fuse: fix warning in tree_insert() and clean up writepage insertion
[linux-2.6-microblaze.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *                              if IPv6 only, and any IPv4 addresses
29  *                              if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *                              and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35                                  const struct in6_addr *sk2_rcv_saddr6,
36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37                                  bool sk1_ipv6only, bool sk2_ipv6only,
38                                  bool match_sk1_wildcard,
39                                  bool match_sk2_wildcard)
40 {
41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44         /* if both are mapped, treat as IPv4 */
45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46                 if (!sk2_ipv6only) {
47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
48                                 return true;
49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
51                 }
52                 return false;
53         }
54
55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56                 return true;
57
58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60                 return true;
61
62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (sk2_rcv_saddr6 &&
67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68                 return true;
69
70         return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *                              0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
80                                  bool match_sk2_wildcard)
81 {
82         if (!sk2_ipv6only) {
83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
84                         return true;
85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86                         (match_sk2_wildcard && !sk2_rcv_saddr);
87         }
88         return false;
89 }
90
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92                           bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95         if (sk->sk_family == AF_INET6)
96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97                                             inet6_rcv_saddr(sk2),
98                                             sk->sk_rcv_saddr,
99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119
120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122         unsigned int seq;
123
124         do {
125                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127                 *low = net->ipv4.ip_local_ports.range[0];
128                 *high = net->ipv4.ip_local_ports.range[1];
129         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
133 static int inet_csk_bind_conflict(const struct sock *sk,
134                                   const struct inet_bind_bucket *tb,
135                                   bool relax, bool reuseport_ok)
136 {
137         struct sock *sk2;
138         bool reuse = sk->sk_reuse;
139         bool reuseport = !!sk->sk_reuseport;
140         kuid_t uid = sock_i_uid((struct sock *)sk);
141
142         /*
143          * Unlike other sk lookup places we do not check
144          * for sk_net here, since _all_ the socks listed
145          * in tb->owners list belong to the same net - the
146          * one this bucket belongs to.
147          */
148
149         sk_for_each_bound(sk2, &tb->owners) {
150                 if (sk != sk2 &&
151                     (!sk->sk_bound_dev_if ||
152                      !sk2->sk_bound_dev_if ||
153                      sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
154                         if (reuse && sk2->sk_reuse &&
155                             sk2->sk_state != TCP_LISTEN) {
156                                 if ((!relax ||
157                                      (!reuseport_ok &&
158                                       reuseport && sk2->sk_reuseport &&
159                                       !rcu_access_pointer(sk->sk_reuseport_cb) &&
160                                       (sk2->sk_state == TCP_TIME_WAIT ||
161                                        uid_eq(uid, sock_i_uid(sk2))))) &&
162                                     inet_rcv_saddr_equal(sk, sk2, true))
163                                         break;
164                         } else if (!reuseport_ok ||
165                                    !reuseport || !sk2->sk_reuseport ||
166                                    rcu_access_pointer(sk->sk_reuseport_cb) ||
167                                    (sk2->sk_state != TCP_TIME_WAIT &&
168                                     !uid_eq(uid, sock_i_uid(sk2)))) {
169                                 if (inet_rcv_saddr_equal(sk, sk2, true))
170                                         break;
171                         }
172                 }
173         }
174         return sk2 != NULL;
175 }
176
177 /*
178  * Find an open port number for the socket.  Returns with the
179  * inet_bind_hashbucket lock held.
180  */
181 static struct inet_bind_hashbucket *
182 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
183 {
184         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
185         int port = 0;
186         struct inet_bind_hashbucket *head;
187         struct net *net = sock_net(sk);
188         bool relax = false;
189         int i, low, high, attempt_half;
190         struct inet_bind_bucket *tb;
191         u32 remaining, offset;
192         int l3mdev;
193
194         l3mdev = inet_sk_bound_l3mdev(sk);
195 ports_exhausted:
196         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
197 other_half_scan:
198         inet_get_local_port_range(net, &low, &high);
199         high++; /* [32768, 60999] -> [32768, 61000[ */
200         if (high - low < 4)
201                 attempt_half = 0;
202         if (attempt_half) {
203                 int half = low + (((high - low) >> 2) << 1);
204
205                 if (attempt_half == 1)
206                         high = half;
207                 else
208                         low = half;
209         }
210         remaining = high - low;
211         if (likely(remaining > 1))
212                 remaining &= ~1U;
213
214         offset = prandom_u32() % remaining;
215         /* __inet_hash_connect() favors ports having @low parity
216          * We do the opposite to not pollute connect() users.
