Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / ipv4 / inet_connection_sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Support for INET connection oriented protocols.
7  *
8  * Authors:     See the TCP sources
9  *
10  *              This program is free software; you can redistribute it and/or
11  *              modify it under the terms of the GNU General Public License
12  *              as published by the Free Software Foundation; either version
13  *              2 of the License, or(at your option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29
30 #if IS_ENABLED(CONFIG_IPV6)
31 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
32  *                          only, and any IPv4 addresses if not IPv6 only
33  * match_wildcard == false: addresses must be exactly the same, i.e.
34  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
35  *                          and 0.0.0.0 equals to 0.0.0.0 only
36  */
37 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
38                                  const struct in6_addr *sk2_rcv_saddr6,
39                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
40                                  bool sk1_ipv6only, bool sk2_ipv6only,
41                                  bool match_wildcard)
42 {
43         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
44         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
45
46         /* if both are mapped, treat as IPv4 */
47         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
48                 if (!sk2_ipv6only) {
49                         if (sk1_rcv_saddr == sk2_rcv_saddr)
50                                 return true;
51                         if (!sk1_rcv_saddr || !sk2_rcv_saddr)
52                                 return match_wildcard;
53                 }
54                 return false;
55         }
56
57         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
58                 return true;
59
60         if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
61             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
62                 return true;
63
64         if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
65             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
66                 return true;
67
68         if (sk2_rcv_saddr6 &&
69             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
70                 return true;
71
72         return false;
73 }
74 #endif
75
76 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
77  * match_wildcard == false: addresses must be exactly the same, i.e.
78  *                          0.0.0.0 only equals to 0.0.0.0
79  */
80 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
81                                  bool sk2_ipv6only, bool match_wildcard)
82 {
83         if (!sk2_ipv6only) {
84                 if (sk1_rcv_saddr == sk2_rcv_saddr)
85                         return true;
86                 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
87                         return match_wildcard;
88         }
89         return false;
90 }
91
92 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
93                           bool match_wildcard)
94 {
95 #if IS_ENABLED(CONFIG_IPV6)
96         if (sk->sk_family == AF_INET6)
97                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
98                                             inet6_rcv_saddr(sk2),
99                                             sk->sk_rcv_saddr,
100                                             sk2->sk_rcv_saddr,
101                                             ipv6_only_sock(sk),
102                                             ipv6_only_sock(sk2),
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard);
107 }
108 EXPORT_SYMBOL(inet_rcv_saddr_equal);
109
110 void inet_get_local_port_range(struct net *net, int *low, int *high)
111 {
112         unsigned int seq;
113
114         do {
115                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
116
117                 *low = net->ipv4.ip_local_ports.range[0];
118                 *high = net->ipv4.ip_local_ports.range[1];
119         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
120 }
121 EXPORT_SYMBOL(inet_get_local_port_range);
122
123 static int inet_csk_bind_conflict(const struct sock *sk,
124                                   const struct inet_bind_bucket *tb,
125                                   bool relax, bool reuseport_ok)
126 {
127         struct sock *sk2;
128         bool reuse = sk->sk_reuse;
129         bool reuseport = !!sk->sk_reuseport && reuseport_ok;
130         kuid_t uid = sock_i_uid((struct sock *)sk);
131
132         /*
133          * Unlike other sk lookup places we do not check
134          * for sk_net here, since _all_ the socks listed
135          * in tb->owners list belong to the same net - the
136          * one this bucket belongs to.
137          */
138
139         sk_for_each_bound(sk2, &tb->owners) {
140                 if (sk != sk2 &&
141                     (!sk->sk_bound_dev_if ||
142                      !sk2->sk_bound_dev_if ||
143                      sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
144                         if ((!reuse || !sk2->sk_reuse ||
145                             sk2->sk_state == TCP_LISTEN) &&
146                             (!reuseport || !sk2->sk_reuseport ||
147                              rcu_access_pointer(sk->sk_reuseport_cb) ||
148                              (sk2->sk_state != TCP_TIME_WAIT &&
149                              !uid_eq(uid, sock_i_uid(sk2))))) {
150                                 if (inet_rcv_saddr_equal(sk, sk2, true))
151                                         break;
152                         }
153                         if (!relax && reuse && sk2->sk_reuse &&
154                             sk2->sk_state != TCP_LISTEN) {
155                                 if (inet_rcv_saddr_equal(sk, sk2, true))
156                                         break;
157                         }
158                 }
159         }
160         return sk2 != NULL;
161 }
162
163 /*
164  * Find an open port number for the socket.  Returns with the
165  * inet_bind_hashbucket lock held.
