         w->leaf = rt;
2180                         res = fib6_del(rt, &info);
2181                         if (res) {
2182 #if RT6_DEBUG >= 2
2183                                 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2184                                          __func__, rt,
2185                                          rcu_access_pointer(rt->fib6_node),
2186                                          res);
2187 #endif
2188                                 continue;
2189                         }
2190                         return 0;
2191                 } else if (res == -2) {
2192                         if (WARN_ON(!rt->fib6_nsiblings))
2193                                 continue;
2194                         rt = list_last_entry(&rt->fib6_siblings,
2195                                              struct fib6_info, fib6_siblings);
2196                         continue;
2197                 }
2198                 WARN_ON(res != 0);
2199         }
2200         w->leaf = rt;
2201         return 0;
2202 }
2203
2204 /*
2205  *      Convenient frontend to tree walker.
2206  *
2207  *      func is called on each route.
2208  *              It may return -2 -> skip multipath route.
2209  *                            -1 -> delete this route.
2210  *                            0  -> continue walking
2211  */
2212
2213 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2214                             int (*func)(struct fib6_info *, void *arg),
2215                             int sernum, void *arg, bool skip_notify)
2216 {
2217         struct fib6_cleaner c;
2218
2219         c.w.root = root;
2220         c.w.func = fib6_clean_node;
2221         c.w.count = 0;
2222         c.w.skip = 0;
2223         c.w.skip_in_node = 0;
2224         c.func = func;
2225         c.sernum = sernum;
2226         c.arg = arg;
2227         c.net = net;
2228         c.skip_notify = skip_notify;
2229
2230         fib6_walk(net, &c.w);
2231 }
2232
2233 static void __fib6_clean_all(struct net *net,
2234                              int (*func)(struct fib6_info *, void *),
2235                              int sernum, void *arg, bool skip_notify)
2236 {
2237         struct fib6_table *table;
2238         struct hlist_head *head;
2239         unsigned int h;
2240
2241         rcu_read_lock();
2242         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2243                 head = &net->ipv6.fib_table_hash[h];
2244                 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2245                         spin_lock_bh(&table->tb6_lock);
2246                         fib6_clean_tree(net, &table->tb6_root,
2247                                         func, sernum, arg, skip_notify);
2248                         spin_unlock_bh(&table->tb6_lock);
2249                 }
2250         }
2251         rcu_read_unlock();
2252 }
2253
2254 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2255                     void *arg)
2256 {
2257         __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2258 }
2259
2260 void fib6_clean_all_skip_notify(struct net *net,
2261                                 int (*func)(struct fib6_info *, void *),
2262                                 void *arg)
2263 {
2264         __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2265 }
2266
2267 static void fib6_flush_trees(struct net *net)
2268 {
2269         int new_sernum = fib6_new_sernum(net);
2270
2271         __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2272 }
2273
2274 /*
2275  *      Garbage collection
2276  */
2277
2278 static int fib6_age(struct fib6_info *rt, void *arg)
2279 {
2280         struct fib6_gc_args *gc_args = arg;
2281         unsigned long now = jiffies;
2282
2283         /*
2284          *      check addrconf expiration here.
2285          *      Routes are expired even if they are in use.
2286          */
2287
2288         if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2289                 if (time_after(now, rt->expires)) {
2290                         RT6_TRACE("expiring %p\n", rt);
2291                         return -1;
2292                 }
2293                 gc_args->more++;
2294         }
2295
2296         /*      Also age clones in the exception table.
2297          *      Note, that clones are aged out
2298          *      only if they are not in use now.