217          */
218         offset |= 1U;
219
220 other_parity_scan:
221         port = low + offset;
222         for (i = 0; i < remaining; i += 2, port += 2) {
223                 if (unlikely(port >= high))
224                         port -= remaining;
225                 if (inet_is_local_reserved_port(net, port))
226                         continue;
227                 head = &hinfo->bhash[inet_bhashfn(net, port,
228                                                   hinfo->bhash_size)];
229                 spin_lock_bh(&head->lock);
230                 inet_bind_bucket_for_each(tb, &head->chain)
231                         if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
232                             tb->port == port) {
233                                 if (!inet_csk_bind_conflict(sk, tb, relax, false))
234                                         goto success;
235                                 goto next_port;
236                         }
237                 tb = NULL;
238                 goto success;
239 next_port:
240                 spin_unlock_bh(&head->lock);
241                 cond_resched();
242         }
243
244         offset--;
245         if (!(offset & 1))
246                 goto other_parity_scan;
247
248         if (attempt_half == 1) {
249                 /* OK we now try the upper half of the range */
250                 attempt_half = 2;
251                 goto other_half_scan;
252         }
253
254         if (net->ipv4.sysctl_ip_autobind_reuse && !relax) {
255                 /* We still have a chance to connect to different destinations */
256                 relax = true;
257                 goto ports_exhausted;
258         }
259         return NULL;
260 success:
261         *port_ret = port;
262         *tb_ret = tb;
263         return head;
264 }
265
266 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
267                                      struct sock *sk)
268 {
269         kuid_t uid = sock_i_uid(sk);
270
271         if (tb->fastreuseport <= 0)
272                 return 0;
273         if (!sk->sk_reuseport)
274                 return 0;
275         if (rcu_access_pointer(sk->sk_reuseport_cb))
276                 return 0;
277         if (!uid_eq(tb->fastuid, uid))
278                 return 0;
279         /* We only need to check the rcv_saddr if this tb was once marked
280          * without fastreuseport and then was reset, as we can only know that
281          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
282          * owners list.
283          */
284         if (tb->fastreuseport == FASTREUSEPORT_ANY)
285                 return 1;
286 #if IS_ENABLED(CONFIG_IPV6)
287         if (tb->fast_sk_family == AF_INET6)
288                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
289                                             inet6_rcv_saddr(sk),
290                                             tb->fast_rcv_saddr,
291                                             sk->sk_rcv_saddr,
292                                             tb->fast_ipv6_only,
293                                             ipv6_only_sock(sk), true, false);
294 #endif
295         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
296                                     ipv6_only_sock(sk), true, false);
297 }
298
299 /* Obtain a reference to a local port for the given sock,
300  * if snum is zero it means select any available local port.