166  */
167 static struct inet_bind_hashbucket *
168 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
169 {
170         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
171         int port = 0;
172         struct inet_bind_hashbucket *head;
173         struct net *net = sock_net(sk);
174         int i, low, high, attempt_half;
175         struct inet_bind_bucket *tb;
176         u32 remaining, offset;
177
178         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
179 other_half_scan:
180         inet_get_local_port_range(net, &low, &high);
181         high++; /* [32768, 60999] -> [32768, 61000[ */
182         if (high - low < 4)
183                 attempt_half = 0;
184         if (attempt_half) {
185                 int half = low + (((high - low) >> 2) << 1);
186
187                 if (attempt_half == 1)
188                         high = half;
189                 else
190                         low = half;
191         }
192         remaining = high - low;
193         if (likely(remaining > 1))
194                 remaining &= ~1U;
195
196         offset = prandom_u32() % remaining;
197         /* __inet_hash_connect() favors ports having @low parity
198          * We do the opposite to not pollute connect() users.
199          */
200         offset |= 1U;
201
202 other_parity_scan:
203         port = low + offset;
204         for (i = 0; i < remaining; i += 2, port += 2) {
205                 if (unlikely(port >= high))
206                         port -= remaining;
207                 if (inet_is_local_reserved_port(net, port))
208                         continue;
209                 head = &hinfo->bhash[inet_bhashfn(net, port,
210                                                   hinfo->bhash_size)];
211                 spin_lock_bh(&head->lock);
212                 inet_bind_bucket_for_each(tb, &head->chain)
213                         if (net_eq(ib_net(tb), net) && tb->port == port) {
214                                 if (!inet_csk_bind_conflict(sk, tb, false, false))
215                                         goto success;
216                                 goto next_port;
217                         }
218                 tb = NULL;
219                 goto success;
220 next_port:
221                 spin_unlock_bh(&head->lock);
222                 cond_resched();
223         }
224
225         offset--;
226         if (!(offset & 1))
227                 goto other_parity_scan;
228
229         if (attempt_half == 1) {
230                 /* OK we now try the upper half of the range */
231                 attempt_half = 2;
232                 goto other_half_scan;
233         }
234         return NULL;
235 success:
236         *port_ret = port;
237         *tb_ret = tb;
238         return head;
239 }
240
241 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
242                                      struct sock *sk)
243 {
244         kuid_t uid = sock_i_uid(sk);
245
246         if (tb->fastreuseport <= 0)
247                 return 0;
248         if (!sk->sk_reuseport)
249                 return 0;
250         if (rcu_access_pointer(sk->sk_reuseport_cb))
251                 return 0;
252         if (!uid_eq(tb->fastuid, uid))
253                 return 0;
254         /* We only need to check the rcv_saddr if this tb was once marked
255          * without fastreuseport and then was reset, as we can only know that
256          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
257          * owners list.
258          */
259         if (tb->fastreuseport == FASTREUSEPORT_ANY)
260                 return 1;
261 #if IS_ENABLED(CONFIG_IPV6)
262         if (tb->fast_sk_family == AF_INET6)
263                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
264                                             inet6_rcv_saddr(sk),
265                                             tb->fast_rcv_saddr,
266                                             sk->sk_rcv_saddr,
267                                             tb->fast_ipv6_only,
268                                             ipv6_only_sock(sk), true);
269 #endif
270         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
271                                     ipv6_only_sock(sk), true);
272 }
273
274 /* Obtain a reference to a local port for the given sock,
275  * if snum is zero it means select any available local port.
