vfs: do bulk POLL* -> EPOLL* replacement
[linux-2.6-microblaze.git] / net / core / sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Generic socket support routines. Memory allocators, socket lock/release
7  *              handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *              Alan Cox        :       Numerous verify_area() problems
17  *              Alan Cox        :       Connecting on a connecting socket
18  *                                      now returns an error for tcp.
19  *              Alan Cox        :       sock->protocol is set correctly.
20  *                                      and is not sometimes left as 0.
21  *              Alan Cox        :       connect handles icmp errors on a
22  *                                      connect properly. Unfortunately there
23  *                                      is a restart syscall nasty there. I
24  *                                      can't match BSD without hacking the C
25  *                                      library. Ideas urgently sought!
26  *              Alan Cox        :       Disallow bind() to addresses that are
27  *                                      not ours - especially broadcast ones!!
28  *              Alan Cox        :       Socket 1024 _IS_ ok for users. (fencepost)
29  *              Alan Cox        :       sock_wfree/sock_rfree don't destroy sockets,
30  *                                      instead they leave that for the DESTROY timer.
31  *              Alan Cox        :       Clean up error flag in accept
32  *              Alan Cox        :       TCP ack handling is buggy, the DESTROY timer
33  *                                      was buggy. Put a remove_sock() in the handler
34  *                                      for memory when we hit 0. Also altered the timer
35  *                                      code. The ACK stuff can wait and needs major
36  *                                      TCP layer surgery.
37  *              Alan Cox        :       Fixed TCP ack bug, removed remove sock
38  *                                      and fixed timer/inet_bh race.
39  *              Alan Cox        :       Added zapped flag for TCP
40  *              Alan Cox        :       Move kfree_skb into skbuff.c and tidied up surplus code
41  *              Alan Cox        :       for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *              Alan Cox        :       kfree_s calls now are kfree_skbmem so we can track skb resources
43  *              Alan Cox        :       Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *              Alan Cox        :       Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *              Rick Sladkey    :       Relaxed UDP rules for matching packets.
46  *              C.E.Hawkins     :       IFF_PROMISC/SIOCGHWADDR support
47  *      Pauline Middelink       :       identd support
48  *              Alan Cox        :       Fixed connect() taking signals I think.
49  *              Alan Cox        :       SO_LINGER supported
50  *              Alan Cox        :       Error reporting fixes
51  *              Anonymous       :       inet_create tidied up (sk->reuse setting)
52  *              Alan Cox        :       inet sockets don't set sk->type!
53  *              Alan Cox        :       Split socket option code
54  *              Alan Cox        :       Callbacks
55  *              Alan Cox        :       Nagle flag for Charles & Johannes stuff
56  *              Alex            :       Removed restriction on inet fioctl
57  *              Alan Cox        :       Splitting INET from NET core
58  *              Alan Cox        :       Fixed bogus SO_TYPE handling in getsockopt()
59  *              Adam Caldwell   :       Missing return in SO_DONTROUTE/SO_DEBUG code
60  *              Alan Cox        :       Split IP from generic code
61  *              Alan Cox        :       New kfree_skbmem()
62  *              Alan Cox        :       Make SO_DEBUG superuser only.
63  *              Alan Cox        :       Allow anyone to clear SO_DEBUG
64  *                                      (compatibility fix)
65  *              Alan Cox        :       Added optimistic memory grabbing for AF_UNIX throughput.
66  *              Alan Cox        :       Allocator for a socket is settable.
67  *              Alan Cox        :       SO_ERROR includes soft errors.
68  *              Alan Cox        :       Allow NULL arguments on some SO_ opts
69  *              Alan Cox        :       Generic socket allocation to make hooks
70  *                                      easier (suggested by Craig Metz).
71  *              Michael Pall    :       SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *              Jay Schulist    :       Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *              Andi Kleen      :       Add sock_kmalloc()/sock_kfree_s()
79  *              Andi Kleen      :       Fix write_space callback
80  *              Chris Evans     :       Security fixes - signedness again
81  *              Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *              This program is free software; you can redistribute it and/or
87  *              modify it under the terms of the GNU General Public License
88  *              as published by the Free Software Foundation; either version
89  *              2 of the License, or (at your option) any later version.
90  */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
121
122 #include <linux/uaccess.h>
123
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
136
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
139
140 #include <trace/events/sock.h>
141
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147
148 static void sock_inuse_add(struct net *net, int val);
149
150 /**
151  * sk_ns_capable - General socket capability test
152  * @sk: Socket to use a capability on or through
153  * @user_ns: The user namespace of the capability to use
154  * @cap: The capability to use
155  *
156  * Test to see if the opener of the socket had when the socket was
157  * created and the current process has the capability @cap in the user
158  * namespace @user_ns.
159  */
160 bool sk_ns_capable(const struct sock *sk,
161                    struct user_namespace *user_ns, int cap)
162 {
163         return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164                 ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167
168 /**
169  * sk_capable - Socket global capability test
170  * @sk: Socket to use a capability on or through
171  * @cap: The global capability to use
172  *
173  * Test to see if the opener of the socket had when the socket was
174  * created and the current process has the capability @cap in all user
175  * namespaces.
176  */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179         return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182
183 /**
184  * sk_net_capable - Network namespace socket capability test
185  * @sk: Socket to use a capability on or through
186  * @cap: The capability to use
187  *
188  * Test to see if the opener of the socket had when the socket was created
189  * and the current process has the capability @cap over the network namespace
190  * the socket is a member of.
191  */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194         return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197
198 /*
199  * Each address family might have different locking rules, so we have
200  * one slock key per address family and separate keys for internal and
201  * userspace sockets.
202  */
203 static struct lock_class_key af_family_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_keys[AF_MAX];
205 static struct lock_class_key af_family_slock_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
207
208 /*
209  * Make lock validator output more readable. (we pre-construct these
210  * strings build-time, so that runtime initialization of socket
211  * locks is fast):
212  */
213
214 #define _sock_locks(x)                                            \
215   x "AF_UNSPEC",        x "AF_UNIX"     ,       x "AF_INET"     , \
216   x "AF_AX25"  ,        x "AF_IPX"      ,       x "AF_APPLETALK", \
217   x "AF_NETROM",        x "AF_BRIDGE"   ,       x "AF_ATMPVC"   , \
218   x "AF_X25"   ,        x "AF_INET6"    ,       x "AF_ROSE"     , \
219   x "AF_DECnet",        x "AF_NETBEUI"  ,       x "AF_SECURITY" , \
220   x "AF_KEY"   ,        x "AF_NETLINK"  ,       x "AF_PACKET"   , \
221   x "AF_ASH"   ,        x "AF_ECONET"   ,       x "AF_ATMSVC"   , \
222   x "AF_RDS"   ,        x "AF_SNA"      ,       x "AF_IRDA"     , \
223   x "AF_PPPOX" ,        x "AF_WANPIPE"  ,       x "AF_LLC"      , \
224   x "27"       ,        x "28"          ,       x "AF_CAN"      , \
225   x "AF_TIPC"  ,        x "AF_BLUETOOTH",       x "IUCV"        , \
226   x "AF_RXRPC" ,        x "AF_ISDN"     ,       x "AF_PHONET"   , \
227   x "AF_IEEE802154",    x "AF_CAIF"     ,       x "AF_ALG"      , \
228   x "AF_NFC"   ,        x "AF_VSOCK"    ,       x "AF_KCM"      , \
229   x "AF_QIPCRTR",       x "AF_SMC"      ,       x "AF_MAX"
230
231 static const char *const af_family_key_strings[AF_MAX+1] = {
232         _sock_locks("sk_lock-")
233 };
234 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235         _sock_locks("slock-")
236 };
237 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238         _sock_locks("clock-")
239 };
240
241 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242         _sock_locks("k-sk_lock-")
243 };
244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245         _sock_locks("k-slock-")
246 };
247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248         _sock_locks("k-clock-")
249 };
250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251   "rlock-AF_UNSPEC", "rlock-AF_UNIX"     , "rlock-AF_INET"     ,
252   "rlock-AF_AX25"  , "rlock-AF_IPX"      , "rlock-AF_APPLETALK",
253   "rlock-AF_NETROM", "rlock-AF_BRIDGE"   , "rlock-AF_ATMPVC"   ,
254   "rlock-AF_X25"   , "rlock-AF_INET6"    , "rlock-AF_ROSE"     ,
255   "rlock-AF_DECnet", "rlock-AF_NETBEUI"  , "rlock-AF_SECURITY" ,
256   "rlock-AF_KEY"   , "rlock-AF_NETLINK"  , "rlock-AF_PACKET"   ,
257   "rlock-AF_ASH"   , "rlock-AF_ECONET"   , "rlock-AF_ATMSVC"   ,
258   "rlock-AF_RDS"   , "rlock-AF_SNA"      , "rlock-AF_IRDA"     ,
259   "rlock-AF_PPPOX" , "rlock-AF_WANPIPE"  , "rlock-AF_LLC"      ,
260   "rlock-27"       , "rlock-28"          , "rlock-AF_CAN"      ,
261   "rlock-AF_TIPC"  , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV"     ,
262   "rlock-AF_RXRPC" , "rlock-AF_ISDN"     , "rlock-AF_PHONET"   ,
263   "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG"      ,
264   "rlock-AF_NFC"   , "rlock-AF_VSOCK"    , "rlock-AF_KCM"      ,
265   "rlock-AF_QIPCRTR", "rlock-AF_SMC"     , "rlock-AF_MAX"
266 };
267 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
268   "wlock-AF_UNSPEC", "wlock-AF_UNIX"     , "wlock-AF_INET"     ,
269   "wlock-AF_AX25"  , "wlock-AF_IPX"      , "wlock-AF_APPLETALK",
270   "wlock-AF_NETROM", "wlock-AF_BRIDGE"   , "wlock-AF_ATMPVC"   ,
271   "wlock-AF_X25"   , "wlock-AF_INET6"    , "wlock-AF_ROSE"     ,
272   "wlock-AF_DECnet", "wlock-AF_NETBEUI"  , "wlock-AF_SECURITY" ,
273   "wlock-AF_KEY"   , "wlock-AF_NETLINK"  , "wlock-AF_PACKET"   ,
274   "wlock-AF_ASH"   , "wlock-AF_ECONET"   , "wlock-AF_ATMSVC"   ,
275   "wlock-AF_RDS"   , "wlock-AF_SNA"      , "wlock-AF_IRDA"     ,
276   "wlock-AF_PPPOX" , "wlock-AF_WANPIPE"  , "wlock-AF_LLC"      ,
277   "wlock-27"       , "wlock-28"          , "wlock-AF_CAN"      ,
278   "wlock-AF_TIPC"  , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV"     ,
279   "wlock-AF_RXRPC" , "wlock-AF_ISDN"     , "wlock-AF_PHONET"   ,
280   "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG"      ,
281   "wlock-AF_NFC"   , "wlock-AF_VSOCK"    , "wlock-AF_KCM"      ,
282   "wlock-AF_QIPCRTR", "wlock-AF_SMC"     , "wlock-AF_MAX"
283 };
284 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
285   "elock-AF_UNSPEC", "elock-AF_UNIX"     , "elock-AF_INET"     ,
286   "elock-AF_AX25"  , "elock-AF_IPX"      , "elock-AF_APPLETALK",
287   "elock-AF_NETROM", "elock-AF_BRIDGE"   , "elock-AF_ATMPVC"   ,
288   "elock-AF_X25"   , "elock-AF_INET6"    , "elock-AF_ROSE"     ,
289   "elock-AF_DECnet", "elock-AF_NETBEUI"  , "elock-AF_SECURITY" ,
290   "elock-AF_KEY"   , "elock-AF_NETLINK"  , "elock-AF_PACKET"   ,
291   "elock-AF_ASH"   , "elock-AF_ECONET"   , "elock-AF_ATMSVC"   ,
292   "elock-AF_RDS"   , "elock-AF_SNA"      , "elock-AF_IRDA"     ,
293   "elock-AF_PPPOX" , "elock-AF_WANPIPE"  , "elock-AF_LLC"      ,
294   "elock-27"       , "elock-28"          , "elock-AF_CAN"      ,
295   "elock-AF_TIPC"  , "elock-AF_BLUETOOTH", "elock-AF_IUCV"     ,
296   "elock-AF_RXRPC" , "elock-AF_ISDN"     , "elock-AF_PHONET"   ,
297   "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG"      ,
298   "elock-AF_NFC"   , "elock-AF_VSOCK"    , "elock-AF_KCM"      ,
299   "elock-AF_QIPCRTR", "elock-AF_SMC"     , "elock-AF_MAX"
300 };
301
302 /*
303  * sk_callback_lock and sk queues locking rules are per-address-family,
304  * so split the lock classes by using a per-AF key:
305  */
306 static struct lock_class_key af_callback_keys[AF_MAX];
307 static struct lock_class_key af_rlock_keys[AF_MAX];
308 static struct lock_class_key af_wlock_keys[AF_MAX];
309 static struct lock_class_key af_elock_keys[AF_MAX];
310 static struct lock_class_key af_kern_callback_keys[AF_MAX];
311
312 /* Run time adjustable parameters. */
313 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
314 EXPORT_SYMBOL(sysctl_wmem_max);
315 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
316 EXPORT_SYMBOL(sysctl_rmem_max);
317 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
318 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
319
320 /* Maximal space eaten by iovec or ancillary data plus some space */
321 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
322 EXPORT_SYMBOL(sysctl_optmem_max);
323
324 int sysctl_tstamp_allow_data __read_mostly = 1;
325
326 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
327 EXPORT_SYMBOL_GPL(memalloc_socks);
328
329 /**
330  * sk_set_memalloc - sets %SOCK_MEMALLOC
331  * @sk: socket to set it on
332  *
333  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
334  * It's the responsibility of the admin to adjust min_free_kbytes
335  * to meet the requirements
336  */
337 void sk_set_memalloc(struct sock *sk)
338 {
339         sock_set_flag(sk, SOCK_MEMALLOC);
340         sk->sk_allocation |= __GFP_MEMALLOC;
341         static_key_slow_inc(&memalloc_socks);
342 }
343 EXPORT_SYMBOL_GPL(sk_set_memalloc);
344
345 void sk_clear_memalloc(struct sock *sk)
346 {
347         sock_reset_flag(sk, SOCK_MEMALLOC);
348         sk->sk_allocation &= ~__GFP_MEMALLOC;
349         static_key_slow_dec(&memalloc_socks);
350
351         /*
352          * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
353          * progress of swapping. SOCK_MEMALLOC may be cleared while
354          * it has rmem allocations due to the last swapfile being deactivated
355          * but there is a risk that the socket is unusable due to exceeding
356          * the rmem limits. Reclaim the reserves and obey rmem limits again.
