6f1e31f674a3b12902cf1e2cbcf98132177554ec
[linux-2.6-microblaze.git] / net / core / skbuff.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *                      Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *      Fixes:
9  *              Alan Cox        :       Fixed the worst of the load
10  *                                      balancer bugs.
11  *              Dave Platt      :       Interrupt stacking fix.
12  *      Richard Kooijman        :       Timestamp fixes.
13  *              Alan Cox        :       Changed buffer format.
14  *              Alan Cox        :       destructor hook for AF_UNIX etc.
15  *              Linus Torvalds  :       Better skb_clone.
16  *              Alan Cox        :       Added skb_copy.
17  *              Alan Cox        :       Added all the changed routines Linus
18  *                                      only put in the headers
19  *              Ray VanTassle   :       Fixed --skb->lock in free
20  *              Alan Cox        :       skb_copy copy arp field
21  *              Andi Kleen      :       slabified it.
22  *              Robert Olsson   :       Removed skb_head_pool
23  *
24  *      NOTE:
25  *              The __skb_ routines should be called with interrupts
26  *      disabled, or you better be *real* sure that the operation is atomic
27  *      with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *      or via disabling bottom half handlers, etc).
29  */
30
31 /*
32  *      The functions in this file will not compile correctly with gcc 2.4.x
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71
72 #include <linux/uaccess.h>
73 #include <trace/events/skb.h>
74 #include <linux/highmem.h>
75 #include <linux/capability.h>
76 #include <linux/user_namespace.h>
77 #include <linux/indirect_call_wrapper.h>
78
79 #include "datagram.h"
80
81 struct kmem_cache *skbuff_head_cache __ro_after_init;
82 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
83 #ifdef CONFIG_SKB_EXTENSIONS
84 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
85 #endif
86 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
87 EXPORT_SYMBOL(sysctl_max_skb_frags);
88
89 /**
90  *      skb_panic - private function for out-of-line support
91  *      @skb:   buffer
92  *      @sz:    size
93  *      @addr:  address
94  *      @msg:   skb_over_panic or skb_under_panic
95  *
96  *      Out-of-line support for skb_put() and skb_push().
97  *      Called via the wrapper skb_over_panic() or skb_under_panic().
98  *      Keep out of line to prevent kernel bloat.
99  *      __builtin_return_address is not used because it is not always reliable.
100  */
101 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
102                       const char msg[])
103 {
104         pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
105                  msg, addr, skb->len, sz, skb->head, skb->data,
106                  (unsigned long)skb->tail, (unsigned long)skb->end,
107                  skb->dev ? skb->dev->name : "<NULL>");
108         BUG();
109 }
110
111 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
112 {
113         skb_panic(skb, sz, addr, __func__);
114 }
115
116 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118         skb_panic(skb, sz, addr, __func__);
119 }
120
121 /*
122  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
123  * the caller if emergency pfmemalloc reserves are being used. If it is and
124  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
125  * may be used. Otherwise, the packet data may be discarded until enough
126  * memory is free
127  */
128 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
129          __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
130
131 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
132                                unsigned long ip, bool *pfmemalloc)
133 {
134         void *obj;
135         bool ret_pfmemalloc = false;
136
137         /*
138          * Try a regular allocation, when that fails and we're not entitled
139          * to the reserves, fail.
140          */
141         obj = kmalloc_node_track_caller(size,
142                                         flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
143                                         node);
144         if (obj || !(gfp_pfmemalloc_allowed(flags)))
145                 goto out;
146
147         /* Try again but now we are using pfmemalloc reserves */
148         ret_pfmemalloc = true;
149         obj = kmalloc_node_track_caller(size, flags, node);
150
151 out:
152         if (pfmemalloc)
153                 *pfmemalloc = ret_pfmemalloc;
154
155         return obj;
156 }
157
158 /*      Allocate a new skbuff. We do this ourselves so we can fill in a few
159  *      'private' fields and also do memory statistics to find all the
160  *      [BEEP] leaks.
161  *
162  */
163
164 /**
165  *      __alloc_skb     -       allocate a network buffer
166  *      @size: size to allocate
167  *      @gfp_mask: allocation mask
168  *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
169  *              instead of head cache and allocate a cloned (child) skb.
170  *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
171  *              allocations in case the data is required for writeback
172  *      @node: numa node to allocate memory on
173  *
174  *      Allocate a new &sk_buff. The returned buffer has no headroom and a
175  *      tail room of at least size bytes. The object has a reference count
176  *      of one. The return is the buffer. On a failure the return is %NULL.
177  *
178  *      Buffers may only be allocated from interrupts using a @gfp_mask of
179  *      %GFP_ATOMIC.
180  */
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182                             int flags, int node)
183 {
184         struct kmem_cache *cache;
185         struct skb_shared_info *shinfo;
186         struct sk_buff *skb;
187         u8 *data;
188         bool pfmemalloc;
189
190         cache = (flags & SKB_ALLOC_FCLONE)
191                 ? skbuff_fclone_cache : skbuff_head_cache;
192
193         if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
194                 gfp_mask |= __GFP_MEMALLOC;
195
196         /* Get the HEAD */
197         skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
198         if (!skb)
199                 goto out;
200         prefetchw(skb);
201
202         /* We do our best to align skb_shared_info on a separate cache
203          * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
204          * aligned memory blocks, unless SLUB/SLAB debug is enabled.
205          * Both skb->head and skb_shared_info are cache line aligned.
206          */
207         size = SKB_DATA_ALIGN(size);
208         size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
209         data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
210         if (!data)
211                 goto nodata;
212         /* kmalloc(size) might give us more room than requested.
213          * Put skb_shared_info exactly at the end of allocated zone,
214          * to allow max possible filling before reallocation.
215          */
216         size = SKB_WITH_OVERHEAD(ksize(data));
217         prefetchw(data + size);
218
219         /*
220          * Only clear those fields we need to clear, not those that we will
221          * actually initialise below. Hence, don't put any more fields after
222          * the tail pointer in struct sk_buff!
223          */
224         memset(skb, 0, offsetof(struct sk_buff, tail));
225         /* Account for allocated memory : skb + skb->head */
226         skb->truesize = SKB_TRUESIZE(size);
227         skb->pfmemalloc = pfmemalloc;
228         refcount_set(&skb->users, 1);
229         skb->head = data;
230         skb->data = data;
231         skb_reset_tail_pointer(skb);
232         skb->end = skb->tail + size;
233         skb->mac_header = (typeof(skb->mac_header))~0U;
234         skb->transport_header = (typeof(skb->transport_header))~0U;
235
236         /* make sure we initialize shinfo sequentially */
237         shinfo = skb_shinfo(skb);
238         memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
239         atomic_set(&shinfo->dataref, 1);
240
241         if (flags & SKB_ALLOC_FCLONE) {
242                 struct sk_buff_fclones *fclones;
243
244                 fclones = container_of(skb, struct sk_buff_fclones, skb1);
245
246                 skb->fclone = SKB_FCLONE_ORIG;
247                 refcount_set(&fclones->fclone_ref, 1);
248
249                 fclones->skb2.fclone = SKB_FCLONE_CLONE;
250         }
251 out:
252         return skb;
253 nodata:
254         kmem_cache_free(cache, skb);
255         skb = NULL;
256         goto out;
257 }
258 EXPORT_SYMBOL(__alloc_skb);
259
260 /* Caller must provide SKB that is memset cleared */
261 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
262                                           void *data, unsigned int frag_size)
263 {
264         struct skb_shared_info *shinfo;
265         unsigned int size = frag_size ? : ksize(data);
266
267         size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
268
269         /* Assumes caller memset cleared SKB */
270         skb->truesize = SKB_TRUESIZE(size);
271         refcount_set(&skb->users, 1);
272         skb->head = data;
273         skb->data = data;
274         skb_reset_tail_pointer(skb);
275         skb->end = skb->tail + size;
276         skb->mac_header = (typeof(skb->mac_header))~0U;
277         skb->transport_header = (typeof(skb->transport_header))~0U;
278
279         /* make sure we initialize shinfo sequentially */
280         shinfo = skb_shinfo(skb);
281         memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282         atomic_set(&shinfo->dataref, 1);
283
284         return skb;
285 }
286
287 /**
288  * __build_skb - build a network buffer
289  * @data: data buffer provided by caller
290  * @frag_size: size of data, or 0 if head was kmalloced
291  *
292  * Allocate a new &sk_buff. Caller provides space holding head and
293  * skb_shared_info. @data must have been allocated by kmalloc() only if
294  * @frag_size is 0, otherwise data should come from the page allocator
295  *  or vmalloc()
296  * The return is the new skb buffer.
297  * On a failure the return is %NULL, and @data is not freed.
298  * Notes :
299  *  Before IO, driver allocates only data buffer where NIC put incoming frame
300  *  Driver should add room at head (NET_SKB_PAD) and
301  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
302  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
303  *  before giving packet to stack.
304  *  RX rings only contains data buffers, not full skbs.
305  */
306 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
307 {
308         struct sk_buff *skb;
309
310         skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311         if (unlikely(!skb))
312                 return NULL;
313
314         memset(skb, 0, offsetof(struct sk_buff, tail));
315
316         return __build_skb_around(skb, data, frag_size);
317 }
318
319 /* build_skb() is wrapper over __build_skb(), that specifically
320  * takes care of skb->head and skb->pfmemalloc
321  * This means that if @frag_size is not zero, then @data must be backed
322  * by a page fragment, not kmalloc() or vmalloc()
323  */
324 struct sk_buff *build_skb(void *data, unsigned int frag_size)
325 {
326         struct sk_buff *skb = __build_skb(data, frag_size);
327
328         if (skb && frag_size) {
329                 skb->head_frag = 1;
330                 if (page_is_pfmemalloc(virt_to_head_page(data)))
331                         skb->pfmemalloc = 1;
332         }
333         return skb;
334 }
335 EXPORT_SYMBOL(build_skb);
336
337 /**
338  * build_skb_around - build a network buffer around provided skb
339  * @skb: sk_buff provide by caller, must be memset cleared
340  * @data: data buffer provided by caller
341  * @frag_size: size of data, or 0 if head was kmalloced
342  */
343 struct sk_buff *build_skb_around(struct sk_buff *skb,
344                                  void *data, unsigned int frag_size)
345 {
346         if (unlikely(!skb))
347                 return NULL;
348
349         skb = __build_skb_around(skb, data, frag_size);
350
351         if (skb && frag_size) {
352                 skb->head_frag = 1;
353                 if (page_is_pfmemalloc(virt_to_head_page(data)))
354                         skb->pfmemalloc = 1;
355         }
356         return skb;
357 }
358 EXPORT_SYMBOL(build_skb_around);
359
360 #define NAPI_SKB_CACHE_SIZE     64
361
362 struct napi_alloc_cache {
363         struct page_frag_cache page;
364         unsigned int skb_count;
365         void *skb_cache[NAPI_SKB_CACHE_SIZE];
366 };
367
368 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
369 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
370
371 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373         struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
374
375         return page_frag_alloc(&nc->page, fragsz, gfp_mask);
376 }
377
378 void *napi_alloc_frag(unsigned int fragsz)
379 {
380         fragsz = SKB_DATA_ALIGN(fragsz);
381
382         return __napi_alloc_frag(fragsz, GFP_ATOMIC);
383 }
384 EXPORT_SYMBOL(napi_alloc_frag);
385
386 /**
387  * netdev_alloc_frag - allocate a page fragment
388  * @fragsz: fragment size
389  *
390  * Allocates a frag from a page for receive buffer.
391  * Uses GFP_ATOMIC allocations.
392  */
393 void *netdev_alloc_frag(unsigned int fragsz)
394 {
395         struct page_frag_cache *nc;
396         void *data;
397
398         fragsz = SKB_DATA_ALIGN(fragsz);
399         if (in_irq() || irqs_disabled()) {
400                 nc = this_cpu_ptr(&netdev_alloc_cache);
401                 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
402         } else {
403                 local_bh_disable();
404                 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
405                 local_bh_enable();
406         }
407         return data;
408 }
409 EXPORT_SYMBOL(netdev_alloc_frag);
410
411 /**
412  *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
413  *      @dev: network device to receive on
414  *      @len: length to allocate
415  *      @gfp_mask: get_free_pages mask, passed to alloc_skb
416  *
417  *      Allocate a new &sk_buff and assign it a usage count of one. The
418  *      buffer has NET_SKB_PAD headroom built in. Users should allocate
419  *      the headroom they think they need without accounting for the
420  *      built in space. The built in space is used for optimisations.