276  * We try to allocate an odd port (and leave even ports for connect())
277  */
278 int inet_csk_get_port(struct sock *sk, unsigned short snum)
279 {
280         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
281         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
282         int ret = 1, port = snum;
283         struct inet_bind_hashbucket *head;
284         struct net *net = sock_net(sk);
285         struct inet_bind_bucket *tb = NULL;
286         kuid_t uid = sock_i_uid(sk);
287
288         if (!port) {
289                 head = inet_csk_find_open_port(sk, &tb, &port);
290                 if (!head)
291                         return ret;
292                 if (!tb)
293                         goto tb_not_found;
294                 goto success;
295         }
296         head = &hinfo->bhash[inet_bhashfn(net, port,
297                                           hinfo->bhash_size)];
298         spin_lock_bh(&head->lock);
299         inet_bind_bucket_for_each(tb, &head->chain)
300                 if (net_eq(ib_net(tb), net) && tb->port == port)
301                         goto tb_found;
302 tb_not_found:
303         tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
304                                      net, head, port);
305         if (!tb)
306                 goto fail_unlock;
307 tb_found:
308         if (!hlist_empty(&tb->owners)) {
309                 if (sk->sk_reuse == SK_FORCE_REUSE)
310                         goto success;
311
312                 if ((tb->fastreuse > 0 && reuse) ||
313                     sk_reuseport_match(tb, sk))
314                         goto success;
315                 if (inet_csk_bind_conflict(sk, tb, true, true))
316                         goto fail_unlock;
317         }
318 success:
319         if (hlist_empty(&tb->owners)) {
320                 tb->fastreuse = reuse;
321                 if (sk->sk_reuseport) {
322                         tb->fastreuseport = FASTREUSEPORT_ANY;
323                         tb->fastuid = uid;
324                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
325                         tb->fast_ipv6_only = ipv6_only_sock(sk);
326                         tb->fast_sk_family = sk->sk_family;
327 #if IS_ENABLED(CONFIG_IPV6)
328                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
329 #endif
330                 } else {
331                         tb->fastreuseport = 0;
332                 }
333         } else {
334                 if (!reuse)
335                         tb->fastreuse = 0;
336                 if (sk->sk_reuseport) {
337                         /* We didn't match or we don't have fastreuseport set on
338                          * the tb, but we have sk_reuseport set on this socket
339                          * and we know that there are no bind conflicts with
340                          * this socket in this tb, so reset our tb's reuseport
341                          * settings so that any subsequent sockets that match
342                          * our current socket will be put on the fast path.
343                          *
344                          * If we reset we need to set FASTREUSEPORT_STRICT so we
345                          * do extra checking for all subsequent sk_reuseport
346                          * socks.
347                          */
348                         if (!sk_reuseport_match(tb, sk)) {
349                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
350                                 tb->fastuid = uid;
351                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
352                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
353                                 tb->fast_sk_family = sk->sk_family;
354 #if IS_ENABLED(CONFIG_IPV6)
355                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
356 #endif
357                         }
358                 } else {
359                         tb->fastreuseport = 0;
360                 }
361         }
362         if (!inet_csk(sk)->icsk_bind_hash)
363                 inet_bind_hash(sk, tb, port);
364         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
365         ret = 0;
366
367 fail_unlock:
368         spin_unlock_bh(&head->lock);
369         return ret;
370 }
371 EXPORT_SYMBOL_GPL(inet_csk_get_port);
372
373 /*
374  * Wait for an incoming connection, avoid race conditions. This must be called
375  * with the socket locked.
376  */
377 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
378 {
379         struct inet_connection_sock *icsk = inet_csk(sk);
380         DEFINE_WAIT(wait);
381         int err;
382
383         /*
384          * True wake-one mechanism for incoming connections: only
385          * one process gets woken up, not the 'whole herd'.
386          * Since we do not 'race & poll' for established sockets
387          * anymore, the common case will execute the loop only once.
388          *
389          * Subtle issue: "add_wait_queue_exclusive()" will be added
390          * after any current non-exclusive waiters, and we know that
391          * it will always _stay_ after any new non-exclusive waiters
392          * because all non-exclusive waiters are added at the
393          * beginning of the wait-queue. As such, it's ok to "drop"
394          * our exclusiveness temporarily when we get woken up without
395          * having to remove and re-insert us on the wait queue.