357          */
358         sk_mem_reclaim(sk);
359 }
360 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
361
362 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
363 {
364         int ret;
365         unsigned int noreclaim_flag;
366
367         /* these should have been dropped before queueing */
368         BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
369
370         noreclaim_flag = memalloc_noreclaim_save();
371         ret = sk->sk_backlog_rcv(sk, skb);
372         memalloc_noreclaim_restore(noreclaim_flag);
373
374         return ret;
375 }
376 EXPORT_SYMBOL(__sk_backlog_rcv);
377
378 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
379 {
380         struct timeval tv;
381
382         if (optlen < sizeof(tv))
383                 return -EINVAL;
384         if (copy_from_user(&tv, optval, sizeof(tv)))
385                 return -EFAULT;
386         if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
387                 return -EDOM;
388
389         if (tv.tv_sec < 0) {
390                 static int warned __read_mostly;
391
392                 *timeo_p = 0;
393                 if (warned < 10 && net_ratelimit()) {
394                         warned++;
395                         pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
396                                 __func__, current->comm, task_pid_nr(current));
397                 }
398                 return 0;
399         }
400         *timeo_p = MAX_SCHEDULE_TIMEOUT;
401         if (tv.tv_sec == 0 && tv.tv_usec == 0)
402                 return 0;
403         if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
404                 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
405         return 0;
406 }
407
408 static void sock_warn_obsolete_bsdism(const char *name)
409 {
410         static int warned;
411         static char warncomm[TASK_COMM_LEN];
412         if (strcmp(warncomm, current->comm) && warned < 5) {
413                 strcpy(warncomm,  current->comm);
414                 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
415                         warncomm, name);
416                 warned++;
417         }
418 }
419
420 static bool sock_needs_netstamp(const struct sock *sk)
421 {
422         switch (sk->sk_family) {
423         case AF_UNSPEC:
424         case AF_UNIX:
425                 return false;
426         default:
427                 return true;
428         }
429 }
430
431 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
432 {
433         if (sk->sk_flags & flags) {
434                 sk->sk_flags &= ~flags;
435                 if (sock_needs_netstamp(sk) &&
436                     !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
437                         net_disable_timestamp();
438         }
439 }
440
441
442 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
443 {
444         unsigned long flags;
445         struct sk_buff_head *list = &sk->sk_receive_queue;
446
447         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
448                 atomic_inc(&sk->sk_drops);
449                 trace_sock_rcvqueue_full(sk, skb);
450                 return -ENOMEM;
451         }
452
453         if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454                 atomic_inc(&sk->sk_drops);
455                 return -ENOBUFS;
456         }
457
458         skb->dev = NULL;
459         skb_set_owner_r(skb, sk);
460
461         /* we escape from rcu protected region, make sure we dont leak
462          * a norefcounted dst
463          */
464         skb_dst_force(skb);
465
466         spin_lock_irqsave(&list->lock, flags);
467         sock_skb_set_dropcount(sk, skb);
468         __skb_queue_tail(list, skb);
469         spin_unlock_irqrestore(&list->lock, flags);
470
471         if (!sock_flag(sk, SOCK_DEAD))
472                 sk->sk_data_ready(sk);
473         return 0;
474 }
475 EXPORT_SYMBOL(__sock_queue_rcv_skb);
476
477 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
478 {
479         int err;
480
481         err = sk_filter(sk, skb);
482         if (err)
483                 return err;
484
485         return __sock_queue_rcv_skb(sk, skb);
486 }
487 EXPORT_SYMBOL(sock_queue_rcv_skb);
488
489 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
490                      const int nested, unsigned int trim_cap, bool refcounted)
491 {
492         int rc = NET_RX_SUCCESS;
493
494         if (sk_filter_trim_cap(sk, skb, trim_cap))
495                 goto discard_and_relse;
496
497         skb->dev = NULL;
498
499         if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
500                 atomic_inc(&sk->sk_drops);
501                 goto discard_and_relse;
502         }
503         if (nested)
504                 bh_lock_sock_nested(sk);
505         else
506                 bh_lock_sock(sk);
507         if (!sock_owned_by_user(sk)) {
508                 /*
509                  * trylock + unlock semantics:
510                  */
511                 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
512
513                 rc = sk_backlog_rcv(sk, skb);
514
515                 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
516         } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
517                 bh_unlock_sock(sk);
518                 atomic_inc(&sk->sk_drops);
519                 goto discard_and_relse;
520         }
521
522         bh_unlock_sock(sk);
523 out:
524         if (refcounted)
525                 sock_put(sk);
526         return rc;
527 discard_and_relse:
528         kfree_skb(skb);
529         goto out;
530 }
531 EXPORT_SYMBOL(__sk_receive_skb);
532
533 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
534 {
535         struct dst_entry *dst = __sk_dst_get(sk);
536
537         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
538                 sk_tx_queue_clear(sk);
539                 sk->sk_dst_pending_confirm = 0;
540                 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
541                 dst_release(dst);
542                 return NULL;
543         }
544
545         return dst;
546 }
547 EXPORT_SYMBOL(__sk_dst_check);
548
549 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
550 {
551         struct dst_entry *dst = sk_dst_get(sk);
552
553         if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
554                 sk_dst_reset(sk);
555                 dst_release(dst);
556                 return NULL;
557         }
558
559         return dst;
560 }
561 EXPORT_SYMBOL(sk_dst_check);
562
563 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
564                                 int optlen)
565 {
566         int ret = -ENOPROTOOPT;
567 #ifdef CONFIG_NETDEVICES
568         struct net *net = sock_net(sk);
569         char devname[IFNAMSIZ];
570         int index;
571
572         /* Sorry... */
573         ret = -EPERM;
574         if (!ns_capable(net->user_ns, CAP_NET_RAW))
575                 goto out;
576
577         ret = -EINVAL;
578         if (optlen < 0)
579                 goto out;
580
581         /* Bind this socket to a particular device like "eth0",
582          * as specified in the passed interface name. If the
583          * name is "" or the option length is zero the socket
584          * is not bound.
585          */
586         if (optlen > IFNAMSIZ - 1)
587                 optlen = IFNAMSIZ - 1;
588         memset(devname, 0, sizeof(devname));
589
590         ret = -EFAULT;
591         if (copy_from_user(devname, optval, optlen))
592                 goto out;
593
594         index = 0;
595         if (devname[0] != '\0') {
596                 struct net_device *dev;
597
598                 rcu_read_lock();
599                 dev = dev_get_by_name_rcu(net, devname);
600                 if (dev)
601                         index = dev->ifindex;
602                 rcu_read_unlock();
603                 ret = -ENODEV;
604                 if (!dev)
605                         goto out;
606         }
607
608         lock_sock(sk);
609         sk->sk_bound_dev_if = index;
610         sk_dst_reset(sk);
611         release_sock(sk);
612
613         ret = 0;
614
615 out:
616 #endif
617
618         return ret;
619 }
620
621 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
622                                 int __user *optlen, int len)
623 {
624         int ret = -ENOPROTOOPT;
625 #ifdef CONFIG_NETDEVICES
626         struct net *net = sock_net(sk);
627         char devname[IFNAMSIZ];
628
629         if (sk->sk_bound_dev_if == 0) {
630                 len = 0;
631                 goto zero;
632         }
633
634         ret = -EINVAL;
635         if (len < IFNAMSIZ)
636                 goto out;
637
638         ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
639         if (ret)
640                 goto out;
641
642         len = strlen(devname) + 1;
643
644         ret = -EFAULT;
645         if (copy_to_user(optval, devname, len))
646                 goto out;
647
648 zero:
649         ret = -EFAULT;
650         if (put_user(len, optlen))
651                 goto out;
652
653         ret = 0;
654
655 out:
656 #endif
657
658         return ret;
659 }
660
661 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
662 {
663         if (valbool)
664                 sock_set_flag(sk, bit);
665         else
666                 sock_reset_flag(sk, bit);
667 }
668
669 bool sk_mc_loop(struct sock *sk)
670 {
671         if (dev_recursion_level())
672                 return false;
673         if (!sk)
674                 return true;
675         switch (sk->sk_family) {
676         case AF_INET:
677                 return inet_sk(sk)->mc_loop;
678 #if IS_ENABLED(CONFIG_IPV6)
679         case AF_INET6:
680                 return inet6_sk(sk)->mc_loop;
681 #endif
682         }
683         WARN_ON(1);
684         return true;
685 }
686 EXPORT_SYMBOL(sk_mc_loop);
687
688 /*
689  *      This is meant for all protocols to use and covers goings on
690  *      at the socket level. Everything here is generic.
691  */
692
693 int sock_setsockopt(struct socket *sock, int level, int optname,
694                     char __user *optval, unsigned int optlen)
695 {
696         struct sock *sk = sock->sk;
697         int val;
698         int valbool;
699         struct linger ling;
700         int ret = 0;
701
702         /*
703          *      Options without arguments
704          */
705
706         if (optname == SO_BINDTODEVICE)
707                 return sock_setbindtodevice(sk, optval, optlen);
708
709         if (optlen < sizeof(int))
710                 return -EINVAL;
711
712         if (get_user(val, (int __user *)optval))
713                 return -EFAULT;
714
715         valbool = val ? 1 : 0;
716
717         lock_sock(sk);
718
719         switch (optname) {
720         case SO_DEBUG:
721                 if (val && !capable(CAP_NET_ADMIN))
722                         ret = -EACCES;
723                 else
724                         sock_valbool_flag(sk, SOCK_DBG, valbool);
725                 break;
726         case SO_REUSEADDR:
727                 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
728                 break;
729         case SO_REUSEPORT:
730                 sk->sk_reuseport = valbool;
731                 break;
732         case SO_TYPE:
733         case SO_PROTOCOL:
734         case SO_DOMAIN:
735         case SO_ERROR:
736                 ret = -ENOPROTOOPT;
737                 break;
738         case SO_DONTROUTE:
739                 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
740                 break;
741         case SO_BROADCAST:
742                 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
743                 break;
744         case SO_SNDBUF:
745                 /* Don't error on this BSD doesn't and if you think
746                  * about it this is right. Otherwise apps have to
747                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
748                  * are treated in BSD as hints
749                  */
750                 val = min_t(u32, val, sysctl_wmem_max);
751 set_sndbuf:
752                 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
753                 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
754                 /* Wake up sending tasks if we upped the value. */
755                 sk->sk_write_space(sk);
756                 break;
757
758         case SO_SNDBUFFORCE:
759                 if (!capable(CAP_NET_ADMIN)) {
760                         ret = -EPERM;
761                         break;
762                 }
763                 goto set_sndbuf;
764
765         case SO_RCVBUF:
766                 /* Don't error on this BSD doesn't and if you think
767                  * about it this is right. Otherwise apps have to
768                  * play 'guess the biggest size' games. RCVBUF/SNDBUF
769                  * are treated in BSD as hints
770                  */
771                 val = min_t(u32, val, sysctl_rmem_max);
772 set_rcvbuf:
773                 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
774                 /*
775                  * We double it on the way in to account for
776                  * "struct sk_buff" etc. overhead.   Applications
777                  * assume that the SO_RCVBUF setting they make will
778                  * allow that much actual data to be received on that
779                  * socket.
780                  *
781                  * Applications are unaware that "struct sk_buff" and
782                  * other overheads allocate from the receive buffer
783                  * during socket buffer allocation.
784                  *
785                  * And after considering the possible alternatives,
786                  * returning the value we actually used in getsockopt
787                  * is the most desirable behavior.
