Merge tag 'staging-5.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / net / ipv4 / inet_fragment.c
1 /*
2  * inet fragments management
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *              Authors:        Pavel Emelyanov <xemul@openvz.org>
10  *                              Started as consolidation of ipv4/ip_fragment.c,
11  *                              ipv6/reassembly. and ipv6 nf conntrack reassembly
12  */
13
14 #include <linux/list.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/timer.h>
18 #include <linux/mm.h>
19 #include <linux/random.h>
20 #include <linux/skbuff.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/slab.h>
23 #include <linux/rhashtable.h>
24
25 #include <net/sock.h>
26 #include <net/inet_frag.h>
27 #include <net/inet_ecn.h>
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30
31 /* Use skb->cb to track consecutive/adjacent fragments coming at
32  * the end of the queue. Nodes in the rb-tree queue will
33  * contain "runs" of one or more adjacent fragments.
34  *
35  * Invariants:
36  * - next_frag is NULL at the tail of a "run";
37  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
38  */
39 struct ipfrag_skb_cb {
40         union {
41                 struct inet_skb_parm    h4;
42                 struct inet6_skb_parm   h6;
43         };
44         struct sk_buff          *next_frag;
45         int                     frag_run_len;
46 };
47
48 #define FRAG_CB(skb)            ((struct ipfrag_skb_cb *)((skb)->cb))
49
50 static void fragcb_clear(struct sk_buff *skb)
51 {
52         RB_CLEAR_NODE(&skb->rbnode);
53         FRAG_CB(skb)->next_frag = NULL;
54         FRAG_CB(skb)->frag_run_len = skb->len;
55 }
56
57 /* Append skb to the last "run". */
58 static void fragrun_append_to_last(struct inet_frag_queue *q,
59                                    struct sk_buff *skb)
60 {
61         fragcb_clear(skb);
62
63         FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
64         FRAG_CB(q->fragments_tail)->next_frag = skb;
65         q->fragments_tail = skb;
66 }
67
68 /* Create a new "run" with the skb. */
69 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
70 {
71         BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
72         fragcb_clear(skb);
73
74         if (q->last_run_head)
75                 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
76                              &q->last_run_head->rbnode.rb_right);
77         else
78                 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
79         rb_insert_color(&skb->rbnode, &q->rb_fragments);
80
81         q->fragments_tail = skb;
82         q->last_run_head = skb;
83 }
84
85 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
86  * Value : 0xff if frame should be dropped.
87  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
88  */
89 const u8 ip_frag_ecn_table[16] = {
90         /* at least one fragment had CE, and others ECT_0 or ECT_1 */
91         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]                      = INET_ECN_CE,
92         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]                      = INET_ECN_CE,
93         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]   = INET_ECN_CE,
94
95         /* invalid combinations : drop frame */
96         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
97         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
98         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
99         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
100         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
101         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
102         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
103 };
104 EXPORT_SYMBOL(ip_frag_ecn_table);
105
106 int inet_frags_init(struct inet_frags *f)
107 {
108         f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
109                                             NULL);
110         if (!f->frags_cachep)
111                 return -ENOMEM;
112
113         return 0;
114 }
115 EXPORT_SYMBOL(inet_frags_init);
116
117 void inet_frags_fini(struct inet_frags *f)
118 {
119         /* We must wait that all inet_frag_destroy_rcu() have completed. */
120         rcu_barrier();
121
122         kmem_cache_destroy(f->frags_cachep);
123         f->frags_cachep = NULL;
124 }
125 EXPORT_SYMBOL(inet_frags_fini);
126
127 static void inet_frags_free_cb(void *ptr, void *arg)
128 {
129         struct inet_frag_queue *fq = ptr;
130
131         /* If we can not cancel the timer, it means this frag_queue
132          * is already disappearing, we have nothing to do.
133          * Otherwise, we own a refcount until the end of this function.
