Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
28  *                          only, and any IPv4 addresses if not IPv6 only
29  * match_wildcard == false: addresses must be exactly the same, i.e.
30  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
31  *                          and 0.0.0.0 equals to 0.0.0.0 only
32  */
33 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
34                                  const struct in6_addr *sk2_rcv_saddr6,
35                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
36                                  bool sk1_ipv6only, bool sk2_ipv6only,
37                                  bool match_wildcard)
38 {
39         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
40         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
41
42         /* if both are mapped, treat as IPv4 */
43         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
44                 if (!sk2_ipv6only) {
45                         if (sk1_rcv_saddr == sk2_rcv_saddr)
46                                 return true;
47                         if (!sk1_rcv_saddr || !sk2_rcv_saddr)
48                                 return match_wildcard;
49                 }
50                 return false;
51         }
52
53         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
54                 return true;
55
56         if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
57             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
58                 return true;
59
60         if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
61             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
62                 return true;
63
64         if (sk2_rcv_saddr6 &&
65             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
66                 return true;
67
68         return false;
69 }
70 #endif
71
72 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
73  * match_wildcard == false: addresses must be exactly the same, i.e.
74  *                          0.0.0.0 only equals to 0.0.0.0
75  */
76 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
77                                  bool sk2_ipv6only, bool match_wildcard)
78 {
79         if (!sk2_ipv6only) {
80                 if (sk1_rcv_saddr == sk2_rcv_saddr)
81                         return true;
82                 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
83                         return match_wildcard;
84         }
85         return false;
86 }
87
88 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
89                           bool match_wildcard)
90 {
91 #if IS_ENABLED(CONFIG_IPV6)
92         if (sk->sk_family == AF_INET6)
93                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
94                                             inet6_rcv_saddr(sk2),
95                                             sk->sk_rcv_saddr,
96                                             sk2->sk_rcv_saddr,
97                                             ipv6_only_sock(sk),
98                                             ipv6_only_sock(sk2),
99                                             match_wildcard);
100 #endif
101         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
102                                     ipv6_only_sock(sk2), match_wildcard);
103 }
104 EXPORT_SYMBOL(inet_rcv_saddr_equal);
105
106 bool inet_rcv_saddr_any(const struct sock *sk)
107 {
108 #if IS_ENABLED(CONFIG_IPV6)
109         if (sk->sk_family == AF_INET6)
110                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
111 #endif
112         return !sk->sk_rcv_saddr;
113 }
114
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117         unsigned int seq;
118
119         do {
120                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121
122                 *low = net->ipv4.ip_local_ports.range[0];
123                 *high = net->ipv4.ip_local_ports.range[1];
124         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127
128 static int inet_csk_bind_conflict(const struct sock *sk,
129                                   const struct inet_bind_bucket *tb,
130                                   bool relax, bool reuseport_ok)
131 {
132         struct sock *sk2;
133         bool reuse = sk->sk_reuse;
134         bool reuseport = !!sk->sk_reuseport;
135         kuid_t uid = sock_i_uid((struct sock *)sk);
136
137         /*
138          * Unlike other sk lookup places we do not check
139          * for sk_net here, since _all_ the socks listed
140          * in tb->owners list belong to the same net - the
141          * one this bucket belongs to.
142          */
143
144         sk_for_each_bound(sk2, &tb->owners) {
145                 if (sk != sk2 &&
146                     (!sk->sk_bound_dev_if ||
147                      !sk2->sk_bound_dev_if ||
148                      sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149                         if (reuse && sk2->sk_reuse &&
150                             sk2->sk_state != TCP_LISTEN) {
151                                 if ((!relax ||
152                                      (!reuseport_ok &&
153                                       reuseport && sk2->sk_reuseport &&
154                                       !rcu_access_pointer(sk->sk_reuseport_cb) &&
155                                       (sk2->sk_state == TCP_TIME_WAIT ||
156                                        uid_eq(uid, sock_i_uid(sk2))))) &&
157                                     inet_rcv_saddr_equal(sk, sk2, true))
158                                         break;
159                         } else if (!reuseport_ok ||
160                                    !reuseport || !sk2->sk_reuseport ||
161                                    rcu_access_pointer(sk->sk_reuseport_cb) ||
162                                    (sk2->sk_state != TCP_TIME_WAIT &&
163                                     !uid_eq(uid, sock_i_uid(sk2)))) {
164                                 if (inet_rcv_saddr_equal(sk, sk2, true))
165                                         break;
166                         }
167                 }
168         }
169         return sk2 != NULL;
170 }
171
172 /*
173  * Find an open port number for the socket.  Returns with the
174  * inet_bind_hashbucket lock held.