421  *
422  *      %NULL is returned if there is no free memory.
423  */
424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
425                                    gfp_t gfp_mask)
426 {
427         struct page_frag_cache *nc;
428         struct sk_buff *skb;
429         bool pfmemalloc;
430         void *data;
431
432         len += NET_SKB_PAD;
433
434         if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
435             (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
436                 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
437                 if (!skb)
438                         goto skb_fail;
439                 goto skb_success;
440         }
441
442         len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
443         len = SKB_DATA_ALIGN(len);
444
445         if (sk_memalloc_socks())
446                 gfp_mask |= __GFP_MEMALLOC;
447
448         if (in_irq() || irqs_disabled()) {
449                 nc = this_cpu_ptr(&netdev_alloc_cache);
450                 data = page_frag_alloc(nc, len, gfp_mask);
451                 pfmemalloc = nc->pfmemalloc;
452         } else {
453                 local_bh_disable();
454                 nc = this_cpu_ptr(&napi_alloc_cache.page);
455                 data = page_frag_alloc(nc, len, gfp_mask);
456                 pfmemalloc = nc->pfmemalloc;
457                 local_bh_enable();
458         }
459
460         if (unlikely(!data))
461                 return NULL;
462
463         skb = __build_skb(data, len);
464         if (unlikely(!skb)) {
465                 skb_free_frag(data);
466                 return NULL;
467         }
468
469         /* use OR instead of assignment to avoid clearing of bits in mask */
470         if (pfmemalloc)
471                 skb->pfmemalloc = 1;
472         skb->head_frag = 1;
473
474 skb_success:
475         skb_reserve(skb, NET_SKB_PAD);
476         skb->dev = dev;
477
478 skb_fail:
479         return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482
483 /**
484  *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485  *      @napi: napi instance this buffer was allocated for
486  *      @len: length to allocate
487  *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488  *
489  *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
490  *      attempt to allocate the head from a special reserved region used
491  *      only for NAPI Rx allocation.  By doing this we can save several
492  *      CPU cycles by avoiding having to disable and re-enable IRQs.
493  *
494  *      %NULL is returned if there is no free memory.
495  */
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497                                  gfp_t gfp_mask)
498 {
499         struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500         struct sk_buff *skb;
501         void *data;
502
503         len += NET_SKB_PAD + NET_IP_ALIGN;
504
505         if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506             (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507                 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508                 if (!skb)
509                         goto skb_fail;
510                 goto skb_success;
511         }
512
513         len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514         len = SKB_DATA_ALIGN(len);
515
516         if (sk_memalloc_socks())
517                 gfp_mask |= __GFP_MEMALLOC;
518
519         data = page_frag_alloc(&nc->page, len, gfp_mask);
520         if (unlikely(!data))
521                 return NULL;
522
523         skb = __build_skb(data, len);
524         if (unlikely(!skb)) {
525                 skb_free_frag(data);
526                 return NULL;
527         }
528
529         /* use OR instead of assignment to avoid clearing of bits in mask */
530         if (nc->page.pfmemalloc)
531                 skb->pfmemalloc = 1;
532         skb->head_frag = 1;
533
534 skb_success:
535         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
536         skb->dev = napi->dev;
537
538 skb_fail:
539         return skb;
540 }
541 EXPORT_SYMBOL(__napi_alloc_skb);
542
543 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
544                      int size, unsigned int truesize)
545 {
546         skb_fill_page_desc(skb, i, page, off, size);
547         skb->len += size;
548         skb->data_len += size;
549         skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_add_rx_frag);
552
553 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
554                           unsigned int truesize)
555 {
556         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
557
558         skb_frag_size_add(frag, size);
559         skb->len += size;
560         skb->data_len += size;
561         skb->truesize += truesize;
562 }
563 EXPORT_SYMBOL(skb_coalesce_rx_frag);
564
565 static void skb_drop_list(struct sk_buff **listp)
566 {
567         kfree_skb_list(*listp);
568         *listp = NULL;
569 }
570
571 static inline void skb_drop_fraglist(struct sk_buff *skb)
572 {
573         skb_drop_list(&skb_shinfo(skb)->frag_list);
574 }
575
576 static void skb_clone_fraglist(struct sk_buff *skb)
577 {
578         struct sk_buff *list;
579
580         skb_walk_frags(skb, list)
581                 skb_get(list);
582 }
583
584 static void skb_free_head(struct sk_buff *skb)
585 {
586         unsigned char *head = skb->head;
587
588         if (skb->head_frag)
589                 skb_free_frag(head);
590         else
591                 kfree(head);
592 }
593
594 static void skb_release_data(struct sk_buff *skb)
595 {
596         struct skb_shared_info *shinfo = skb_shinfo(skb);
597         int i;
598
599         if (skb->cloned &&
600             atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
601                               &shinfo->dataref))
602                 return;
603
604         for (i = 0; i < shinfo->nr_frags; i++)
605                 __skb_frag_unref(&shinfo->frags[i]);
606
607         if (shinfo->frag_list)
608                 kfree_skb_list(shinfo->frag_list);
609
610         skb_zcopy_clear(skb, true);
611         skb_free_head(skb);
612 }
613
614 /*
615  *      Free an skbuff by memory without cleaning the state.
616  */
617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619         struct sk_buff_fclones *fclones;
620
621         switch (skb->fclone) {
622         case SKB_FCLONE_UNAVAILABLE:
623                 kmem_cache_free(skbuff_head_cache, skb);
624                 return;
625
626         case SKB_FCLONE_ORIG:
627                 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628
629                 /* We usually free the clone (TX completion) before original skb
630                  * This test would have no chance to be true for the clone,
631                  * while here, branch prediction will be good.
632                  */
633                 if (refcount_read(&fclones->fclone_ref) == 1)
634                         goto fastpath;
635                 break;
636
637         default: /* SKB_FCLONE_CLONE */
638                 fclones = container_of(skb, struct sk_buff_fclones, skb2);
639                 break;
640         }
641         if (!refcount_dec_and_test(&fclones->fclone_ref))
642                 return;
643 fastpath:
644         kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646
647 void skb_release_head_state(struct sk_buff *skb)
648 {
649         skb_dst_drop(skb);
650         if (skb->destructor) {
651                 WARN_ON(in_irq());
652                 skb->destructor(skb);
653         }
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655         nf_conntrack_put(skb_nfct(skb));
656 #endif
657         skb_ext_put(skb);
658 }
659
660 /* Free everything but the sk_buff shell. */
661 static void skb_release_all(struct sk_buff *skb)
662 {
663         skb_release_head_state(skb);
664         if (likely(skb->head))
665                 skb_release_data(skb);
666 }
667
668 /**
669  *      __kfree_skb - private function
670  *      @skb: buffer
671  *
672  *      Free an sk_buff. Release anything attached to the buffer.
673  *      Clean the state. This is an internal helper function. Users should
674  *      always call kfree_skb
675  */
676
677 void __kfree_skb(struct sk_buff *skb)
678 {
679         skb_release_all(skb);
680         kfree_skbmem(skb);
681 }
682 EXPORT_SYMBOL(__kfree_skb);
683
684 /**
685  *      kfree_skb - free an sk_buff
686  *      @skb: buffer to free
687  *
688  *      Drop a reference to the buffer and free it if the usage count has
689  *      hit zero.
690  */
691 void kfree_skb(struct sk_buff *skb)
692 {
693         if (!skb_unref(skb))
694                 return;
695
696         trace_kfree_skb(skb, __builtin_return_address(0));
697         __kfree_skb(skb);
698 }
699 EXPORT_SYMBOL(kfree_skb);
700
701 void kfree_skb_list(struct sk_buff *segs)
702 {
703         while (segs) {
704                 struct sk_buff *next = segs->next;
705
706                 kfree_skb(segs);
707                 segs = next;
708         }
709 }
710 EXPORT_SYMBOL(kfree_skb_list);
711
712 /* Dump skb information and contents.
713  *
714  * Must only be called from net_ratelimit()-ed paths.
715  *
716  * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
717  */
718 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
719 {
720         static atomic_t can_dump_full = ATOMIC_INIT(5);
721         struct skb_shared_info *sh = skb_shinfo(skb);
722         struct net_device *dev = skb->dev;
723         struct sock *sk = skb->sk;
724         struct sk_buff *list_skb;
725         bool has_mac, has_trans;
726         int headroom, tailroom;
727         int i, len, seg_len;
728
729         if (full_pkt)
730                 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
731
732         if (full_pkt)
733                 len = skb->len;
734         else
735                 len = min_t(int, skb->len, MAX_HEADER + 128);
736
737         headroom = skb_headroom(skb);
738         tailroom = skb_tailroom(skb);
739
740         has_mac = skb_mac_header_was_set(skb);
741         has_trans = skb_transport_header_was_set(skb);
742
743         printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
744                "mac=(%d,%d) net=(%d,%d) trans=%d\n"
745                "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
746                "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
747                "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
748                level, skb->len, headroom, skb_headlen(skb), tailroom,
749                has_mac ? skb->mac_header : -1,
750                has_mac ? skb_mac_header_len(skb) : -1,
751                skb->network_header,
752                has_trans ? skb_network_header_len(skb) : -1,
753                has_trans ? skb->transport_header : -1,
754                sh->tx_flags, sh->nr_frags,
755                sh->gso_size, sh->gso_type, sh->gso_segs,
756                skb->csum, skb->ip_summed, skb->csum_complete_sw,
757                skb->csum_valid, skb->csum_level,
758                skb->hash, skb->sw_hash, skb->l4_hash,
759                ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
760
761         if (dev)
762                 printk("%sdev name=%s feat=0x%pNF\n",
763                        level, dev->name, &dev->features);
764         if (sk)
765                 printk("%ssk family=%hu type=%hu proto=%hu\n",
766                        level, sk->sk_family, sk->sk_type, sk->sk_protocol);
767
768         if (full_pkt && headroom)
769                 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
770                                16, 1, skb->head, headroom, false);
771
772         seg_len = min_t(int, skb_headlen(skb), len);
773         if (seg_len)
774                 print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
775                                16, 1, skb->data, seg_len, false);
776         len -= seg_len;
777
778         if (full_pkt && tailroom)
779                 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
780                                16, 1, skb_tail_pointer(skb), tailroom, false);
781
782         for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
783                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
784                 u32 p_off, p_len, copied;
785                 struct page *p;
786                 u8 *vaddr;
787
788                 skb_frag_foreach_page(frag, frag->page_offset,
789                                       skb_frag_size(frag), p, p_off, p_len,
790                                       copied) {
791                         seg_len = min_t(int, p_len, len);
792                         vaddr = kmap_atomic(p);
793                         print_hex_dump(level, "skb frag:     ",
794                                        DUMP_PREFIX_OFFSET,
795                                        16, 1, vaddr + p_off, seg_len, false);
796                         kunmap_atomic(vaddr);
797                         len -= seg_len;
798                         if (!len)
799                                 break;
800                 }
801         }
802
803         if (full_pkt && skb_has_frag_list(skb)) {
804                 printk("skb fraglist:\n");
805                 skb_walk_frags(skb, list_skb)
806                         skb_dump(level, list_skb, true);
807         }
808 }
809 EXPORT_SYMBOL(skb_dump);
810
811 /**
812  *      skb_tx_error - report an sk_buff xmit error
813  *      @skb: buffer that triggered an error
814  *
815  *      Report xmit error if a device callback is tracking this skb.
816  *      skb must be freed afterwards.