396          */
397         for (;;) {
398                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
399                                           TASK_INTERRUPTIBLE);
400                 release_sock(sk);
401                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
402                         timeo = schedule_timeout(timeo);
403                 sched_annotate_sleep();
404                 lock_sock(sk);
405                 err = 0;
406                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
407                         break;
408                 err = -EINVAL;
409                 if (sk->sk_state != TCP_LISTEN)
410                         break;
411                 err = sock_intr_errno(timeo);
412                 if (signal_pending(current))
413                         break;
414                 err = -EAGAIN;
415                 if (!timeo)
416                         break;
417         }
418         finish_wait(sk_sleep(sk), &wait);
419         return err;
420 }
421
422 /*
423  * This will accept the next outstanding connection.
424  */
425 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
426 {
427         struct inet_connection_sock *icsk = inet_csk(sk);
428         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
429         struct request_sock *req;
430         struct sock *newsk;
431         int error;
432
433         lock_sock(sk);
434
435         /* We need to make sure that this socket is listening,
436          * and that it has something pending.
437          */
438         error = -EINVAL;
439         if (sk->sk_state != TCP_LISTEN)
440                 goto out_err;
441
442         /* Find already established connection */
443         if (reqsk_queue_empty(queue)) {
444                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
445
446                 /* If this is a non blocking socket don't sleep */
447                 error = -EAGAIN;
448                 if (!timeo)
449                         goto out_err;
450
451                 error = inet_csk_wait_for_connect(sk, timeo);
452                 if (error)
453                         goto out_err;
454         }
455         req = reqsk_queue_remove(queue, sk);
456         newsk = req->sk;
457
458         if (sk->sk_protocol == IPPROTO_TCP &&
459             tcp_rsk(req)->tfo_listener) {
460                 spin_lock_bh(&queue->fastopenq.lock);
461                 if (tcp_rsk(req)->tfo_listener) {
462                         /* We are still waiting for the final ACK from 3WHS
463                          * so can't free req now. Instead, we set req->sk to
464                          * NULL to signify that the child socket is taken
465                          * so reqsk_fastopen_remove() will free the req
466                          * when 3WHS finishes (or is aborted).
467                          */
468                         req->sk = NULL;
469                         req = NULL;
470                 }
471                 spin_unlock_bh(&queue->fastopenq.lock);
472         }
473 out:
474         release_sock(sk);
475         if (req)
476                 reqsk_put(req);
477         return newsk;
478 out_err:
479         newsk = NULL;
480         req = NULL;
481         *err = error;
482         goto out;
483 }
484 EXPORT_SYMBOL(inet_csk_accept);
485
486 /*
487  * Using different timers for retransmit, delayed acks and probes
488  * We may wish use just one timer maintaining a list of expire jiffies
489  * to optimize.
490  */
491 void inet_csk_init_xmit_timers(struct sock *sk,
492                                void (*retransmit_handler)(struct timer_list *t),
493                                void (*delack_handler)(struct timer_list *t),
494                                void (*keepalive_handler)(struct timer_list *t))
495 {
496         struct inet_connection_sock *icsk = inet_csk(sk);
497
498         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
499         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
500         timer_setup(&sk->sk_timer, keepalive_handler, 0);
501         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
502 }
503 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
504
505 void inet_csk_clear_xmit_timers(struct sock *sk)
506 {
507         struct inet_connection_sock *icsk = inet_csk(sk);
508
509         icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
510
511         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
512         sk_stop_timer(sk, &icsk->icsk_delack_timer);
513         sk_stop_timer(sk, &sk->sk_timer);
514 }
515 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
516
517 void inet_csk_delete_keepalive_timer(struct sock *sk)
518 {
519         sk_stop_timer(sk, &sk->sk_timer);
520 }
521 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
522
523 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
524 {
525         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
526 }
527 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
528
529 struct dst_entry *inet_csk_route_req(const struct sock *sk,
530                                      struct flowi4 *fl4,
531                                      const struct request_sock *req)
532 {
533         const struct inet_request_sock *ireq = inet_rsk(req);
534         struct net *net = read_pnet(&ireq->ireq_net);
535         struct ip_options_rcu *opt;
536         struct rtable *rt;
537
538         opt = ireq_opt_deref(ireq);
539
540         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
541                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
542                            sk->sk_protocol, inet_sk_flowi_flags(sk),
543                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
544                            ireq->ir_loc_addr, ireq->ir_rmt_port,
