netfilter: nf_conntrack_bridge: register inet conntrack for bridge
[linux-2.6-microblaze.git] / net / ipv4 / inet_fragment.c
1 /*
2  * inet fragments management
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *              Authors:        Pavel Emelyanov <xemul@openvz.org>
10  *                              Started as consolidation of ipv4/ip_fragment.c,
11  *                              ipv6/reassembly. and ipv6 nf conntrack reassembly
12  */
13
14 #include <linux/list.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/timer.h>
18 #include <linux/mm.h>
19 #include <linux/random.h>
20 #include <linux/skbuff.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/slab.h>
23 #include <linux/rhashtable.h>
24
25 #include <net/sock.h>
26 #include <net/inet_frag.h>
27 #include <net/inet_ecn.h>
28 #include <net/ip.h>
29 #include <net/ipv6.h>
30
31 /* Use skb->cb to track consecutive/adjacent fragments coming at
32  * the end of the queue. Nodes in the rb-tree queue will
33  * contain "runs" of one or more adjacent fragments.
34  *
35  * Invariants:
36  * - next_frag is NULL at the tail of a "run";
37  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
38  */
39 struct ipfrag_skb_cb {
40         union {
41                 struct inet_skb_parm    h4;
42                 struct inet6_skb_parm   h6;
43         };
44         struct sk_buff          *next_frag;
45         int                     frag_run_len;
46 };
47
48 #define FRAG_CB(skb)            ((struct ipfrag_skb_cb *)((skb)->cb))
49
50 static void fragcb_clear(struct sk_buff *skb)
51 {
52         RB_CLEAR_NODE(&skb->rbnode);
53         FRAG_CB(skb)->next_frag = NULL;
54         FRAG_CB(skb)->frag_run_len = skb->len;
55 }
56
57 /* Append skb to the last "run". */
58 static void fragrun_append_to_last(struct inet_frag_queue *q,
59                                    struct sk_buff *skb)
60 {
61         fragcb_clear(skb);
62
63         FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
64         FRAG_CB(q->fragments_tail)->next_frag = skb;
65         q->fragments_tail = skb;
66 }
67
68 /* Create a new "run" with the skb. */
69 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
70 {
71         BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
72         fragcb_clear(skb);
73
74         if (q->last_run_head)
75                 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
76                              &q->last_run_head->rbnode.rb_right);
77         else
78                 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
79         rb_insert_color(&skb->rbnode, &q->rb_fragments);
80
81         q->fragments_tail = skb;
82         q->last_run_head = skb;
83 }
84
85 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
86  * Value : 0xff if frame should be dropped.
87  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
88  */
89 const u8 ip_frag_ecn_table[16] = {
90         /* at least one fragment had CE, and others ECT_0 or ECT_1 */
91         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]                      = INET_ECN_CE,
92         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]                      = INET_ECN_CE,
93         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]   = INET_ECN_CE,
94
95         /* invalid combinations : drop frame */
96         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
97         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
98         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
99         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
100         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
101         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
102         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
103 };
104 EXPORT_SYMBOL(ip_frag_ecn_table);
105
106 int inet_frags_init(struct inet_frags *f)
107 {
108         f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
109                                             NULL);
110         if (!f->frags_cachep)
111                 return -ENOMEM;
112
113         refcount_set(&f->refcnt, 1);
114         init_completion(&f->completion);
115         return 0;
116 }
117 EXPORT_SYMBOL(inet_frags_init);
118
119 void inet_frags_fini(struct inet_frags *f)
120 {
121         if (refcount_dec_and_test(&f->refcnt))
122                 complete(&f->completion);
123
124         wait_for_completion(&f->completion);
125
126         kmem_cache_destroy(f->frags_cachep);
127         f->frags_cachep = NULL;
128 }
129 EXPORT_SYMBOL(inet_frags_fini);
130
131 /* called from rhashtable_free_and_destroy() at netns_frags dismantle */
132 static void inet_frags_free_cb(void *ptr, void *arg)
133 {
134         struct inet_frag_queue *fq = ptr;
135         int count;
136
137         count = del_timer_sync(&fq->timer) ? 1 : 0;
138
139         spin_lock_bh(&fq->lock);
140         if (!(fq->flags & INET_FRAG_COMPLETE)) {
141                 fq->flags |= INET_FRAG_COMPLETE;
142                 count++;
143         } else if (fq->flags & INET_FRAG_HASH_DEAD) {
144                 count++;
145         }
146         spin_unlock_bh(&fq->lock);
147
148         if (refcount_sub_and_test(count, &fq->refcnt))
149                 inet_frag_destroy(fq);
150 }
151
152 static void fqdir_rwork_fn(struct work_struct *work)
153 {
154         struct fqdir *fqdir = container_of(to_rcu_work(work),
155                                            struct fqdir, destroy_rwork);
156         struct inet_frags *f = fqdir->f;
157
158         rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
159
160         /* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
161          * have completed, since they need to dereference fqdir.