134          */
135         if (!del_timer(&fq->timer))
136                 return;
137
138         spin_lock_bh(&fq->lock);
139         if (!(fq->flags & INET_FRAG_COMPLETE)) {
140                 fq->flags |= INET_FRAG_COMPLETE;
141                 refcount_dec(&fq->refcnt);
142         }
143         spin_unlock_bh(&fq->lock);
144
145         inet_frag_put(fq);
146 }
147
148 void inet_frags_exit_net(struct netns_frags *nf)
149 {
150         nf->high_thresh = 0; /* prevent creation of new frags */
151
152         rhashtable_free_and_destroy(&nf->rhashtable, inet_frags_free_cb, NULL);
153 }
154 EXPORT_SYMBOL(inet_frags_exit_net);
155
156 void inet_frag_kill(struct inet_frag_queue *fq)
157 {
158         if (del_timer(&fq->timer))
159                 refcount_dec(&fq->refcnt);
160
161         if (!(fq->flags & INET_FRAG_COMPLETE)) {
162                 struct netns_frags *nf = fq->net;
163
164                 fq->flags |= INET_FRAG_COMPLETE;
165                 rhashtable_remove_fast(&nf->rhashtable, &fq->node, nf->f->rhash_params);
166                 refcount_dec(&fq->refcnt);
167         }
168 }
169 EXPORT_SYMBOL(inet_frag_kill);
170
171 static void inet_frag_destroy_rcu(struct rcu_head *head)
172 {
173         struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
174                                                  rcu);
175         struct inet_frags *f = q->net->f;
176
177         if (f->destructor)
178                 f->destructor(q);
179         kmem_cache_free(f->frags_cachep, q);
180 }
181
182 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
183 {
184         struct rb_node *p = rb_first(root);
185         unsigned int sum = 0;
186
187         while (p) {
188                 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
189
190                 p = rb_next(p);
191                 rb_erase(&skb->rbnode, root);
192                 while (skb) {
193                         struct sk_buff *next = FRAG_CB(skb)->next_frag;
194
195                         sum += skb->truesize;
196                         kfree_skb(skb);
197                         skb = next;
198                 }
199         }
200         return sum;
201 }
202 EXPORT_SYMBOL(inet_frag_rbtree_purge);
203
204 void inet_frag_destroy(struct inet_frag_queue *q)
205 {
206         struct netns_frags *nf;
207         unsigned int sum, sum_truesize = 0;
208         struct inet_frags *f;
209
210         WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
211         WARN_ON(del_timer(&q->timer) != 0);
212
213         /* Release all fragment data. */
214         nf = q->net;
215         f = nf->f;
216         sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
217         sum = sum_truesize + f->qsize;
218
219         call_rcu(&q->rcu, inet_frag_destroy_rcu);
220
221         sub_frag_mem_limit(nf, sum);
222 }
223 EXPORT_SYMBOL(inet_frag_destroy);
224
225 static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf,
226                                                struct inet_frags *f,
227                                                void *arg)
228 {
229         struct inet_frag_queue *q;
230
231         q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
232         if (!q)
233                 return NULL;
234
235         q->net = nf;
236         f->constructor(q, arg);
237         add_frag_mem_limit(nf, f->qsize);
238
239         timer_setup(&q->timer, f->frag_expire, 0);
240         spin_lock_init(&q->lock);
241         refcount_set(&q->refcnt, 3);
242
243         return q;
244 }
245
246 static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf,
247                                                 void *arg,
248                                                 struct inet_frag_queue **prev)
249 {
250         struct inet_frags *f = nf->f;
251         struct inet_frag_queue *q;
252
253         q = inet_frag_alloc(nf, f, arg);
254         if (!q) {
255                 *prev = ERR_PTR(-ENOMEM);
256                 return NULL;
257         }
258         mod_timer(&q->timer, jiffies + nf->timeout);
259
260         *prev = rhashtable_lookup_get_insert_key(&nf->rhashtable, &q->key,
261                                                  &q->node, f->rhash_params);
262         if (*prev) {
263                 q->flags |= INET_FRAG_COMPLETE;
264                 inet_frag_kill(q);
265                 inet_frag_destroy(q);
266                 return NULL;
267         }
268         return q;
269 }
270
271 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
272 struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key)
273 {
274         struct inet_frag_queue *fq = NULL, *prev;
275
276         if (!nf->high_thresh || frag_mem_limit(nf) > nf->high_thresh)
277                 return NULL;
278
279         rcu_read_lock();
280
281         prev = rhashtable_lookup(&nf->rhashtable, key, nf->f->rhash_params);
282         if (!prev)
283                 fq = inet_frag_create(nf, key, &prev);
284         if (prev && !IS_ERR(prev)) {
285                 fq = prev;
286                 if (!refcount_inc_not_zero(&fq->refcnt))
287                         fq = NULL;
288         }
289         rcu_read_unlock();
290         return fq;
291 }
292 EXPORT_SYMBOL(inet_frag_find);
293
294 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
295                            int offset, int end)
296 {
297         struct sk_buff *last = q->fragments_tail;
298
299         /* RFC5722, Section 4, amended by Errata ID : 3089
300          *                          When reassembling an IPv6 datagram, if
301          *   one or more its constituent fragments is determined to be an
302          *   overlapping fragment, the entire datagram (and any constituent
303          *   fragments) MUST be silently discarded.