545                            htons(ireq->ir_num), sk->sk_uid);
546         security_req_classify_flow(req, flowi4_to_flowi(fl4));
547         rt = ip_route_output_flow(net, fl4, sk);
548         if (IS_ERR(rt))
549                 goto no_route;
550         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
551                 goto route_err;
552         return &rt->dst;
553
554 route_err:
555         ip_rt_put(rt);
556 no_route:
557         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
558         return NULL;
559 }
560 EXPORT_SYMBOL_GPL(inet_csk_route_req);
561
562 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
563                                             struct sock *newsk,
564                                             const struct request_sock *req)
565 {
566         const struct inet_request_sock *ireq = inet_rsk(req);
567         struct net *net = read_pnet(&ireq->ireq_net);
568         struct inet_sock *newinet = inet_sk(newsk);
569         struct ip_options_rcu *opt;
570         struct flowi4 *fl4;
571         struct rtable *rt;
572
573         opt = rcu_dereference(ireq->ireq_opt);
574         fl4 = &newinet->cork.fl.u.ip4;
575
576         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
577                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
578                            sk->sk_protocol, inet_sk_flowi_flags(sk),
579                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
580                            ireq->ir_loc_addr, ireq->ir_rmt_port,
581                            htons(ireq->ir_num), sk->sk_uid);
582         security_req_classify_flow(req, flowi4_to_flowi(fl4));
583         rt = ip_route_output_flow(net, fl4, sk);
584         if (IS_ERR(rt))
585                 goto no_route;
586         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
587                 goto route_err;
588         return &rt->dst;
589
590 route_err:
591         ip_rt_put(rt);
592 no_route:
593         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
594         return NULL;
595 }
596 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
597
598 #if IS_ENABLED(CONFIG_IPV6)
599 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
600 #else
601 #define AF_INET_FAMILY(fam) true
602 #endif
603
604 /* Decide when to expire the request and when to resend SYN-ACK */
605 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
606                                   const int max_retries,
607                                   const u8 rskq_defer_accept,
608                                   int *expire, int *resend)
609 {
610         if (!rskq_defer_accept) {
611                 *expire = req->num_timeout >= thresh;
612                 *resend = 1;
613                 return;
614         }
615         *expire = req->num_timeout >= thresh &&
616                   (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
617         /*
618          * Do not resend while waiting for data after ACK,
619          * start to resend on end of deferring period to give
620          * last chance for data or ACK to create established socket.
621          */
622         *resend = !inet_rsk(req)->acked ||
623                   req->num_timeout >= rskq_defer_accept - 1;
624 }
625
626 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
627 {
628         int err = req->rsk_ops->rtx_syn_ack(parent, req);
629
630         if (!err)
631                 req->num_retrans++;
632         return err;
633 }
634 EXPORT_SYMBOL(inet_rtx_syn_ack);
635
636 /* return true if req was found in the ehash table */
637 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
638                                struct request_sock *req)
639 {
640         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
641         bool found = false;
642
643         if (sk_hashed(req_to_sk(req))) {
644                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
645
646                 spin_lock(lock);
647                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
648                 spin_unlock(lock);
649         }
650         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
651                 reqsk_put(req);
652         return found;
653 }
654
655 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
656 {
657         if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
658                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
659                 reqsk_put(req);
660         }
661 }
662 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
663
664 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
665 {
666         inet_csk_reqsk_queue_drop(sk, req);
667         reqsk_put(req);
668 }
669 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
670
671 static void reqsk_timer_handler(struct timer_list *t)
672 {
673         struct request_sock *req = from_timer(req, t, rsk_timer);
674         struct sock *sk_listener = req->rsk_listener;
675         struct net *net = sock_net(sk_listener);
676         struct inet_connection_sock *icsk = inet_csk(sk_listener);
677         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
678         int qlen, expire = 0, resend = 0;
679         int max_retries, thresh;
680         u8 defer_accept;
681
682         if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
683                 goto drop;
684
685         max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
686         thresh = max_retries;
687         /* Normally all the openreqs are young and become mature
688          * (i.e. converted to established socket) for first timeout.
689          * If synack was not acknowledged for 1 second, it means
690          * one of the following things: synack was lost, ack was lost,
691          * rtt is high or nobody planned to ack (i.e. synflood).