162          * Would it not be nice to have kfree_rcu_barrier() ? :)
163          */
164         rcu_barrier();
165
166         if (refcount_dec_and_test(&f->refcnt))
167                 complete(&f->completion);
168
169         kfree(fqdir);
170 }
171
172 int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
173 {
174         struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
175         int res;
176
177         if (!fqdir)
178                 return -ENOMEM;
179         fqdir->f = f;
180         fqdir->net = net;
181         res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
182         if (res < 0) {
183                 kfree(fqdir);
184                 return res;
185         }
186         refcount_inc(&f->refcnt);
187         *fqdirp = fqdir;
188         return 0;
189 }
190 EXPORT_SYMBOL(fqdir_init);
191
192 void fqdir_exit(struct fqdir *fqdir)
193 {
194         fqdir->high_thresh = 0; /* prevent creation of new frags */
195
196         fqdir->dead = true;
197
198         /* call_rcu is supposed to provide memory barrier semantics,
199          * separating the setting of fqdir->dead with the destruction
200          * work.  This implicit barrier is paired with inet_frag_kill().
201          */
202
203         INIT_RCU_WORK(&fqdir->destroy_rwork, fqdir_rwork_fn);
204         queue_rcu_work(system_wq, &fqdir->destroy_rwork);
205
206 }
207 EXPORT_SYMBOL(fqdir_exit);
208
209 void inet_frag_kill(struct inet_frag_queue *fq)
210 {
211         if (del_timer(&fq->timer))
212                 refcount_dec(&fq->refcnt);
213
214         if (!(fq->flags & INET_FRAG_COMPLETE)) {
215                 struct fqdir *fqdir = fq->fqdir;
216
217                 fq->flags |= INET_FRAG_COMPLETE;
218                 rcu_read_lock();
219                 /* The RCU read lock provides a memory barrier
220                  * guaranteeing that if fqdir->dead is false then
221                  * the hash table destruction will not start until
222                  * after we unlock.  Paired with inet_frags_exit_net().
223                  */
224                 if (!fqdir->dead) {
225                         rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
226                                                fqdir->f->rhash_params);
227                         refcount_dec(&fq->refcnt);
228                 } else {
229                         fq->flags |= INET_FRAG_HASH_DEAD;
230                 }
231                 rcu_read_unlock();
232         }
233 }
234 EXPORT_SYMBOL(inet_frag_kill);
235
236 static void inet_frag_destroy_rcu(struct rcu_head *head)
237 {
238         struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
239                                                  rcu);
240         struct inet_frags *f = q->fqdir->f;
241
242         if (f->destructor)
243                 f->destructor(q);
244         kmem_cache_free(f->frags_cachep, q);
245 }
246
247 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
248 {
249         struct rb_node *p = rb_first(root);
250         unsigned int sum = 0;
251
252         while (p) {
253                 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
254
255                 p = rb_next(p);
256                 rb_erase(&skb->rbnode, root);
257                 while (skb) {
258                         struct sk_buff *next = FRAG_CB(skb)->next_frag;
259
260                         sum += skb->truesize;
261                         kfree_skb(skb);
262                         skb = next;
263                 }
264         }
265         return sum;
266 }
267 EXPORT_SYMBOL(inet_frag_rbtree_purge);
268
269 void inet_frag_destroy(struct inet_frag_queue *q)
270 {
271         struct fqdir *fqdir;
272         unsigned int sum, sum_truesize = 0;
273         struct inet_frags *f;
274
275         WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
276         WARN_ON(del_timer(&q->timer) != 0);
277
278         /* Release all fragment data. */
279         fqdir = q->fqdir;
280         f = fqdir->f;
281         sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
282         sum = sum_truesize + f->qsize;
283
284         call_rcu(&q->rcu, inet_frag_destroy_rcu);
285
286         sub_frag_mem_limit(fqdir, sum);
287 }
288 EXPORT_SYMBOL(inet_frag_destroy);
289
290 static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
291                                                struct inet_frags *f,
292                                                void *arg)
293 {
294         struct inet_frag_queue *q;
295
296         q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
297         if (!q)
298                 return NULL;
299