788                  */
789                 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
790                 break;
791
792         case SO_RCVBUFFORCE:
793                 if (!capable(CAP_NET_ADMIN)) {
794                         ret = -EPERM;
795                         break;
796                 }
797                 goto set_rcvbuf;
798
799         case SO_KEEPALIVE:
800                 if (sk->sk_prot->keepalive)
801                         sk->sk_prot->keepalive(sk, valbool);
802                 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
803                 break;
804
805         case SO_OOBINLINE:
806                 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
807                 break;
808
809         case SO_NO_CHECK:
810                 sk->sk_no_check_tx = valbool;
811                 break;
812
813         case SO_PRIORITY:
814                 if ((val >= 0 && val <= 6) ||
815                     ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816                         sk->sk_priority = val;
817                 else
818                         ret = -EPERM;
819                 break;
820
821         case SO_LINGER:
822                 if (optlen < sizeof(ling)) {
823                         ret = -EINVAL;  /* 1003.1g */
824                         break;
825                 }
826                 if (copy_from_user(&ling, optval, sizeof(ling))) {
827                         ret = -EFAULT;
828                         break;
829                 }
830                 if (!ling.l_onoff)
831                         sock_reset_flag(sk, SOCK_LINGER);
832                 else {
833 #if (BITS_PER_LONG == 32)
834                         if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835                                 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
836                         else
837 #endif
838                                 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839                         sock_set_flag(sk, SOCK_LINGER);
840                 }
841                 break;
842
843         case SO_BSDCOMPAT:
844                 sock_warn_obsolete_bsdism("setsockopt");
845                 break;
846
847         case SO_PASSCRED:
848                 if (valbool)
849                         set_bit(SOCK_PASSCRED, &sock->flags);
850                 else
851                         clear_bit(SOCK_PASSCRED, &sock->flags);
852                 break;
853
854         case SO_TIMESTAMP:
855         case SO_TIMESTAMPNS:
856                 if (valbool)  {
857                         if (optname == SO_TIMESTAMP)
858                                 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
859                         else
860                                 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861                         sock_set_flag(sk, SOCK_RCVTSTAMP);
862                         sock_enable_timestamp(sk, SOCK_TIMESTAMP);
863                 } else {
864                         sock_reset_flag(sk, SOCK_RCVTSTAMP);
865                         sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
866                 }
867                 break;
868
869         case SO_TIMESTAMPING:
870                 if (val & ~SOF_TIMESTAMPING_MASK) {
871                         ret = -EINVAL;
872                         break;
873                 }
874
875                 if (val & SOF_TIMESTAMPING_OPT_ID &&
876                     !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877                         if (sk->sk_protocol == IPPROTO_TCP &&
878                             sk->sk_type == SOCK_STREAM) {
879                                 if ((1 << sk->sk_state) &
880                                     (TCPF_CLOSE | TCPF_LISTEN)) {
881                                         ret = -EINVAL;
882                                         break;
883                                 }
884                                 sk->sk_tskey = tcp_sk(sk)->snd_una;
885                         } else {
886                                 sk->sk_tskey = 0;
887                         }
888                 }
889
890                 if (val & SOF_TIMESTAMPING_OPT_STATS &&
891                     !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
892                         ret = -EINVAL;
893                         break;
894                 }
895
896                 sk->sk_tsflags = val;
897                 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
898                         sock_enable_timestamp(sk,
899                                               SOCK_TIMESTAMPING_RX_SOFTWARE);
900                 else
901                         sock_disable_timestamp(sk,
902                                                (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
903                 break;
904
905         case SO_RCVLOWAT:
906                 if (val < 0)
907                         val = INT_MAX;
908                 sk->sk_rcvlowat = val ? : 1;
909                 break;
910
911         case SO_RCVTIMEO:
912                 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
913                 break;
914
915         case SO_SNDTIMEO:
916                 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
917                 break;
918
919         case SO_ATTACH_FILTER:
920                 ret = -EINVAL;
921                 if (optlen == sizeof(struct sock_fprog)) {
922                         struct sock_fprog fprog;
923
924                         ret = -EFAULT;
925                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
926                                 break;
927
928                         ret = sk_attach_filter(&fprog, sk);
929                 }
930                 break;
931
932         case SO_ATTACH_BPF:
933                 ret = -EINVAL;
934                 if (optlen == sizeof(u32)) {
935                         u32 ufd;
936
937                         ret = -EFAULT;
938                         if (copy_from_user(&ufd, optval, sizeof(ufd)))
939                                 break;
940
941                         ret = sk_attach_bpf(ufd, sk);
942                 }
943                 break;
944
945         case SO_ATTACH_REUSEPORT_CBPF:
946                 ret = -EINVAL;
947                 if (optlen == sizeof(struct sock_fprog)) {
948                         struct sock_fprog fprog;
949
950                         ret = -EFAULT;
951                         if (copy_from_user(&fprog, optval, sizeof(fprog)))
952                                 break;
953
954                         ret = sk_reuseport_attach_filter(&fprog, sk);
955                 }
956                 break;
957
958         case SO_ATTACH_REUSEPORT_EBPF:
959                 ret = -EINVAL;
960                 if (optlen == sizeof(u32)) {
961                         u32 ufd;
962
963                         ret = -EFAULT;
964                         if (copy_from_user(&ufd, optval, sizeof(ufd)))
965                                 break;
966
967                         ret = sk_reuseport_attach_bpf(ufd, sk);
968                 }
969                 break;
970
971         case SO_DETACH_FILTER:
972                 ret = sk_detach_filter(sk);
973                 break;
974
975         case SO_LOCK_FILTER:
976                 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
977                         ret = -EPERM;
978                 else
979                         sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
980                 break;
981
982         case SO_PASSSEC:
983                 if (valbool)
984                         set_bit(SOCK_PASSSEC, &sock->flags);
985                 else
986                         clear_bit(SOCK_PASSSEC, &sock->flags);
987                 break;
988         case SO_MARK:
989                 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
990                         ret = -EPERM;
991                 else
992                         sk->sk_mark = val;
993                 break;
994
995         case SO_RXQ_OVFL:
996                 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
997                 break;
998
999         case SO_WIFI_STATUS:
1000                 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1001                 break;
1002
1003         case SO_PEEK_OFF:
1004                 if (sock->ops->set_peek_off)
1005                         ret = sock->ops->set_peek_off(sk, val);
1006                 else
1007                         ret = -EOPNOTSUPP;
1008                 break;
1009
1010         case SO_NOFCS:
1011                 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1012                 break;
1013
1014         case SO_SELECT_ERR_QUEUE:
1015                 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1016                 break;
1017
1018 #ifdef CONFIG_NET_RX_BUSY_POLL
1019         case SO_BUSY_POLL:
1020                 /* allow unprivileged users to decrease the value */
1021                 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1022                         ret = -EPERM;
1023                 else {
1024                         if (val < 0)
1025                                 ret = -EINVAL;
1026                         else
1027                                 sk->sk_ll_usec = val;
1028                 }
1029                 break;
1030 #endif
1031
1032         case SO_MAX_PACING_RATE:
1033                 if (val != ~0U)
1034                         cmpxchg(&sk->sk_pacing_status,
1035                                 SK_PACING_NONE,
1036                                 SK_PACING_NEEDED);
1037                 sk->sk_max_pacing_rate = val;
1038                 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1039                                          sk->sk_max_pacing_rate);
1040                 break;
1041
1042         case SO_INCOMING_CPU:
1043                 sk->sk_incoming_cpu = val;
1044                 break;
1045
1046         case SO_CNX_ADVICE:
1047                 if (val == 1)
1048                         dst_negative_advice(sk);
1049                 break;
1050
1051         case SO_ZEROCOPY:
1052                 if (sk->sk_family != PF_INET && sk->sk_family != PF_INET6)
1053                         ret = -ENOTSUPP;
1054                 else if (sk->sk_protocol != IPPROTO_TCP)
1055                         ret = -ENOTSUPP;
1056                 else if (sk->sk_state != TCP_CLOSE)
1057                         ret = -EBUSY;
1058                 else if (val < 0 || val > 1)
1059                         ret = -EINVAL;
1060                 else
1061                         sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1062                 break;
1063
1064         default:
1065                 ret = -ENOPROTOOPT;
1066                 break;
1067         }
1068         release_sock(sk);
1069         return ret;
1070 }
1071 EXPORT_SYMBOL(sock_setsockopt);
1072
1073
1074 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1075                           struct ucred *ucred)
1076 {
1077         ucred->pid = pid_vnr(pid);
1078         ucred->uid = ucred->gid = -1;
1079         if (cred) {
1080                 struct user_namespace *current_ns = current_user_ns();
1081
1082                 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1083                 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1084         }
1085 }
1086
1087 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1088 {
1089         struct user_namespace *user_ns = current_user_ns();
1090         int i;
1091
1092         for (i = 0; i < src->ngroups; i++)
1093                 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1094                         return -EFAULT;
1095
1096         return 0;
1097 }
1098
1099 int sock_getsockopt(struct socket *sock, int level, int optname,
1100                     char __user *optval, int __user *optlen)
1101 {
1102         struct sock *sk = sock->sk;
1103
1104         union {
1105                 int val;
1106                 u64 val64;
1107                 struct linger ling;
1108                 struct timeval tm;
1109         } v;
1110
1111         int lv = sizeof(int);
1112         int len;
1113
1114         if (get_user(len, optlen))
1115                 return -EFAULT;
1116         if (len < 0)
1117                 return -EINVAL;
1118
1119         memset(&v, 0, sizeof(v));
1120
1121         switch (optname) {
1122         case SO_DEBUG:
1123                 v.val = sock_flag(sk, SOCK_DBG);
1124                 break;
1125
1126         case SO_DONTROUTE:
1127                 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1128                 break;
1129
1130         case SO_BROADCAST:
1131                 v.val = sock_flag(sk, SOCK_BROADCAST);
1132                 break;
1133
1134         case SO_SNDBUF:
1135                 v.val = sk->sk_sndbuf;
1136                 break;
1137
1138         case SO_RCVBUF:
1139                 v.val = sk->sk_rcvbuf;
1140                 break;
1141
1142         case SO_REUSEADDR:
1143                 v.val = sk->sk_reuse;
1144                 break;
1145
1146         case SO_REUSEPORT:
1147                 v.val = sk->sk_reuseport;
1148                 break;
1149
1150         case SO_KEEPALIVE:
1151                 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1152                 break;
1153
1154         case SO_TYPE:
1155                 v.val = sk->sk_type;
1156                 break;
1157
1158         case SO_PROTOCOL:
1159                 v.val = sk->sk_protocol;
1160                 break;
1161
1162         case SO_DOMAIN:
1163                 v.val = sk->sk_family;
1164                 break;
1165
1166         case SO_ERROR:
1167                 v.val = -sock_error(sk);
1168                 if (v.val == 0)
1169                         v.val = xchg(&sk->sk_err_soft, 0);
1170                 break;
1171
1172         case SO_OOBINLINE:
1173                 v.val = sock_flag(sk, SOCK_URGINLINE);
1174                 break;
1175
1176         case SO_NO_CHECK:
1177                 v.val = sk->sk_no_check_tx;
1178                 break;
1179
1180         case SO_PRIORITY:
1181                 v.val = sk->sk_priority;
1182                 break;
1183
1184         case SO_LINGER:
1185                 lv              = sizeof(v.ling);
1186                 v.ling.l_onoff  = sock_flag(sk, SOCK_LINGER);
1187                 v.ling.l_linger = sk->sk_lingertime / HZ;
1188                 break;
1189
1190         case SO_BSDCOMPAT:
1191                 sock_warn_obsolete_bsdism("getsockopt");
1192                 break;
1193
1194         case SO_TIMESTAMP:
1195                 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1196                                 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1197                 break;
1198
1199         case SO_TIMESTAMPNS:
1200                 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1201                 break;
1202
1203         case SO_TIMESTAMPING:
1204                 v.val = sk->sk_tsflags;
1205                 break;
1206
1207         case SO_RCVTIMEO:
1208                 lv = sizeof(struct timeval);
1209                 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1210                         v.tm.tv_sec = 0;
1211                         v.tm.tv_usec = 0;
1212                 } else {
1213                         v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1214                         v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1215                 }
1216                 break;
1217
1218         case SO_SNDTIMEO:
1219                 lv = sizeof(struct timeval);
1220                 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1221                         v.tm.tv_sec = 0;
1222                         v.tm.tv_usec = 0;
1223                 } else {
1224                         v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1225                         v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1226                 }
1227                 break;
1228
1229         case SO_RCVLOWAT:
1230                 v.val = sk->sk_rcvlowat;
1231                 break;
1232
1233         case SO_SNDLOWAT:
1234                 v.val = 1;
1235                 break;
1236
1237         case SO_PASSCRED:
1238                 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1239                 break;
1240
1241         case SO_PEERCRED:
1242         {
1243                 struct ucred peercred;
1244                 if (len > sizeof(peercred))
1245                         len = sizeof(peercred);
1246                 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1247                 if (copy_to_user(optval, &peercred, len))
1248                         return -EFAULT;
1249                 goto lenout;
1250         }
1251
1252         case SO_PEERGROUPS:
1253         {
1254                 int ret, n;
1255
1256                 if (!sk->sk_peer_cred)
1257                         return -ENODATA;
1258
1259                 n = sk->sk_peer_cred->group_info->ngroups;
1260                 if (len < n * sizeof(gid_t)) {
1261                         len = n * sizeof(gid_t);
1262                         return put_user(len, optlen) ? -EFAULT : -ERANGE;
1263                 }
1264                 len = n * sizeof(gid_t);
1265
1266                 ret = groups_to_user((gid_t __user *)optval,
1267                                      sk->sk_peer_cred->group_info);
1268                 if (ret)
1269                         return ret;
1270                 goto lenout;
1271         }
1272
1273         case SO_PEERNAME:
1274         {
1275                 char address[128];
1276
1277                 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1278                         return -ENOTCONN;
1279                 if (lv < len)
1280                         return -EINVAL;
1281                 if (copy_to_user(optval, address, len))
1282                         return -EFAULT;
1283                 goto lenout;
1284         }
1285
1286         /* Dubious BSD thing... Probably nobody even uses it, but
1287          * the UNIX standard wants it for whatever reason... -DaveM
1288          */
1289         case SO_ACCEPTCONN:
1290                 v.val = sk->sk_state == TCP_LISTEN;
1291                 break;
1292
1293         case SO_PASSSEC:
1294                 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1295                 break;
1296
1297         case SO_PEERSEC:
1298                 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1299
1300         case SO_MARK:
1301                 v.val = sk->sk_mark;
1302                 break;
1303
1304         case SO_RXQ_OVFL:
1305                 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1306                 break;
1307
1308         case SO_WIFI_STATUS:
1309                 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1310                 break;
1311
1312         case SO_PEEK_OFF:
1313                 if (!sock->ops->set_peek_off)
1314                         return -EOPNOTSUPP;
1315
1316                 v.val = sk->sk_peek_off;
1317                 break;
1318         case SO_NOFCS:
1319                 v.val = sock_flag(sk, SOCK_NOFCS);
1320                 break;
1321
1322         case SO_BINDTODEVICE:
1323                 return sock_getbindtodevice(sk, optval, optlen, len);
1324
1325         case SO_GET_FILTER:
1326                 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1327                 if (len < 0)
1328                         return len;
1329
1330                 goto lenout;
1331
1332         case SO_LOCK_FILTER:
1333                 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1334                 break;
1335
1336         case SO_BPF_EXTENSIONS:
1337                 v.val = bpf_tell_extensions();
1338                 break;
1339
1340         case SO_SELECT_ERR_QUEUE:
1341                 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1342                 break;
1343
1344 #ifdef CONFIG_NET_RX_BUSY_POLL
1345         case SO_BUSY_POLL:
1346                 v.val = sk->sk_ll_usec;
1347                 break;
1348 #endif
1349
1350         case SO_MAX_PACING_RATE:
1351                 v.val = sk->sk_max_pacing_rate;
1352                 break;
1353
1354         case SO_INCOMING_CPU:
1355                 v.val = sk->sk_incoming_cpu;
1356                 break;
1357
1358         case SO_MEMINFO:
1359         {
1360                 u32 meminfo[SK_MEMINFO_VARS];
1361
1362                 if (get_user(len, optlen))
1363                         return -EFAULT;
1364
1365                 sk_get_meminfo(sk, meminfo);
1366
1367                 len = min_t(unsigned int, len, sizeof(meminfo));
1368                 if (copy_to_user(optval, &meminfo, len))
1369                         return -EFAULT;
1370
1371                 goto lenout;
1372         }
1373
1374 #ifdef CONFIG_NET_RX_BUSY_POLL
1375         case SO_INCOMING_NAPI_ID:
1376                 v.val = READ_ONCE(sk->sk_napi_id);
1377
1378                 /* aggregate non-NAPI IDs down to 0 */
1379                 if (v.val < MIN_NAPI_ID)
1380                         v.val = 0;
1381
1382                 break;
1383 #endif
1384
1385         case SO_COOKIE:
1386                 lv = sizeof(u64);
1387                 if (len < lv)
1388                         return -EINVAL;
1389                 v.val64 = sock_gen_cookie(sk);
1390                 break;
1391
1392         case SO_ZEROCOPY:
1393                 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1394                 break;
1395
1396         default:
1397                 /* We implement the SO_SNDLOWAT etc to not be settable
1398                  * (1003.1g 7).
