Merge tag 'for-5.19/drivers-2022-06-02' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / net / ipv4 / inet_fragment.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * inet fragments management
4  *
5  *              Authors:        Pavel Emelyanov <xemul@openvz.org>
6  *                              Started as consolidation of ipv4/ip_fragment.c,
7  *                              ipv6/reassembly. and ipv6 nf conntrack reassembly
8  */
9
10 #include <linux/list.h>
11 #include <linux/spinlock.h>
12 #include <linux/module.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/random.h>
16 #include <linux/skbuff.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/rhashtable.h>
20
21 #include <net/sock.h>
22 #include <net/inet_frag.h>
23 #include <net/inet_ecn.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26
27 /* Use skb->cb to track consecutive/adjacent fragments coming at
28  * the end of the queue. Nodes in the rb-tree queue will
29  * contain "runs" of one or more adjacent fragments.
30  *
31  * Invariants:
32  * - next_frag is NULL at the tail of a "run";
33  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
34  */
35 struct ipfrag_skb_cb {
36         union {
37                 struct inet_skb_parm    h4;
38                 struct inet6_skb_parm   h6;
39         };
40         struct sk_buff          *next_frag;
41         int                     frag_run_len;
42 };
43
44 #define FRAG_CB(skb)            ((struct ipfrag_skb_cb *)((skb)->cb))
45
46 static void fragcb_clear(struct sk_buff *skb)
47 {
48         RB_CLEAR_NODE(&skb->rbnode);
49         FRAG_CB(skb)->next_frag = NULL;
50         FRAG_CB(skb)->frag_run_len = skb->len;
51 }
52
53 /* Append skb to the last "run". */
54 static void fragrun_append_to_last(struct inet_frag_queue *q,
55                                    struct sk_buff *skb)
56 {
57         fragcb_clear(skb);
58
59         FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
60         FRAG_CB(q->fragments_tail)->next_frag = skb;
61         q->fragments_tail = skb;
62 }
63
64 /* Create a new "run" with the skb. */
65 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
66 {
67         BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
68         fragcb_clear(skb);
69
70         if (q->last_run_head)
71                 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
72                              &q->last_run_head->rbnode.rb_right);
73         else
74                 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
75         rb_insert_color(&skb->rbnode, &q->rb_fragments);
76
77         q->fragments_tail = skb;
78         q->last_run_head = skb;
79 }
80
81 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
82  * Value : 0xff if frame should be dropped.
83  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
84  */
85 const u8 ip_frag_ecn_table[16] = {
86         /* at least one fragment had CE, and others ECT_0 or ECT_1 */
87         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]                      = INET_ECN_CE,
88         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]                      = INET_ECN_CE,
89         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]   = INET_ECN_CE,
90
91         /* invalid combinations : drop frame */
92         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
93         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
94         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
95         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
96         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
97         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
98         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
99 };
100 EXPORT_SYMBOL(ip_frag_ecn_table);
101
102 int inet_frags_init(struct inet_frags *f)
103 {
104         f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
105                                             NULL);
106         if (!f->frags_cachep)
107                 return -ENOMEM;
108
109         refcount_set(&f->refcnt, 1);
110         init_completion(&f->completion);
111         return 0;
112 }
113 EXPORT_SYMBOL(inet_frags_init);
114
115 void inet_frags_fini(struct inet_frags *f)
116 {
117         if (refcount_dec_and_test(&f->refcnt))
118                 complete(&f->completion);
119
120         wait_for_completion(&f->completion);
121
122         kmem_cache_destroy(f->frags_cachep);
123         f->frags_cachep = NULL;
124 }
125 EXPORT_SYMBOL(inet_frags_fini);
126
127 /* called from rhashtable_free_and_destroy() at netns_frags dismantle */
128 static void inet_frags_free_cb(void *ptr, void *arg)
129 {
130         struct inet_frag_queue *fq = ptr;
131         int count;
132
133         count = del_timer_sync(&fq->timer) ? 1 : 0;
134
135         spin_lock_bh(&fq->lock);
136         if (!(fq->flags & INET_FRAG_COMPLETE)) {
137                 fq->flags |= INET_FRAG_COMPLETE;
138                 count++;
139         } else if (fq->flags & INET_FRAG_HASH_DEAD) {
140                 count++;
141         }
142         spin_unlock_bh(&fq->lock);
143
144         if (refcount_sub_and_test(count, &fq->refcnt))
145                 inet_frag_destroy(fq);
146 }
147
148 static LLIST_HEAD(fqdir_free_list);
149
150 static void fqdir_free_fn(struct work_struct *work)
151 {
152         struct llist_node *kill_list;
153         struct fqdir *fqdir, *tmp;
154         struct inet_frags *f;
155
156         /* Atomically snapshot the list of fqdirs to free */
157         kill_list = llist_del_all(&fqdir_free_list);
158
159         /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
160          * have completed, since they need to dereference fqdir.