301  * We try to allocate an odd port (and leave even ports for connect())
302  */
303 int inet_csk_get_port(struct sock *sk, unsigned short snum)
304 {
305         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
306         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
307         int ret = 1, port = snum;
308         struct inet_bind_hashbucket *head;
309         struct net *net = sock_net(sk);
310         struct inet_bind_bucket *tb = NULL;
311         kuid_t uid = sock_i_uid(sk);
312         int l3mdev;
313
314         l3mdev = inet_sk_bound_l3mdev(sk);
315
316         if (!port) {
317                 head = inet_csk_find_open_port(sk, &tb, &port);
318                 if (!head)
319                         return ret;
320                 if (!tb)
321                         goto tb_not_found;
322                 goto success;
323         }
324         head = &hinfo->bhash[inet_bhashfn(net, port,
325                                           hinfo->bhash_size)];
326         spin_lock_bh(&head->lock);
327         inet_bind_bucket_for_each(tb, &head->chain)
328                 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
329                     tb->port == port)
330                         goto tb_found;
331 tb_not_found:
332         tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
333                                      net, head, port, l3mdev);
334         if (!tb)
335                 goto fail_unlock;
336 tb_found:
337         if (!hlist_empty(&tb->owners)) {
338                 if (sk->sk_reuse == SK_FORCE_REUSE)
339                         goto success;
340
341                 if ((tb->fastreuse > 0 && reuse) ||
342                     sk_reuseport_match(tb, sk))
343                         goto success;
344                 if (inet_csk_bind_conflict(sk, tb, true, true))
345                         goto fail_unlock;
346         }
347 success:
348         if (hlist_empty(&tb->owners)) {
349                 tb->fastreuse = reuse;
350                 if (sk->sk_reuseport) {
351                         tb->fastreuseport = FASTREUSEPORT_ANY;
352                         tb->fastuid = uid;
353                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
354                         tb->fast_ipv6_only = ipv6_only_sock(sk);
355                         tb->fast_sk_family = sk->sk_family;
356 #if IS_ENABLED(CONFIG_IPV6)
357                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
358 #endif
359                 } else {
360                         tb->fastreuseport = 0;
361                 }
362         } else {
363                 if (!reuse)
364                         tb->fastreuse = 0;
365                 if (sk->sk_reuseport) {
366                         /* We didn't match or we don't have fastreuseport set on
367                          * the tb, but we have sk_reuseport set on this socket
368                          * and we know that there are no bind conflicts with
369                          * this socket in this tb, so reset our tb's reuseport
370                          * settings so that any subsequent sockets that match
371                          * our current socket will be put on the fast path.
372                          *
373                          * If we reset we need to set FASTREUSEPORT_STRICT so we
374                          * do extra checking for all subsequent sk_reuseport
375                          * socks.
376                          */
377                         if (!sk_reuseport_match(tb, sk)) {
378                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
379                                 tb->fastuid = uid;
380                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
381                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
382                                 tb->fast_sk_family = sk->sk_family;
383 #if IS_ENABLED(CONFIG_IPV6)
384                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
385 #endif
386                         }
387                 } else {
388                         tb->fastreuseport = 0;
389                 }
390         }
391         if (!inet_csk(sk)->icsk_bind_hash)
392                 inet_bind_hash(sk, tb, port);
393         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
394         ret = 0;
395
396 fail_unlock:
397         spin_unlock_bh(&head->lock);
398         return ret;
399 }
400 EXPORT_SYMBOL_GPL(inet_csk_get_port);
401
402 /*
403  * Wait for an incoming connection, avoid race conditions. This must be called
404  * with the socket locked.
405  */
406 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
407 {
408         struct inet_connection_sock *icsk = inet_csk(sk);
409         DEFINE_WAIT(wait);
410         int err;
411
412         /*
413          * True wake-one mechanism for incoming connections: only
414          * one process gets woken up, not the 'whole herd'.
415          * Since we do not 'race & poll' for established sockets
416          * anymore, the common case will execute the loop only once.
417          *
418          * Subtle issue: "add_wait_queue_exclusive()" will be added
419          * after any current non-exclusive waiters, and we know that
420          * it will always _stay_ after any new non-exclusive waiters
421          * because all non-exclusive waiters are added at the
422          * beginning of the wait-queue. As such, it's ok to "drop"
423          * our exclusiveness temporarily when we get woken up without
424          * having to remove and re-insert us on the wait queue.
425          */
426         for (;;) {
427                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
428                                           TASK_INTERRUPTIBLE);
429                 release_sock(sk);
430                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
431                         timeo = schedule_timeout(timeo);
432                 sched_annotate_sleep();
433                 lock_sock(sk);
434                 err = 0;
435                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
436                         break;
437                 err = -EINVAL;
438                 if (sk->sk_state != TCP_LISTEN)
439                         break;
440                 err = sock_intr_errno(timeo);
441                 if (signal_pending(current))
442                         break;
443                 err = -EAGAIN;
444                 if (!timeo)
445                         break;
446         }
447         finish_wait(sk_sleep(sk), &wait);
448         return err;
449 }
450
451 /*
452  * This will accept the next outstanding connection.
453  */
454 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
455 {
456         struct inet_connection_sock *icsk = inet_csk(sk);
457         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
458         struct request_sock *req;
459         struct sock *newsk;
460         int error;
461
462         lock_sock(sk);
463
464         /* We need to make sure that this socket is listening,
465          * and that it has something pending.