817  */
818 void skb_tx_error(struct sk_buff *skb)
819 {
820         skb_zcopy_clear(skb, true);
821 }
822 EXPORT_SYMBOL(skb_tx_error);
823
824 /**
825  *      consume_skb - free an skbuff
826  *      @skb: buffer to free
827  *
828  *      Drop a ref to the buffer and free it if the usage count has hit zero
829  *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
830  *      is being dropped after a failure and notes that
831  */
832 void consume_skb(struct sk_buff *skb)
833 {
834         if (!skb_unref(skb))
835                 return;
836
837         trace_consume_skb(skb);
838         __kfree_skb(skb);
839 }
840 EXPORT_SYMBOL(consume_skb);
841
842 /**
843  *      consume_stateless_skb - free an skbuff, assuming it is stateless
844  *      @skb: buffer to free
845  *
846  *      Alike consume_skb(), but this variant assumes that this is the last
847  *      skb reference and all the head states have been already dropped
848  */
849 void __consume_stateless_skb(struct sk_buff *skb)
850 {
851         trace_consume_skb(skb);
852         skb_release_data(skb);
853         kfree_skbmem(skb);
854 }
855
856 void __kfree_skb_flush(void)
857 {
858         struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
859
860         /* flush skb_cache if containing objects */
861         if (nc->skb_count) {
862                 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
863                                      nc->skb_cache);
864                 nc->skb_count = 0;
865         }
866 }
867
868 static inline void _kfree_skb_defer(struct sk_buff *skb)
869 {
870         struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871
872         /* drop skb->head and call any destructors for packet */
873         skb_release_all(skb);
874
875         /* record skb to CPU local list */
876         nc->skb_cache[nc->skb_count++] = skb;
877
878 #ifdef CONFIG_SLUB
879         /* SLUB writes into objects when freeing */
880         prefetchw(skb);
881 #endif
882
883         /* flush skb_cache if it is filled */
884         if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
885                 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
886                                      nc->skb_cache);
887                 nc->skb_count = 0;
888         }
889 }
890 void __kfree_skb_defer(struct sk_buff *skb)
891 {
892         _kfree_skb_defer(skb);
893 }
894
895 void napi_consume_skb(struct sk_buff *skb, int budget)
896 {
897         if (unlikely(!skb))
898                 return;
899
900         /* Zero budget indicate non-NAPI context called us, like netpoll */
901         if (unlikely(!budget)) {
902                 dev_consume_skb_any(skb);
903                 return;
904         }
905
906         if (!skb_unref(skb))
907                 return;
908
909         /* if reaching here SKB is ready to free */
910         trace_consume_skb(skb);
911
912         /* if SKB is a clone, don't handle this case */
913         if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
914                 __kfree_skb(skb);
915                 return;
916         }
917
918         _kfree_skb_defer(skb);
919 }
920 EXPORT_SYMBOL(napi_consume_skb);
921
922 /* Make sure a field is enclosed inside headers_start/headers_end section */
923 #define CHECK_SKB_FIELD(field) \
924         BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
925                      offsetof(struct sk_buff, headers_start));  \
926         BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
927                      offsetof(struct sk_buff, headers_end));    \
928
929 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
930 {
931         new->tstamp             = old->tstamp;
932         /* We do not copy old->sk */
933         new->dev                = old->dev;
934         memcpy(new->cb, old->cb, sizeof(old->cb));
935         skb_dst_copy(new, old);
936         __skb_ext_copy(new, old);
937         __nf_copy(new, old, false);
938
939         /* Note : this field could be in headers_start/headers_end section
940          * It is not yet because we do not want to have a 16 bit hole
941          */
942         new->queue_mapping = old->queue_mapping;
943
944         memcpy(&new->headers_start, &old->headers_start,
945                offsetof(struct sk_buff, headers_end) -
946                offsetof(struct sk_buff, headers_start));
947         CHECK_SKB_FIELD(protocol);
948         CHECK_SKB_FIELD(csum);
949         CHECK_SKB_FIELD(hash);
950         CHECK_SKB_FIELD(priority);
951         CHECK_SKB_FIELD(skb_iif);
952         CHECK_SKB_FIELD(vlan_proto);
953         CHECK_SKB_FIELD(vlan_tci);
954         CHECK_SKB_FIELD(transport_header);
955         CHECK_SKB_FIELD(network_header);
956         CHECK_SKB_FIELD(mac_header);
957         CHECK_SKB_FIELD(inner_protocol);
958         CHECK_SKB_FIELD(inner_transport_header);
959         CHECK_SKB_FIELD(inner_network_header);
960         CHECK_SKB_FIELD(inner_mac_header);
961         CHECK_SKB_FIELD(mark);
962 #ifdef CONFIG_NETWORK_SECMARK
963         CHECK_SKB_FIELD(secmark);
964 #endif
965 #ifdef CONFIG_NET_RX_BUSY_POLL
966         CHECK_SKB_FIELD(napi_id);
967 #endif
968 #ifdef CONFIG_XPS
969         CHECK_SKB_FIELD(sender_cpu);
970 #endif
971 #ifdef CONFIG_NET_SCHED
972         CHECK_SKB_FIELD(tc_index);
973 #endif
974
975 }
976
977 /*
978  * You should not add any new code to this function.  Add it to
979  * __copy_skb_header above instead.
980  */
981 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
982 {
983 #define C(x) n->x = skb->x
984
985         n->next = n->prev = NULL;
986         n->sk = NULL;
987         __copy_skb_header(n, skb);
988
989         C(len);
990         C(data_len);
991         C(mac_len);
992         n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
993         n->cloned = 1;
994         n->nohdr = 0;
995         n->peeked = 0;
996         C(pfmemalloc);
997         n->destructor = NULL;
998         C(tail);
999         C(end);
1000         C(head);
1001         C(head_frag);
1002         C(data);
1003         C(truesize);
1004         refcount_set(&n->users, 1);
1005
1006         atomic_inc(&(skb_shinfo(skb)->dataref));
1007         skb->cloned = 1;
1008
1009         return n;
1010 #undef C
1011 }
1012
1013 /**
1014  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1015  * @first: first sk_buff of the msg
1016  */
1017 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1018 {
1019         struct sk_buff *n;
1020
1021         n = alloc_skb(0, GFP_ATOMIC);
1022         if (!n)
1023                 return NULL;
1024
1025         n->len = first->len;
1026         n->data_len = first->len;
1027         n->truesize = first->truesize;
1028
1029         skb_shinfo(n)->frag_list = first;
1030
1031         __copy_skb_header(n, first);
1032         n->destructor = NULL;
1033
1034         return n;
1035 }
1036 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1037
1038 /**
1039  *      skb_morph       -       morph one skb into another
1040  *      @dst: the skb to receive the contents
1041  *      @src: the skb to supply the contents
1042  *
1043  *      This is identical to skb_clone except that the target skb is
1044  *      supplied by the user.
1045  *
1046  *      The target skb is returned upon exit.
1047  */
1048 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1049 {
1050         skb_release_all(dst);
1051         return __skb_clone(dst, src);
1052 }
1053 EXPORT_SYMBOL_GPL(skb_morph);
1054
1055 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1056 {
1057         unsigned long max_pg, num_pg, new_pg, old_pg;
1058         struct user_struct *user;
1059
1060         if (capable(CAP_IPC_LOCK) || !size)
1061                 return 0;
1062
1063         num_pg = (size >> PAGE_SHIFT) + 2;      /* worst case */
1064         max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1065         user = mmp->user ? : current_user();
1066
1067         do {
1068                 old_pg = atomic_long_read(&user->locked_vm);
1069                 new_pg = old_pg + num_pg;
1070                 if (new_pg > max_pg)
1071                         return -ENOBUFS;
1072         } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1073                  old_pg);
1074
1075         if (!mmp->user) {
1076                 mmp->user = get_uid(user);
1077                 mmp->num_pg = num_pg;
1078         } else {
1079                 mmp->num_pg += num_pg;
1080         }
1081
1082         return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1085
1086 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1087 {
1088         if (mmp->user) {
1089                 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1090                 free_uid(mmp->user);
1091         }
1092 }
1093 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1094
1095 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1096 {
1097         struct ubuf_info *uarg;
1098         struct sk_buff *skb;
1099
1100         WARN_ON_ONCE(!in_task());
1101
1102         skb = sock_omalloc(sk, 0, GFP_KERNEL);
1103         if (!skb)
1104                 return NULL;
1105
1106         BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1107         uarg = (void *)skb->cb;
1108         uarg->mmp.user = NULL;
1109
1110         if (mm_account_pinned_pages(&uarg->mmp, size)) {
1111                 kfree_skb(skb);
1112                 return NULL;
1113         }
1114
1115         uarg->callback = sock_zerocopy_callback;
1116         uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1117         uarg->len = 1;
1118         uarg->bytelen = size;
1119         uarg->zerocopy = 1;
1120         refcount_set(&uarg->refcnt, 1);
1121         sock_hold(sk);
1122
1123         return uarg;
1124 }
1125 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1126
1127 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1128 {
1129         return container_of((void *)uarg, struct sk_buff, cb);
1130 }
1131
1132 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1133                                         struct ubuf_info *uarg)
1134 {
1135         if (uarg) {
1136                 const u32 byte_limit = 1 << 19;         /* limit to a few TSO */
1137                 u32 bytelen, next;
1138
1139                 /* realloc only when socket is locked (TCP, UDP cork),
1140                  * so uarg->len and sk_zckey access is serialized
1141                  */
1142                 if (!sock_owned_by_user(sk)) {
1143                         WARN_ON_ONCE(1);
1144                         return NULL;
1145                 }
1146
1147                 bytelen = uarg->bytelen + size;
1148                 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1149                         /* TCP can create new skb to attach new uarg */
1150                         if (sk->sk_type == SOCK_STREAM)
1151                                 goto new_alloc;
1152                         return NULL;
1153                 }
1154
1155                 next = (u32)atomic_read(&sk->sk_zckey);
1156                 if ((u32)(uarg->id + uarg->len) == next) {
1157                         if (mm_account_pinned_pages(&uarg->mmp, size))
1158                                 return NULL;
1159                         uarg->len++;
1160                         uarg->bytelen = bytelen;
1161                         atomic_set(&sk->sk_zckey, ++next);
1162
1163                         /* no extra ref when appending to datagram (MSG_MORE) */
1164                         if (sk->sk_type == SOCK_STREAM)
1165                                 sock_zerocopy_get(uarg);
1166
1167                         return uarg;
1168                 }
1169         }
1170
1171 new_alloc:
1172         return sock_zerocopy_alloc(sk, size);
1173 }
1174 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1175
1176 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1177 {
1178         struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1179         u32 old_lo, old_hi;
1180         u64 sum_len;
1181
1182         old_lo = serr->ee.ee_info;
1183         old_hi = serr->ee.ee_data;
1184         sum_len = old_hi - old_lo + 1ULL + len;
1185
1186         if (sum_len >= (1ULL << 32))
1187                 return false;
1188
1189         if (lo != old_hi + 1)
1190                 return false;
1191
1192         serr->ee.ee_data += len;
1193         return true;
1194 }
1195
1196 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1197 {
1198         struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1199         struct sock_exterr_skb *serr;
1200         struct sock *sk = skb->sk;
1201         struct sk_buff_head *q;
1202         unsigned long flags;
1203         u32 lo, hi;
1204         u16 len;
1205
1206         mm_unaccount_pinned_pages(&uarg->mmp);
1207
1208         /* if !len, there was only 1 call, and it was aborted
1209          * so do not queue a completion notification
1210          */
1211         if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1212                 goto release;
1213
1214         len = uarg->len;
1215         lo = uarg->id;
1216         hi = uarg->id + len - 1;
1217
1218         serr = SKB_EXT_ERR(skb);
1219         memset(serr, 0, sizeof(*serr));
1220         serr->ee.ee_errno = 0;
1221         serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1222         serr->ee.ee_data = hi;
1223         serr->ee.ee_info = lo;
1224         if (!success)
1225                 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1226
1227         q = &sk->sk_error_queue;
1228         spin_lock_irqsave(&q->lock, flags);
1229         tail = skb_peek_tail(q);
1230         if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1231             !skb_zerocopy_notify_extend(tail, lo, len)) {
1232                 __skb_queue_tail(q, skb);
1233                 skb = NULL;
1234         }
1235         spin_unlock_irqrestore(&q->lock, flags);
1236
1237         sk->sk_error_report(sk);
1238
1239 release:
1240         consume_skb(skb);
1241         sock_put(sk);
1242 }
1243 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1244
1245 void sock_zerocopy_put(struct ubuf_info *uarg)
1246 {
1247         if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1248                 if (uarg->callback)
1249                         uarg->callback(uarg, uarg->zerocopy);
1250                 else
1251                         consume_skb(skb_from_uarg(uarg));
1252         }
1253 }
1254 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1255
1256 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1257 {
1258         if (uarg) {
1259                 struct sock *sk = skb_from_uarg(uarg)->sk;
1260
1261                 atomic_dec(&sk->sk_zckey);
1262                 uarg->len--;
1263
1264                 if (have_uref)
1265                         sock_zerocopy_put(uarg);
1266         }
1267 }
1268 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1269
1270 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1271 {
1272         return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1273 }
1274 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1275
1276 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1277                              struct msghdr *msg, int len,
1278                              struct ubuf_info *uarg)
1279 {
1280         struct ubuf_info *orig_uarg = skb_zcopy(skb);
1281         struct iov_iter orig_iter = msg->msg_iter;
1282         int err, orig_len = skb->len;
1283
1284         /* An skb can only point to one uarg. This edge case happens when
1285          * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1286          */
1287         if (orig_uarg && uarg != orig_uarg)
1288                 return -EEXIST;
1289
1290         err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1291         if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1292                 struct sock *save_sk = skb->sk;
1293
1294                 /* Streams do not free skb on error. Reset to prev state. */
1295                 msg->msg_iter = orig_iter;
1296                 skb->sk = sk;
1297                 ___pskb_trim(skb, orig_len);
1298                 skb->sk = save_sk;
1299                 return err;
1300         }
1301
1302         skb_zcopy_set(skb, uarg, NULL);
1303         return skb->len - orig_len;
1304 }
1305 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1306
1307 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1308                               gfp_t gfp_mask)
1309 {
1310         if (skb_zcopy(orig)) {
1311                 if (skb_zcopy(nskb)) {
1312                         /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1313                         if (!gfp_mask) {
1314                                 WARN_ON_ONCE(1);
1315                                 return -ENOMEM;
1316                         }
1317                         if (skb_uarg(nskb) == skb_uarg(orig))
1318                                 return 0;
1319                         if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1320                                 return -EIO;
1321                 }
1322                 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1323         }
1324         return 0;
1325 }
1326
1327 /**
1328  *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
1329  *      @skb: the skb to modify
1330  *      @gfp_mask: allocation priority
1331  *
1332  *      This must be called on SKBTX_DEV_ZEROCOPY skb.