161          * Would it not be nice to have kfree_rcu_barrier() ? :)
162          */
163         rcu_barrier();
164
165         llist_for_each_entry_safe(fqdir, tmp, kill_list, free_list) {
166                 f = fqdir->f;
167                 if (refcount_dec_and_test(&f->refcnt))
168                         complete(&f->completion);
169
170                 kfree(fqdir);
171         }
172 }
173
174 static DECLARE_WORK(fqdir_free_work, fqdir_free_fn);
175
176 static void fqdir_work_fn(struct work_struct *work)
177 {
178         struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
179
180         rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
181
182         if (llist_add(&fqdir->free_list, &fqdir_free_list))
183                 queue_work(system_wq, &fqdir_free_work);
184 }
185
186 int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
187 {
188         struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
189         int res;
190
191         if (!fqdir)
192                 return -ENOMEM;
193         fqdir->f = f;
194         fqdir->net = net;
195         res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
196         if (res < 0) {
197                 kfree(fqdir);
198                 return res;
199         }
200         refcount_inc(&f->refcnt);
201         *fqdirp = fqdir;
202         return 0;
203 }
204 EXPORT_SYMBOL(fqdir_init);
205
206 static struct workqueue_struct *inet_frag_wq;
207
208 static int __init inet_frag_wq_init(void)
209 {
210         inet_frag_wq = create_workqueue("inet_frag_wq");
211         if (!inet_frag_wq)
212                 panic("Could not create inet frag workq");
213         return 0;
214 }
215
216 pure_initcall(inet_frag_wq_init);
217
218 void fqdir_exit(struct fqdir *fqdir)
219 {
220         INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
221         queue_work(inet_frag_wq, &fqdir->destroy_work);
222 }
223 EXPORT_SYMBOL(fqdir_exit);
224
225 void inet_frag_kill(struct inet_frag_queue *fq)
226 {
227         if (del_timer(&fq->timer))
228                 refcount_dec(&fq->refcnt);
229
230         if (!(fq->flags & INET_FRAG_COMPLETE)) {
231                 struct fqdir *fqdir = fq->fqdir;
232
233                 fq->flags |= INET_FRAG_COMPLETE;
234                 rcu_read_lock();
235                 /* The RCU read lock provides a memory barrier
236                  * guaranteeing that if fqdir->dead is false then
237                  * the hash table destruction will not start until
238                  * after we unlock.  Paired with fqdir_pre_exit().
239                  */
240                 if (!READ_ONCE(fqdir->dead)) {
241                         rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
242                                                fqdir->f->rhash_params);
243                         refcount_dec(&fq->refcnt);
244                 } else {
245                         fq->flags |= INET_FRAG_HASH_DEAD;
246                 }
247                 rcu_read_unlock();
248         }
249 }
250 EXPORT_SYMBOL(inet_frag_kill);
251
252 static void inet_frag_destroy_rcu(struct rcu_head *head)
253 {
254         struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
255                                                  rcu);
256         struct inet_frags *f = q->fqdir->f;
257
258         if (f->destructor)
259                 f->destructor(q);
260         kmem_cache_free(f->frags_cachep, q);
261 }
262
263 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
264 {
265         struct rb_node *p = rb_first(root);
266         unsigned int sum = 0;
267
268         while (p) {
269                 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
270
271                 p = rb_next(p);
272                 rb_erase(&skb->rbnode, root);
273                 while (skb) {
274                         struct sk_buff *next = FRAG_CB(skb)->next_frag;
275
276                         sum += skb->truesize;
277                         kfree_skb(skb);
278                         skb = next;
279                 }
280         }
281         return sum;
282 }
283 EXPORT_SYMBOL(inet_frag_rbtree_purge);
284
285 void inet_frag_destroy(struct inet_frag_queue *q)
286 {
287         struct fqdir *fqdir;
288         unsigned int sum, sum_truesize = 0;
289         struct inet_frags *f;
290
291         WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
292         WARN_ON(del_timer(&q->timer) != 0);
293
294         /* Release all fragment data. */
295         fqdir = q->fqdir;
296         f = fqdir->f;
297         sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
298         sum = sum_truesize + f->qsize;
299
300         call_rcu(&q->rcu, inet_frag_destroy_rcu);
301
302         sub_frag_mem_limit(fqdir, sum);
303 }
304 EXPORT_SYMBOL(inet_frag_destroy);
305
306 static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
307                                                struct inet_frags *f,
308                                                void *arg)
309 {
310         struct inet_frag_queue *q;
311
312         q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
313         if (!q)
314                 return NULL;
315
316         q->fqdir = fqdir;
317         f->constructor(q, arg);
318         add_frag_mem_limit(fqdir, f->qsize);
319
320         timer_setup(&q->timer, f->frag_expire, 0);
321         spin_lock_init(&q->lock);
322         refcount_set(&q->refcnt, 3);
323
324         return q;
325 }
326
327 static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
328                                                 void *arg,
329                                                 struct inet_frag_queue **prev)
330 {
331         struct inet_frags *f = fqdir->f;
332         struct inet_frag_queue *q;
333
334         q = inet_frag_alloc(fqdir, f, arg);
335         if (!q) {
336                 *prev = ERR_PTR(-ENOMEM);
337                 return NULL;
338         }
339         mod_timer(&q->timer, jiffies + fqdir->timeout);
340