1399                  */
1400                 return -ENOPROTOOPT;
1401         }
1402
1403         if (len > lv)
1404                 len = lv;
1405         if (copy_to_user(optval, &v, len))
1406                 return -EFAULT;
1407 lenout:
1408         if (put_user(len, optlen))
1409                 return -EFAULT;
1410         return 0;
1411 }
1412
1413 /*
1414  * Initialize an sk_lock.
1415  *
1416  * (We also register the sk_lock with the lock validator.)
1417  */
1418 static inline void sock_lock_init(struct sock *sk)
1419 {
1420         if (sk->sk_kern_sock)
1421                 sock_lock_init_class_and_name(
1422                         sk,
1423                         af_family_kern_slock_key_strings[sk->sk_family],
1424                         af_family_kern_slock_keys + sk->sk_family,
1425                         af_family_kern_key_strings[sk->sk_family],
1426                         af_family_kern_keys + sk->sk_family);
1427         else
1428                 sock_lock_init_class_and_name(
1429                         sk,
1430                         af_family_slock_key_strings[sk->sk_family],
1431                         af_family_slock_keys + sk->sk_family,
1432                         af_family_key_strings[sk->sk_family],
1433                         af_family_keys + sk->sk_family);
1434 }
1435
1436 /*
1437  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1438  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1439  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1440  */
1441 static void sock_copy(struct sock *nsk, const struct sock *osk)
1442 {
1443 #ifdef CONFIG_SECURITY_NETWORK
1444         void *sptr = nsk->sk_security;
1445 #endif
1446         memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1447
1448         memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1449                osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1450
1451 #ifdef CONFIG_SECURITY_NETWORK
1452         nsk->sk_security = sptr;
1453         security_sk_clone(osk, nsk);
1454 #endif
1455 }
1456
1457 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1458                 int family)
1459 {
1460         struct sock *sk;
1461         struct kmem_cache *slab;
1462
1463         slab = prot->slab;
1464         if (slab != NULL) {
1465                 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1466                 if (!sk)
1467                         return sk;
1468                 if (priority & __GFP_ZERO)
1469                         sk_prot_clear_nulls(sk, prot->obj_size);
1470         } else
1471                 sk = kmalloc(prot->obj_size, priority);
1472
1473         if (sk != NULL) {
1474                 if (security_sk_alloc(sk, family, priority))
1475                         goto out_free;
1476
1477                 if (!try_module_get(prot->owner))
1478                         goto out_free_sec;
1479                 sk_tx_queue_clear(sk);
1480         }
1481
1482         return sk;
1483
1484 out_free_sec:
1485         security_sk_free(sk);
1486 out_free:
1487         if (slab != NULL)
1488                 kmem_cache_free(slab, sk);
1489         else
1490                 kfree(sk);
1491         return NULL;
1492 }
1493
1494 static void sk_prot_free(struct proto *prot, struct sock *sk)
1495 {
1496         struct kmem_cache *slab;
1497         struct module *owner;
1498
1499         owner = prot->owner;
1500         slab = prot->slab;
1501
1502         cgroup_sk_free(&sk->sk_cgrp_data);
1503         mem_cgroup_sk_free(sk);
1504         security_sk_free(sk);
1505         if (slab != NULL)
1506                 kmem_cache_free(slab, sk);
1507         else
1508                 kfree(sk);
1509         module_put(owner);
1510 }
1511
1512 /**
1513  *      sk_alloc - All socket objects are allocated here
1514  *      @net: the applicable net namespace
1515  *      @family: protocol family
1516  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1517  *      @prot: struct proto associated with this new sock instance
1518  *      @kern: is this to be a kernel socket?
1519  */
1520 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1521                       struct proto *prot, int kern)
1522 {
1523         struct sock *sk;
1524
1525         sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1526         if (sk) {
1527                 sk->sk_family = family;
1528                 /*
1529                  * See comment in struct sock definition to understand
1530                  * why we need sk_prot_creator -acme
1531                  */
1532                 sk->sk_prot = sk->sk_prot_creator = prot;
1533                 sk->sk_kern_sock = kern;
1534                 sock_lock_init(sk);
1535                 sk->sk_net_refcnt = kern ? 0 : 1;
1536                 if (likely(sk->sk_net_refcnt)) {
1537                         get_net(net);
1538                         sock_inuse_add(net, 1);
1539                 }
1540
1541                 sock_net_set(sk, net);
1542                 refcount_set(&sk->sk_wmem_alloc, 1);
1543
1544                 mem_cgroup_sk_alloc(sk);
1545                 cgroup_sk_alloc(&sk->sk_cgrp_data);
1546                 sock_update_classid(&sk->sk_cgrp_data);
1547                 sock_update_netprioidx(&sk->sk_cgrp_data);
1548         }
1549
1550         return sk;
1551 }
1552 EXPORT_SYMBOL(sk_alloc);
1553
1554 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1555  * grace period. This is the case for UDP sockets and TCP listeners.
1556  */
1557 static void __sk_destruct(struct rcu_head *head)
1558 {
1559         struct sock *sk = container_of(head, struct sock, sk_rcu);
1560         struct sk_filter *filter;
1561
1562         if (sk->sk_destruct)
1563                 sk->sk_destruct(sk);
1564
1565         filter = rcu_dereference_check(sk->sk_filter,
1566                                        refcount_read(&sk->sk_wmem_alloc) == 0);
1567         if (filter) {
1568                 sk_filter_uncharge(sk, filter);
1569                 RCU_INIT_POINTER(sk->sk_filter, NULL);
1570         }
1571         if (rcu_access_pointer(sk->sk_reuseport_cb))
1572                 reuseport_detach_sock(sk);
1573
1574         sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1575
1576         if (atomic_read(&sk->sk_omem_alloc))
1577                 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1578                          __func__, atomic_read(&sk->sk_omem_alloc));
1579
1580         if (sk->sk_frag.page) {
1581                 put_page(sk->sk_frag.page);
1582                 sk->sk_frag.page = NULL;
1583         }
1584
1585         if (sk->sk_peer_cred)
1586                 put_cred(sk->sk_peer_cred);
1587         put_pid(sk->sk_peer_pid);
1588         if (likely(sk->sk_net_refcnt))
1589                 put_net(sock_net(sk));
1590         sk_prot_free(sk->sk_prot_creator, sk);
1591 }
1592
1593 void sk_destruct(struct sock *sk)
1594 {
1595         if (sock_flag(sk, SOCK_RCU_FREE))
1596                 call_rcu(&sk->sk_rcu, __sk_destruct);
1597         else
1598                 __sk_destruct(&sk->sk_rcu);
1599 }
1600
1601 static void __sk_free(struct sock *sk)
1602 {
1603         if (likely(sk->sk_net_refcnt))
1604                 sock_inuse_add(sock_net(sk), -1);
1605
1606         if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1607                 sock_diag_broadcast_destroy(sk);
1608         else
1609                 sk_destruct(sk);
1610 }
1611
1612 void sk_free(struct sock *sk)
1613 {
1614         /*
1615          * We subtract one from sk_wmem_alloc and can know if
1616          * some packets are still in some tx queue.
1617          * If not null, sock_wfree() will call __sk_free(sk) later
1618          */
1619         if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1620                 __sk_free(sk);
1621 }
1622 EXPORT_SYMBOL(sk_free);
1623
1624 static void sk_init_common(struct sock *sk)
1625 {
1626         skb_queue_head_init(&sk->sk_receive_queue);
1627         skb_queue_head_init(&sk->sk_write_queue);
1628         skb_queue_head_init(&sk->sk_error_queue);
1629
1630         rwlock_init(&sk->sk_callback_lock);
1631         lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1632                         af_rlock_keys + sk->sk_family,
1633                         af_family_rlock_key_strings[sk->sk_family]);
1634         lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1635                         af_wlock_keys + sk->sk_family,
1636                         af_family_wlock_key_strings[sk->sk_family]);
1637         lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1638                         af_elock_keys + sk->sk_family,
1639                         af_family_elock_key_strings[sk->sk_family]);
1640         lockdep_set_class_and_name(&sk->sk_callback_lock,
1641                         af_callback_keys + sk->sk_family,
1642                         af_family_clock_key_strings[sk->sk_family]);
1643 }
1644
1645 /**
1646  *      sk_clone_lock - clone a socket, and lock its clone
1647  *      @sk: the socket to clone
1648  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1649  *
1650  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1651  */
1652 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1653 {
1654         struct sock *newsk;
1655         bool is_charged = true;
1656
1657         newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1658         if (newsk != NULL) {
1659                 struct sk_filter *filter;
1660
1661                 sock_copy(newsk, sk);
1662
1663                 newsk->sk_prot_creator = sk->sk_prot;
1664
1665                 /* SANITY */
1666                 if (likely(newsk->sk_net_refcnt))
1667                         get_net(sock_net(newsk));
1668                 sk_node_init(&newsk->sk_node);
1669                 sock_lock_init(newsk);
1670                 bh_lock_sock(newsk);
1671                 newsk->sk_backlog.head  = newsk->sk_backlog.tail = NULL;
1672                 newsk->sk_backlog.len = 0;
1673
1674                 atomic_set(&newsk->sk_rmem_alloc, 0);
1675                 /*
1676                  * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1677                  */
1678                 refcount_set(&newsk->sk_wmem_alloc, 1);
1679                 atomic_set(&newsk->sk_omem_alloc, 0);
1680                 sk_init_common(newsk);
1681
1682                 newsk->sk_dst_cache     = NULL;
1683                 newsk->sk_dst_pending_confirm = 0;
1684                 newsk->sk_wmem_queued   = 0;
1685                 newsk->sk_forward_alloc = 0;
1686                 atomic_set(&newsk->sk_drops, 0);
1687                 newsk->sk_send_head     = NULL;
1688                 newsk->sk_userlocks     = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1689                 atomic_set(&newsk->sk_zckey, 0);
1690
1691                 sock_reset_flag(newsk, SOCK_DONE);
1692                 mem_cgroup_sk_alloc(newsk);
1693                 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1694
1695                 rcu_read_lock();
1696                 filter = rcu_dereference(sk->sk_filter);
1697                 if (filter != NULL)
1698                         /* though it's an empty new sock, the charging may fail
1699                          * if sysctl_optmem_max was changed between creation of
1700                          * original socket and cloning
1701                          */
1702                         is_charged = sk_filter_charge(newsk, filter);
1703                 RCU_INIT_POINTER(newsk->sk_filter, filter);
1704                 rcu_read_unlock();
1705
1706                 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1707                         /* We need to make sure that we don't uncharge the new
1708                          * socket if we couldn't charge it in the first place
1709                          * as otherwise we uncharge the parent's filter.