175  */
176 static struct inet_bind_hashbucket *
177 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
178 {
179         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
180         int port = 0;
181         struct inet_bind_hashbucket *head;
182         struct net *net = sock_net(sk);
183         bool relax = false;
184         int i, low, high, attempt_half;
185         struct inet_bind_bucket *tb;
186         u32 remaining, offset;
187         int l3mdev;
188
189         l3mdev = inet_sk_bound_l3mdev(sk);
190 ports_exhausted:
191         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
192 other_half_scan:
193         inet_get_local_port_range(net, &low, &high);
194         high++; /* [32768, 60999] -> [32768, 61000[ */
195         if (high - low < 4)
196                 attempt_half = 0;
197         if (attempt_half) {
198                 int half = low + (((high - low) >> 2) << 1);
199
200                 if (attempt_half == 1)
201                         high = half;
202                 else
203                         low = half;
204         }
205         remaining = high - low;
206         if (likely(remaining > 1))
207                 remaining &= ~1U;
208
209         offset = prandom_u32() % remaining;
210         /* __inet_hash_connect() favors ports having @low parity
211          * We do the opposite to not pollute connect() users.
212          */
213         offset |= 1U;
214
215 other_parity_scan:
216         port = low + offset;
217         for (i = 0; i < remaining; i += 2, port += 2) {
218                 if (unlikely(port >= high))
219                         port -= remaining;
220                 if (inet_is_local_reserved_port(net, port))
221                         continue;
222                 head = &hinfo->bhash[inet_bhashfn(net, port,
223                                                   hinfo->bhash_size)];
224                 spin_lock_bh(&head->lock);
225                 inet_bind_bucket_for_each(tb, &head->chain)
226                         if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
227                             tb->port == port) {
228                                 if (!inet_csk_bind_conflict(sk, tb, relax, false))
229                                         goto success;
230                                 goto next_port;
231                         }
232                 tb = NULL;
233                 goto success;
234 next_port:
235                 spin_unlock_bh(&head->lock);
236                 cond_resched();
237         }
238
239         offset--;
240         if (!(offset & 1))
241                 goto other_parity_scan;
242
243         if (attempt_half == 1) {
244                 /* OK we now try the upper half of the range */
245                 attempt_half = 2;
246                 goto other_half_scan;
247         }
248
249         if (net->ipv4.sysctl_ip_autobind_reuse && !relax) {
250                 /* We still have a chance to connect to different destinations */
251                 relax = true;
252                 goto ports_exhausted;
253         }
254         return NULL;
255 success:
256         *port_ret = port;
257         *tb_ret = tb;
258         return head;
259 }
260
261 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
262                                      struct sock *sk)
263 {
264         kuid_t uid = sock_i_uid(sk);
265
266         if (tb->fastreuseport <= 0)
267                 return 0;
268         if (!sk->sk_reuseport)
269                 return 0;
270         if (rcu_access_pointer(sk->sk_reuseport_cb))
271                 return 0;
272         if (!uid_eq(tb->fastuid, uid))
273                 return 0;
274         /* We only need to check the rcv_saddr if this tb was once marked
275          * without fastreuseport and then was reset, as we can only know that
276          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
277          * owners list.
278          */
279         if (tb->fastreuseport == FASTREUSEPORT_ANY)
280                 return 1;
281 #if IS_ENABLED(CONFIG_IPV6)
282         if (tb->fast_sk_family == AF_INET6)
283                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
284                                             inet6_rcv_saddr(sk),
285                                             tb->fast_rcv_saddr,
286                                             sk->sk_rcv_saddr,
287                                             tb->fast_ipv6_only,
288                                             ipv6_only_sock(sk), true);
289 #endif
290         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
291                                     ipv6_only_sock(sk), true);
292 }
293
294 /* Obtain a reference to a local port for the given sock,
295  * if snum is zero it means select any available local port.