304          *
305          * Duplicates, however, should be ignored (i.e. skb dropped, but the
306          * queue/fragments kept for later reassembly).
307          */
308         if (!last)
309                 fragrun_create(q, skb);  /* First fragment. */
310         else if (last->ip_defrag_offset + last->len < end) {
311                 /* This is the common case: skb goes to the end. */
312                 /* Detect and discard overlaps. */
313                 if (offset < last->ip_defrag_offset + last->len)
314                         return IPFRAG_OVERLAP;
315                 if (offset == last->ip_defrag_offset + last->len)
316                         fragrun_append_to_last(q, skb);
317                 else
318                         fragrun_create(q, skb);
319         } else {
320                 /* Binary search. Note that skb can become the first fragment,
321                  * but not the last (covered above).
322                  */
323                 struct rb_node **rbn, *parent;
324
325                 rbn = &q->rb_fragments.rb_node;
326                 do {
327                         struct sk_buff *curr;
328                         int curr_run_end;
329
330                         parent = *rbn;
331                         curr = rb_to_skb(parent);
332                         curr_run_end = curr->ip_defrag_offset +
333                                         FRAG_CB(curr)->frag_run_len;
334                         if (end <= curr->ip_defrag_offset)
335                                 rbn = &parent->rb_left;
336                         else if (offset >= curr_run_end)
337                                 rbn = &parent->rb_right;
338                         else if (offset >= curr->ip_defrag_offset &&
339                                  end <= curr_run_end)
340                                 return IPFRAG_DUP;
341                         else
342                                 return IPFRAG_OVERLAP;
343                 } while (*rbn);
344                 /* Here we have parent properly set, and rbn pointing to
345                  * one of its NULL left/right children. Insert skb.
346                  */
347                 fragcb_clear(skb);
348                 rb_link_node(&skb->rbnode, parent, rbn);
349                 rb_insert_color(&skb->rbnode, &q->rb_fragments);
350         }
351
352         skb->ip_defrag_offset = offset;
353
354         return IPFRAG_OK;
355 }
356 EXPORT_SYMBOL(inet_frag_queue_insert);
357
358 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
359                               struct sk_buff *parent)
360 {
361         struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
362         struct sk_buff **nextp;
363         int delta;
364
365         if (head != skb) {
366                 fp = skb_clone(skb, GFP_ATOMIC);
367                 if (!fp)
368                         return NULL;
369                 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
370                 if (RB_EMPTY_NODE(&skb->rbnode))
371                         FRAG_CB(parent)->next_frag = fp;
372                 else
373                         rb_replace_node(&skb->rbnode, &fp->rbnode,
374                                         &q->rb_fragments);
375                 if (q->fragments_tail == skb)
376                         q->fragments_tail = fp;
377                 skb_morph(skb, head);
378                 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
379                 rb_replace_node(&head->rbnode, &skb->rbnode,
380                                 &q->rb_fragments);
381                 consume_skb(head);
382                 head = skb;
383         }
384         WARN_ON(head->ip_defrag_offset != 0);
385
386         delta = -head->truesize;
387
388         /* Head of list must not be cloned. */
389         if (skb_unclone(head, GFP_ATOMIC))
390                 return NULL;
391
392         delta += head->truesize;
393         if (delta)
394                 add_frag_mem_limit(q->net, delta);
395
396         /* If the first fragment is fragmented itself, we split
397          * it to two chunks: the first with data and paged part
398          * and the second, holding only fragments.