341         *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
342                                                  &q->node, f->rhash_params);
343         if (*prev) {
344                 q->flags |= INET_FRAG_COMPLETE;
345                 inet_frag_kill(q);
346                 inet_frag_destroy(q);
347                 return NULL;
348         }
349         return q;
350 }
351
352 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
353 struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
354 {
355         /* This pairs with WRITE_ONCE() in fqdir_pre_exit(). */
356         long high_thresh = READ_ONCE(fqdir->high_thresh);
357         struct inet_frag_queue *fq = NULL, *prev;
358
359         if (!high_thresh || frag_mem_limit(fqdir) > high_thresh)
360                 return NULL;
361
362         rcu_read_lock();
363
364         prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
365         if (!prev)
366                 fq = inet_frag_create(fqdir, key, &prev);
367         if (!IS_ERR_OR_NULL(prev)) {
368                 fq = prev;
369                 if (!refcount_inc_not_zero(&fq->refcnt))
370                         fq = NULL;
371         }
372         rcu_read_unlock();
373         return fq;
374 }
375 EXPORT_SYMBOL(inet_frag_find);
376
377 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
378                            int offset, int end)
379 {
380         struct sk_buff *last = q->fragments_tail;
381
382         /* RFC5722, Section 4, amended by Errata ID : 3089
383          *                          When reassembling an IPv6 datagram, if
384          *   one or more its constituent fragments is determined to be an
385          *   overlapping fragment, the entire datagram (and any constituent
386          *   fragments) MUST be silently discarded.
387          *
388          * Duplicates, however, should be ignored (i.e. skb dropped, but the
389          * queue/fragments kept for later reassembly).
390          */
391         if (!last)
392                 fragrun_create(q, skb);  /* First fragment. */
393         else if (last->ip_defrag_offset + last->len < end) {
394                 /* This is the common case: skb goes to the end. */
395                 /* Detect and discard overlaps. */
396                 if (offset < last->ip_defrag_offset + last->len)
397                         return IPFRAG_OVERLAP;
398                 if (offset == last->ip_defrag_offset + last->len)
399                         fragrun_append_to_last(q, skb);
400                 else
401                         fragrun_create(q, skb);
402         } else {
403                 /* Binary search. Note that skb can become the first fragment,
404                  * but not the last (covered above).
405                  */
406                 struct rb_node **rbn, *parent;
407
408                 rbn = &q->rb_fragments.rb_node;
409                 do {
410                         struct sk_buff *curr;
411                         int curr_run_end;
412
413                         parent = *rbn;
414                         curr = rb_to_skb(parent);
415                         curr_run_end = curr->ip_defrag_offset +
416                                         FRAG_CB(curr)->frag_run_len;
417                         if (end <= curr->ip_defrag_offset)
418                                 rbn = &parent->rb_left;
419                         else if (offset >= curr_run_end)
420                                 rbn = &parent->rb_right;
421                         else if (offset >= curr->ip_defrag_offset &&
422                                  end <= curr_run_end)
423                                 return IPFRAG_DUP;
424                         else
425                                 return IPFRAG_OVERLAP;
426                 } while (*rbn);
427                 /* Here we have parent properly set, and rbn pointing to
428                  * one of its NULL left/right children. Insert skb.
429                  */
430                 fragcb_clear(skb);
431                 rb_link_node(&skb->rbnode, parent, rbn);
432                 rb_insert_color(&skb->rbnode, &q->rb_fragments);
433         }
434
435         skb->ip_defrag_offset = offset;
436
437         return IPFRAG_OK;
438 }
439 EXPORT_SYMBOL(inet_frag_queue_insert);
440
441 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
442                               struct sk_buff *parent)
443 {
444         struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
445         struct sk_buff **nextp;
446         int delta;
447
448         if (head != skb) {
449                 fp = skb_clone(skb, GFP_ATOMIC);
450                 if (!fp)
451                         return NULL;
452                 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
453                 if (RB_EMPTY_NODE(&skb->rbnode))
454                         FRAG_CB(parent)->next_frag = fp;
455                 else
456                         rb_replace_node(&skb->rbnode, &fp->rbnode,
457                                         &q->rb_fragments);
458                 if (q->fragments_tail == skb)
459                         q->fragments_tail = fp;
460                 skb_morph(skb, head);
461                 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
462                 rb_replace_node(&head->rbnode, &skb->rbnode,
463                                 &q->rb_fragments);
464                 consume_skb(head);
465                 head = skb;
466         }
467         WARN_ON(head->ip_defrag_offset != 0);
468
469         delta = -head->truesize;
470
471         /* Head of list must not be cloned. */
472         if (skb_unclone(head, GFP_ATOMIC))
473                 return NULL;
474
475         delta += head->truesize;
476         if (delta)
477                 add_frag_mem_limit(q->fqdir, delta);
478
479         /* If the first fragment is fragmented itself, we split
480          * it to two chunks: the first with data and paged part
481          * and the second, holding only fragments.