296  * We try to allocate an odd port (and leave even ports for connect())
297  */
298 int inet_csk_get_port(struct sock *sk, unsigned short snum)
299 {
300         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
301         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
302         int ret = 1, port = snum;
303         struct inet_bind_hashbucket *head;
304         struct net *net = sock_net(sk);
305         struct inet_bind_bucket *tb = NULL;
306         kuid_t uid = sock_i_uid(sk);
307         int l3mdev;
308
309         l3mdev = inet_sk_bound_l3mdev(sk);
310
311         if (!port) {
312                 head = inet_csk_find_open_port(sk, &tb, &port);
313                 if (!head)
314                         return ret;
315                 if (!tb)
316                         goto tb_not_found;
317                 goto success;
318         }
319         head = &hinfo->bhash[inet_bhashfn(net, port,
320                                           hinfo->bhash_size)];
321         spin_lock_bh(&head->lock);
322         inet_bind_bucket_for_each(tb, &head->chain)
323                 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
324                     tb->port == port)
325                         goto tb_found;
326 tb_not_found:
327         tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
328                                      net, head, port, l3mdev);
329         if (!tb)
330                 goto fail_unlock;
331 tb_found:
332         if (!hlist_empty(&tb->owners)) {
333                 if (sk->sk_reuse == SK_FORCE_REUSE)
334                         goto success;
335
336                 if ((tb->fastreuse > 0 && reuse) ||
337                     sk_reuseport_match(tb, sk))
338                         goto success;
339                 if (inet_csk_bind_conflict(sk, tb, true, true))
340                         goto fail_unlock;
341         }
342 success:
343         if (hlist_empty(&tb->owners)) {
344                 tb->fastreuse = reuse;
345                 if (sk->sk_reuseport) {
346                         tb->fastreuseport = FASTREUSEPORT_ANY;
347                         tb->fastuid = uid;
348                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
349                         tb->fast_ipv6_only = ipv6_only_sock(sk);
350                         tb->fast_sk_family = sk->sk_family;
351 #if IS_ENABLED(CONFIG_IPV6)
352                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
353 #endif
354                 } else {
355                         tb->fastreuseport = 0;
356                 }
357         } else {
358                 if (!reuse)
359                         tb->fastreuse = 0;
360                 if (sk->sk_reuseport) {
361                         /* We didn't match or we don't have fastreuseport set on
362                          * the tb, but we have sk_reuseport set on this socket
363                          * and we know that there are no bind conflicts with
364                          * this socket in this tb, so reset our tb's reuseport
365                          * settings so that any subsequent sockets that match
366                          * our current socket will be put on the fast path.
367                          *
368                          * If we reset we need to set FASTREUSEPORT_STRICT so we
369                          * do extra checking for all subsequent sk_reuseport
370                          * socks.
371                          */
372                         if (!sk_reuseport_match(tb, sk)) {
373                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
374                                 tb->fastuid = uid;
375                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
376                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
377                                 tb->fast_sk_family = sk->sk_family;
378 #if IS_ENABLED(CONFIG_IPV6)
379                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
380 #endif
381                         }
382                 } else {
383                         tb->fastreuseport = 0;
384                 }
385         }
386         if (!inet_csk(sk)->icsk_bind_hash)
387                 inet_bind_hash(sk, tb, port);
388         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
389         ret = 0;
390
391 fail_unlock:
392         spin_unlock_bh(&head->lock);
393         return ret;
394 }
395 EXPORT_SYMBOL_GPL(inet_csk_get_port);
396
397 /*
398  * Wait for an incoming connection, avoid race conditions. This must be called
399  * with the socket locked.
400  */
401 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
402 {
403         struct inet_connection_sock *icsk = inet_csk(sk);
404         DEFINE_WAIT(wait);
405         int err;
406
407         /*
408          * True wake-one mechanism for incoming connections: only
409          * one process gets woken up, not the 'whole herd'.
410          * Since we do not 'race & poll' for established sockets
411          * anymore, the common case will execute the loop only once.
412          *
413          * Subtle issue: "add_wait_queue_exclusive()" will be added
414          * after any current non-exclusive waiters, and we know that
415          * it will always _stay_ after any new non-exclusive waiters
416          * because all non-exclusive waiters are added at the
417          * beginning of the wait-queue. As such, it's ok to "drop"
418          * our exclusiveness temporarily when we get woken up without
419          * having to remove and re-insert us on the wait queue.