466          */
467         error = -EINVAL;
468         if (sk->sk_state != TCP_LISTEN)
469                 goto out_err;
470
471         /* Find already established connection */
472         if (reqsk_queue_empty(queue)) {
473                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
474
475                 /* If this is a non blocking socket don't sleep */
476                 error = -EAGAIN;
477                 if (!timeo)
478                         goto out_err;
479
480                 error = inet_csk_wait_for_connect(sk, timeo);
481                 if (error)
482                         goto out_err;
483         }
484         req = reqsk_queue_remove(queue, sk);
485         newsk = req->sk;
486
487         if (sk->sk_protocol == IPPROTO_TCP &&
488             tcp_rsk(req)->tfo_listener) {
489                 spin_lock_bh(&queue->fastopenq.lock);
490                 if (tcp_rsk(req)->tfo_listener) {
491                         /* We are still waiting for the final ACK from 3WHS
492                          * so can't free req now. Instead, we set req->sk to
493                          * NULL to signify that the child socket is taken
494                          * so reqsk_fastopen_remove() will free the req
495                          * when 3WHS finishes (or is aborted).
496                          */
497                         req->sk = NULL;
498                         req = NULL;
499                 }
500                 spin_unlock_bh(&queue->fastopenq.lock);
501         }
502
503 out:
504         release_sock(sk);
505         if (newsk && mem_cgroup_sockets_enabled) {
506                 int amt;
507
508                 /* atomically get the memory usage, set and charge the
509                  * newsk->sk_memcg.
510                  */
511                 lock_sock(newsk);
512
513                 /* The socket has not been accepted yet, no need to look at
514                  * newsk->sk_wmem_queued.
515                  */
516                 amt = sk_mem_pages(newsk->sk_forward_alloc +
517                                    atomic_read(&newsk->sk_rmem_alloc));
518                 mem_cgroup_sk_alloc(newsk);
519                 if (newsk->sk_memcg && amt)
520                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
521
522                 release_sock(newsk);
523         }
524         if (req)
525                 reqsk_put(req);
526         return newsk;
527 out_err:
528         newsk = NULL;
529         req = NULL;
530         *err = error;
531         goto out;
532 }
533 EXPORT_SYMBOL(inet_csk_accept);
534
535 /*
536  * Using different timers for retransmit, delayed acks and probes
537  * We may wish use just one timer maintaining a list of expire jiffies
538  * to optimize.
539  */
540 void inet_csk_init_xmit_timers(struct sock *sk,
541                                void (*retransmit_handler)(struct timer_list *t),
542                                void (*delack_handler)(struct timer_list *t),
543                                void (*keepalive_handler)(struct timer_list *t))
544 {
545         struct inet_connection_sock *icsk = inet_csk(sk);
546
547         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
548         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
549         timer_setup(&sk->sk_timer, keepalive_handler, 0);
550         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
551 }
552 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
553
554 void inet_csk_clear_xmit_timers(struct sock *sk)
555 {
556         struct inet_connection_sock *icsk = inet_csk(sk);
557
558         icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
559
560         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
561         sk_stop_timer(sk, &icsk->icsk_delack_timer);
562         sk_stop_timer(sk, &sk->sk_timer);
563 }
564 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
565
566 void inet_csk_delete_keepalive_timer(struct sock *sk)
567 {
568         sk_stop_timer(sk, &sk->sk_timer);
569 }
570 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
571
572 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
573 {
574         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
575 }
576 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
577
578 struct dst_entry *inet_csk_route_req(const struct sock *sk,
579                                      struct flowi4 *fl4,
580                                      const struct request_sock *req)
581 {
582         const struct inet_request_sock *ireq = inet_rsk(req);
583         struct net *net = read_pnet(&ireq->ireq_net);
584         struct ip_options_rcu *opt;
585         struct rtable *rt;
586
587         rcu_read_lock();
588         opt = rcu_dereference(ireq->ireq_opt);
589
590         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
591                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
592                            sk->sk_protocol, inet_sk_flowi_flags(sk),
593                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
594                            ireq->ir_loc_addr, ireq->ir_rmt_port,
595                            htons(ireq->ir_num), sk->sk_uid);
596         security_req_classify_flow(req, flowi4_to_flowi(fl4));
597         rt = ip_route_output_flow(net, fl4, sk);
598         if (IS_ERR(rt))
599                 goto no_route;
600         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