2299          */
2300         rt6_age_exceptions(rt, gc_args, now);
2301
2302         return 0;
2303 }
2304
2305 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2306 {
2307         struct fib6_gc_args gc_args;
2308         unsigned long now;
2309
2310         if (force) {
2311                 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2312         } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2313                 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2314                 return;
2315         }
2316         gc_args.timeout = expires ? (int)expires :
2317                           net->ipv6.sysctl.ip6_rt_gc_interval;
2318         gc_args.more = 0;
2319
2320         fib6_clean_all(net, fib6_age, &gc_args);
2321         now = jiffies;
2322         net->ipv6.ip6_rt_last_gc = now;
2323
2324         if (gc_args.more)
2325                 mod_timer(&net->ipv6.ip6_fib_timer,
2326                           round_jiffies(now
2327                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
2328         else
2329                 del_timer(&net->ipv6.ip6_fib_timer);
2330         spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2331 }
2332
2333 static void fib6_gc_timer_cb(struct timer_list *t)
2334 {
2335         struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2336
2337         fib6_run_gc(0, arg, true);
2338 }
2339
2340 static int __net_init fib6_net_init(struct net *net)
2341 {
2342         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2343         int err;
2344
2345         err = fib6_notifier_init(net);
2346         if (err)
2347                 return err;
2348
2349         spin_lock_init(&net->ipv6.fib6_gc_lock);
2350         rwlock_init(&net->ipv6.fib6_walker_lock);
2351         INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2352         timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2353
2354         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2355         if (!net->ipv6.rt6_stats)
2356                 goto out_timer;
2357
2358         /* Avoid false sharing : Use at least a full cache line */
2359         size = max_t(size_t, size, L1_CACHE_BYTES);
2360
2361         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2362         if (!net->ipv6.fib_table_hash)
2363                 goto out_rt6_stats;
2364
2365         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2366                                           GFP_KERNEL);
2367         if (!net->ipv6.fib6_main_tbl)
2368                 goto out_fib_table_hash;
2369
2370         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2371         rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2372                            net->ipv6.fib6_null_entry);
2373         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2374                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2375         inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2376
2377 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2378         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2379                                            GFP_KERNEL);
2380         if (!net->ipv6.fib6_local_tbl)
2381                 goto out_fib6_main_tbl;
2382         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2383         rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2384                            net->ipv6.fib6_null_entry);
2385         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2386                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2387         inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2388 #endif
2389         fib6_tables_init(net);
2390
2391         return 0;
2392
2393 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2394 out_fib6_main_tbl:
2395         kfree(net->ipv6.fib6_main_tbl);
2396 #endif
2397 out_fib_table_hash:
2398         kfree(net->ipv6.fib_table_hash);
2399 out_rt6_stats:
2400         kfree(net->ipv6.rt6_stats);
2401 out_timer:
2402         fib6_notifier_exit(net);
2403         return -ENOMEM;
2404 }
2405
2406 static void fib6_net_exit(struct net *net)
2407 {
2408         unsigned int i;
2409
2410         del_timer_sync(&net->ipv6.ip6_fib_timer);
2411
2412         for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2413                 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2414                 struct hlist_node *tmp;
2415                 struct fib6_table *tb;
2416
2417                 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2418                         hlist_del(&tb->tb6_hlist);
2419                         fib6_free_table(tb);
2420                 }