420          */
421         for (;;) {
422                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
423                                           TASK_INTERRUPTIBLE);
424                 release_sock(sk);
425                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
426                         timeo = schedule_timeout(timeo);
427                 sched_annotate_sleep();
428                 lock_sock(sk);
429                 err = 0;
430                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
431                         break;
432                 err = -EINVAL;
433                 if (sk->sk_state != TCP_LISTEN)
434                         break;
435                 err = sock_intr_errno(timeo);
436                 if (signal_pending(current))
437                         break;
438                 err = -EAGAIN;
439                 if (!timeo)
440                         break;
441         }
442         finish_wait(sk_sleep(sk), &wait);
443         return err;
444 }
445
446 /*
447  * This will accept the next outstanding connection.
448  */
449 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
450 {
451         struct inet_connection_sock *icsk = inet_csk(sk);
452         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
453         struct request_sock *req;
454         struct sock *newsk;
455         int error;
456
457         lock_sock(sk);
458
459         /* We need to make sure that this socket is listening,
460          * and that it has something pending.
461          */
462         error = -EINVAL;
463         if (sk->sk_state != TCP_LISTEN)
464                 goto out_err;
465
466         /* Find already established connection */
467         if (reqsk_queue_empty(queue)) {
468                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
469
470                 /* If this is a non blocking socket don't sleep */
471                 error = -EAGAIN;
472                 if (!timeo)
473                         goto out_err;
474
475                 error = inet_csk_wait_for_connect(sk, timeo);
476                 if (error)
477                         goto out_err;
478         }
479         req = reqsk_queue_remove(queue, sk);
480         newsk = req->sk;
481
482         if (sk->sk_protocol == IPPROTO_TCP &&
483             tcp_rsk(req)->tfo_listener) {
484                 spin_lock_bh(&queue->fastopenq.lock);
485                 if (tcp_rsk(req)->tfo_listener) {
486                         /* We are still waiting for the final ACK from 3WHS
487                          * so can't free req now. Instead, we set req->sk to
488                          * NULL to signify that the child socket is taken
489                          * so reqsk_fastopen_remove() will free the req
490                          * when 3WHS finishes (or is aborted).
491                          */
492                         req->sk = NULL;
493                         req = NULL;
494                 }
495                 spin_unlock_bh(&queue->fastopenq.lock);
496         }
497
498 out:
499         release_sock(sk);
500         if (newsk && mem_cgroup_sockets_enabled) {
501                 int amt;
502
503                 /* atomically get the memory usage, set and charge the
504                  * newsk->sk_memcg.
505                  */
506                 lock_sock(newsk);
507
508                 /* The socket has not been accepted yet, no need to look at
509                  * newsk->sk_wmem_queued.
510                  */
511                 amt = sk_mem_pages(newsk->sk_forward_alloc +
512                                    atomic_read(&newsk->sk_rmem_alloc));
513                 mem_cgroup_sk_alloc(newsk);
514                 if (newsk->sk_memcg && amt)
515                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
516
517                 release_sock(newsk);
518         }
519         if (req)
520                 reqsk_put(req);
521         return newsk;
522 out_err:
523         newsk = NULL;
524         req = NULL;
525         *err = error;
526         goto out;
527 }
528 EXPORT_SYMBOL(inet_csk_accept);
529
530 /*
531  * Using different timers for retransmit, delayed acks and probes
532  * We may wish use just one timer maintaining a list of expire jiffies
533  * to optimize.