601                 goto route_err;
602         rcu_read_unlock();
603         return &rt->dst;
604
605 route_err:
606         ip_rt_put(rt);
607 no_route:
608         rcu_read_unlock();
609         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
610         return NULL;
611 }
612 EXPORT_SYMBOL_GPL(inet_csk_route_req);
613
614 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
615                                             struct sock *newsk,
616                                             const struct request_sock *req)
617 {
618         const struct inet_request_sock *ireq = inet_rsk(req);
619         struct net *net = read_pnet(&ireq->ireq_net);
620         struct inet_sock *newinet = inet_sk(newsk);
621         struct ip_options_rcu *opt;
622         struct flowi4 *fl4;
623         struct rtable *rt;
624
625         opt = rcu_dereference(ireq->ireq_opt);
626         fl4 = &newinet->cork.fl.u.ip4;
627
628         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
629                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
630                            sk->sk_protocol, inet_sk_flowi_flags(sk),
631                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
632                            ireq->ir_loc_addr, ireq->ir_rmt_port,
633                            htons(ireq->ir_num), sk->sk_uid);
634         security_req_classify_flow(req, flowi4_to_flowi(fl4));
635         rt = ip_route_output_flow(net, fl4, sk);
636         if (IS_ERR(rt))
637                 goto no_route;
638         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
639                 goto route_err;
640         return &rt->dst;
641
642 route_err:
643         ip_rt_put(rt);
644 no_route:
645         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
646         return NULL;
647 }
648 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
649
650 /* Decide when to expire the request and when to resend SYN-ACK */
651 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
652                                   const int max_retries,
653                                   const u8 rskq_defer_accept,
654                                   int *expire, int *resend)
655 {
656         if (!rskq_defer_accept) {
657                 *expire = req->num_timeout >= thresh;
658                 *resend = 1;
659                 return;
660         }
661         *expire = req->num_timeout >= thresh &&
662                   (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
663         /*
664          * Do not resend while waiting for data after ACK,
665          * start to resend on end of deferring period to give
666          * last chance for data or ACK to create established socket.
667          */
668         *resend = !inet_rsk(req)->acked ||
669                   req->num_timeout >= rskq_defer_accept - 1;
670 }
671
672 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
673 {
674         int err = req->rsk_ops->rtx_syn_ack(parent, req);
675
676         if (!err)
677                 req->num_retrans++;
678         return err;
679 }
680 EXPORT_SYMBOL(inet_rtx_syn_ack);
681
682 /* return true if req was found in the ehash table */
683 static bool reqsk_queue_unlink(struct request_sock *req)
684 {
685         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
686         bool found = false;
687
688         if (sk_hashed(req_to_sk(req))) {
689                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
690
691                 spin_lock(lock);
692                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
693                 spin_unlock(lock);
694         }
695         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
696                 reqsk_put(req);
697         return found;
698 }
699
700 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
701 {
702         if (reqsk_queue_unlink(req)) {
703                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
704                 reqsk_put(req);
705         }
706 }
707 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
708
709 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
710 {
711         inet_csk_reqsk_queue_drop(sk, req);
712         reqsk_put(req);
713 }
714 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
715
716 static void reqsk_timer_handler(struct timer_list *t)
717 {
718         struct request_sock *req = from_timer(req, t, rsk_timer);
719         struct sock *sk_listener = req->rsk_listener;
720         struct net *net = sock_net(sk_listener);
721         struct inet_connection_sock *icsk = inet_csk(sk_listener);
722         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
723         int qlen, expire = 0, resend = 0;
724         int max_retries, thresh;
725         u8 defer_accept;
726
727         if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
728                 goto drop;
729
730         max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
731         thresh = max_retries;
732         /* Normally all the openreqs are young and become mature
733          * (i.e. converted to established socket) for first timeout.
734          * If synack was not acknowledged for 1 second, it means
735          * one of the following things: synack was lost, ack was lost,
736          * rtt is high or nobody planned to ack (i.e. synflood).
737          * When server is a bit loaded, queue is populated with old
738          * open requests, reducing effective size of queue.