1333  *      It will copy all frags into kernel and drop the reference
1334  *      to userspace pages.
1335  *
1336  *      If this function is called from an interrupt gfp_mask() must be
1337  *      %GFP_ATOMIC.
1338  *
1339  *      Returns 0 on success or a negative error code on failure
1340  *      to allocate kernel memory to copy to.
1341  */
1342 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1343 {
1344         int num_frags = skb_shinfo(skb)->nr_frags;
1345         struct page *page, *head = NULL;
1346         int i, new_frags;
1347         u32 d_off;
1348
1349         if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1350                 return -EINVAL;
1351
1352         if (!num_frags)
1353                 goto release;
1354
1355         new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1356         for (i = 0; i < new_frags; i++) {
1357                 page = alloc_page(gfp_mask);
1358                 if (!page) {
1359                         while (head) {
1360                                 struct page *next = (struct page *)page_private(head);
1361                                 put_page(head);
1362                                 head = next;
1363                         }
1364                         return -ENOMEM;
1365                 }
1366                 set_page_private(page, (unsigned long)head);
1367                 head = page;
1368         }
1369
1370         page = head;
1371         d_off = 0;
1372         for (i = 0; i < num_frags; i++) {
1373                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1374                 u32 p_off, p_len, copied;
1375                 struct page *p;
1376                 u8 *vaddr;
1377
1378                 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1379                                       p, p_off, p_len, copied) {
1380                         u32 copy, done = 0;
1381                         vaddr = kmap_atomic(p);
1382
1383                         while (done < p_len) {
1384                                 if (d_off == PAGE_SIZE) {
1385                                         d_off = 0;
1386                                         page = (struct page *)page_private(page);
1387                                 }
1388                                 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1389                                 memcpy(page_address(page) + d_off,
1390                                        vaddr + p_off + done, copy);
1391                                 done += copy;
1392                                 d_off += copy;
1393                         }
1394                         kunmap_atomic(vaddr);
1395                 }
1396         }
1397
1398         /* skb frags release userspace buffers */
1399         for (i = 0; i < num_frags; i++)
1400                 skb_frag_unref(skb, i);
1401
1402         /* skb frags point to kernel buffers */
1403         for (i = 0; i < new_frags - 1; i++) {
1404                 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1405                 head = (struct page *)page_private(head);
1406         }
1407         __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1408         skb_shinfo(skb)->nr_frags = new_frags;
1409
1410 release:
1411         skb_zcopy_clear(skb, false);
1412         return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1415
1416 /**
1417  *      skb_clone       -       duplicate an sk_buff
1418  *      @skb: buffer to clone
1419  *      @gfp_mask: allocation priority
1420  *
1421  *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
1422  *      copies share the same packet data but not structure. The new
1423  *      buffer has a reference count of 1. If the allocation fails the
1424  *      function returns %NULL otherwise the new buffer is returned.
1425  *
1426  *      If this function is called from an interrupt gfp_mask() must be
1427  *      %GFP_ATOMIC.
1428  */
1429
1430 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1431 {
1432         struct sk_buff_fclones *fclones = container_of(skb,
1433                                                        struct sk_buff_fclones,
1434                                                        skb1);
1435         struct sk_buff *n;
1436
1437         if (skb_orphan_frags(skb, gfp_mask))
1438                 return NULL;
1439
1440         if (skb->fclone == SKB_FCLONE_ORIG &&
1441             refcount_read(&fclones->fclone_ref) == 1) {
1442                 n = &fclones->skb2;
1443                 refcount_set(&fclones->fclone_ref, 2);
1444         } else {
1445                 if (skb_pfmemalloc(skb))
1446                         gfp_mask |= __GFP_MEMALLOC;
1447
1448                 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1449                 if (!n)
1450                         return NULL;
1451
1452                 n->fclone = SKB_FCLONE_UNAVAILABLE;
1453         }
1454
1455         return __skb_clone(n, skb);
1456 }
1457 EXPORT_SYMBOL(skb_clone);
1458
1459 void skb_headers_offset_update(struct sk_buff *skb, int off)
1460 {
1461         /* Only adjust this if it actually is csum_start rather than csum */
1462         if (skb->ip_summed == CHECKSUM_PARTIAL)
1463                 skb->csum_start += off;
1464         /* {transport,network,mac}_header and tail are relative to skb->head */
1465         skb->transport_header += off;
1466         skb->network_header   += off;
1467         if (skb_mac_header_was_set(skb))
1468                 skb->mac_header += off;
1469         skb->inner_transport_header += off;
1470         skb->inner_network_header += off;
1471         skb->inner_mac_header += off;
1472 }
1473 EXPORT_SYMBOL(skb_headers_offset_update);
1474
1475 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1476 {
1477         __copy_skb_header(new, old);
1478
1479         skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1480         skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1481         skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1482 }
1483 EXPORT_SYMBOL(skb_copy_header);
1484
1485 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1486 {
1487         if (skb_pfmemalloc(skb))
1488                 return SKB_ALLOC_RX;
1489         return 0;
1490 }
1491
1492 /**
1493  *      skb_copy        -       create private copy of an sk_buff
1494  *      @skb: buffer to copy
1495  *      @gfp_mask: allocation priority
1496  *
1497  *      Make a copy of both an &sk_buff and its data. This is used when the
1498  *      caller wishes to modify the data and needs a private copy of the
1499  *      data to alter. Returns %NULL on failure or the pointer to the buffer
1500  *      on success. The returned buffer has a reference count of 1.
1501  *
1502  *      As by-product this function converts non-linear &sk_buff to linear
1503  *      one, so that &sk_buff becomes completely private and caller is allowed
1504  *      to modify all the data of returned buffer. This means that this
1505  *      function is not recommended for use in circumstances when only
1506  *      header is going to be modified. Use pskb_copy() instead.
1507  */
1508
1509 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1510 {
1511         int headerlen = skb_headroom(skb);
1512         unsigned int size = skb_end_offset(skb) + skb->data_len;
1513         struct sk_buff *n = __alloc_skb(size, gfp_mask,
1514                                         skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1515
1516         if (!n)
1517                 return NULL;
1518
1519         /* Set the data pointer */
1520         skb_reserve(n, headerlen);
1521         /* Set the tail pointer and length */
1522         skb_put(n, skb->len);
1523
1524         BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1525
1526         skb_copy_header(n, skb);
1527         return n;
1528 }
1529 EXPORT_SYMBOL(skb_copy);
1530
1531 /**
1532  *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1533  *      @skb: buffer to copy
1534  *      @headroom: headroom of new skb
1535  *      @gfp_mask: allocation priority
1536  *      @fclone: if true allocate the copy of the skb from the fclone
1537  *      cache instead of the head cache; it is recommended to set this
1538  *      to true for the cases where the copy will likely be cloned
1539  *
1540  *      Make a copy of both an &sk_buff and part of its data, located
1541  *      in header. Fragmented data remain shared. This is used when
1542  *      the caller wishes to modify only header of &sk_buff and needs
1543  *      private copy of the header to alter. Returns %NULL on failure
1544  *      or the pointer to the buffer on success.
1545  *      The returned buffer has a reference count of 1.
1546  */
1547
1548 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1549                                    gfp_t gfp_mask, bool fclone)
1550 {
1551         unsigned int size = skb_headlen(skb) + headroom;
1552         int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1553         struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1554
1555         if (!n)
1556                 goto out;
1557
1558         /* Set the data pointer */
1559         skb_reserve(n, headroom);
1560         /* Set the tail pointer and length */
1561         skb_put(n, skb_headlen(skb));
1562         /* Copy the bytes */
1563         skb_copy_from_linear_data(skb, n->data, n->len);
1564
1565         n->truesize += skb->data_len;
1566         n->data_len  = skb->data_len;
1567         n->len       = skb->len;
1568
1569         if (skb_shinfo(skb)->nr_frags) {
1570                 int i;
1571
1572                 if (skb_orphan_frags(skb, gfp_mask) ||
1573                     skb_zerocopy_clone(n, skb, gfp_mask)) {
1574                         kfree_skb(n);
1575                         n = NULL;
1576                         goto out;
1577                 }
1578                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1579                         skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1580                         skb_frag_ref(skb, i);
1581                 }
1582                 skb_shinfo(n)->nr_frags = i;
1583         }
1584
1585         if (skb_has_frag_list(skb)) {
1586                 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1587                 skb_clone_fraglist(n);
1588         }
1589
1590         skb_copy_header(n, skb);
1591 out:
1592         return n;
1593 }
1594 EXPORT_SYMBOL(__pskb_copy_fclone);
1595
1596 /**
1597  *      pskb_expand_head - reallocate header of &sk_buff
1598  *      @skb: buffer to reallocate
1599  *      @nhead: room to add at head
1600  *      @ntail: room to add at tail
1601  *      @gfp_mask: allocation priority
1602  *
1603  *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1604  *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1605  *      reference count of 1. Returns zero in the case of success or error,
1606  *      if expansion failed. In the last case, &sk_buff is not changed.
1607  *
1608  *      All the pointers pointing into skb header may change and must be
1609  *      reloaded after call to this function.