534  */
535 void inet_csk_init_xmit_timers(struct sock *sk,
536                                void (*retransmit_handler)(struct timer_list *t),
537                                void (*delack_handler)(struct timer_list *t),
538                                void (*keepalive_handler)(struct timer_list *t))
539 {
540         struct inet_connection_sock *icsk = inet_csk(sk);
541
542         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
543         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
544         timer_setup(&sk->sk_timer, keepalive_handler, 0);
545         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
546 }
547 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
548
549 void inet_csk_clear_xmit_timers(struct sock *sk)
550 {
551         struct inet_connection_sock *icsk = inet_csk(sk);
552
553         icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
554
555         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
556         sk_stop_timer(sk, &icsk->icsk_delack_timer);
557         sk_stop_timer(sk, &sk->sk_timer);
558 }
559 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
560
561 void inet_csk_delete_keepalive_timer(struct sock *sk)
562 {
563         sk_stop_timer(sk, &sk->sk_timer);
564 }
565 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
566
567 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
568 {
569         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
570 }
571 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
572
573 struct dst_entry *inet_csk_route_req(const struct sock *sk,
574                                      struct flowi4 *fl4,
575                                      const struct request_sock *req)
576 {
577         const struct inet_request_sock *ireq = inet_rsk(req);
578         struct net *net = read_pnet(&ireq->ireq_net);
579         struct ip_options_rcu *opt;
580         struct rtable *rt;
581
582         rcu_read_lock();
583         opt = rcu_dereference(ireq->ireq_opt);
584
585         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
586                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
587                            sk->sk_protocol, inet_sk_flowi_flags(sk),
588                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
589                            ireq->ir_loc_addr, ireq->ir_rmt_port,
590                            htons(ireq->ir_num), sk->sk_uid);
591         security_req_classify_flow(req, flowi4_to_flowi(fl4));
592         rt = ip_route_output_flow(net, fl4, sk);
593         if (IS_ERR(rt))
594                 goto no_route;
595         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
596                 goto route_err;
597         rcu_read_unlock();
598         return &rt->dst;
599
600 route_err:
601         ip_rt_put(rt);
602 no_route:
603         rcu_read_unlock();
604         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
605         return NULL;
606 }
607 EXPORT_SYMBOL_GPL(inet_csk_route_req);
608
609 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
610                                             struct sock *newsk,
611                                             const struct request_sock *req)
612 {
613         const struct inet_request_sock *ireq = inet_rsk(req);
614         struct net *net = read_pnet(&ireq->ireq_net);
615         struct inet_sock *newinet = inet_sk(newsk);
616         struct ip_options_rcu *opt;
617         struct flowi4 *fl4;
618         struct rtable *rt;
619
620         opt = rcu_dereference(ireq->ireq_opt);
621         fl4 = &newinet->cork.fl.u.ip4;
622
623         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
624                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
625                            sk->sk_protocol, inet_sk_flowi_flags(sk),
626                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
627                            ireq->ir_loc_addr, ireq->ir_rmt_port,
628                            htons(ireq->ir_num), sk->sk_uid);
629         security_req_classify_flow(req, flowi4_to_flowi(fl4));
630         rt = ip_route_output_flow(net, fl4, sk);
631         if (IS_ERR(rt))
632                 goto no_route;
633         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
634                 goto route_err;
635         return &rt->dst;
636
637 route_err:
638         ip_rt_put(rt);
639 no_route:
640         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
641         return NULL;
642 }
643 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
644
645 /* Decide when to expire the request and when to resend SYN-ACK */
646 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
647                                   const int max_retries,
648                                   const u8 rskq_defer_accept,
649                                   int *expire, int *resend)
650 {
651         if (!rskq_defer_accept) {
652                 *expire = req->num_timeout >= thresh;
653                 *resend = 1;
654                 return;
655         }
656         *expire = req->num_timeout >= thresh &&
657                   (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
658         /*
659          * Do not resend while waiting for data after ACK,
660          * start to resend on end of deferring period to give
661          * last chance for data or ACK to create established socket.
662          */
663         *resend = !inet_rsk(req)->acked ||
664                   req->num_timeout >= rskq_defer_accept - 1;
665 }
666
667 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
668 {
669         int err = req->rsk_ops->rtx_syn_ack(parent, req);
670
671         if (!err)
672                 req->num_retrans++;
673         return err;
674 }
675 EXPORT_SYMBOL(inet_rtx_syn_ack);
676
677 /* return true if req was found in the ehash table */
678 static bool reqsk_queue_unlink(struct request_sock *req)
679 {
680         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
681         bool found = false;
682
683         if (sk_hashed(req_to_sk(req))) {
684                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
685
686                 spin_lock(lock);
687                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
688                 spin_unlock(lock);
689         }
690         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
691                 reqsk_put(req);
692         return found;
693 }
694
695 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
696 {
697         if (reqsk_queue_unlink(req)) {
698                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
699                 reqsk_put(req);
700         }
701 }
702 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
703
704 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
705 {
706         inet_csk_reqsk_queue_drop(sk, req);
707         reqsk_put(req);
708 }
709 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
710
711 static void reqsk_timer_handler(struct timer_list *t)
712 {
713         struct request_sock *req = from_timer(req, t, rsk_timer);
714         struct sock *sk_listener = req->rsk_listener;
715         struct net *net = sock_net(sk_listener);
716         struct inet_connection_sock *icsk = inet_csk(sk_listener);
717         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
718         int qlen, expire = 0, resend = 0;
719         int max_retries, thresh;
720         u8 defer_accept;
721
722         if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
723                 goto drop;
724
725         max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
726         thresh = max_retries;
727         /* Normally all the openreqs are young and become mature
728          * (i.e. converted to established socket) for first timeout.