2421         }
2422
2423         kfree(net->ipv6.fib_table_hash);
2424         kfree(net->ipv6.rt6_stats);
2425         fib6_notifier_exit(net);
2426 }
2427
2428 static struct pernet_operations fib6_net_ops = {
2429         .init = fib6_net_init,
2430         .exit = fib6_net_exit,
2431 };
2432
2433 int __init fib6_init(void)
2434 {
2435         int ret = -ENOMEM;
2436
2437         fib6_node_kmem = kmem_cache_create("fib6_nodes",
2438                                            sizeof(struct fib6_node),
2439                                            0, SLAB_HWCACHE_ALIGN,
2440                                            NULL);
2441         if (!fib6_node_kmem)
2442                 goto out;
2443
2444         ret = register_pernet_subsys(&fib6_net_ops);
2445         if (ret)
2446                 goto out_kmem_cache_create;
2447
2448         ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2449                                    inet6_dump_fib, 0);
2450         if (ret)
2451                 goto out_unregister_subsys;
2452
2453         __fib6_flush_trees = fib6_flush_trees;
2454 out:
2455         return ret;
2456
2457 out_unregister_subsys:
2458         unregister_pernet_subsys(&fib6_net_ops);
2459 out_kmem_cache_create:
2460         kmem_cache_destroy(fib6_node_kmem);
2461         goto out;
2462 }
2463
2464 void fib6_gc_cleanup(void)
2465 {
2466         unregister_pernet_subsys(&fib6_net_ops);
2467         kmem_cache_destroy(fib6_node_kmem);
2468 }
2469
2470 #ifdef CONFIG_PROC_FS
2471 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2472 {
2473         struct fib6_info *rt = v;
2474         struct ipv6_route_iter *iter = seq->private;
2475         struct fib6_nh *fib6_nh = rt->fib6_nh;
2476         unsigned int flags = rt->fib6_flags;
2477         const struct net_device *dev;
2478
2479         if (rt->nh)
2480                 fib6_nh = nexthop_fib6_nh(rt->nh);
2481
2482         seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2483
2484 #ifdef CONFIG_IPV6_SUBTREES
2485         seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2486 #else
2487         seq_puts(seq, "00000000000000000000000000000000 00 ");
2488 #endif
2489         if (fib6_nh->fib_nh_gw_family) {
2490                 flags |= RTF_GATEWAY;
2491                 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2492         } else {
2493                 seq_puts(seq, "00000000000000000000000000000000");
2494         }
2495
2496         dev = fib6_nh->fib_nh_dev;
2497         seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2498                    rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2499                    flags, dev ? dev->name : "");
2500         iter->w.leaf = NULL;
2501         return 0;
2502 }
2503
2504 static int ipv6_route_yield(struct fib6_walker *w)
2505 {
2506         struct ipv6_route_iter *iter = w->args;
2507
2508         if (!iter->skip)
2509                 return 1;
2510
2511         do {
2512                 iter->w.leaf = rcu_dereference_protected(
2513                                 iter->w.leaf->fib6_next,
2514                                 lockdep_is_held(&iter->tbl->tb6_lock));
2515                 iter->skip--;
2516                 if (!iter->skip && iter->w.leaf)
2517                         return 1;
2518         } while (iter->w.leaf);
2519
2520         return 0;
2521 }
2522
2523 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2524                                       struct net *net)
2525 {
2526         memset(&iter->w, 0, sizeof(iter->w));
2527         iter->w.func = ipv6_route_yield;
2528         iter->w.root = &iter->tbl->tb6_root;
2529         iter->w.state = FWS_INIT;
2530         iter->w.node = iter->w.root;
2531         iter->w.args = iter;
2532         iter->sernum = iter->w.root->fn_sernum;
2533         INIT_LIST_HEAD(&iter->w.lh);
2534         fib6_walker_link(net, &iter->w);
2535 }
2536
2537 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2538                                                     struct net *net)
2539 {
2540         unsigned int h;
2541         struct hlist_node *node;
2542
2543         if (tbl) {
2544                 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2545                 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2546         } else {
2547                 h = 0;
2548                 node = NULL;
2549         }
2550
2551         while (!node && h < FIB6_TABLE_HASHSZ) {
2552                 node = rcu_dereference_bh(
2553                         hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2554         }
2555         return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2556 }