300         q->fqdir = fqdir;
301         f->constructor(q, arg);
302         add_frag_mem_limit(fqdir, f->qsize);
303
304         timer_setup(&q->timer, f->frag_expire, 0);
305         spin_lock_init(&q->lock);
306         refcount_set(&q->refcnt, 3);
307
308         return q;
309 }
310
311 static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
312                                                 void *arg,
313                                                 struct inet_frag_queue **prev)
314 {
315         struct inet_frags *f = fqdir->f;
316         struct inet_frag_queue *q;
317
318         q = inet_frag_alloc(fqdir, f, arg);
319         if (!q) {
320                 *prev = ERR_PTR(-ENOMEM);
321                 return NULL;
322         }
323         mod_timer(&q->timer, jiffies + fqdir->timeout);
324
325         *prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
326                                                  &q->node, f->rhash_params);
327         if (*prev) {
328                 q->flags |= INET_FRAG_COMPLETE;
329                 inet_frag_kill(q);
330                 inet_frag_destroy(q);
331                 return NULL;
332         }
333         return q;
334 }
335
336 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
337 struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
338 {
339         struct inet_frag_queue *fq = NULL, *prev;
340
341         if (!fqdir->high_thresh || frag_mem_limit(fqdir) > fqdir->high_thresh)
342                 return NULL;
343
344         rcu_read_lock();
345
346         prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
347         if (!prev)
348                 fq = inet_frag_create(fqdir, key, &prev);
349         if (prev && !IS_ERR(prev)) {
350                 fq = prev;
351                 if (!refcount_inc_not_zero(&fq->refcnt))
352                         fq = NULL;
353         }
354         rcu_read_unlock();
355         return fq;
356 }
357 EXPORT_SYMBOL(inet_frag_find);
358
359 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
360                            int offset, int end)
361 {
362         struct sk_buff *last = q->fragments_tail;
363
364         /* RFC5722, Section 4, amended by Errata ID : 3089
365          *                          When reassembling an IPv6 datagram, if
366          *   one or more its constituent fragments is determined to be an
367          *   overlapping fragment, the entire datagram (and any constituent
368          *   fragments) MUST be silently discarded.
369          *
370          * Duplicates, however, should be ignored (i.e. skb dropped, but the
371          * queue/fragments kept for later reassembly).
372          */
373         if (!last)
374                 fragrun_create(q, skb);  /* First fragment. */
375         else if (last->ip_defrag_offset + last->len < end) {
376                 /* This is the common case: skb goes to the end. */
377                 /* Detect and discard overlaps. */
378                 if (offset < last->ip_defrag_offset + last->len)
379                         return IPFRAG_OVERLAP;
380                 if (offset == last->ip_defrag_offset + last->len)
381                         fragrun_append_to_last(q, skb);
382                 else
383                         fragrun_create(q, skb);
384         } else {
385                 /* Binary search. Note that skb can become the first fragment,
386                  * but not the last (covered above).
387                  */
388                 struct rb_node **rbn, *parent;
389
390                 rbn = &q->rb_fragments.rb_node;
391                 do {
392                         struct sk_buff *curr;
393                         int curr_run_end;
394
395                         parent = *rbn;
396                         curr = rb_to_skb(parent);
397                         curr_run_end = curr->ip_defrag_offset +
398                                         FRAG_CB(curr)->frag_run_len;
399                         if (end <= curr->ip_defrag_offset)
400                                 rbn = &parent->rb_left;
401                         else if (offset >= curr_run_end)
402                                 rbn = &parent->rb_right;
403                         else if (offset >= curr->ip_defrag_offset &&
404                                  end <= curr_run_end)
405                                 return IPFRAG_DUP;
406                         else
407                                 return IPFRAG_OVERLAP;
408                 } while (*rbn);
409                 /* Here we have parent properly set, and rbn pointing to
410                  * one of its NULL left/right children. Insert skb.