729          * If synack was not acknowledged for 1 second, it means
730          * one of the following things: synack was lost, ack was lost,
731          * rtt is high or nobody planned to ack (i.e. synflood).
732          * When server is a bit loaded, queue is populated with old
733          * open requests, reducing effective size of queue.
734          * When server is well loaded, queue size reduces to zero
735          * after several minutes of work. It is not synflood,
736          * it is normal operation. The solution is pruning
737          * too old entries overriding normal timeout, when
738          * situation becomes dangerous.
739          *
740          * Essentially, we reserve half of room for young
741          * embrions; and abort old ones without pity, if old
742          * ones are about to clog our table.
743          */
744         qlen = reqsk_queue_len(queue);
745         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
746                 int young = reqsk_queue_len_young(queue) << 1;
747
748                 while (thresh > 2) {
749                         if (qlen < young)
750                                 break;
751                         thresh--;
752                         young <<= 1;
753                 }
754         }
755         defer_accept = READ_ONCE(queue->rskq_defer_accept);
756         if (defer_accept)
757                 max_retries = defer_accept;
758         syn_ack_recalc(req, thresh, max_retries, defer_accept,
759                        &expire, &resend);
760         req->rsk_ops->syn_ack_timeout(req);
761         if (!expire &&
762             (!resend ||
763              !inet_rtx_syn_ack(sk_listener, req) ||
764              inet_rsk(req)->acked)) {
765                 unsigned long timeo;
766
767                 if (req->num_timeout++ == 0)
768                         atomic_dec(&queue->young);
769                 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
770                 mod_timer(&req->rsk_timer, jiffies + timeo);
771                 return;
772         }
773 drop:
774         inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
775 }
776
777 static void reqsk_queue_hash_req(struct request_sock *req,
778                                  unsigned long timeout)
779 {
780         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
781         mod_timer(&req->rsk_timer, jiffies + timeout);
782
783         inet_ehash_insert(req_to_sk(req), NULL);
784         /* before letting lookups find us, make sure all req fields
785          * are committed to memory and refcnt initialized.
786          */
787         smp_wmb();
788         refcount_set(&req->rsk_refcnt, 2 + 1);
789 }
790
791 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
792                                    unsigned long timeout)
793 {
794         reqsk_queue_hash_req(req, timeout);
795         inet_csk_reqsk_queue_added(sk);
796 }
797 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
798
799 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
800                            const gfp_t priority)
801 {
802         struct inet_connection_sock *icsk = inet_csk(newsk);
803
804         if (!icsk->icsk_ulp_ops)
805                 return;
806
807         if (icsk->icsk_ulp_ops->clone)
808                 icsk->icsk_ulp_ops->clone(req, newsk, priority);
809 }
810
811 /**
812  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
813  *      @sk: the socket to clone
814  *      @req: request_sock
815  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
816  *
817  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
818  */
819 struct sock *inet_csk_clone_lock(const struct sock *sk,
820                                  const struct request_sock *req,
821                                  const gfp_t priority)
822 {
823         struct sock *newsk = sk_clone_lock(sk, priority);
824
825         if (newsk) {
826                 struct inet_connection_sock *newicsk = inet_csk(newsk);
827
828                 inet_sk_set_state(newsk, TCP_SYN_RECV);
829                 newicsk->icsk_bind_hash = NULL;
830
831                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
832                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
833                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
834
835                 /* listeners have SOCK_RCU_FREE, not the children */
836                 sock_reset_flag(newsk, SOCK_RCU_FREE);
837
838                 inet_sk(newsk)->mc_list = NULL;
839
840                 newsk->sk_mark = inet_rsk(req)->ir_mark;
841                 atomic64_set(&newsk->sk_cookie,
842                              atomic64_read(&inet_rsk(req)->ir_cookie));
843
844                 newicsk->icsk_retransmits = 0;
845                 newicsk->icsk_backoff     = 0;
846                 newicsk->icsk_probes_out  = 0;
847
848                 /* Deinitialize accept_queue to trap illegal accesses. */
849                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
850
851                 inet_clone_ulp(req, newsk, priority);
852
853                 security_inet_csk_clone(newsk, req);
854         }
855         return newsk;
856 }
857 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
858
859 /*
860  * At this point, there should be no process reference to this
861  * socket, and thus no user references at all.  Therefore we
862  * can assume the socket waitqueue is inactive and nobody will
863  * try to jump onto it.