2557
2558 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2559 {
2560         if (iter->sernum != iter->w.root->fn_sernum) {
2561                 iter->sernum = iter->w.root->fn_sernum;
2562                 iter->w.state = FWS_INIT;
2563                 iter->w.node = iter->w.root;
2564                 WARN_ON(iter->w.skip);
2565                 iter->w.skip = iter->w.count;
2566         }
2567 }
2568
2569 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2570 {
2571         int r;
2572         struct fib6_info *n;
2573         struct net *net = seq_file_net(seq);
2574         struct ipv6_route_iter *iter = seq->private;
2575
2576         ++(*pos);
2577         if (!v)
2578                 goto iter_table;
2579
2580         n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2581         if (n)
2582                 return n;
2583
2584 iter_table:
2585         ipv6_route_check_sernum(iter);
2586         spin_lock_bh(&iter->tbl->tb6_lock);
2587         r = fib6_walk_continue(&iter->w);
2588         spin_unlock_bh(&iter->tbl->tb6_lock);
2589         if (r > 0) {
2590                 return iter->w.leaf;
2591         } else if (r < 0) {
2592                 fib6_walker_unlink(net, &iter->w);
2593                 return NULL;
2594         }
2595         fib6_walker_unlink(net, &iter->w);
2596
2597         iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2598         if (!iter->tbl)
2599                 return NULL;
2600
2601         ipv6_route_seq_setup_walk(iter, net);
2602         goto iter_table;
2603 }
2604
2605 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2606         __acquires(RCU_BH)
2607 {
2608         struct net *net = seq_file_net(seq);
2609         struct ipv6_route_iter *iter = seq->private;
2610
2611         rcu_read_lock_bh();
2612         iter->tbl = ipv6_route_seq_next_table(NULL, net);
2613         iter->skip = *pos;
2614
2615         if (iter->tbl) {
2616                 ipv6_route_seq_setup_walk(iter, net);
2617                 return ipv6_route_seq_next(seq, NULL, pos);
2618         } else {
2619                 return NULL;
2620         }
2621 }
2622
2623 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2624 {
2625         struct fib6_walker *w = &iter->w;
2626         return w->node && !(w->state == FWS_U && w->node == w->root);
2627 }
2628
2629 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2630         __releases(RCU_BH)
2631 {
2632         struct net *net = seq_file_net(seq);
2633         struct ipv6_route_iter *iter = seq->private;
2634
2635         if (ipv6_route_iter_active(iter))
2636                 fib6_walker_unlink(net, &iter->w);
2637
2638         rcu_read_unlock_bh();
2639 }
2640
2641 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2642 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2643                                     struct bpf_iter_meta *meta,
2644                                     void *v)
2645 {
2646         struct bpf_iter__ipv6_route ctx;
2647
2648         ctx.meta = meta;
2649         ctx.rt = v;
2650         return bpf_iter_run_prog(prog, &ctx);
2651 }
2652
2653 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2654 {
2655         struct ipv6_route_iter *iter = seq->private;
2656         struct bpf_iter_meta meta;
2657         struct bpf_prog *prog;
2658         int ret;
2659
2660         meta.seq = seq;
2661         prog = bpf_iter_get_info(&meta, false);
2662         if (!prog)
2663                 return ipv6_route_native_seq_show(seq, v);
2664
2665         ret = ipv6_route_prog_seq_show(prog, &meta, v);
2666         iter->w.leaf = NULL;
2667
2668         return ret;
2669 }
2670
2671 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2672 {
2673         struct bpf_iter_meta meta;
2674         struct bpf_prog *prog;
2675
2676         if (!v) {
2677                 meta.seq = seq;
2678                 prog = bpf_iter_get_info(&meta, true);
2679                 if (prog)
2680                         (void)ipv6_route_prog_seq_show(prog, &meta, v);
2681         }
2682
2683         ipv6_route_native_seq_stop(seq, v);
2684 }
2685 #else
2686 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2687 {
2688         return ipv6_route_native_seq_show(seq, v);
2689 }
2690
2691 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2692 {
2693         ipv6_route_native_seq_stop(seq, v);
2694 }
2695 #endif
2696
2697 const struct seq_operations ipv6_route_seq_ops = {
2698         .start  = ipv6_route_seq_start,
2699         .next   = ipv6_route_seq_next,
2700         .stop   = ipv6_route_seq_stop,
2701         .show   = ipv6_route_seq_show
2702 };
2703 #endif /* CONFIG_PROC_FS */