411                  */
412                 fragcb_clear(skb);
413                 rb_link_node(&skb->rbnode, parent, rbn);
414                 rb_insert_color(&skb->rbnode, &q->rb_fragments);
415         }
416
417         skb->ip_defrag_offset = offset;
418
419         return IPFRAG_OK;
420 }
421 EXPORT_SYMBOL(inet_frag_queue_insert);
422
423 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
424                               struct sk_buff *parent)
425 {
426         struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
427         struct sk_buff **nextp;
428         int delta;
429
430         if (head != skb) {
431                 fp = skb_clone(skb, GFP_ATOMIC);
432                 if (!fp)
433                         return NULL;
434                 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
435                 if (RB_EMPTY_NODE(&skb->rbnode))
436                         FRAG_CB(parent)->next_frag = fp;
437                 else
438                         rb_replace_node(&skb->rbnode, &fp->rbnode,
439                                         &q->rb_fragments);
440                 if (q->fragments_tail == skb)
441                         q->fragments_tail = fp;
442                 skb_morph(skb, head);
443                 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
444                 rb_replace_node(&head->rbnode, &skb->rbnode,
445                                 &q->rb_fragments);
446                 consume_skb(head);
447                 head = skb;
448         }
449         WARN_ON(head->ip_defrag_offset != 0);
450
451         delta = -head->truesize;
452
453         /* Head of list must not be cloned. */
454         if (skb_unclone(head, GFP_ATOMIC))
455                 return NULL;
456
457         delta += head->truesize;
458         if (delta)
459                 add_frag_mem_limit(q->fqdir, delta);
460
461         /* If the first fragment is fragmented itself, we split
462          * it to two chunks: the first with data and paged part
463          * and the second, holding only fragments.
464          */
465         if (skb_has_frag_list(head)) {
466                 struct sk_buff *clone;
467                 int i, plen = 0;
468
469                 clone = alloc_skb(0, GFP_ATOMIC);
470                 if (!clone)
471                         return NULL;
472                 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
473                 skb_frag_list_init(head);
474                 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
475                         plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
476                 clone->data_len = head->data_len - plen;
477                 clone->len = clone->data_len;
478                 head->truesize += clone->truesize;
479                 clone->csum = 0;
480                 clone->ip_summed = head->ip_summed;
481                 add_frag_mem_limit(q->fqdir, clone->truesize);
482                 skb_shinfo(head)->frag_list = clone;
483                 nextp = &clone->next;
484         } else {
485                 nextp = &skb_shinfo(head)->frag_list;
486         }
487
488         return nextp;
489 }
490 EXPORT_SYMBOL(inet_frag_reasm_prepare);
491
492 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
493                             void *reasm_data)
494 {
495         struct sk_buff **nextp = (struct sk_buff **)reasm_data;
496         struct rb_node *rbn;
497         struct sk_buff *fp;
498
499         skb_push(head, head->data - skb_network_header(head));
500
501         /* Traverse the tree in order, to build frag_list. */
502         fp = FRAG_CB(head)->next_frag;
503         rbn = rb_next(&head->rbnode);
504         rb_erase(&head->rbnode, &q->rb_fragments);
505         while (rbn || fp) {
506                 /* fp points to the next sk_buff in the current run;
507                  * rbn points to the next run.
508                  */
509                 /* Go through the current run. */
510                 while (fp) {
511                         *nextp = fp;
512                         nextp = &fp->next;
513                         fp->prev = NULL;
514                         memset(&fp->rbnode, 0, sizeof(fp->rbnode));
515                         fp->sk = NULL;
516                         head->data_len += fp->len;
517                         head->len += fp->len;
518                         if (head->ip_summed != fp->ip_summed)
519                                 head->ip_summed = CHECKSUM_NONE;
520                         else if (head->ip_summed == CHECKSUM_COMPLETE)
521                                 head->csum = csum_add(head->csum, fp->csum);
522                         head->truesize += fp->truesize;
523                         fp = FRAG_CB(fp)->next_frag;
524                 }
525                 /* Move to the next run. */
526                 if (rbn) {
527                         struct rb_node *rbnext = rb_next(rbn);
528
529                         fp = rb_to_skb(rbn);
530                         rb_erase(rbn, &q->rb_fragments);
531                         rbn = rbnext;
532                 }
533         }
534         sub_frag_mem_limit(q->fqdir, head->truesize);
535
536         *nextp = NULL;
537         skb_mark_not_on_list(head);
538         head->prev = NULL;
539         head->tstamp = q->stamp;
540 }
541 EXPORT_SYMBOL(inet_frag_reasm_finish);
542
543 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
544 {
545         struct sk_buff *head, *skb;
546
547         head = skb_rb_first(&q->rb_fragments);
548         if (!head)
549                 return NULL;
550         skb = FRAG_CB(head)->next_frag;
551         if (skb)
552                 rb_replace_node(&head->rbnode, &skb->rbnode,
553                                 &q->rb_fragments);
554         else
555                 rb_erase(&head->rbnode, &q->rb_fragments);
556         memset(&head->rbnode, 0, sizeof(head->rbnode));
557         barrier();
558
559         if (head == q->fragments_tail)
560                 q->fragments_tail = NULL;
561
562         sub_frag_mem_limit(q->fqdir, head->truesize);
563
564         return head;
565 }
566 EXPORT_SYMBOL(inet_frag_pull_head);