692          * When server is a bit loaded, queue is populated with old
693          * open requests, reducing effective size of queue.
694          * When server is well loaded, queue size reduces to zero
695          * after several minutes of work. It is not synflood,
696          * it is normal operation. The solution is pruning
697          * too old entries overriding normal timeout, when
698          * situation becomes dangerous.
699          *
700          * Essentially, we reserve half of room for young
701          * embrions; and abort old ones without pity, if old
702          * ones are about to clog our table.
703          */
704         qlen = reqsk_queue_len(queue);
705         if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
706                 int young = reqsk_queue_len_young(queue) << 1;
707
708                 while (thresh > 2) {
709                         if (qlen < young)
710                                 break;
711                         thresh--;
712                         young <<= 1;
713                 }
714         }
715         defer_accept = READ_ONCE(queue->rskq_defer_accept);
716         if (defer_accept)
717                 max_retries = defer_accept;
718         syn_ack_recalc(req, thresh, max_retries, defer_accept,
719                        &expire, &resend);
720         req->rsk_ops->syn_ack_timeout(req);
721         if (!expire &&
722             (!resend ||
723              !inet_rtx_syn_ack(sk_listener, req) ||
724              inet_rsk(req)->acked)) {
725                 unsigned long timeo;
726
727                 if (req->num_timeout++ == 0)
728                         atomic_dec(&queue->young);
729                 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
730                 mod_timer(&req->rsk_timer, jiffies + timeo);
731                 return;
732         }
733 drop:
734         inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
735 }
736
737 static void reqsk_queue_hash_req(struct request_sock *req,
738                                  unsigned long timeout)
739 {
740         req->num_retrans = 0;
741         req->num_timeout = 0;
742         req->sk = NULL;
743
744         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
745         mod_timer(&req->rsk_timer, jiffies + timeout);
746
747         inet_ehash_insert(req_to_sk(req), NULL);
748         /* before letting lookups find us, make sure all req fields
749          * are committed to memory and refcnt initialized.
750          */
751         smp_wmb();
752         refcount_set(&req->rsk_refcnt, 2 + 1);
753 }
754
755 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
756                                    unsigned long timeout)
757 {
758         reqsk_queue_hash_req(req, timeout);
759         inet_csk_reqsk_queue_added(sk);
760 }
761 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
762
763 /**
764  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
765  *      @sk: the socket to clone
766  *      @req: request_sock
767  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
768  *
769  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
770  */
771 struct sock *inet_csk_clone_lock(const struct sock *sk,
772                                  const struct request_sock *req,
773                                  const gfp_t priority)
774 {
775         struct sock *newsk = sk_clone_lock(sk, priority);
776
777         if (newsk) {
778                 struct inet_connection_sock *newicsk = inet_csk(newsk);
779
780                 inet_sk_set_state(newsk, TCP_SYN_RECV);
781                 newicsk->icsk_bind_hash = NULL;
782
783                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
784                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
785                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
786
787                 /* listeners have SOCK_RCU_FREE, not the children */
788                 sock_reset_flag(newsk, SOCK_RCU_FREE);
789
790                 inet_sk(newsk)->mc_list = NULL;
791
792                 newsk->sk_mark = inet_rsk(req)->ir_mark;
793                 atomic64_set(&newsk->sk_cookie,
794                              atomic64_read(&inet_rsk(req)->ir_cookie));
795
796                 newicsk->icsk_retransmits = 0;
797                 newicsk->icsk_backoff     = 0;
798                 newicsk->icsk_probes_out  = 0;
799
800                 /* Deinitialize accept_queue to trap illegal accesses. */
801                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
802
803                 security_inet_csk_clone(newsk, req);
804         }
805         return newsk;
806 }
807 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
808
809 /*
810  * At this point, there should be no process reference to this
811  * socket, and thus no user references at all.  Therefore we
812  * can assume the socket waitqueue is inactive and nobody will
813  * try to jump onto it.