1610  */
1611
1612 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1613                      gfp_t gfp_mask)
1614 {
1615         int i, osize = skb_end_offset(skb);
1616         int size = osize + nhead + ntail;
1617         long off;
1618         u8 *data;
1619
1620         BUG_ON(nhead < 0);
1621
1622         BUG_ON(skb_shared(skb));
1623
1624         size = SKB_DATA_ALIGN(size);
1625
1626         if (skb_pfmemalloc(skb))
1627                 gfp_mask |= __GFP_MEMALLOC;
1628         data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1629                                gfp_mask, NUMA_NO_NODE, NULL);
1630         if (!data)
1631                 goto nodata;
1632         size = SKB_WITH_OVERHEAD(ksize(data));
1633
1634         /* Copy only real data... and, alas, header. This should be
1635          * optimized for the cases when header is void.
1636          */
1637         memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1638
1639         memcpy((struct skb_shared_info *)(data + size),
1640                skb_shinfo(skb),
1641                offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1642
1643         /*
1644          * if shinfo is shared we must drop the old head gracefully, but if it
1645          * is not we can just drop the old head and let the existing refcount
1646          * be since all we did is relocate the values
1647          */
1648         if (skb_cloned(skb)) {
1649                 if (skb_orphan_frags(skb, gfp_mask))
1650                         goto nofrags;
1651                 if (skb_zcopy(skb))
1652                         refcount_inc(&skb_uarg(skb)->refcnt);
1653                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1654                         skb_frag_ref(skb, i);
1655
1656                 if (skb_has_frag_list(skb))
1657                         skb_clone_fraglist(skb);
1658
1659                 skb_release_data(skb);
1660         } else {
1661                 skb_free_head(skb);
1662         }
1663         off = (data + nhead) - skb->head;
1664
1665         skb->head     = data;
1666         skb->head_frag = 0;
1667         skb->data    += off;
1668 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1669         skb->end      = size;
1670         off           = nhead;
1671 #else
1672         skb->end      = skb->head + size;
1673 #endif
1674         skb->tail             += off;
1675         skb_headers_offset_update(skb, nhead);
1676         skb->cloned   = 0;
1677         skb->hdr_len  = 0;
1678         skb->nohdr    = 0;
1679         atomic_set(&skb_shinfo(skb)->dataref, 1);
1680
1681         skb_metadata_clear(skb);
1682
1683         /* It is not generally safe to change skb->truesize.
1684          * For the moment, we really care of rx path, or
1685          * when skb is orphaned (not attached to a socket).
1686          */
1687         if (!skb->sk || skb->destructor == sock_edemux)
1688                 skb->truesize += size - osize;
1689
1690         return 0;
1691
1692 nofrags:
1693         kfree(data);
1694 nodata:
1695         return -ENOMEM;
1696 }
1697 EXPORT_SYMBOL(pskb_expand_head);
1698
1699 /* Make private copy of skb with writable head and some headroom */
1700
1701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1702 {
1703         struct sk_buff *skb2;
1704         int delta = headroom - skb_headroom(skb);
1705
1706         if (delta <= 0)
1707                 skb2 = pskb_copy(skb, GFP_ATOMIC);
1708         else {
1709                 skb2 = skb_clone(skb, GFP_ATOMIC);
1710                 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1711                                              GFP_ATOMIC)) {
1712                         kfree_skb(skb2);
1713                         skb2 = NULL;
1714                 }
1715         }
1716         return skb2;
1717 }
1718 EXPORT_SYMBOL(skb_realloc_headroom);
1719
1720 /**
1721  *      skb_copy_expand -       copy and expand sk_buff
1722  *      @skb: buffer to copy
1723  *      @newheadroom: new free bytes at head
1724  *      @newtailroom: new free bytes at tail
1725  *      @gfp_mask: allocation priority
1726  *
1727  *      Make a copy of both an &sk_buff and its data and while doing so
1728  *      allocate additional space.
1729  *
1730  *      This is used when the caller wishes to modify the data and needs a
1731  *      private copy of the data to alter as well as more space for new fields.
1732  *      Returns %NULL on failure or the pointer to the buffer
1733  *      on success. The returned buffer has a reference count of 1.
1734  *
1735  *      You must pass %GFP_ATOMIC as the allocation priority if this function
1736  *      is called from an interrupt.
1737  */
1738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1739                                 int newheadroom, int newtailroom,
1740                                 gfp_t gfp_mask)
1741 {
1742         /*
1743          *      Allocate the copy buffer
1744          */
1745         struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1746                                         gfp_mask, skb_alloc_rx_flag(skb),
1747                                         NUMA_NO_NODE);
1748         int oldheadroom = skb_headroom(skb);
1749         int head_copy_len, head_copy_off;
1750
1751         if (!n)
1752                 return NULL;
1753
1754         skb_reserve(n, newheadroom);
1755
1756         /* Set the tail pointer and length */
1757         skb_put(n, skb->len);
1758
1759         head_copy_len = oldheadroom;
1760         head_copy_off = 0;
1761         if (newheadroom <= head_copy_len)
1762                 head_copy_len = newheadroom;
1763         else
1764                 head_copy_off = newheadroom - head_copy_len;
1765
1766         /* Copy the linear header and data. */
1767         BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1768                              skb->len + head_copy_len));
1769
1770         skb_copy_header(n, skb);
1771
1772         skb_headers_offset_update(n, newheadroom - oldheadroom);
1773
1774         return n;
1775 }
1776 EXPORT_SYMBOL(skb_copy_expand);
1777
1778 /**
1779  *      __skb_pad               -       zero pad the tail of an skb
1780  *      @skb: buffer to pad
1781  *      @pad: space to pad
1782  *      @free_on_error: free buffer on error
1783  *
1784  *      Ensure that a buffer is followed by a padding area that is zero
1785  *      filled. Used by network drivers which may DMA or transfer data
1786  *      beyond the buffer end onto the wire.
1787  *
1788  *      May return error in out of memory cases. The skb is freed on error
1789  *      if @free_on_error is true.
1790  */
1791
1792 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1793 {
1794         int err;
1795         int ntail;
1796
1797         /* If the skbuff is non linear tailroom is always zero.. */
1798         if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1799                 memset(skb->data+skb->len, 0, pad);
1800                 return 0;
1801         }
1802
1803         ntail = skb->data_len + pad - (skb->end - skb->tail);
1804         if (likely(skb_cloned(skb) || ntail > 0)) {
1805                 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1806                 if (unlikely(err))
1807                         goto free_skb;
1808         }
1809
1810         /* FIXME: The use of this function with non-linear skb's really needs
1811          * to be audited.
1812          */
1813         err = skb_linearize(skb);
1814         if (unlikely(err))
1815                 goto free_skb;
1816
1817         memset(skb->data + skb->len, 0, pad);
1818         return 0;
1819
1820 free_skb:
1821         if (free_on_error)
1822                 kfree_skb(skb);
1823         return err;
1824 }
1825 EXPORT_SYMBOL(__skb_pad);
1826
1827 /**
1828  *      pskb_put - add data to the tail of a potentially fragmented buffer
1829  *      @skb: start of the buffer to use
1830  *      @tail: tail fragment of the buffer to use
1831  *      @len: amount of data to add
1832  *
1833  *      This function extends the used data area of the potentially
1834  *      fragmented buffer. @tail must be the last fragment of @skb -- or
1835  *      @skb itself. If this would exceed the total buffer size the kernel
1836  *      will panic. A pointer to the first byte of the extra data is
1837  *      returned.
1838  */
1839
1840 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1841 {
1842         if (tail != skb) {
1843                 skb->data_len += len;
1844                 skb->len += len;
1845         }
1846         return skb_put(tail, len);
1847 }
1848 EXPORT_SYMBOL_GPL(pskb_put);
1849
1850 /**
1851  *      skb_put - add data to a buffer
1852  *      @skb: buffer to use
1853  *      @len: amount of data to add
1854  *
1855  *      This function extends the used data area of the buffer. If this would
1856  *      exceed the total buffer size the kernel will panic. A pointer to the
1857  *      first byte of the extra data is returned.
1858  */
1859 void *skb_put(struct sk_buff *skb, unsigned int len)
1860 {
1861         void *tmp = skb_tail_pointer(skb);
1862         SKB_LINEAR_ASSERT(skb);
1863         skb->tail += len;
1864         skb->len  += len;
1865         if (unlikely(skb->tail > skb->end))
1866                 skb_over_panic(skb, len, __builtin_return_address(0));
1867         return tmp;
1868 }
1869 EXPORT_SYMBOL(skb_put);
1870
1871 /**
1872  *      skb_push - add data to the start of a buffer
1873  *      @skb: buffer to use
1874  *      @len: amount of data to add
1875  *
1876  *      This function extends the used data area of the buffer at the buffer
1877  *      start. If this would exceed the total buffer headroom the kernel will
1878  *      panic. A pointer to the first byte of the extra data is returned.
1879  */
1880 void *skb_push(struct sk_buff *skb, unsigned int len)
1881 {
1882         skb->data -= len;
1883         skb->len  += len;
1884         if (unlikely(skb->data < skb->head))
1885                 skb_under_panic(skb, len, __builtin_return_address(0));
1886         return skb->data;
1887 }
1888 EXPORT_SYMBOL(skb_push);
1889
1890 /**
1891  *      skb_pull - remove data from the start of a buffer
1892  *      @skb: buffer to use
1893  *      @len: amount of data to remove
1894  *
1895  *      This function removes data from the start of a buffer, returning
1896  *      the memory to the headroom. A pointer to the next data in the buffer
1897  *      is returned. Once the data has been pulled future pushes will overwrite
1898  *      the old data.
1899  */
1900 void *skb_pull(struct sk_buff *skb, unsigned int len)
1901 {
1902         return skb_pull_inline(skb, len);
1903 }
1904 EXPORT_SYMBOL(skb_pull);
1905
1906 /**
1907  *      skb_trim - remove end from a buffer
1908  *      @skb: buffer to alter
1909  *      @len: new length
1910  *
1911  *      Cut the length of a buffer down by removing data from the tail. If
1912  *      the buffer is already under the length specified it is not modified.
1913  *      The skb must be linear.
1914  */
1915 void skb_trim(struct sk_buff *skb, unsigned int len)
1916 {
1917         if (skb->len > len)
1918                 __skb_trim(skb, len);
1919 }
1920 EXPORT_SYMBOL(skb_trim);
1921
1922 /* Trims skb to length len. It can change skb pointers.
1923  */
1924
1925 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1926 {
1927         struct sk_buff **fragp;
1928         struct sk_buff *frag;
1929         int offset = skb_headlen(skb);
1930         int nfrags = skb_shinfo(skb)->nr_frags;
1931         int i;
1932         int err;
1933
1934         if (skb_cloned(skb) &&
1935             unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1936                 return err;
1937
1938         i = 0;
1939         if (offset >= len)
1940                 goto drop_pages;
1941
1942         for (; i < nfrags; i++) {
1943                 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1944
1945                 if (end < len) {
1946                         offset = end;
1947                         continue;
1948                 }
1949
1950                 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1951
1952 drop_pages:
1953                 skb_shinfo(skb)->nr_frags = i;
1954
1955                 for (; i < nfrags; i++)
1956                         skb_frag_unref(skb, i);
1957
1958                 if (skb_has_frag_list(skb))
1959                         skb_drop_fraglist(skb);
1960                 goto done;
1961         }
1962
1963         for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1964              fragp = &frag->next) {
1965                 int end = offset + frag->len;
1966
1967                 if (skb_shared(frag)) {
1968                         struct sk_buff *nfrag;
1969
1970                         nfrag = skb_clone(frag, GFP_ATOMIC);
1971                         if (unlikely(!nfrag))
1972                                 return -ENOMEM;
1973
1974                         nfrag->next = frag->next;
1975                         consume_skb(frag);
1976                         frag = nfrag;
1977                         *fragp = frag;
1978                 }
1979
1980                 if (end < len) {
1981                         offset = end;
1982                         continue;
1983                 }
1984
1985                 if (end > len &&
1986                     unlikely((err = pskb_trim(frag, len - offset))))
1987                         return err;
1988
1989                 if (frag->next)
1990                         skb_drop_list(&frag->next);
1991                 break;
1992         }
1993
1994 done:
1995         if (len > skb_headlen(skb)) {
1996                 skb->data_len -= skb->len - len;
1997                 skb->len       = len;
1998         } else {
1999                 skb->len       = len;
2000                 skb->data_len  = 0;
2001                 skb_set_tail_pointer(skb, len);
2002         }
2003
2004         if (!skb->sk || skb->destructor == sock_edemux)
2005                 skb_condense(skb);
2006         return 0;
2007 }
2008 EXPORT_SYMBOL(___pskb_trim);
2009
2010 /* Note : use pskb_trim_rcsum() instead of calling this directly
2011  */
2012 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2013 {
2014         if (skb->ip_summed == CHECKSUM_COMPLETE) {
2015                 int delta = skb->len - len;
2016
2017                 skb->csum = csum_block_sub(skb->csum,
2018                                            skb_checksum(skb, len, delta, 0),
2019                                            len);
2020         }
2021         return __pskb_trim(skb, len);
2022 }
2023 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2024
2025 /**
2026  *      __pskb_pull_tail - advance tail of skb header
2027  *      @skb: buffer to reallocate
2028  *      @delta: number of bytes to advance tail
2029  *
2030  *      The function makes a sense only on a fragmented &sk_buff,
2031  *      it expands header moving its tail forward and copying necessary
2032  *      data from fragmented part.