399          */
400         if (skb_has_frag_list(head)) {
401                 struct sk_buff *clone;
402                 int i, plen = 0;
403
404                 clone = alloc_skb(0, GFP_ATOMIC);
405                 if (!clone)
406                         return NULL;
407                 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
408                 skb_frag_list_init(head);
409                 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
410                         plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
411                 clone->data_len = head->data_len - plen;
412                 clone->len = clone->data_len;
413                 head->truesize += clone->truesize;
414                 clone->csum = 0;
415                 clone->ip_summed = head->ip_summed;
416                 add_frag_mem_limit(q->net, clone->truesize);
417                 skb_shinfo(head)->frag_list = clone;
418                 nextp = &clone->next;
419         } else {
420                 nextp = &skb_shinfo(head)->frag_list;
421         }
422
423         return nextp;
424 }
425 EXPORT_SYMBOL(inet_frag_reasm_prepare);
426
427 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
428                             void *reasm_data)
429 {
430         struct sk_buff **nextp = (struct sk_buff **)reasm_data;
431         struct rb_node *rbn;
432         struct sk_buff *fp;
433
434         skb_push(head, head->data - skb_network_header(head));
435
436         /* Traverse the tree in order, to build frag_list. */
437         fp = FRAG_CB(head)->next_frag;
438         rbn = rb_next(&head->rbnode);
439         rb_erase(&head->rbnode, &q->rb_fragments);
440         while (rbn || fp) {
441                 /* fp points to the next sk_buff in the current run;
442                  * rbn points to the next run.
443                  */
444                 /* Go through the current run. */
445                 while (fp) {
446                         *nextp = fp;
447                         nextp = &fp->next;
448                         fp->prev = NULL;
449                         memset(&fp->rbnode, 0, sizeof(fp->rbnode));
450                         fp->sk = NULL;
451                         head->data_len += fp->len;
452                         head->len += fp->len;
453                         if (head->ip_summed != fp->ip_summed)
454                                 head->ip_summed = CHECKSUM_NONE;
455                         else if (head->ip_summed == CHECKSUM_COMPLETE)
456                                 head->csum = csum_add(head->csum, fp->csum);
457                         head->truesize += fp->truesize;
458                         fp = FRAG_CB(fp)->next_frag;
459                 }
460                 /* Move to the next run. */
461                 if (rbn) {
462                         struct rb_node *rbnext = rb_next(rbn);
463
464                         fp = rb_to_skb(rbn);
465                         rb_erase(rbn, &q->rb_fragments);
466                         rbn = rbnext;
467                 }
468         }
469         sub_frag_mem_limit(q->net, head->truesize);
470
471         *nextp = NULL;
472         skb_mark_not_on_list(head);
473         head->prev = NULL;
474         head->tstamp = q->stamp;
475 }
476 EXPORT_SYMBOL(inet_frag_reasm_finish);
477
478 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
479 {
480         struct sk_buff *head, *skb;
481
482         head = skb_rb_first(&q->rb_fragments);
483         if (!head)
484                 return NULL;
485         skb = FRAG_CB(head)->next_frag;
486         if (skb)
487                 rb_replace_node(&head->rbnode, &skb->rbnode,
488                                 &q->rb_fragments);
489         else
490                 rb_erase(&head->rbnode, &q->rb_fragments);
491         memset(&head->rbnode, 0, sizeof(head->rbnode));
492         barrier();
493
494         if (head == q->fragments_tail)
495                 q->fragments_tail = NULL;
496
497         sub_frag_mem_limit(q->net, head->truesize);
498
499         return head;
500 }
501 EXPORT_SYMBOL(inet_frag_pull_head);