1710                          */
1711                         if (!is_charged)
1712                                 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1713                         sk_free_unlock_clone(newsk);
1714                         newsk = NULL;
1715                         goto out;
1716                 }
1717                 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1718
1719                 newsk->sk_err      = 0;
1720                 newsk->sk_err_soft = 0;
1721                 newsk->sk_priority = 0;
1722                 newsk->sk_incoming_cpu = raw_smp_processor_id();
1723                 atomic64_set(&newsk->sk_cookie, 0);
1724                 if (likely(newsk->sk_net_refcnt))
1725                         sock_inuse_add(sock_net(newsk), 1);
1726
1727                 /*
1728                  * Before updating sk_refcnt, we must commit prior changes to memory
1729                  * (Documentation/RCU/rculist_nulls.txt for details)
1730                  */
1731                 smp_wmb();
1732                 refcount_set(&newsk->sk_refcnt, 2);
1733
1734                 /*
1735                  * Increment the counter in the same struct proto as the master
1736                  * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1737                  * is the same as sk->sk_prot->socks, as this field was copied
1738                  * with memcpy).
1739                  *
1740                  * This _changes_ the previous behaviour, where
1741                  * tcp_create_openreq_child always was incrementing the
1742                  * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1743                  * to be taken into account in all callers. -acme
1744                  */
1745                 sk_refcnt_debug_inc(newsk);
1746                 sk_set_socket(newsk, NULL);
1747                 newsk->sk_wq = NULL;
1748
1749                 if (newsk->sk_prot->sockets_allocated)
1750                         sk_sockets_allocated_inc(newsk);
1751
1752                 if (sock_needs_netstamp(sk) &&
1753                     newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1754                         net_enable_timestamp();
1755         }
1756 out:
1757         return newsk;
1758 }
1759 EXPORT_SYMBOL_GPL(sk_clone_lock);
1760
1761 void sk_free_unlock_clone(struct sock *sk)
1762 {
1763         /* It is still raw copy of parent, so invalidate
1764          * destructor and make plain sk_free() */
1765         sk->sk_destruct = NULL;
1766         bh_unlock_sock(sk);
1767         sk_free(sk);
1768 }
1769 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1770
1771 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1772 {
1773         u32 max_segs = 1;
1774
1775         sk_dst_set(sk, dst);
1776         sk->sk_route_caps = dst->dev->features;
1777         if (sk->sk_route_caps & NETIF_F_GSO)
1778                 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1779         sk->sk_route_caps &= ~sk->sk_route_nocaps;
1780         if (sk_can_gso(sk)) {
1781                 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1782                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1783                 } else {
1784                         sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1785                         sk->sk_gso_max_size = dst->dev->gso_max_size;
1786                         max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1787                 }
1788         }
1789         sk->sk_gso_max_segs = max_segs;
1790 }
1791 EXPORT_SYMBOL_GPL(sk_setup_caps);
1792
1793 /*
1794  *      Simple resource managers for sockets.
1795  */
1796
1797
1798 /*
1799  * Write buffer destructor automatically called from kfree_skb.
1800  */
1801 void sock_wfree(struct sk_buff *skb)
1802 {
1803         struct sock *sk = skb->sk;
1804         unsigned int len = skb->truesize;
1805
1806         if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1807                 /*
1808                  * Keep a reference on sk_wmem_alloc, this will be released
1809                  * after sk_write_space() call
1810                  */
1811                 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1812                 sk->sk_write_space(sk);
1813                 len = 1;
1814         }
1815         /*
1816          * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1817          * could not do because of in-flight packets
1818          */
1819         if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1820                 __sk_free(sk);
1821 }
1822 EXPORT_SYMBOL(sock_wfree);
1823
1824 /* This variant of sock_wfree() is used by TCP,
1825  * since it sets SOCK_USE_WRITE_QUEUE.
1826  */
1827 void __sock_wfree(struct sk_buff *skb)
1828 {
1829         struct sock *sk = skb->sk;
1830
1831         if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1832                 __sk_free(sk);
1833 }
1834
1835 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1836 {
1837         skb_orphan(skb);
1838         skb->sk = sk;
1839 #ifdef CONFIG_INET
1840         if (unlikely(!sk_fullsock(sk))) {
1841                 skb->destructor = sock_edemux;
1842                 sock_hold(sk);
1843                 return;
1844         }
1845 #endif
1846         skb->destructor = sock_wfree;
1847         skb_set_hash_from_sk(skb, sk);
1848         /*
1849          * We used to take a refcount on sk, but following operation
1850          * is enough to guarantee sk_free() wont free this sock until
1851          * all in-flight packets are completed
1852          */
1853         refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1854 }
1855 EXPORT_SYMBOL(skb_set_owner_w);
1856
1857 /* This helper is used by netem, as it can hold packets in its
1858  * delay queue. We want to allow the owner socket to send more
1859  * packets, as if they were already TX completed by a typical driver.
1860  * But we also want to keep skb->sk set because some packet schedulers
1861  * rely on it (sch_fq for example).
1862  */
1863 void skb_orphan_partial(struct sk_buff *skb)
1864 {
1865         if (skb_is_tcp_pure_ack(skb))
1866                 return;
1867
1868         if (skb->destructor == sock_wfree
1869 #ifdef CONFIG_INET
1870             || skb->destructor == tcp_wfree
1871 #endif
1872                 ) {
1873                 struct sock *sk = skb->sk;
1874
1875                 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1876                         WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
1877                         skb->destructor = sock_efree;
1878                 }
1879         } else {
1880                 skb_orphan(skb);
1881         }
1882 }
1883 EXPORT_SYMBOL(skb_orphan_partial);
1884
1885 /*
1886  * Read buffer destructor automatically called from kfree_skb.
1887  */
1888 void sock_rfree(struct sk_buff *skb)
1889 {
1890         struct sock *sk = skb->sk;
1891         unsigned int len = skb->truesize;
1892
1893         atomic_sub(len, &sk->sk_rmem_alloc);
1894         sk_mem_uncharge(sk, len);
1895 }
1896 EXPORT_SYMBOL(sock_rfree);
1897
1898 /*
1899  * Buffer destructor for skbs that are not used directly in read or write
1900  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1901  */
1902 void sock_efree(struct sk_buff *skb)
1903 {
1904         sock_put(skb->sk);
1905 }
1906 EXPORT_SYMBOL(sock_efree);
1907
1908 kuid_t sock_i_uid(struct sock *sk)
1909 {
1910         kuid_t uid;
1911
1912         read_lock_bh(&sk->sk_callback_lock);
1913         uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1914         read_unlock_bh(&sk->sk_callback_lock);
1915         return uid;
1916 }
1917 EXPORT_SYMBOL(sock_i_uid);
1918
1919 unsigned long sock_i_ino(struct sock *sk)
1920 {
1921         unsigned long ino;
1922
1923         read_lock_bh(&sk->sk_callback_lock);
1924         ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1925         read_unlock_bh(&sk->sk_callback_lock);
1926         return ino;
1927 }
1928 EXPORT_SYMBOL(sock_i_ino);
1929
1930 /*
1931  * Allocate a skb from the socket's send buffer.
1932  */
1933 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1934                              gfp_t priority)
1935 {
1936         if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1937                 struct sk_buff *skb = alloc_skb(size, priority);
1938                 if (skb) {
1939                         skb_set_owner_w(skb, sk);
1940                         return skb;
1941                 }
1942         }
1943         return NULL;
1944 }
1945 EXPORT_SYMBOL(sock_wmalloc);
1946
1947 static void sock_ofree(struct sk_buff *skb)
1948 {
1949         struct sock *sk = skb->sk;
1950
1951         atomic_sub(skb->truesize, &sk->sk_omem_alloc);
1952 }
1953
1954 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1955                              gfp_t priority)
1956 {
1957         struct sk_buff *skb;
1958
1959         /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1960         if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
1961             sysctl_optmem_max)
1962                 return NULL;
1963
1964         skb = alloc_skb(size, priority);
1965         if (!skb)
1966                 return NULL;
1967
1968         atomic_add(skb->truesize, &sk->sk_omem_alloc);
1969         skb->sk = sk;
1970         skb->destructor = sock_ofree;
1971         return skb;
1972 }
1973
1974 /*
1975  * Allocate a memory block from the socket's option memory buffer.
1976  */
1977 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1978 {
1979         if ((unsigned int)size <= sysctl_optmem_max &&
1980             atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1981                 void *mem;
1982                 /* First do the add, to avoid the race if kmalloc
1983                  * might sleep.
1984                  */
1985                 atomic_add(size, &sk->sk_omem_alloc);
1986                 mem = kmalloc(size, priority);
1987                 if (mem)
1988                         return mem;
1989                 atomic_sub(size, &sk->sk_omem_alloc);
1990         }
1991         return NULL;
1992 }
1993 EXPORT_SYMBOL(sock_kmalloc);
1994
1995 /* Free an option memory block. Note, we actually want the inline
1996  * here as this allows gcc to detect the nullify and fold away the
1997  * condition entirely.
1998  */
1999 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2000                                   const bool nullify)
2001 {
2002         if (WARN_ON_ONCE(!mem))
2003                 return;
2004         if (nullify)
2005                 kzfree(mem);
2006         else
2007                 kfree(mem);
2008         atomic_sub(size, &sk->sk_omem_alloc);
2009 }
2010
2011 void sock_kfree_s(struct sock *sk, void *mem, int size)
2012 {
2013         __sock_kfree_s(sk, mem, size, false);
2014 }
2015 EXPORT_SYMBOL(sock_kfree_s);
2016
2017 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2018 {
2019         __sock_kfree_s(sk, mem, size, true);
2020 }
2021 EXPORT_SYMBOL(sock_kzfree_s);
2022
2023 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2024    I think, these locks should be removed for datagram sockets.
2025  */
2026 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2027 {
2028         DEFINE_WAIT(wait);
2029
2030         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2031         for (;;) {
2032                 if (!timeo)
2033                         break;
2034                 if (signal_pending(current))
2035                         break;
2036                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2037                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2038                 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2039                         break;
2040                 if (sk->sk_shutdown & SEND_SHUTDOWN)
2041                         break;
2042                 if (sk->sk_err)
2043                         break;
2044                 timeo = schedule_timeout(timeo);
2045         }
2046         finish_wait(sk_sleep(sk), &wait);
2047         return timeo;
2048 }
2049
2050
2051 /*
2052  *      Generic send/receive buffer handlers
2053  */
2054
2055 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2056                                      unsigned long data_len, int noblock,
2057                                      int *errcode, int max_page_order)
2058 {
2059         struct sk_buff *skb;
2060         long timeo;
2061         int err;
2062
2063         timeo = sock_sndtimeo(sk, noblock);
2064         for (;;) {
2065                 err = sock_error(sk);
2066                 if (err != 0)
2067                         goto failure;
2068
2069                 err = -EPIPE;
2070                 if (sk->sk_shutdown & SEND_SHUTDOWN)
2071                         goto failure;
2072
2073                 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2074                         break;
2075
2076                 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2077                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2078                 err = -EAGAIN;
2079                 if (!timeo)
2080                         goto failure;
2081                 if (signal_pending(current))
2082                         goto interrupted;
2083                 timeo = sock_wait_for_wmem(sk, timeo);
2084         }
2085         skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2086                                    errcode, sk->sk_allocation);
2087         if (skb)
2088                 skb_set_owner_w(skb, sk);
2089         return skb;
2090
2091 interrupted:
2092         err = sock_intr_errno(timeo);
2093 failure:
2094         *errcode = err;
2095         return NULL;
2096 }
2097 EXPORT_SYMBOL(sock_alloc_send_pskb);
2098
2099 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2100                                     int noblock, int *errcode)
2101 {
2102         return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2103 }
2104 EXPORT_SYMBOL(sock_alloc_send_skb);
2105
2106 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2107                      struct sockcm_cookie *sockc)
2108 {
2109         u32 tsflags;
2110
2111         switch (cmsg->cmsg_type) {
2112         case SO_MARK:
2113                 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2114                         return -EPERM;
2115                 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2116                         return -EINVAL;
2117                 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2118                 break;
2119         case SO_TIMESTAMPING:
2120                 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2121                         return -EINVAL;
2122
2123                 tsflags = *(u32 *)CMSG_DATA(cmsg);
2124                 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2125                         return -EINVAL;
2126
2127                 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2128                 sockc->tsflags |= tsflags;
2129                 break;
2130         /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2131         case SCM_RIGHTS:
2132         case SCM_CREDENTIALS:
2133                 break;
2134         default:
2135                 return -EINVAL;
2136         }
2137         return 0;
2138 }
2139 EXPORT_SYMBOL(__sock_cmsg_send);
2140
2141 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2142                    struct sockcm_cookie *sockc)
2143 {
2144         struct cmsghdr *cmsg;
2145         int ret;
2146
2147         for_each_cmsghdr(cmsg, msg) {
2148                 if (!CMSG_OK(msg, cmsg))
2149                         return -EINVAL;
2150                 if (cmsg->cmsg_level != SOL_SOCKET)
2151                         continue;
2152                 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2153                 if (ret)
2154                         return ret;
2155         }
2156         return 0;
2157 }
2158 EXPORT_SYMBOL(sock_cmsg_send);
2159
2160 static void sk_enter_memory_pressure(struct sock *sk)
2161 {
2162         if (!sk->sk_prot->enter_memory_pressure)
2163                 return;
2164
2165         sk->sk_prot->enter_memory_pressure(sk);
2166 }
2167
2168 static void sk_leave_memory_pressure(struct sock *sk)
2169 {
2170         if (sk->sk_prot->leave_memory_pressure) {
2171                 sk->sk_prot->leave_memory_pressure(sk);
2172         } else {
2173                 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2174
2175                 if (memory_pressure && *memory_pressure)
2176                         *memory_pressure = 0;
2177         }
2178 }
2179
2180 /* On 32bit arches, an skb frag is limited to 2^15 */
2181 #define SKB_FRAG_PAGE_ORDER     get_order(32768)
2182
2183 /**
2184  * skb_page_frag_refill - check that a page_frag contains enough room
2185  * @sz: minimum size of the fragment we want to get
2186  * @pfrag: pointer to page_frag
2187  * @gfp: priority for memory allocation
2188  *
2189  * Note: While this allocator tries to use high order pages, there is
2190  * no guarantee that allocations succeed. Therefore, @sz MUST be
2191  * less or equal than PAGE_SIZE.