2033  *
2034  *      &sk_buff MUST have reference count of 1.
2035  *
2036  *      Returns %NULL (and &sk_buff does not change) if pull failed
2037  *      or value of new tail of skb in the case of success.
2038  *
2039  *      All the pointers pointing into skb header may change and must be
2040  *      reloaded after call to this function.
2041  */
2042
2043 /* Moves tail of skb head forward, copying data from fragmented part,
2044  * when it is necessary.
2045  * 1. It may fail due to malloc failure.
2046  * 2. It may change skb pointers.
2047  *
2048  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2049  */
2050 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2051 {
2052         /* If skb has not enough free space at tail, get new one
2053          * plus 128 bytes for future expansions. If we have enough
2054          * room at tail, reallocate without expansion only if skb is cloned.
2055          */
2056         int i, k, eat = (skb->tail + delta) - skb->end;
2057
2058         if (eat > 0 || skb_cloned(skb)) {
2059                 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2060                                      GFP_ATOMIC))
2061                         return NULL;
2062         }
2063
2064         BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2065                              skb_tail_pointer(skb), delta));
2066
2067         /* Optimization: no fragments, no reasons to preestimate
2068          * size of pulled pages. Superb.
2069          */
2070         if (!skb_has_frag_list(skb))
2071                 goto pull_pages;
2072
2073         /* Estimate size of pulled pages. */
2074         eat = delta;
2075         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2076                 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2077
2078                 if (size >= eat)
2079                         goto pull_pages;
2080                 eat -= size;
2081         }
2082
2083         /* If we need update frag list, we are in troubles.
2084          * Certainly, it is possible to add an offset to skb data,
2085          * but taking into account that pulling is expected to
2086          * be very rare operation, it is worth to fight against
2087          * further bloating skb head and crucify ourselves here instead.
2088          * Pure masohism, indeed. 8)8)
2089          */
2090         if (eat) {
2091                 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2092                 struct sk_buff *clone = NULL;
2093                 struct sk_buff *insp = NULL;
2094
2095                 do {
2096                         if (list->len <= eat) {
2097                                 /* Eaten as whole. */
2098                                 eat -= list->len;
2099                                 list = list->next;
2100                                 insp = list;
2101                         } else {
2102                                 /* Eaten partially. */
2103
2104                                 if (skb_shared(list)) {
2105                                         /* Sucks! We need to fork list. :-( */
2106                                         clone = skb_clone(list, GFP_ATOMIC);
2107                                         if (!clone)
2108                                                 return NULL;
2109                                         insp = list->next;
2110                                         list = clone;
2111                                 } else {
2112                                         /* This may be pulled without
2113                                          * problems. */
2114                                         insp = list;
2115                                 }
2116                                 if (!pskb_pull(list, eat)) {
2117                                         kfree_skb(clone);
2118                                         return NULL;
2119                                 }
2120                                 break;
2121                         }
2122                 } while (eat);
2123
2124                 /* Free pulled out fragments. */
2125                 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2126                         skb_shinfo(skb)->frag_list = list->next;
2127                         kfree_skb(list);
2128                 }
2129                 /* And insert new clone at head. */
2130                 if (clone) {
2131                         clone->next = list;
2132                         skb_shinfo(skb)->frag_list = clone;
2133                 }
2134         }
2135         /* Success! Now we may commit changes to skb data. */
2136
2137 pull_pages:
2138         eat = delta;
2139         k = 0;
2140         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2141                 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2142
2143                 if (size <= eat) {
2144                         skb_frag_unref(skb, i);
2145                         eat -= size;
2146                 } else {
2147                         skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
2148                         if (eat) {
2149                                 skb_shinfo(skb)->frags[k].page_offset += eat;
2150                                 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
2151                                 if (!i)
2152                                         goto end;
2153                                 eat = 0;
2154                         }
2155                         k++;
2156                 }
2157         }
2158         skb_shinfo(skb)->nr_frags = k;
2159
2160 end:
2161         skb->tail     += delta;
2162         skb->data_len -= delta;
2163
2164         if (!skb->data_len)
2165                 skb_zcopy_clear(skb, false);
2166
2167         return skb_tail_pointer(skb);
2168 }
2169 EXPORT_SYMBOL(__pskb_pull_tail);
2170
2171 /**
2172  *      skb_copy_bits - copy bits from skb to kernel buffer
2173  *      @skb: source skb
2174  *      @offset: offset in source
2175  *      @to: destination buffer
2176  *      @len: number of bytes to copy
2177  *
2178  *      Copy the specified number of bytes from the source skb to the
2179  *      destination buffer.
2180  *
2181  *      CAUTION ! :
2182  *              If its prototype is ever changed,
2183  *              check arch/{*}/net/{*}.S files,
2184  *              since it is called from BPF assembly code.
2185  */
2186 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2187 {
2188         int start = skb_headlen(skb);
2189         struct sk_buff *frag_iter;
2190         int i, copy;
2191
2192         if (offset > (int)skb->len - len)
2193                 goto fault;
2194
2195         /* Copy header. */
2196         if ((copy = start - offset) > 0) {
2197                 if (copy > len)
2198                         copy = len;
2199                 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2200                 if ((len -= copy) == 0)
2201                         return 0;
2202                 offset += copy;
2203                 to     += copy;
2204         }
2205
2206         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2207                 int end;
2208                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2209
2210                 WARN_ON(start > offset + len);
2211
2212                 end = start + skb_frag_size(f);
2213                 if ((copy = end - offset) > 0) {
2214                         u32 p_off, p_len, copied;
2215                         struct page *p;
2216                         u8 *vaddr;
2217
2218                         if (copy > len)
2219                                 copy = len;
2220
2221                         skb_frag_foreach_page(f,
2222                                               f->page_offset + offset - start,
2223                                               copy, p, p_off, p_len, copied) {
2224                                 vaddr = kmap_atomic(p);
2225                                 memcpy(to + copied, vaddr + p_off, p_len);
2226                                 kunmap_atomic(vaddr);
2227                         }
2228
2229                         if ((len -= copy) == 0)
2230                                 return 0;
2231                         offset += copy;
2232                         to     += copy;
2233                 }
2234                 start = end;
2235         }
2236
2237         skb_walk_frags(skb, frag_iter) {
2238                 int end;
2239
2240                 WARN_ON(start > offset + len);
2241
2242                 end = start + frag_iter->len;
2243                 if ((copy = end - offset) > 0) {
2244                         if (copy > len)
2245                                 copy = len;
2246                         if (skb_copy_bits(frag_iter, offset - start, to, copy))
2247                                 goto fault;
2248                         if ((len -= copy) == 0)
2249                                 return 0;
2250                         offset += copy;
2251                         to     += copy;
2252                 }
2253                 start = end;
2254         }
2255
2256         if (!len)
2257                 return 0;
2258
2259 fault:
2260         return -EFAULT;
2261 }
2262 EXPORT_SYMBOL(skb_copy_bits);
2263
2264 /*
2265  * Callback from splice_to_pipe(), if we need to release some pages
2266  * at the end of the spd in case we error'ed out in filling the pipe.
2267  */
2268 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2269 {
2270         put_page(spd->pages[i]);
2271 }
2272
2273 static struct page *linear_to_page(struct page *page, unsigned int *len,
2274                                    unsigned int *offset,
2275                                    struct sock *sk)
2276 {
2277         struct page_frag *pfrag = sk_page_frag(sk);
2278
2279         if (!sk_page_frag_refill(sk, pfrag))
2280                 return NULL;
2281
2282         *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2283
2284         memcpy(page_address(pfrag->page) + pfrag->offset,
2285                page_address(page) + *offset, *len);
2286         *offset = pfrag->offset;
2287         pfrag->offset += *len;
2288
2289         return pfrag->page;
2290 }
2291
2292 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2293                              struct page *page,
2294                              unsigned int offset)
2295 {
2296         return  spd->nr_pages &&
2297                 spd->pages[spd->nr_pages - 1] == page &&
2298                 (spd->partial[spd->nr_pages - 1].offset +
2299                  spd->partial[spd->nr_pages - 1].len == offset);
2300 }
2301
2302 /*
2303  * Fill page/offset/length into spd, if it can hold more pages.
2304  */
2305 static bool spd_fill_page(struct splice_pipe_desc *spd,
2306                           struct pipe_inode_info *pipe, struct page *page,
2307                           unsigned int *len, unsigned int offset,
2308                           bool linear,
2309                           struct sock *sk)
2310 {
2311         if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2312                 return true;
2313
2314         if (linear) {
2315                 page = linear_to_page(page, len, &offset, sk);
2316                 if (!page)
2317                         return true;
2318         }
2319         if (spd_can_coalesce(spd, page, offset)) {
2320                 spd->partial[spd->nr_pages - 1].len += *len;
2321                 return false;
2322         }
2323         get_page(page);
2324         spd->pages[spd->nr_pages] = page;
2325         spd->partial[spd->nr_pages].len = *len;
2326         spd->partial[spd->nr_pages].offset = offset;
2327         spd->nr_pages++;
2328
2329         return false;
2330 }
2331
2332 static bool __splice_segment(struct page *page, unsigned int poff,
2333                              unsigned int plen, unsigned int *off,
2334                              unsigned int *len,
2335                              struct splice_pipe_desc *spd, bool linear,
2336                              struct sock *sk,
2337                              struct pipe_inode_info *pipe)
2338 {
2339         if (!*len)
2340                 return true;
2341
2342         /* skip this segment if already processed */
2343         if (*off >= plen) {
2344                 *off -= plen;
2345                 return false;
2346         }
2347
2348         /* ignore any bits we already processed */
2349         poff += *off;
2350         plen -= *off;
2351         *off = 0;
2352
2353         do {
2354                 unsigned int flen = min(*len, plen);
2355
2356                 if (spd_fill_page(spd, pipe, page, &flen, poff,
2357                                   linear, sk))
2358                         return true;
2359                 poff += flen;
2360                 plen -= flen;
2361                 *len -= flen;
2362         } while (*len && plen);
2363
2364         return false;
2365 }
2366
2367 /*
2368  * Map linear and fragment data from the skb to spd. It reports true if the
2369  * pipe is full or if we already spliced the requested length.
2370  */
2371 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2372                               unsigned int *offset, unsigned int *len,
2373                               struct splice_pipe_desc *spd, struct sock *sk)
2374 {
2375         int seg;
2376         struct sk_buff *iter;
2377
2378         /* map the linear part :
2379          * If skb->head_frag is set, this 'linear' part is backed by a
2380          * fragment, and if the head is not shared with any clones then
2381          * we can avoid a copy since we own the head portion of this page.