864  */
865 void inet_csk_destroy_sock(struct sock *sk)
866 {
867         WARN_ON(sk->sk_state != TCP_CLOSE);
868         WARN_ON(!sock_flag(sk, SOCK_DEAD));
869
870         /* It cannot be in hash table! */
871         WARN_ON(!sk_unhashed(sk));
872
873         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
874         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
875
876         sk->sk_prot->destroy(sk);
877
878         sk_stream_kill_queues(sk);
879
880         xfrm_sk_free_policy(sk);
881
882         sk_refcnt_debug_release(sk);
883
884         percpu_counter_dec(sk->sk_prot->orphan_count);
885
886         sock_put(sk);
887 }
888 EXPORT_SYMBOL(inet_csk_destroy_sock);
889
890 /* This function allows to force a closure of a socket after the call to
891  * tcp/dccp_create_openreq_child().
892  */
893 void inet_csk_prepare_forced_close(struct sock *sk)
894         __releases(&sk->sk_lock.slock)
895 {
896         /* sk_clone_lock locked the socket and set refcnt to 2 */
897         bh_unlock_sock(sk);
898         sock_put(sk);
899
900         /* The below has to be done to allow calling inet_csk_destroy_sock */
901         sock_set_flag(sk, SOCK_DEAD);
902         percpu_counter_inc(sk->sk_prot->orphan_count);
903         inet_sk(sk)->inet_num = 0;
904 }
905 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
906
907 int inet_csk_listen_start(struct sock *sk, int backlog)
908 {
909         struct inet_connection_sock *icsk = inet_csk(sk);
910         struct inet_sock *inet = inet_sk(sk);
911         int err = -EADDRINUSE;
912
913         reqsk_queue_alloc(&icsk->icsk_accept_queue);
914
915         sk->sk_ack_backlog = 0;
916         inet_csk_delack_init(sk);
917
918         /* There is race window here: we announce ourselves listening,
919          * but this transition is still not validated by get_port().
920          * It is OK, because this socket enters to hash table only
921          * after validation is complete.
922          */
923         inet_sk_state_store(sk, TCP_LISTEN);
924         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
925                 inet->inet_sport = htons(inet->inet_num);
926
927                 sk_dst_reset(sk);
928                 err = sk->sk_prot->hash(sk);
929
930                 if (likely(!err))
931                         return 0;
932         }
933
934         inet_sk_set_state(sk, TCP_CLOSE);
935         return err;
936 }
937 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
938
939 static void inet_child_forget(struct sock *sk, struct request_sock *req,
940                               struct sock *child)
941 {
942         sk->sk_prot->disconnect(child, O_NONBLOCK);
943
944         sock_orphan(child);
945
946         percpu_counter_inc(sk->sk_prot->orphan_count);
947
948         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
949                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
950                 BUG_ON(sk != req->rsk_listener);
951
952                 /* Paranoid, to prevent race condition if
953                  * an inbound pkt destined for child is
954                  * blocked by sock lock in tcp_v4_rcv().
955                  * Also to satisfy an assertion in
956                  * tcp_v4_destroy_sock().
957                  */
958                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
959         }
960         inet_csk_destroy_sock(child);
961 }
962
963 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
964                                       struct request_sock *req,
965                                       struct sock *child)
966 {
967         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
968
969         spin_lock(&queue->rskq_lock);
970         if (unlikely(sk->sk_state != TCP_LISTEN)) {
971                 inet_child_forget(sk, req, child);
972                 child = NULL;
973         } else {
974                 req->sk = child;
975                 req->dl_next = NULL;
976                 if (queue->rskq_accept_head == NULL)
977                         WRITE_ONCE(queue->rskq_accept_head, req);
978                 else
979                         queue->rskq_accept_tail->dl_next = req;
980                 queue->rskq_accept_tail = req;
981                 sk_acceptq_added(sk);
982         }
983         spin_unlock(&queue->rskq_lock);
984         return child;
985 }
986 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
987
988 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
989                                          struct request_sock *req, bool own_req)
990 {
991         if (own_req) {
992                 inet_csk_reqsk_queue_drop(sk, req);
993                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
994                 if (inet_csk_reqsk_queue_add(sk, req, child))
995                         return child;
996         }
997         /* Too bad, another child took ownership of the request, undo. */
998         bh_unlock_sock(child);
999         sock_put(child);
1000         return NULL;
1001 }
1002 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1003
1004 /*
1005  *      This routine closes sockets which have been at least partially
1006  *      opened, but not yet accepted.