2192  */
2193 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2194 {
2195         if (pfrag->page) {
2196                 if (page_ref_count(pfrag->page) == 1) {
2197                         pfrag->offset = 0;
2198                         return true;
2199                 }
2200                 if (pfrag->offset + sz <= pfrag->size)
2201                         return true;
2202                 put_page(pfrag->page);
2203         }
2204
2205         pfrag->offset = 0;
2206         if (SKB_FRAG_PAGE_ORDER) {
2207                 /* Avoid direct reclaim but allow kswapd to wake */
2208                 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2209                                           __GFP_COMP | __GFP_NOWARN |
2210                                           __GFP_NORETRY,
2211                                           SKB_FRAG_PAGE_ORDER);
2212                 if (likely(pfrag->page)) {
2213                         pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2214                         return true;
2215                 }
2216         }
2217         pfrag->page = alloc_page(gfp);
2218         if (likely(pfrag->page)) {
2219                 pfrag->size = PAGE_SIZE;
2220                 return true;
2221         }
2222         return false;
2223 }
2224 EXPORT_SYMBOL(skb_page_frag_refill);
2225
2226 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2227 {
2228         if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2229                 return true;
2230
2231         sk_enter_memory_pressure(sk);
2232         sk_stream_moderate_sndbuf(sk);
2233         return false;
2234 }
2235 EXPORT_SYMBOL(sk_page_frag_refill);
2236
2237 static void __lock_sock(struct sock *sk)
2238         __releases(&sk->sk_lock.slock)
2239         __acquires(&sk->sk_lock.slock)
2240 {
2241         DEFINE_WAIT(wait);
2242
2243         for (;;) {
2244                 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2245                                         TASK_UNINTERRUPTIBLE);
2246                 spin_unlock_bh(&sk->sk_lock.slock);
2247                 schedule();
2248                 spin_lock_bh(&sk->sk_lock.slock);
2249                 if (!sock_owned_by_user(sk))
2250                         break;
2251         }
2252         finish_wait(&sk->sk_lock.wq, &wait);
2253 }
2254
2255 static void __release_sock(struct sock *sk)
2256         __releases(&sk->sk_lock.slock)
2257         __acquires(&sk->sk_lock.slock)
2258 {
2259         struct sk_buff *skb, *next;
2260
2261         while ((skb = sk->sk_backlog.head) != NULL) {
2262                 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2263
2264                 spin_unlock_bh(&sk->sk_lock.slock);
2265
2266                 do {
2267                         next = skb->next;
2268                         prefetch(next);
2269                         WARN_ON_ONCE(skb_dst_is_noref(skb));
2270                         skb->next = NULL;
2271                         sk_backlog_rcv(sk, skb);
2272
2273                         cond_resched();
2274
2275                         skb = next;
2276                 } while (skb != NULL);
2277
2278                 spin_lock_bh(&sk->sk_lock.slock);
2279         }
2280
2281         /*
2282          * Doing the zeroing here guarantee we can not loop forever
2283          * while a wild producer attempts to flood us.
2284          */
2285         sk->sk_backlog.len = 0;
2286 }
2287
2288 void __sk_flush_backlog(struct sock *sk)
2289 {
2290         spin_lock_bh(&sk->sk_lock.slock);
2291         __release_sock(sk);
2292         spin_unlock_bh(&sk->sk_lock.slock);
2293 }
2294
2295 /**
2296  * sk_wait_data - wait for data to arrive at sk_receive_queue
2297  * @sk:    sock to wait on
2298  * @timeo: for how long
2299  * @skb:   last skb seen on sk_receive_queue
2300  *
2301  * Now socket state including sk->sk_err is changed only under lock,
2302  * hence we may omit checks after joining wait queue.
2303  * We check receive queue before schedule() only as optimization;
2304  * it is very likely that release_sock() added new data.
2305  */
2306 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2307 {
2308         DEFINE_WAIT_FUNC(wait, woken_wake_function);
2309         int rc;
2310
2311         add_wait_queue(sk_sleep(sk), &wait);
2312         sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2313         rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2314         sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2315         remove_wait_queue(sk_sleep(sk), &wait);
2316         return rc;
2317 }
2318 EXPORT_SYMBOL(sk_wait_data);
2319
2320 /**
2321  *      __sk_mem_raise_allocated - increase memory_allocated
2322  *      @sk: socket
2323  *      @size: memory size to allocate
2324  *      @amt: pages to allocate
2325  *      @kind: allocation type
2326  *
2327  *      Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2328  */
2329 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2330 {
2331         struct proto *prot = sk->sk_prot;
2332         long allocated = sk_memory_allocated_add(sk, amt);
2333
2334         if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2335             !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2336                 goto suppress_allocation;
2337
2338         /* Under limit. */
2339         if (allocated <= sk_prot_mem_limits(sk, 0)) {
2340                 sk_leave_memory_pressure(sk);
2341                 return 1;
2342         }
2343
2344         /* Under pressure. */
2345         if (allocated > sk_prot_mem_limits(sk, 1))
2346                 sk_enter_memory_pressure(sk);
2347
2348         /* Over hard limit. */
2349         if (allocated > sk_prot_mem_limits(sk, 2))
2350                 goto suppress_allocation;
2351
2352         /* guarantee minimum buffer size under pressure */
2353         if (kind == SK_MEM_RECV) {
2354                 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2355                         return 1;
2356
2357         } else { /* SK_MEM_SEND */
2358                 int wmem0 = sk_get_wmem0(sk, prot);
2359
2360                 if (sk->sk_type == SOCK_STREAM) {
2361                         if (sk->sk_wmem_queued < wmem0)
2362                                 return 1;
2363                 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2364                                 return 1;
2365                 }
2366         }
2367
2368         if (sk_has_memory_pressure(sk)) {
2369                 int alloc;
2370
2371                 if (!sk_under_memory_pressure(sk))
2372                         return 1;
2373                 alloc = sk_sockets_allocated_read_positive(sk);
2374                 if (sk_prot_mem_limits(sk, 2) > alloc *
2375                     sk_mem_pages(sk->sk_wmem_queued +
2376                                  atomic_read(&sk->sk_rmem_alloc) +
2377                                  sk->sk_forward_alloc))
2378                         return 1;
2379         }
2380
2381 suppress_allocation:
2382
2383         if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2384                 sk_stream_moderate_sndbuf(sk);
2385
2386                 /* Fail only if socket is _under_ its sndbuf.
2387                  * In this case we cannot block, so that we have to fail.
2388                  */
2389                 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2390                         return 1;
2391         }
2392
2393         trace_sock_exceed_buf_limit(sk, prot, allocated);
2394
2395         sk_memory_allocated_sub(sk, amt);
2396
2397         if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2398                 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2399
2400         return 0;
2401 }
2402 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2403
2404 /**
2405  *      __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2406  *      @sk: socket
2407  *      @size: memory size to allocate
2408  *      @kind: allocation type
2409  *
2410  *      If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2411  *      rmem allocation. This function assumes that protocols which have
2412  *      memory_pressure use sk_wmem_queued as write buffer accounting.
2413  */
2414 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2415 {
2416         int ret, amt = sk_mem_pages(size);
2417
2418         sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2419         ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2420         if (!ret)
2421                 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2422         return ret;
2423 }
2424 EXPORT_SYMBOL(__sk_mem_schedule);
2425
2426 /**
2427  *      __sk_mem_reduce_allocated - reclaim memory_allocated
2428  *      @sk: socket
2429  *      @amount: number of quanta
2430  *
2431  *      Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2432  */
2433 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2434 {
2435         sk_memory_allocated_sub(sk, amount);
2436
2437         if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2438                 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2439
2440         if (sk_under_memory_pressure(sk) &&
2441             (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2442                 sk_leave_memory_pressure(sk);
2443 }
2444 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2445
2446 /**
2447  *      __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2448  *      @sk: socket
2449  *      @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2450  */
2451 void __sk_mem_reclaim(struct sock *sk, int amount)
2452 {
2453         amount >>= SK_MEM_QUANTUM_SHIFT;
2454         sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2455         __sk_mem_reduce_allocated(sk, amount);
2456 }
2457 EXPORT_SYMBOL(__sk_mem_reclaim);
2458
2459 int sk_set_peek_off(struct sock *sk, int val)
2460 {
2461         sk->sk_peek_off = val;
2462         return 0;
2463 }
2464 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2465
2466 /*
2467  * Set of default routines for initialising struct proto_ops when
2468  * the protocol does not support a particular function. In certain
2469  * cases where it makes no sense for a protocol to have a "do nothing"
2470  * function, some default processing is provided.