2382          */
2383         if (__splice_segment(virt_to_page(skb->data),
2384                              (unsigned long) skb->data & (PAGE_SIZE - 1),
2385                              skb_headlen(skb),
2386                              offset, len, spd,
2387                              skb_head_is_locked(skb),
2388                              sk, pipe))
2389                 return true;
2390
2391         /*
2392          * then map the fragments
2393          */
2394         for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2395                 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2396
2397                 if (__splice_segment(skb_frag_page(f),
2398                                      f->page_offset, skb_frag_size(f),
2399                                      offset, len, spd, false, sk, pipe))
2400                         return true;
2401         }
2402
2403         skb_walk_frags(skb, iter) {
2404                 if (*offset >= iter->len) {
2405                         *offset -= iter->len;
2406                         continue;
2407                 }
2408                 /* __skb_splice_bits() only fails if the output has no room
2409                  * left, so no point in going over the frag_list for the error
2410                  * case.
2411                  */
2412                 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2413                         return true;
2414         }
2415
2416         return false;
2417 }
2418
2419 /*
2420  * Map data from the skb to a pipe. Should handle both the linear part,
2421  * the fragments, and the frag list.
2422  */
2423 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2424                     struct pipe_inode_info *pipe, unsigned int tlen,
2425                     unsigned int flags)
2426 {
2427         struct partial_page partial[MAX_SKB_FRAGS];
2428         struct page *pages[MAX_SKB_FRAGS];
2429         struct splice_pipe_desc spd = {
2430                 .pages = pages,
2431                 .partial = partial,
2432                 .nr_pages_max = MAX_SKB_FRAGS,
2433                 .ops = &nosteal_pipe_buf_ops,
2434                 .spd_release = sock_spd_release,
2435         };
2436         int ret = 0;
2437
2438         __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2439
2440         if (spd.nr_pages)
2441                 ret = splice_to_pipe(pipe, &spd);
2442
2443         return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(skb_splice_bits);
2446
2447 /* Send skb data on a socket. Socket must be locked. */
2448 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2449                          int len)
2450 {
2451         unsigned int orig_len = len;
2452         struct sk_buff *head = skb;
2453         unsigned short fragidx;
2454         int slen, ret;
2455
2456 do_frag_list:
2457
2458         /* Deal with head data */
2459         while (offset < skb_headlen(skb) && len) {
2460                 struct kvec kv;
2461                 struct msghdr msg;
2462
2463                 slen = min_t(int, len, skb_headlen(skb) - offset);
2464                 kv.iov_base = skb->data + offset;
2465                 kv.iov_len = slen;
2466                 memset(&msg, 0, sizeof(msg));
2467                 msg.msg_flags = MSG_DONTWAIT;
2468
2469                 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2470                 if (ret <= 0)
2471                         goto error;
2472
2473                 offset += ret;
2474                 len -= ret;
2475         }
2476
2477         /* All the data was skb head? */
2478         if (!len)
2479                 goto out;
2480
2481         /* Make offset relative to start of frags */
2482         offset -= skb_headlen(skb);
2483
2484         /* Find where we are in frag list */
2485         for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2486                 skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2487
2488                 if (offset < frag->size)
2489                         break;
2490
2491                 offset -= frag->size;
2492         }
2493
2494         for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2495                 skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2496
2497                 slen = min_t(size_t, len, frag->size - offset);
2498
2499                 while (slen) {
2500                         ret = kernel_sendpage_locked(sk, frag->page.p,
2501                                                      frag->page_offset + offset,
2502                                                      slen, MSG_DONTWAIT);
2503                         if (ret <= 0)
2504                                 goto error;
2505
2506                         len -= ret;
2507                         offset += ret;
2508                         slen -= ret;
2509                 }
2510
2511                 offset = 0;
2512         }
2513
2514         if (len) {
2515                 /* Process any frag lists */
2516
2517                 if (skb == head) {
2518                         if (skb_has_frag_list(skb)) {
2519                                 skb = skb_shinfo(skb)->frag_list;
2520                                 goto do_frag_list;
2521                         }
2522                 } else if (skb->next) {
2523                         skb = skb->next;
2524                         goto do_frag_list;
2525                 }
2526         }
2527
2528 out:
2529         return orig_len - len;
2530
2531 error:
2532         return orig_len == len ? ret : orig_len - len;
2533 }
2534 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2535
2536 /**
2537  *      skb_store_bits - store bits from kernel buffer to skb
2538  *      @skb: destination buffer
2539  *      @offset: offset in destination
2540  *      @from: source buffer
2541  *      @len: number of bytes to copy
2542  *
2543  *      Copy the specified number of bytes from the source buffer to the
2544  *      destination skb.  This function handles all the messy bits of
2545  *      traversing fragment lists and such.
2546  */
2547
2548 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2549 {
2550         int start = skb_headlen(skb);
2551         struct sk_buff *frag_iter;
2552         int i, copy;
2553
2554         if (offset > (int)skb->len - len)
2555                 goto fault;
2556
2557         if ((copy = start - offset) > 0) {
2558                 if (copy > len)
2559                         copy = len;
2560                 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2561                 if ((len -= copy) == 0)
2562                         return 0;
2563                 offset += copy;
2564                 from += copy;
2565         }
2566
2567         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2568                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2569                 int end;
2570
2571                 WARN_ON(start > offset + len);
2572
2573                 end = start + skb_frag_size(frag);
2574                 if ((copy = end - offset) > 0) {
2575                         u32 p_off, p_len, copied;
2576                         struct page *p;
2577                         u8 *vaddr;
2578
2579                         if (copy > len)
2580                                 copy = len;
2581
2582                         skb_frag_foreach_page(frag,
2583                                               frag->page_offset + offset - start,
2584                                               copy, p, p_off, p_len, copied) {
2585                                 vaddr = kmap_atomic(p);
2586                                 memcpy(vaddr + p_off, from + copied, p_len);
2587                                 kunmap_atomic(vaddr);
2588                         }
2589
2590                         if ((len -= copy) == 0)
2591                                 return 0;
2592                         offset += copy;
2593                         from += copy;
2594                 }
2595                 start = end;
2596         }
2597
2598         skb_walk_frags(skb, frag_iter) {
2599                 int end;
2600
2601                 WARN_ON(start > offset + len);
2602
2603                 end = start + frag_iter->len;
2604                 if ((copy = end - offset) > 0) {
2605                         if (copy > len)
2606                                 copy = len;
2607                         if (skb_store_bits(frag_iter, offset - start,
2608                                            from, copy))
2609                                 goto fault;
2610                         if ((len -= copy) == 0)
2611                                 return 0;
2612                         offset += copy;
2613                         from += copy;
2614                 }
2615                 start = end;
2616         }
2617         if (!len)
2618                 return 0;
2619
2620 fault:
2621         return -EFAULT;
2622 }
2623 EXPORT_SYMBOL(skb_store_bits);
2624
2625 /* Checksum skb data. */
2626 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2627                       __wsum csum, const struct skb_checksum_ops *ops)
2628 {
2629         int start = skb_headlen(skb);
2630         int i, copy = start - offset;
2631         struct sk_buff *frag_iter;
2632         int pos = 0;
2633
2634         /* Checksum header. */
2635         if (copy > 0) {
2636                 if (copy > len)
2637                         copy = len;
2638                 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2639                                        skb->data + offset, copy, csum);
2640                 if ((len -= copy) == 0)
2641                         return csum;
2642                 offset += copy;
2643                 pos     = copy;
2644         }
2645
2646         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2647                 int end;
2648                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2649
2650                 WARN_ON(start > offset + len);
2651
2652                 end = start + skb_frag_size(frag);
2653                 if ((copy = end - offset) > 0) {
2654                         u32 p_off, p_len, copied;
2655                         struct page *p;
2656                         __wsum csum2;
2657                         u8 *vaddr;
2658
2659                         if (copy > len)
2660                                 copy = len;
2661
2662                         skb_frag_foreach_page(frag,
2663                                               frag->page_offset + offset - start,
2664                                               copy, p, p_off, p_len, copied) {
2665                                 vaddr = kmap_atomic(p);
2666                                 csum2 = INDIRECT_CALL_1(ops->update,
2667                                                         csum_partial_ext,
2668                                                         vaddr + p_off, p_len, 0);
2669                                 kunmap_atomic(vaddr);
2670                                 csum = INDIRECT_CALL_1(ops->combine,
2671                                                        csum_block_add_ext, csum,
2672                                                        csum2, pos, p_len);
2673                                 pos += p_len;
2674                         }
2675
2676                         if (!(len -= copy))
2677                                 return csum;
2678                         offset += copy;
2679                 }
2680                 start = end;
2681         }
2682
2683         skb_walk_frags(skb, frag_iter) {
2684                 int end;
2685
2686                 WARN_ON(start > offset + len);
2687
2688                 end = start + frag_iter->len;
2689                 if ((copy = end - offset) > 0) {
2690                         __wsum csum2;
2691                         if (copy > len)
2692                                 copy = len;
2693                         csum2 = __skb_checksum(frag_iter, offset - start,
2694                                                copy, 0, ops);
2695                         csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2696                                                csum, csum2, pos, copy);
2697                         if ((len -= copy) == 0)
2698                                 return csum;
2699                         offset += copy;
2700                         pos    += copy;
2701                 }
2702                 start = end;
2703         }
2704         BUG_ON(len);
2705
2706         return csum;
2707 }
2708 EXPORT_SYMBOL(__skb_checksum);
2709
2710 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2711                     int len, __wsum csum)
2712 {
2713         const struct skb_checksum_ops ops = {
2714                 .update  = csum_partial_ext,
2715                 .combine = csum_block_add_ext,
2716         };
2717
2718         return __skb_checksum(skb, offset, len, csum, &ops);
2719 }
2720 EXPORT_SYMBOL(skb_checksum);
2721
2722 /* Both of above in one bottle. */
2723
2724 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2725                                     u8 *to, int len, __wsum csum)
2726 {
2727         int start = skb_headlen(skb);
2728         int i, copy = start - offset;
2729         struct sk_buff *frag_iter;
2730         int pos = 0;
2731
2732         /* Copy header. */
2733         if (copy > 0) {
2734                 if (copy > len)
2735                         copy = len;
2736                 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2737                                                  copy, csum);
2738                 if ((len -= copy) == 0)
2739                         return csum;
2740                 offset += copy;
2741                 to     += copy;
2742                 pos     = copy;
2743         }
2744
2745         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2746                 int end;
2747
2748                 WARN_ON(start > offset + len);
2749
2750                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2751                 if ((copy = end - offset) > 0) {
2752                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2753                         u32 p_off, p_len, copied;
2754                         struct page *p;
2755                         __wsum csum2;
2756                         u8 *vaddr;
2757
2758                         if (copy > len)
2759                                 copy = len;
2760
2761                         skb_frag_foreach_page(frag,
2762                                               frag->page_offset + offset - start,
2763                                               copy, p, p_off, p_len, copied) {
2764                                 vaddr = kmap_atomic(p);
2765                                 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2766                                                                   to + copied,
2767                                                                   p_len, 0);
2768                                 kunmap_atomic(vaddr);
2769                                 csum = csum_block_add(csum, csum2, pos);
2770                                 pos += p_len;
2771                         }
2772
2773                         if (!(len -= copy))
2774                                 return csum;
2775                         offset += copy;
2776                         to     += copy;
2777                 }
2778                 start = end;
2779         }
2780
2781         skb_walk_frags(skb, frag_iter) {
2782                 __wsum csum2;
2783                 int end;
2784
2785                 WARN_ON(start > offset + len);
2786
2787                 end = start + frag_iter->len;
2788                 if ((copy = end - offset) > 0) {
2789                         if (copy > len)
2790                                 copy = len;
2791                         csum2 = skb_copy_and_csum_bits(frag_iter,
2792                                                        offset - start,
2793                                                        to, copy, 0);
2794                         csum = csum_block_add(csum, csum2, pos);
2795                         if ((len -= copy) == 0)
2796                                 return csum;
2797                         offset += copy;
2798                         to     += copy;
2799                         pos    += copy;
2800                 }
2801                 start = end;
2802         }
2803         BUG_ON(len);
2804         return csum;
2805 }
2806 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2807
2808 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2809 {
2810         __sum16 sum;
2811
2812         sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2813         /* See comments in __skb_checksum_complete(). */
2814         if (likely(!sum)) {
2815                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2816                     !skb->csum_complete_sw)
2817                         netdev_rx_csum_fault(skb->dev, skb);
2818         }
2819         if (!skb_shared(skb))
2820                 skb->csum_valid = !sum;
2821         return sum;
2822 }
2823 EXPORT_SYMBOL(__skb_checksum_complete_head);
2824
2825 /* This function assumes skb->csum already holds pseudo header's checksum,
2826  * which has been changed from the hardware checksum, for example, by
2827  * __skb_checksum_validate_complete(). And, the original skb->csum must
2828  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2829  *
2830  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2831  * zero. The new checksum is stored back into skb->csum unless the skb is
2832  * shared.