739          * When server is well loaded, queue size reduces to zero
740          * after several minutes of work. It is not synflood,
741          * it is normal operation. The solution is pruning
742          * too old entries overriding normal timeout, when
743          * situation becomes dangerous.
744          *
745          * Essentially, we reserve half of room for young
746          * embrions; and abort old ones without pity, if old
747          * ones are about to clog our table.
748          */
749         qlen = reqsk_queue_len(queue);
750         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
751                 int young = reqsk_queue_len_young(queue) << 1;
752
753                 while (thresh > 2) {
754                         if (qlen < young)
755                                 break;
756                         thresh--;
757                         young <<= 1;
758                 }
759         }
760         defer_accept = READ_ONCE(queue->rskq_defer_accept);
761         if (defer_accept)
762                 max_retries = defer_accept;
763         syn_ack_recalc(req, thresh, max_retries, defer_accept,
764                        &expire, &resend);
765         req->rsk_ops->syn_ack_timeout(req);
766         if (!expire &&
767             (!resend ||
768              !inet_rtx_syn_ack(sk_listener, req) ||
769              inet_rsk(req)->acked)) {
770                 unsigned long timeo;
771
772                 if (req->num_timeout++ == 0)
773                         atomic_dec(&queue->young);
774                 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
775                 mod_timer(&req->rsk_timer, jiffies + timeo);
776                 return;
777         }
778 drop:
779         inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
780 }
781
782 static void reqsk_queue_hash_req(struct request_sock *req,
783                                  unsigned long timeout)
784 {
785         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
786         mod_timer(&req->rsk_timer, jiffies + timeout);
787
788         inet_ehash_insert(req_to_sk(req), NULL);
789         /* before letting lookups find us, make sure all req fields
790          * are committed to memory and refcnt initialized.
791          */
792         smp_wmb();
793         refcount_set(&req->rsk_refcnt, 2 + 1);
794 }
795
796 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
797                                    unsigned long timeout)
798 {
799         reqsk_queue_hash_req(req, timeout);
800         inet_csk_reqsk_queue_added(sk);
801 }
802 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
803
804 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
805                            const gfp_t priority)
806 {
807         struct inet_connection_sock *icsk = inet_csk(newsk);
808
809         if (!icsk->icsk_ulp_ops)
810                 return;
811
812         if (icsk->icsk_ulp_ops->clone)
813                 icsk->icsk_ulp_ops->clone(req, newsk, priority);
814 }
815
816 /**
817  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
818  *      @sk: the socket to clone
819  *      @req: request_sock
820  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
821  *
822  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
823  */
824 struct sock *inet_csk_clone_lock(const struct sock *sk,
825                                  const struct request_sock *req,
826                                  const gfp_t priority)
827 {
828         struct sock *newsk = sk_clone_lock(sk, priority);
829
830         if (newsk) {
831                 struct inet_connection_sock *newicsk = inet_csk(newsk);
832
833                 inet_sk_set_state(newsk, TCP_SYN_RECV);
834                 newicsk->icsk_bind_hash = NULL;
835
836                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
837                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
838                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
839
840                 /* listeners have SOCK_RCU_FREE, not the children */
841                 sock_reset_flag(newsk, SOCK_RCU_FREE);
842
843                 inet_sk(newsk)->mc_list = NULL;
844
845                 newsk->sk_mark = inet_rsk(req)->ir_mark;
846                 atomic64_set(&newsk->sk_cookie,
847                              atomic64_read(&inet_rsk(req)->ir_cookie));
848
849                 newicsk->icsk_retransmits = 0;
850                 newicsk->icsk_backoff     = 0;
851                 newicsk->icsk_probes_out  = 0;
852
853                 /* Deinitialize accept_queue to trap illegal accesses. */
854                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
855
856                 inet_clone_ulp(req, newsk, priority);
857
858                 security_inet_csk_clone(newsk, req);
859         }
860         return newsk;
861 }
862 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
863
864 /*
865  * At this point, there should be no process reference to this
866  * socket, and thus no user references at all.  Therefore we
867  * can assume the socket waitqueue is inactive and nobody will
868  * try to jump onto it.