2471  */
2472
2473 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2474 {
2475         return -EOPNOTSUPP;
2476 }
2477 EXPORT_SYMBOL(sock_no_bind);
2478
2479 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2480                     int len, int flags)
2481 {
2482         return -EOPNOTSUPP;
2483 }
2484 EXPORT_SYMBOL(sock_no_connect);
2485
2486 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2487 {
2488         return -EOPNOTSUPP;
2489 }
2490 EXPORT_SYMBOL(sock_no_socketpair);
2491
2492 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2493                    bool kern)
2494 {
2495         return -EOPNOTSUPP;
2496 }
2497 EXPORT_SYMBOL(sock_no_accept);
2498
2499 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2500                     int *len, int peer)
2501 {
2502         return -EOPNOTSUPP;
2503 }
2504 EXPORT_SYMBOL(sock_no_getname);
2505
2506 __poll_t sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2507 {
2508         return 0;
2509 }
2510 EXPORT_SYMBOL(sock_no_poll);
2511
2512 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2513 {
2514         return -EOPNOTSUPP;
2515 }
2516 EXPORT_SYMBOL(sock_no_ioctl);
2517
2518 int sock_no_listen(struct socket *sock, int backlog)
2519 {
2520         return -EOPNOTSUPP;
2521 }
2522 EXPORT_SYMBOL(sock_no_listen);
2523
2524 int sock_no_shutdown(struct socket *sock, int how)
2525 {
2526         return -EOPNOTSUPP;
2527 }
2528 EXPORT_SYMBOL(sock_no_shutdown);
2529
2530 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2531                     char __user *optval, unsigned int optlen)
2532 {
2533         return -EOPNOTSUPP;
2534 }
2535 EXPORT_SYMBOL(sock_no_setsockopt);
2536
2537 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2538                     char __user *optval, int __user *optlen)
2539 {
2540         return -EOPNOTSUPP;
2541 }
2542 EXPORT_SYMBOL(sock_no_getsockopt);
2543
2544 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2545 {
2546         return -EOPNOTSUPP;
2547 }
2548 EXPORT_SYMBOL(sock_no_sendmsg);
2549
2550 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2551 {
2552         return -EOPNOTSUPP;
2553 }
2554 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2555
2556 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2557                     int flags)
2558 {
2559         return -EOPNOTSUPP;
2560 }
2561 EXPORT_SYMBOL(sock_no_recvmsg);
2562
2563 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2564 {
2565         /* Mirror missing mmap method error code */
2566         return -ENODEV;
2567 }
2568 EXPORT_SYMBOL(sock_no_mmap);
2569
2570 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2571 {
2572         ssize_t res;
2573         struct msghdr msg = {.msg_flags = flags};
2574         struct kvec iov;
2575         char *kaddr = kmap(page);
2576         iov.iov_base = kaddr + offset;
2577         iov.iov_len = size;
2578         res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2579         kunmap(page);
2580         return res;
2581 }
2582 EXPORT_SYMBOL(sock_no_sendpage);
2583
2584 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2585                                 int offset, size_t size, int flags)
2586 {
2587         ssize_t res;
2588         struct msghdr msg = {.msg_flags = flags};
2589         struct kvec iov;
2590         char *kaddr = kmap(page);
2591
2592         iov.iov_base = kaddr + offset;
2593         iov.iov_len = size;
2594         res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2595         kunmap(page);
2596         return res;
2597 }
2598 EXPORT_SYMBOL(sock_no_sendpage_locked);
2599
2600 /*
2601  *      Default Socket Callbacks
2602  */
2603
2604 static void sock_def_wakeup(struct sock *sk)
2605 {
2606         struct socket_wq *wq;
2607
2608         rcu_read_lock();
2609         wq = rcu_dereference(sk->sk_wq);
2610         if (skwq_has_sleeper(wq))
2611                 wake_up_interruptible_all(&wq->wait);
2612         rcu_read_unlock();
2613 }
2614
2615 static void sock_def_error_report(struct sock *sk)
2616 {
2617         struct socket_wq *wq;
2618
2619         rcu_read_lock();
2620         wq = rcu_dereference(sk->sk_wq);
2621         if (skwq_has_sleeper(wq))
2622                 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2623         sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2624         rcu_read_unlock();
2625 }
2626
2627 static void sock_def_readable(struct sock *sk)
2628 {
2629         struct socket_wq *wq;
2630
2631         rcu_read_lock();
2632         wq = rcu_dereference(sk->sk_wq);
2633         if (skwq_has_sleeper(wq))
2634                 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2635                                                 EPOLLRDNORM | EPOLLRDBAND);
2636         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2637         rcu_read_unlock();
2638 }
2639
2640 static void sock_def_write_space(struct sock *sk)
2641 {
2642         struct socket_wq *wq;
2643
2644         rcu_read_lock();
2645
2646         /* Do not wake up a writer until he can make "significant"
2647          * progress.  --DaveM
2648          */
2649         if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2650                 wq = rcu_dereference(sk->sk_wq);
2651                 if (skwq_has_sleeper(wq))
2652                         wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2653                                                 EPOLLWRNORM | EPOLLWRBAND);
2654
2655                 /* Should agree with poll, otherwise some programs break */
2656                 if (sock_writeable(sk))
2657                         sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2658         }
2659
2660         rcu_read_unlock();
2661 }
2662
2663 static void sock_def_destruct(struct sock *sk)
2664 {
2665 }
2666
2667 void sk_send_sigurg(struct sock *sk)
2668 {
2669         if (sk->sk_socket && sk->sk_socket->file)
2670                 if (send_sigurg(&sk->sk_socket->file->f_owner))
2671                         sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2672 }
2673 EXPORT_SYMBOL(sk_send_sigurg);
2674
2675 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2676                     unsigned long expires)
2677 {
2678         if (!mod_timer(timer, expires))
2679                 sock_hold(sk);
2680 }
2681 EXPORT_SYMBOL(sk_reset_timer);
2682
2683 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2684 {
2685         if (del_timer(timer))
2686                 __sock_put(sk);
2687 }
2688 EXPORT_SYMBOL(sk_stop_timer);
2689
2690 void sock_init_data(struct socket *sock, struct sock *sk)
2691 {
2692         sk_init_common(sk);
2693         sk->sk_send_head        =       NULL;
2694
2695         timer_setup(&sk->sk_timer, NULL, 0);
2696
2697         sk->sk_allocation       =       GFP_KERNEL;
2698         sk->sk_rcvbuf           =       sysctl_rmem_default;
2699         sk->sk_sndbuf           =       sysctl_wmem_default;
2700         sk->sk_state            =       TCP_CLOSE;
2701         sk_set_socket(sk, sock);
2702
2703         sock_set_flag(sk, SOCK_ZAPPED);
2704
2705         if (sock) {
2706                 sk->sk_type     =       sock->type;
2707                 sk->sk_wq       =       sock->wq;
2708                 sock->sk        =       sk;
2709                 sk->sk_uid      =       SOCK_INODE(sock)->i_uid;
2710         } else {
2711                 sk->sk_wq       =       NULL;
2712                 sk->sk_uid      =       make_kuid(sock_net(sk)->user_ns, 0);
2713         }
2714
2715         rwlock_init(&sk->sk_callback_lock);
2716         if (sk->sk_kern_sock)
2717                 lockdep_set_class_and_name(
2718                         &sk->sk_callback_lock,
2719                         af_kern_callback_keys + sk->sk_family,
2720                         af_family_kern_clock_key_strings[sk->sk_family]);
2721         else
2722                 lockdep_set_class_and_name(
2723                         &sk->sk_callback_lock,
2724                         af_callback_keys + sk->sk_family,
2725                         af_family_clock_key_strings[sk->sk_family]);
2726
2727         sk->sk_state_change     =       sock_def_wakeup;
2728         sk->sk_data_ready       =       sock_def_readable;
2729         sk->sk_write_space      =       sock_def_write_space;
2730         sk->sk_error_report     =       sock_def_error_report;
2731         sk->sk_destruct         =       sock_def_destruct;
2732
2733         sk->sk_frag.page        =       NULL;
2734         sk->sk_frag.offset      =       0;
2735         sk->sk_peek_off         =       -1;
2736
2737         sk->sk_peer_pid         =       NULL;
2738         sk->sk_peer_cred        =       NULL;
2739         sk->sk_write_pending    =       0;
2740         sk->sk_rcvlowat         =       1;
2741         sk->sk_rcvtimeo         =       MAX_SCHEDULE_TIMEOUT;
2742         sk->sk_sndtimeo         =       MAX_SCHEDULE_TIMEOUT;
2743
2744         sk->sk_stamp = SK_DEFAULT_STAMP;
2745         atomic_set(&sk->sk_zckey, 0);
2746
2747 #ifdef CONFIG_NET_RX_BUSY_POLL
2748         sk->sk_napi_id          =       0;
2749         sk->sk_ll_usec          =       sysctl_net_busy_read;
2750 #endif
2751
2752         sk->sk_max_pacing_rate = ~0U;
2753         sk->sk_pacing_rate = ~0U;
2754         sk->sk_pacing_shift = 10;
2755         sk->sk_incoming_cpu = -1;
2756         /*
2757          * Before updating sk_refcnt, we must commit prior changes to memory
2758          * (Documentation/RCU/rculist_nulls.txt for details)
2759          */
2760         smp_wmb();
2761         refcount_set(&sk->sk_refcnt, 1);
2762         atomic_set(&sk->sk_drops, 0);
2763 }
2764 EXPORT_SYMBOL(sock_init_data);
2765
2766 void lock_sock_nested(struct sock *sk, int subclass)
2767 {
2768         might_sleep();
2769         spin_lock_bh(&sk->sk_lock.slock);
2770         if (sk->sk_lock.owned)
2771                 __lock_sock(sk);
2772         sk->sk_lock.owned = 1;
2773         spin_unlock(&sk->sk_lock.slock);
2774         /*
2775          * The sk_lock has mutex_lock() semantics here:
2776          */
2777         mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2778         local_bh_enable();
2779 }
2780 EXPORT_SYMBOL(lock_sock_nested);
2781
2782 void release_sock(struct sock *sk)
2783 {
2784         spin_lock_bh(&sk->sk_lock.slock);
2785         if (sk->sk_backlog.tail)
2786                 __release_sock(sk);
2787
2788         /* Warning : release_cb() might need to release sk ownership,
2789          * ie call sock_release_ownership(sk) before us.
2790          */
2791         if (sk->sk_prot->release_cb)
2792                 sk->sk_prot->release_cb(sk);
2793
2794         sock_release_ownership(sk);
2795         if (waitqueue_active(&sk->sk_lock.wq))
2796                 wake_up(&sk->sk_lock.wq);
2797         spin_unlock_bh(&sk->sk_lock.slock);
2798 }
2799 EXPORT_SYMBOL(release_sock);
2800
2801 /**
2802  * lock_sock_fast - fast version of lock_sock
2803  * @sk: socket
2804  *
2805  * This version should be used for very small section, where process wont block
2806  * return false if fast path is taken:
2807  *
2808  *   sk_lock.slock locked, owned = 0, BH disabled
2809  *
2810  * return true if slow path is taken:
2811  *
2812  *   sk_lock.slock unlocked, owned = 1, BH enabled
2813  */
2814 bool lock_sock_fast(struct sock *sk)
2815 {
2816         might_sleep();
2817         spin_lock_bh(&sk->sk_lock.slock);
2818
2819         if (!sk->sk_lock.owned)
2820                 /*
2821                  * Note : We must disable BH
2822                  */
2823                 return false;
2824
2825         __lock_sock(sk);
2826         sk->sk_lock.owned = 1;
2827         spin_unlock(&sk->sk_lock.slock);
2828         /*
2829          * The sk_lock has mutex_lock() semantics here:
2830          */
2831         mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2832         local_bh_enable();
2833         return true;
2834 }
2835 EXPORT_SYMBOL(lock_sock_fast);
2836
2837 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2838 {
2839         struct timeval tv;
2840         if (!sock_flag(sk, SOCK_TIMESTAMP))
2841                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2842         tv = ktime_to_timeval(sk->sk_stamp);
2843         if (tv.tv_sec == -1)
2844                 return -ENOENT;
2845         if (tv.tv_sec == 0) {
2846                 sk->sk_stamp = ktime_get_real();
2847                 tv = ktime_to_timeval(sk->sk_stamp);
2848         }
2849         return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2850 }
2851 EXPORT_SYMBOL(sock_get_timestamp);
2852
2853 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2854 {
2855         struct timespec ts;
2856         if (!sock_flag(sk, SOCK_TIMESTAMP))
2857                 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2858         ts = ktime_to_timespec(sk->sk_stamp);
2859         if (ts.tv_sec == -1)
2860                 return -ENOENT;
2861         if (ts.tv_sec == 0) {
2862                 sk->sk_stamp = ktime_get_real();
2863                 ts = ktime_to_timespec(sk->sk_stamp);
2864         }
2865         return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2866 }
2867 EXPORT_SYMBOL(sock_get_timestampns);
2868
2869 void sock_enable_timestamp(struct sock *sk, int flag)
2870 {
2871         if (!sock_flag(sk, flag)) {
2872                 unsigned long previous_flags = sk->sk_flags;
2873
2874                 sock_set_flag(sk, flag);
2875                 /*
2876                  * we just set one of the two flags which require net
2877                  * time stamping, but time stamping might have been on
2878                  * already because of the other one
2879                  */
2880                 if (sock_needs_netstamp(sk) &&
2881                     !(previous_flags & SK_FLAGS_TIMESTAMP))
2882                         net_enable_timestamp();
2883         }
2884 }
2885
2886 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2887                        int level, int type)
2888 {
2889         struct sock_exterr_skb *serr;
2890         struct sk_buff *skb;
2891         int copied, err;
2892
2893         err = -EAGAIN;
2894         skb = sock_dequeue_err_skb(sk);
2895         if (skb == NULL)
2896                 goto out;
2897
2898         copied = skb->len;
2899         if (copied > len) {
2900                 msg->msg_flags |= MSG_TRUNC;
2901                 copied = len;
2902         }
2903         err = skb_copy_datagram_msg(skb, 0, msg, copied);
2904         if (err)
2905                 goto out_free_skb;
2906
2907         sock_recv_timestamp(msg, sk, skb);
2908
2909         serr = SKB_EXT_ERR(skb);
2910         put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2911
2912         msg->msg_flags |= MSG_ERRQUEUE;
2913         err = copied;
2914
2915 out_free_skb:
2916         kfree_skb(skb);
2917 out:
2918         return err;
2919 }
2920 EXPORT_SYMBOL(sock_recv_errqueue);
2921
2922 /*
2923  *      Get a socket option on an socket.
2924  *
2925  *      FIX: POSIX 1003.1g is very ambiguous here. It states that
2926  *      asynchronous errors should be reported by getsockopt. We assume
2927  *      this means if you specify SO_ERROR (otherwise whats the point of it).
2928  */
2929 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2930                            char __user *optval, int __user *optlen)
2931 {
2932         struct sock *sk = sock->sk;
2933
2934         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2935 }
2936 EXPORT_SYMBOL(sock_common_getsockopt);
2937
2938 #ifdef CONFIG_COMPAT
2939 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2940                                   char __user *optval, int __user *optlen)
2941 {
2942         struct sock *sk = sock->sk;
2943
2944         if (sk->sk_prot->compat_getsockopt != NULL)
2945                 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2946                                                       optval, optlen);
2947         return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2948 }
2949 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2950 #endif
2951
2952 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2953                         int flags)
2954 {
2955         struct sock *sk = sock->sk;
2956         int addr_len = 0;
2957         int err;
2958
2959         err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2960                                    flags & ~MSG_DONTWAIT, &addr_len);
2961         if (err >= 0)
2962                 msg->msg_namelen = addr_len;
2963         return err;
2964 }
2965 EXPORT_SYMBOL(sock_common_recvmsg);
2966
2967 /*
2968  *      Set socket options on an inet socket.