814  */
815 void inet_csk_destroy_sock(struct sock *sk)
816 {
817         WARN_ON(sk->sk_state != TCP_CLOSE);
818         WARN_ON(!sock_flag(sk, SOCK_DEAD));
819
820         /* It cannot be in hash table! */
821         WARN_ON(!sk_unhashed(sk));
822
823         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
824         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
825
826         sk->sk_prot->destroy(sk);
827
828         sk_stream_kill_queues(sk);
829
830         xfrm_sk_free_policy(sk);
831
832         sk_refcnt_debug_release(sk);
833
834         percpu_counter_dec(sk->sk_prot->orphan_count);
835
836         sock_put(sk);
837 }
838 EXPORT_SYMBOL(inet_csk_destroy_sock);
839
840 /* This function allows to force a closure of a socket after the call to
841  * tcp/dccp_create_openreq_child().
842  */
843 void inet_csk_prepare_forced_close(struct sock *sk)
844         __releases(&sk->sk_lock.slock)
845 {
846         /* sk_clone_lock locked the socket and set refcnt to 2 */
847         bh_unlock_sock(sk);
848         sock_put(sk);
849
850         /* The below has to be done to allow calling inet_csk_destroy_sock */
851         sock_set_flag(sk, SOCK_DEAD);
852         percpu_counter_inc(sk->sk_prot->orphan_count);
853         inet_sk(sk)->inet_num = 0;
854 }
855 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
856
857 int inet_csk_listen_start(struct sock *sk, int backlog)
858 {
859         struct inet_connection_sock *icsk = inet_csk(sk);
860         struct inet_sock *inet = inet_sk(sk);
861         int err = -EADDRINUSE;
862
863         reqsk_queue_alloc(&icsk->icsk_accept_queue);
864
865         sk->sk_max_ack_backlog = backlog;
866         sk->sk_ack_backlog = 0;
867         inet_csk_delack_init(sk);
868
869         /* There is race window here: we announce ourselves listening,
870          * but this transition is still not validated by get_port().
871          * It is OK, because this socket enters to hash table only
872          * after validation is complete.
873          */
874         inet_sk_state_store(sk, TCP_LISTEN);
875         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
876                 inet->inet_sport = htons(inet->inet_num);
877
878                 sk_dst_reset(sk);
879                 err = sk->sk_prot->hash(sk);
880
881                 if (likely(!err))
882                         return 0;
883         }
884
885         inet_sk_set_state(sk, TCP_CLOSE);
886         return err;
887 }
888 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
889
890 static void inet_child_forget(struct sock *sk, struct request_sock *req,
891                               struct sock *child)
892 {
893         sk->sk_prot->disconnect(child, O_NONBLOCK);
894
895         sock_orphan(child);
896
897         percpu_counter_inc(sk->sk_prot->orphan_count);
898
899         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
900                 BUG_ON(tcp_sk(child)->fastopen_rsk != req);
901                 BUG_ON(sk != req->rsk_listener);
902
903                 /* Paranoid, to prevent race condition if
904                  * an inbound pkt destined for child is
905                  * blocked by sock lock in tcp_v4_rcv().
906                  * Also to satisfy an assertion in
907                  * tcp_v4_destroy_sock().
908                  */
909                 tcp_sk(child)->fastopen_rsk = NULL;
910         }
911         inet_csk_destroy_sock(child);
912 }
913
914 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
915                                       struct request_sock *req,
916                                       struct sock *child)
917 {
918         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
919
920         spin_lock(&queue->rskq_lock);
921         if (unlikely(sk->sk_state != TCP_LISTEN)) {
922                 inet_child_forget(sk, req, child);
923                 child = NULL;
924         } else {
925                 req->sk = child;
926                 req->dl_next = NULL;
927                 if (queue->rskq_accept_head == NULL)
928                         queue->rskq_accept_head = req;
929                 else
930                         queue->rskq_accept_tail->dl_next = req;
931                 queue->rskq_accept_tail = req;
932                 sk_acceptq_added(sk);
933         }
934         spin_unlock(&queue->rskq_lock);
935         return child;
936 }
937 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
938
939 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
940                                          struct request_sock *req, bool own_req)
941 {
942         if (own_req) {
943                 inet_csk_reqsk_queue_drop(sk, req);
944                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
945                 if (inet_csk_reqsk_queue_add(sk, req, child))
946                         return child;
947         }
948         /* Too bad, another child took ownership of the request, undo. */
949         bh_unlock_sock(child);
950         sock_put(child);
951         return NULL;
952 }
953 EXPORT_SYMBOL(inet_csk_complete_hashdance);
954
955 /*
956  *      This routine closes sockets which have been at least partially
957  *      opened, but not yet accepted.