869  */
870 void inet_csk_destroy_sock(struct sock *sk)
871 {
872         WARN_ON(sk->sk_state != TCP_CLOSE);
873         WARN_ON(!sock_flag(sk, SOCK_DEAD));
874
875         /* It cannot be in hash table! */
876         WARN_ON(!sk_unhashed(sk));
877
878         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
879         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
880
881         sk->sk_prot->destroy(sk);
882
883         sk_stream_kill_queues(sk);
884
885         xfrm_sk_free_policy(sk);
886
887         sk_refcnt_debug_release(sk);
888
889         percpu_counter_dec(sk->sk_prot->orphan_count);
890
891         sock_put(sk);
892 }
893 EXPORT_SYMBOL(inet_csk_destroy_sock);
894
895 /* This function allows to force a closure of a socket after the call to
896  * tcp/dccp_create_openreq_child().
897  */
898 void inet_csk_prepare_forced_close(struct sock *sk)
899         __releases(&sk->sk_lock.slock)
900 {
901         /* sk_clone_lock locked the socket and set refcnt to 2 */
902         bh_unlock_sock(sk);
903         sock_put(sk);
904         inet_csk_prepare_for_destroy_sock(sk);
905         inet_sk(sk)->inet_num = 0;
906 }
907 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
908
909 int inet_csk_listen_start(struct sock *sk, int backlog)
910 {
911         struct inet_connection_sock *icsk = inet_csk(sk);
912         struct inet_sock *inet = inet_sk(sk);
913         int err = -EADDRINUSE;
914
915         reqsk_queue_alloc(&icsk->icsk_accept_queue);
916
917         sk->sk_ack_backlog = 0;
918         inet_csk_delack_init(sk);
919
920         /* There is race window here: we announce ourselves listening,
921          * but this transition is still not validated by get_port().
922          * It is OK, because this socket enters to hash table only
923          * after validation is complete.
924          */
925         inet_sk_state_store(sk, TCP_LISTEN);
926         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
927                 inet->inet_sport = htons(inet->inet_num);
928
929                 sk_dst_reset(sk);
930                 err = sk->sk_prot->hash(sk);
931
932                 if (likely(!err))
933                         return 0;
934         }
935
936         inet_sk_set_state(sk, TCP_CLOSE);
937         return err;
938 }
939 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
940
941 static void inet_child_forget(struct sock *sk, struct request_sock *req,
942                               struct sock *child)
943 {
944         sk->sk_prot->disconnect(child, O_NONBLOCK);
945
946         sock_orphan(child);
947
948         percpu_counter_inc(sk->sk_prot->orphan_count);
949
950         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
951                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
952                 BUG_ON(sk != req->rsk_listener);
953
954                 /* Paranoid, to prevent race condition if
955                  * an inbound pkt destined for child is
956                  * blocked by sock lock in tcp_v4_rcv().
957                  * Also to satisfy an assertion in
958                  * tcp_v4_destroy_sock().
959                  */
960                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
961         }
962         inet_csk_destroy_sock(child);
963 }
964
965 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
966                                       struct request_sock *req,
967                                       struct sock *child)
968 {
969         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
970
971         spin_lock(&queue->rskq_lock);
972         if (unlikely(sk->sk_state != TCP_LISTEN)) {
973                 inet_child_forget(sk, req, child);
974                 child = NULL;
975         } else {
976                 req->sk = child;
977                 req->dl_next = NULL;
978                 if (queue->rskq_accept_head == NULL)
979                         WRITE_ONCE(queue->rskq_accept_head, req);
980                 else
981                         queue->rskq_accept_tail->dl_next = req;
982                 queue->rskq_accept_tail = req;
983                 sk_acceptq_added(sk);
984         }
985         spin_unlock(&queue->rskq_lock);
986         return child;
987 }
988 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
989
990 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
991                                          struct request_sock *req, bool own_req)
992 {
993         if (own_req) {
994                 inet_csk_reqsk_queue_drop(sk, req);
995                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
996                 if (inet_csk_reqsk_queue_add(sk, req, child))
997                         return child;
998         }
999         /* Too bad, another child took ownership of the request, undo. */
1000         bh_unlock_sock(child);
1001         sock_put(child);
1002         return NULL;
1003 }
1004 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1005
1006 /*
1007  *      This routine closes sockets which have been at least partially
1008  *      opened, but not yet accepted.