2969  */
2970 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2971                            char __user *optval, unsigned int optlen)
2972 {
2973         struct sock *sk = sock->sk;
2974
2975         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2976 }
2977 EXPORT_SYMBOL(sock_common_setsockopt);
2978
2979 #ifdef CONFIG_COMPAT
2980 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2981                                   char __user *optval, unsigned int optlen)
2982 {
2983         struct sock *sk = sock->sk;
2984
2985         if (sk->sk_prot->compat_setsockopt != NULL)
2986                 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2987                                                       optval, optlen);
2988         return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2989 }
2990 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2991 #endif
2992
2993 void sk_common_release(struct sock *sk)
2994 {
2995         if (sk->sk_prot->destroy)
2996                 sk->sk_prot->destroy(sk);
2997
2998         /*
2999          * Observation: when sock_common_release is called, processes have
3000          * no access to socket. But net still has.
3001          * Step one, detach it from networking:
3002          *
3003          * A. Remove from hash tables.
3004          */
3005
3006         sk->sk_prot->unhash(sk);
3007
3008         /*
3009          * In this point socket cannot receive new packets, but it is possible
3010          * that some packets are in flight because some CPU runs receiver and
3011          * did hash table lookup before we unhashed socket. They will achieve
3012          * receive queue and will be purged by socket destructor.
3013          *
3014          * Also we still have packets pending on receive queue and probably,
3015          * our own packets waiting in device queues. sock_destroy will drain
3016          * receive queue, but transmitted packets will delay socket destruction
3017          * until the last reference will be released.
3018          */
3019
3020         sock_orphan(sk);
3021
3022         xfrm_sk_free_policy(sk);
3023
3024         sk_refcnt_debug_release(sk);
3025
3026         sock_put(sk);
3027 }
3028 EXPORT_SYMBOL(sk_common_release);
3029
3030 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3031 {
3032         memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3033
3034         mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3035         mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3036         mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3037         mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3038         mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3039         mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3040         mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3041         mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3042         mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3043 }
3044
3045 #ifdef CONFIG_PROC_FS
3046 #define PROTO_INUSE_NR  64      /* should be enough for the first time */
3047 struct prot_inuse {
3048         int val[PROTO_INUSE_NR];
3049 };
3050
3051 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3052
3053 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3054 {
3055         __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3056 }
3057 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3058
3059 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3060 {
3061         int cpu, idx = prot->inuse_idx;
3062         int res = 0;
3063
3064         for_each_possible_cpu(cpu)
3065                 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3066
3067         return res >= 0 ? res : 0;
3068 }
3069 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3070
3071 static void sock_inuse_add(struct net *net, int val)
3072 {
3073         this_cpu_add(*net->core.sock_inuse, val);
3074 }
3075
3076 int sock_inuse_get(struct net *net)
3077 {
3078         int cpu, res = 0;
3079
3080         for_each_possible_cpu(cpu)
3081                 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3082
3083         return res;
3084 }
3085
3086 EXPORT_SYMBOL_GPL(sock_inuse_get);
3087
3088 static int __net_init sock_inuse_init_net(struct net *net)
3089 {
3090         net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3091         if (net->core.prot_inuse == NULL)
3092                 return -ENOMEM;
3093
3094         net->core.sock_inuse = alloc_percpu(int);
3095         if (net->core.sock_inuse == NULL)
3096                 goto out;
3097
3098         return 0;
3099
3100 out:
3101         free_percpu(net->core.prot_inuse);
3102         return -ENOMEM;
3103 }
3104
3105 static void __net_exit sock_inuse_exit_net(struct net *net)
3106 {
3107         free_percpu(net->core.prot_inuse);
3108         free_percpu(net->core.sock_inuse);
3109 }
3110
3111 static struct pernet_operations net_inuse_ops = {
3112         .init = sock_inuse_init_net,
3113         .exit = sock_inuse_exit_net,
3114 };
3115
3116 static __init int net_inuse_init(void)
3117 {
3118         if (register_pernet_subsys(&net_inuse_ops))
3119                 panic("Cannot initialize net inuse counters");
3120
3121         return 0;
3122 }
3123
3124 core_initcall(net_inuse_init);
3125
3126 static void assign_proto_idx(struct proto *prot)
3127 {
3128         prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3129
3130         if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3131                 pr_err("PROTO_INUSE_NR exhausted\n");
3132                 return;
3133         }
3134
3135         set_bit(prot->inuse_idx, proto_inuse_idx);
3136 }
3137
3138 static void release_proto_idx(struct proto *prot)
3139 {
3140         if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3141                 clear_bit(prot->inuse_idx, proto_inuse_idx);
3142 }
3143 #else
3144 static inline void assign_proto_idx(struct proto *prot)
3145 {
3146 }
3147
3148 static inline void release_proto_idx(struct proto *prot)
3149 {
3150 }
3151
3152 static void sock_inuse_add(struct net *net, int val)
3153 {
3154 }
3155 #endif
3156
3157 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3158 {
3159         if (!rsk_prot)
3160                 return;
3161         kfree(rsk_prot->slab_name);
3162         rsk_prot->slab_name = NULL;
3163         kmem_cache_destroy(rsk_prot->slab);
3164         rsk_prot->slab = NULL;
3165 }
3166
3167 static int req_prot_init(const struct proto *prot)
3168 {
3169         struct request_sock_ops *rsk_prot = prot->rsk_prot;
3170
3171         if (!rsk_prot)
3172                 return 0;
3173
3174         rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3175                                         prot->name);
3176         if (!rsk_prot->slab_name)
3177                 return -ENOMEM;
3178
3179         rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3180                                            rsk_prot->obj_size, 0,
3181                                            prot->slab_flags, NULL);
3182
3183         if (!rsk_prot->slab) {
3184                 pr_crit("%s: Can't create request sock SLAB cache!\n",
3185                         prot->name);
3186                 return -ENOMEM;
3187         }
3188         return 0;
3189 }
3190
3191 int proto_register(struct proto *prot, int alloc_slab)
3192 {
3193         if (alloc_slab) {
3194                 prot->slab = kmem_cache_create_usercopy(prot->name,
3195                                         prot->obj_size, 0,
3196                                         SLAB_HWCACHE_ALIGN | prot->slab_flags,
3197                                         prot->useroffset, prot->usersize,
3198                                         NULL);
3199
3200                 if (prot->slab == NULL) {
3201                         pr_crit("%s: Can't create sock SLAB cache!\n",
3202                                 prot->name);
3203                         goto out;
3204                 }
3205
3206                 if (req_prot_init(prot))
3207                         goto out_free_request_sock_slab;
3208
3209                 if (prot->twsk_prot != NULL) {
3210                         prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3211
3212                         if (prot->twsk_prot->twsk_slab_name == NULL)
3213                                 goto out_free_request_sock_slab;
3214
3215                         prot->twsk_prot->twsk_slab =
3216                                 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3217                                                   prot->twsk_prot->twsk_obj_size,
3218                                                   0,
3219                                                   prot->slab_flags,
3220                                                   NULL);
3221                         if (prot->twsk_prot->twsk_slab == NULL)
3222                                 goto out_free_timewait_sock_slab_name;
3223                 }
3224         }
3225
3226         mutex_lock(&proto_list_mutex);
3227         list_add(&prot->node, &proto_list);
3228         assign_proto_idx(prot);
3229         mutex_unlock(&proto_list_mutex);
3230         return 0;
3231
3232 out_free_timewait_sock_slab_name:
3233         kfree(prot->twsk_prot->twsk_slab_name);
3234 out_free_request_sock_slab:
3235         req_prot_cleanup(prot->rsk_prot);
3236
3237         kmem_cache_destroy(prot->slab);
3238         prot->slab = NULL;
3239 out:
3240         return -ENOBUFS;
3241 }
3242 EXPORT_SYMBOL(proto_register);
3243
3244 void proto_unregister(struct proto *prot)
3245 {
3246         mutex_lock(&proto_list_mutex);
3247         release_proto_idx(prot);
3248         list_del(&prot->node);
3249         mutex_unlock(&proto_list_mutex);
3250
3251         kmem_cache_destroy(prot->slab);
3252         prot->slab = NULL;
3253
3254         req_prot_cleanup(prot->rsk_prot);
3255
3256         if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3257                 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3258                 kfree(prot->twsk_prot->twsk_slab_name);
3259                 prot->twsk_prot->twsk_slab = NULL;
3260         }
3261 }
3262 EXPORT_SYMBOL(proto_unregister);
3263
3264 #ifdef CONFIG_PROC_FS
3265 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3266         __acquires(proto_list_mutex)
3267 {
3268         mutex_lock(&proto_list_mutex);
3269         return seq_list_start_head(&proto_list, *pos);
3270 }
3271
3272 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3273 {
3274         return seq_list_next(v, &proto_list, pos);
3275 }
3276
3277 static void proto_seq_stop(struct seq_file *seq, void *v)
3278         __releases(proto_list_mutex)
3279 {
3280         mutex_unlock(&proto_list_mutex);
3281 }
3282
3283 static char proto_method_implemented(const void *method)
3284 {
3285         return method == NULL ? 'n' : 'y';
3286 }
3287 static long sock_prot_memory_allocated(struct proto *proto)
3288 {
3289         return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3290 }
3291
3292 static char *sock_prot_memory_pressure(struct proto *proto)
3293 {
3294         return proto->memory_pressure != NULL ?
3295         proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3296 }
3297
3298 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3299 {
3300
3301         seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3302                         "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3303                    proto->name,
3304                    proto->obj_size,
3305                    sock_prot_inuse_get(seq_file_net(seq), proto),
3306                    sock_prot_memory_allocated(proto),
3307                    sock_prot_memory_pressure(proto),
3308                    proto->max_header,
3309                    proto->slab == NULL ? "no" : "yes",
3310                    module_name(proto->owner),
3311                    proto_method_implemented(proto->close),
3312                    proto_method_implemented(proto->connect),
3313                    proto_method_implemented(proto->disconnect),
3314                    proto_method_implemented(proto->accept),
3315                    proto_method_implemented(proto->ioctl),
3316                    proto_method_implemented(proto->init),
3317                    proto_method_implemented(proto->destroy),
3318                    proto_method_implemented(proto->shutdown),
3319                    proto_method_implemented(proto->setsockopt),
3320                    proto_method_implemented(proto->getsockopt),
3321                    proto_method_implemented(proto->sendmsg),
3322                    proto_method_implemented(proto->recvmsg),
3323                    proto_method_implemented(proto->sendpage),
3324                    proto_method_implemented(proto->bind),
3325                    proto_method_implemented(proto->backlog_rcv),
3326                    proto_method_implemented(proto->hash),
3327                    proto_method_implemented(proto->unhash),
3328                    proto_method_implemented(proto->get_port),
3329                    proto_method_implemented(proto->enter_memory_pressure));
3330 }
3331
3332 static int proto_seq_show(struct seq_file *seq, void *v)
3333 {
3334         if (v == &proto_list)
3335                 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3336                            "protocol",
3337                            "size",
3338                            "sockets",
3339                            "memory",
3340                            "press",
3341                            "maxhdr",
3342                            "slab",
3343                            "module",
3344                            "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3345         else
3346                 proto_seq_printf(seq, list_entry(v, struct proto, node));
3347         return 0;
3348 }
3349
3350 static const struct seq_operations proto_seq_ops = {
3351         .start  = proto_seq_start,
3352         .next   = proto_seq_next,
3353         .stop   = proto_seq_stop,
3354         .show   = proto_seq_show,
3355 };
3356
3357 static int proto_seq_open(struct inode *inode, struct file *file)
3358 {
3359         return seq_open_net(inode, file, &proto_seq_ops,
3360                             sizeof(struct seq_net_private));
3361 }
3362
3363 static const struct file_operations proto_seq_fops = {
3364         .open           = proto_seq_open,
3365         .read           = seq_read,
3366         .llseek         = seq_lseek,
3367         .release        = seq_release_net,
3368 };
3369
3370 static __net_init int proto_init_net(struct net *net)
3371 {
3372         if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3373                 return -ENOMEM;
3374
3375         return 0;
3376 }
3377
3378 static __net_exit void proto_exit_net(struct net *net)
3379 {
3380         remove_proc_entry("protocols", net->proc_net);
3381 }
3382
3383
3384 static __net_initdata struct pernet_operations proto_net_ops = {
3385         .init = proto_init_net,
3386         .exit = proto_exit_net,
3387 };
3388
3389 static int __init proto_init(void)
3390 {
3391         return register_pernet_subsys(&proto_net_ops);
3392 }
3393
3394 subsys_initcall(proto_init);
3395
3396 #endif /* PROC_FS */
3397
3398 #ifdef CONFIG_NET_RX_BUSY_POLL
3399 bool sk_busy_loop_end(void *p, unsigned long start_time)
3400 {
3401         struct sock *sk = p;
3402
3403         return !skb_queue_empty(&sk->sk_receive_queue) ||
3404                sk_busy_loop_timeout(sk, start_time);
3405 }
3406 EXPORT_SYMBOL(sk_busy_loop_end);
3407 #endif /* CONFIG_NET_RX_BUSY_POLL */