1007  */
1008 void inet_csk_listen_stop(struct sock *sk)
1009 {
1010         struct inet_connection_sock *icsk = inet_csk(sk);
1011         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1012         struct request_sock *next, *req;
1013
1014         /* Following specs, it would be better either to send FIN
1015          * (and enter FIN-WAIT-1, it is normal close)
1016          * or to send active reset (abort).
1017          * Certainly, it is pretty dangerous while synflood, but it is
1018          * bad justification for our negligence 8)
1019          * To be honest, we are not able to make either
1020          * of the variants now.                 --ANK
1021          */
1022         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1023                 struct sock *child = req->sk;
1024
1025                 local_bh_disable();
1026                 bh_lock_sock(child);
1027                 WARN_ON(sock_owned_by_user(child));
1028                 sock_hold(child);
1029
1030                 inet_child_forget(sk, req, child);
1031                 reqsk_put(req);
1032                 bh_unlock_sock(child);
1033                 local_bh_enable();
1034                 sock_put(child);
1035
1036                 cond_resched();
1037         }
1038         if (queue->fastopenq.rskq_rst_head) {
1039                 /* Free all the reqs queued in rskq_rst_head. */
1040                 spin_lock_bh(&queue->fastopenq.lock);
1041                 req = queue->fastopenq.rskq_rst_head;
1042                 queue->fastopenq.rskq_rst_head = NULL;
1043                 spin_unlock_bh(&queue->fastopenq.lock);
1044                 while (req != NULL) {
1045                         next = req->dl_next;
1046                         reqsk_put(req);
1047                         req = next;
1048                 }
1049         }
1050         WARN_ON_ONCE(sk->sk_ack_backlog);
1051 }
1052 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1053
1054 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1055 {
1056         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1057         const struct inet_sock *inet = inet_sk(sk);
1058
1059         sin->sin_family         = AF_INET;
1060         sin->sin_addr.s_addr    = inet->inet_daddr;
1061         sin->sin_port           = inet->inet_dport;
1062 }
1063 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1064
1065 #ifdef CONFIG_COMPAT
1066 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1067                                char __user *optval, int __user *optlen)
1068 {
1069         const struct inet_connection_sock *icsk = inet_csk(sk);
1070
1071         if (icsk->icsk_af_ops->compat_getsockopt)
1072                 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1073                                                             optval, optlen);
1074         return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1075                                              optval, optlen);
1076 }
1077 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1078
1079 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1080                                char __user *optval, unsigned int optlen)
1081 {
1082         const struct inet_connection_sock *icsk = inet_csk(sk);
1083
1084         if (icsk->icsk_af_ops->compat_setsockopt)
1085                 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1086                                                             optval, optlen);
1087         return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1088                                              optval, optlen);
1089 }
1090 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1091 #endif
1092
1093 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1094 {
1095         const struct inet_sock *inet = inet_sk(sk);
1096         const struct ip_options_rcu *inet_opt;
1097         __be32 daddr = inet->inet_daddr;
1098         struct flowi4 *fl4;
1099         struct rtable *rt;
1100
1101         rcu_read_lock();
1102         inet_opt = rcu_dereference(inet->inet_opt);
1103         if (inet_opt && inet_opt->opt.srr)
1104                 daddr = inet_opt->opt.faddr;
1105         fl4 = &fl->u.ip4;
1106         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1107                                    inet->inet_saddr, inet->inet_dport,
1108                                    inet->inet_sport, sk->sk_protocol,
1109                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1110         if (IS_ERR(rt))
1111                 rt = NULL;
1112         if (rt)
1113                 sk_setup_caps(sk, &rt->dst);
1114         rcu_read_unlock();
1115
1116         return &rt->dst;
1117 }
1118
1119 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1120 {
1121         struct dst_entry *dst = __sk_dst_check(sk, 0);
1122         struct inet_sock *inet = inet_sk(sk);
1123
1124         if (!dst) {
1125                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1126                 if (!dst)
1127                         goto out;
1128         }
1129         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1130
1131         dst = __sk_dst_check(sk, 0);
1132         if (!dst)
1133                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1134 out:
1135         return dst;
1136 }
1137 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);