958  */
959 void inet_csk_listen_stop(struct sock *sk)
960 {
961         struct inet_connection_sock *icsk = inet_csk(sk);
962         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
963         struct request_sock *next, *req;
964
965         /* Following specs, it would be better either to send FIN
966          * (and enter FIN-WAIT-1, it is normal close)
967          * or to send active reset (abort).
968          * Certainly, it is pretty dangerous while synflood, but it is
969          * bad justification for our negligence 8)
970          * To be honest, we are not able to make either
971          * of the variants now.                 --ANK
972          */
973         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
974                 struct sock *child = req->sk;
975
976                 local_bh_disable();
977                 bh_lock_sock(child);
978                 WARN_ON(sock_owned_by_user(child));
979                 sock_hold(child);
980
981                 inet_child_forget(sk, req, child);
982                 reqsk_put(req);
983                 bh_unlock_sock(child);
984                 local_bh_enable();
985                 sock_put(child);
986
987                 cond_resched();
988         }
989         if (queue->fastopenq.rskq_rst_head) {
990                 /* Free all the reqs queued in rskq_rst_head. */
991                 spin_lock_bh(&queue->fastopenq.lock);
992                 req = queue->fastopenq.rskq_rst_head;
993                 queue->fastopenq.rskq_rst_head = NULL;
994                 spin_unlock_bh(&queue->fastopenq.lock);
995                 while (req != NULL) {
996                         next = req->dl_next;
997                         reqsk_put(req);
998                         req = next;
999                 }
1000         }
1001         WARN_ON_ONCE(sk->sk_ack_backlog);
1002 }
1003 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1004
1005 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1006 {
1007         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1008         const struct inet_sock *inet = inet_sk(sk);
1009
1010         sin->sin_family         = AF_INET;
1011         sin->sin_addr.s_addr    = inet->inet_daddr;
1012         sin->sin_port           = inet->inet_dport;
1013 }
1014 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1015
1016 #ifdef CONFIG_COMPAT
1017 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1018                                char __user *optval, int __user *optlen)
1019 {
1020         const struct inet_connection_sock *icsk = inet_csk(sk);
1021
1022         if (icsk->icsk_af_ops->compat_getsockopt)
1023                 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1024                                                             optval, optlen);
1025         return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1026                                              optval, optlen);
1027 }
1028 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1029
1030 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1031                                char __user *optval, unsigned int optlen)
1032 {
1033         const struct inet_connection_sock *icsk = inet_csk(sk);
1034
1035         if (icsk->icsk_af_ops->compat_setsockopt)
1036                 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1037                                                             optval, optlen);
1038         return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1039                                              optval, optlen);
1040 }
1041 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1042 #endif
1043
1044 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1045 {
1046         const struct inet_sock *inet = inet_sk(sk);
1047         const struct ip_options_rcu *inet_opt;
1048         __be32 daddr = inet->inet_daddr;
1049         struct flowi4 *fl4;
1050         struct rtable *rt;
1051
1052         rcu_read_lock();
1053         inet_opt = rcu_dereference(inet->inet_opt);
1054         if (inet_opt && inet_opt->opt.srr)
1055                 daddr = inet_opt->opt.faddr;
1056         fl4 = &fl->u.ip4;
1057         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1058                                    inet->inet_saddr, inet->inet_dport,
1059                                    inet->inet_sport, sk->sk_protocol,
1060                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1061         if (IS_ERR(rt))
1062                 rt = NULL;
1063         if (rt)
1064                 sk_setup_caps(sk, &rt->dst);
1065         rcu_read_unlock();
1066
1067         return &rt->dst;
1068 }
1069
1070 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1071 {
1072         struct dst_entry *dst = __sk_dst_check(sk, 0);
1073         struct inet_sock *inet = inet_sk(sk);
1074
1075         if (!dst) {
1076                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1077                 if (!dst)
1078                         goto out;
1079         }
1080         dst->ops->update_pmtu(dst, sk, NULL, mtu);
1081
1082         dst = __sk_dst_check(sk, 0);
1083         if (!dst)
1084                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1085 out:
1086         return dst;
1087 }
1088 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);