1009  */
1010 void inet_csk_listen_stop(struct sock *sk)
1011 {
1012         struct inet_connection_sock *icsk = inet_csk(sk);
1013         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1014         struct request_sock *next, *req;
1015
1016         /* Following specs, it would be better either to send FIN
1017          * (and enter FIN-WAIT-1, it is normal close)
1018          * or to send active reset (abort).
1019          * Certainly, it is pretty dangerous while synflood, but it is
1020          * bad justification for our negligence 8)
1021          * To be honest, we are not able to make either
1022          * of the variants now.                 --ANK
1023          */
1024         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1025                 struct sock *child = req->sk;
1026
1027                 local_bh_disable();
1028                 bh_lock_sock(child);
1029                 WARN_ON(sock_owned_by_user(child));
1030                 sock_hold(child);
1031
1032                 inet_child_forget(sk, req, child);
1033                 reqsk_put(req);
1034                 bh_unlock_sock(child);
1035                 local_bh_enable();
1036                 sock_put(child);
1037
1038                 cond_resched();
1039         }
1040         if (queue->fastopenq.rskq_rst_head) {
1041                 /* Free all the reqs queued in rskq_rst_head. */
1042                 spin_lock_bh(&queue->fastopenq.lock);
1043                 req = queue->fastopenq.rskq_rst_head;
1044                 queue->fastopenq.rskq_rst_head = NULL;
1045                 spin_unlock_bh(&queue->fastopenq.lock);
1046                 while (req != NULL) {
1047                         next = req->dl_next;
1048                         reqsk_put(req);
1049                         req = next;
1050                 }
1051         }
1052         WARN_ON_ONCE(sk->sk_ack_backlog);
1053 }
1054 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1055
1056 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1057 {
1058         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1059         const struct inet_sock *inet = inet_sk(sk);
1060
1061         sin->sin_family         = AF_INET;
1062         sin->sin_addr.s_addr    = inet->inet_daddr;
1063         sin->sin_port           = inet->inet_dport;
1064 }
1065 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1066
1067 #ifdef CONFIG_COMPAT
1068 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1069                                char __user *optval, int __user *optlen)
1070 {
1071         const struct inet_connection_sock *icsk = inet_csk(sk);
1072
1073         if (icsk->icsk_af_ops->compat_getsockopt)
1074                 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1075                                                             optval, optlen);
1076         return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1077                                              optval, optlen);
1078 }
1079 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1080
1081 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1082                                char __user *optval, unsigned int optlen)
1083 {
1084         const struct inet_connection_sock *icsk = inet_csk(sk);
1085
1086         if (icsk->icsk_af_ops->compat_setsockopt)
1087                 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1088                                                             optval, optlen);
1089         return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1090                                              optval, optlen);
1091 }
1092 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1093 #endif
1094
1095 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1096 {
1097         const struct inet_sock *inet = inet_sk(sk);
1098         const struct ip_options_rcu *inet_opt;
1099         __be32 daddr = inet->inet_daddr;
1100         struct flowi4 *fl4;
1101         struct rtable *rt;
1102
1103         rcu_read_lock();
1104         inet_opt = rcu_dereference(inet->inet_opt);
1105         if (inet_opt && inet_opt->opt.srr)
1106                 daddr = inet_opt->opt.faddr;
1107         fl4 = &fl->u.ip4;
1108         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1109                                    inet->inet_saddr, inet->inet_dport,
1110                                    inet->inet_sport, sk->sk_protocol,
1111                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1112         if (IS_ERR(rt))
1113                 rt = NULL;
1114         if (rt)
1115                 sk_setup_caps(sk, &rt->dst);
1116         rcu_read_unlock();
1117
1118         return &rt->dst;
1119 }
1120
1121 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1122 {
1123         struct dst_entry *dst = __sk_dst_check(sk, 0);
1124         struct inet_sock *inet = inet_sk(sk);
1125
1126         if (!dst) {
1127                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1128                 if (!dst)
1129                         goto out;
1130         }
1131         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1132
1133         dst = __sk_dst_check(sk, 0);
1134         if (!dst)
1135                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1136 out:
1137         return dst;
1138 }
1139 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);