482          */
483         if (skb_has_frag_list(head)) {
484                 struct sk_buff *clone;
485                 int i, plen = 0;
486
487                 clone = alloc_skb(0, GFP_ATOMIC);
488                 if (!clone)
489                         return NULL;
490                 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
491                 skb_frag_list_init(head);
492                 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
493                         plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
494                 clone->data_len = head->data_len - plen;
495                 clone->len = clone->data_len;
496                 head->truesize += clone->truesize;
497                 clone->csum = 0;
498                 clone->ip_summed = head->ip_summed;
499                 add_frag_mem_limit(q->fqdir, clone->truesize);
500                 skb_shinfo(head)->frag_list = clone;
501                 nextp = &clone->next;
502         } else {
503                 nextp = &skb_shinfo(head)->frag_list;
504         }
505
506         return nextp;
507 }
508 EXPORT_SYMBOL(inet_frag_reasm_prepare);
509
510 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
511                             void *reasm_data, bool try_coalesce)
512 {
513         struct sk_buff **nextp = reasm_data;
514         struct rb_node *rbn;
515         struct sk_buff *fp;
516         int sum_truesize;
517
518         skb_push(head, head->data - skb_network_header(head));
519
520         /* Traverse the tree in order, to build frag_list. */
521         fp = FRAG_CB(head)->next_frag;
522         rbn = rb_next(&head->rbnode);
523         rb_erase(&head->rbnode, &q->rb_fragments);
524
525         sum_truesize = head->truesize;
526         while (rbn || fp) {
527                 /* fp points to the next sk_buff in the current run;
528                  * rbn points to the next run.
529                  */
530                 /* Go through the current run. */
531                 while (fp) {
532                         struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
533                         bool stolen;
534                         int delta;
535
536                         sum_truesize += fp->truesize;
537                         if (head->ip_summed != fp->ip_summed)
538                                 head->ip_summed = CHECKSUM_NONE;
539                         else if (head->ip_summed == CHECKSUM_COMPLETE)
540                                 head->csum = csum_add(head->csum, fp->csum);
541
542                         if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
543                                                              &delta)) {
544                                 kfree_skb_partial(fp, stolen);
545                         } else {
546                                 fp->prev = NULL;
547                                 memset(&fp->rbnode, 0, sizeof(fp->rbnode));
548                                 fp->sk = NULL;
549
550                                 head->data_len += fp->len;
551                                 head->len += fp->len;
552                                 head->truesize += fp->truesize;
553
554                                 *nextp = fp;
555                                 nextp = &fp->next;
556                         }
557
558                         fp = next_frag;
559                 }
560                 /* Move to the next run. */
561                 if (rbn) {
562                         struct rb_node *rbnext = rb_next(rbn);
563
564                         fp = rb_to_skb(rbn);
565                         rb_erase(rbn, &q->rb_fragments);
566                         rbn = rbnext;
567                 }
568         }
569         sub_frag_mem_limit(q->fqdir, sum_truesize);
570
571         *nextp = NULL;
572         skb_mark_not_on_list(head);
573         head->prev = NULL;
574         head->tstamp = q->stamp;
575         head->mono_delivery_time = q->mono_delivery_time;
576 }
577 EXPORT_SYMBOL(inet_frag_reasm_finish);
578
579 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
580 {
581         struct sk_buff *head, *skb;
582
583         head = skb_rb_first(&q->rb_fragments);
584         if (!head)
585                 return NULL;
586         skb = FRAG_CB(head)->next_frag;
587         if (skb)
588                 rb_replace_node(&head->rbnode, &skb->rbnode,
589                                 &q->rb_fragments);
590         else
591                 rb_erase(&head->rbnode, &q->rb_fragments);
592         memset(&head->rbnode, 0, sizeof(head->rbnode));
593         barrier();
594
595         if (head == q->fragments_tail)
596                 q->fragments_tail = NULL;
597
598         sub_frag_mem_limit(q->fqdir, head->truesize);
599
600         return head;
601 }
602 EXPORT_SYMBOL(inet_frag_pull_head);