2833  */
2834 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2835 {
2836         __wsum csum;
2837         __sum16 sum;
2838
2839         csum = skb_checksum(skb, 0, skb->len, 0);
2840
2841         sum = csum_fold(csum_add(skb->csum, csum));
2842         /* This check is inverted, because we already knew the hardware
2843          * checksum is invalid before calling this function. So, if the
2844          * re-computed checksum is valid instead, then we have a mismatch
2845          * between the original skb->csum and skb_checksum(). This means either
2846          * the original hardware checksum is incorrect or we screw up skb->csum
2847          * when moving skb->data around.
2848          */
2849         if (likely(!sum)) {
2850                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2851                     !skb->csum_complete_sw)
2852                         netdev_rx_csum_fault(skb->dev, skb);
2853         }
2854
2855         if (!skb_shared(skb)) {
2856                 /* Save full packet checksum */
2857                 skb->csum = csum;
2858                 skb->ip_summed = CHECKSUM_COMPLETE;
2859                 skb->csum_complete_sw = 1;
2860                 skb->csum_valid = !sum;
2861         }
2862
2863         return sum;
2864 }
2865 EXPORT_SYMBOL(__skb_checksum_complete);
2866
2867 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2868 {
2869         net_warn_ratelimited(
2870                 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2871                 __func__);
2872         return 0;
2873 }
2874
2875 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2876                                        int offset, int len)
2877 {
2878         net_warn_ratelimited(
2879                 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2880                 __func__);
2881         return 0;
2882 }
2883
2884 static const struct skb_checksum_ops default_crc32c_ops = {
2885         .update  = warn_crc32c_csum_update,
2886         .combine = warn_crc32c_csum_combine,
2887 };
2888
2889 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2890         &default_crc32c_ops;
2891 EXPORT_SYMBOL(crc32c_csum_stub);
2892
2893  /**
2894  *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2895  *      @from: source buffer
2896  *
2897  *      Calculates the amount of linear headroom needed in the 'to' skb passed
2898  *      into skb_zerocopy().
2899  */
2900 unsigned int
2901 skb_zerocopy_headlen(const struct sk_buff *from)
2902 {
2903         unsigned int hlen = 0;
2904
2905         if (!from->head_frag ||
2906             skb_headlen(from) < L1_CACHE_BYTES ||
2907             skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2908                 hlen = skb_headlen(from);
2909
2910         if (skb_has_frag_list(from))
2911                 hlen = from->len;
2912
2913         return hlen;
2914 }
2915 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2916
2917 /**
2918  *      skb_zerocopy - Zero copy skb to skb
2919  *      @to: destination buffer
2920  *      @from: source buffer
2921  *      @len: number of bytes to copy from source buffer
2922  *      @hlen: size of linear headroom in destination buffer
2923  *
2924  *      Copies up to `len` bytes from `from` to `to` by creating references
2925  *      to the frags in the source buffer.
2926  *
2927  *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2928  *      headroom in the `to` buffer.
2929  *
2930  *      Return value:
2931  *      0: everything is OK
2932  *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2933  *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2934  */
2935 int
2936 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2937 {
2938         int i, j = 0;
2939         int plen = 0; /* length of skb->head fragment */
2940         int ret;
2941         struct page *page;
2942         unsigned int offset;
2943
2944         BUG_ON(!from->head_frag && !hlen);
2945
2946         /* dont bother with small payloads */
2947         if (len <= skb_tailroom(to))
2948                 return skb_copy_bits(from, 0, skb_put(to, len), len);
2949
2950         if (hlen) {
2951                 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2952                 if (unlikely(ret))
2953                         return ret;
2954                 len -= hlen;
2955         } else {
2956                 plen = min_t(int, skb_headlen(from), len);
2957                 if (plen) {
2958                         page = virt_to_head_page(from->head);
2959                         offset = from->data - (unsigned char *)page_address(page);
2960                         __skb_fill_page_desc(to, 0, page, offset, plen);
2961                         get_page(page);
2962                         j = 1;
2963                         len -= plen;
2964                 }
2965         }
2966
2967         to->truesize += len + plen;
2968         to->len += len + plen;
2969         to->data_len += len + plen;
2970
2971         if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2972                 skb_tx_error(from);
2973                 return -ENOMEM;
2974         }
2975         skb_zerocopy_clone(to, from, GFP_ATOMIC);
2976
2977         for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2978                 if (!len)
2979                         break;
2980                 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2981                 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2982                 len -= skb_shinfo(to)->frags[j].size;
2983                 skb_frag_ref(to, j);
2984                 j++;
2985         }
2986         skb_shinfo(to)->nr_frags = j;
2987
2988         return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(skb_zerocopy);
2991
2992 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2993 {
2994         __wsum csum;
2995         long csstart;
2996
2997         if (skb->ip_summed == CHECKSUM_PARTIAL)
2998                 csstart = skb_checksum_start_offset(skb);
2999         else
3000                 csstart = skb_headlen(skb);
3001
3002         BUG_ON(csstart > skb_headlen(skb));
3003
3004         skb_copy_from_linear_data(skb, to, csstart);
3005
3006         csum = 0;
3007         if (csstart != skb->len)
3008                 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3009                                               skb->len - csstart, 0);
3010
3011         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3012                 long csstuff = csstart + skb->csum_offset;
3013
3014                 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3015         }
3016 }
3017 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3018
3019 /**
3020  *      skb_dequeue - remove from the head of the queue
3021  *      @list: list to dequeue from
3022  *
3023  *      Remove the head of the list. The list lock is taken so the function
3024  *      may be used safely with other locking list functions. The head item is
3025  *      returned or %NULL if the list is empty.
3026  */
3027
3028 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3029 {
3030         unsigned long flags;
3031         struct sk_buff *result;
3032
3033         spin_lock_irqsave(&list->lock, flags);
3034         result = __skb_dequeue(list);
3035         spin_unlock_irqrestore(&list->lock, flags);
3036         return result;
3037 }
3038 EXPORT_SYMBOL(skb_dequeue);
3039
3040 /**
3041  *      skb_dequeue_tail - remove from the tail of the queue
3042  *      @list: list to dequeue from
3043  *
3044  *      Remove the tail of the list. The list lock is taken so the function
3045  *      may be used safely with other locking list functions. The tail item is
3046  *      returned or %NULL if the list is empty.
3047  */
3048 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3049 {
3050         unsigned long flags;
3051         struct sk_buff *result;
3052
3053         spin_lock_irqsave(&list->lock, flags);
3054         result = __skb_dequeue_tail(list);
3055         spin_unlock_irqrestore(&list->lock, flags);
3056         return result;
3057 }
3058 EXPORT_SYMBOL(skb_dequeue_tail);
3059
3060 /**
3061  *      skb_queue_purge - empty a list
3062  *      @list: list to empty
3063  *
3064  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
3065  *      the list and one reference dropped. This function takes the list
3066  *      lock and is atomic with respect to other list locking functions.
3067  */
3068 void skb_queue_purge(struct sk_buff_head *list)
3069 {
3070         struct sk_buff *skb;
3071         while ((skb = skb_dequeue(list)) != NULL)
3072                 kfree_skb(skb);
3073 }
3074 EXPORT_SYMBOL(skb_queue_purge);
3075
3076 /**
3077  *      skb_rbtree_purge - empty a skb rbtree
3078  *      @root: root of the rbtree to empty
3079  *      Return value: the sum of truesizes of all purged skbs.
3080  *
3081  *      Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3082  *      the list and one reference dropped. This function does not take
3083  *      any lock. Synchronization should be handled by the caller (e.g., TCP
3084  *      out-of-order queue is protected by the socket lock).
3085  */
3086 unsigned int skb_rbtree_purge(struct rb_root *root)
3087 {
3088         struct rb_node *p = rb_first(root);
3089         unsigned int sum = 0;
3090
3091         while (p) {
3092                 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3093
3094                 p = rb_next(p);
3095                 rb_erase(&skb->rbnode, root);
3096                 sum += skb->truesize;
3097                 kfree_skb(skb);
3098         }
3099         return sum;
3100 }
3101
3102 /**
3103  *      skb_queue_head - queue a buffer at the list head
3104  *      @list: list to use
3105  *      @newsk: buffer to queue
3106  *
3107  *      Queue a buffer at the start of the list. This function takes the
3108  *      list lock and can be used safely with other locking &sk_buff functions
3109  *      safely.
3110  *
3111  *      A buffer cannot be placed on two lists at the same time.
3112  */
3113 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3114 {
3115         unsigned long flags;
3116
3117         spin_lock_irqsave(&list->lock, flags);
3118         __skb_queue_head(list, newsk);
3119         spin_unlock_irqrestore(&list->lock, flags);
3120 }
3121 EXPORT_SYMBOL(skb_queue_head);
3122
3123 /**
3124  *      skb_queue_tail - queue a buffer at the list tail
3125  *      @list: list to use
3126  *      @newsk: buffer to queue
3127  *
3128  *      Queue a buffer at the tail of the list. This function takes the
3129  *      list lock and can be used safely with other locking &sk_buff functions
3130  *      safely.
3131  *
3132  *      A buffer cannot be placed on two lists at the same time.
3133  */
3134 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3135 {
3136         unsigned long flags;
3137
3138         spin_lock_irqsave(&list->lock, flags);
3139         __skb_queue_tail(list, newsk);
3140         spin_unlock_irqrestore(&list->lock, flags);
3141 }
3142 EXPORT_SYMBOL(skb_queue_tail);
3143
3144 /**
3145  *      skb_unlink      -       remove a buffer from a list
3146  *      @skb: buffer to remove
3147  *      @list: list to use
3148  *
3149  *      Remove a packet from a list. The list locks are taken and this
3150  *      function is atomic with respect to other list locked calls
3151  *
3152  *      You must know what list the SKB is on.
3153  */
3154 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3155 {
3156         unsigned long flags;
3157
3158         spin_lock_irqsave(&list->lock, flags);
3159         __skb_unlink(skb, list);
3160         spin_unlock_irqrestore(&list->lock, flags);
3161 }
3162 EXPORT_SYMBOL(skb_unlink);
3163
3164 /**
3165  *      skb_append      -       append a buffer
3166  *      @old: buffer to insert after
3167  *      @newsk: buffer to insert
3168  *      @list: list to use
3169  *
3170  *      Place a packet after a given packet in a list. The list locks are taken
3171  *      and this function is atomic with respect to other list locked calls.
3172  *      A buffer cannot be placed on two lists at the same time.
3173  */
3174 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3175 {
3176         unsigned long flags;
3177
3178         spin_lock_irqsave(&list->lock, flags);
3179         __skb_queue_after(list, old, newsk);
3180         spin_unlock_irqrestore(&list->lock, flags);
3181 }
3182 EXPORT_SYMBOL(skb_append);
3183
3184 static inline void skb_split_inside_header(struct sk_buff *skb,
3185                                            struct sk_buff* skb1,
3186                                            const u32 len, const int pos)
3187 {
3188         int i;
3189
3190         skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3191                                          pos - len);
3192         /* And move data appendix as is. */
3193         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3194                 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3195
3196         skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3197         skb_shinfo(skb)->nr_frags  = 0;
3198         skb1->data_len             = skb->data_len;
3199         skb1->len                  += skb1->data_len;
3200         skb->data_len              = 0;
3201         skb->len                   = len;
3202         skb_set_tail_pointer(skb, len);
3203 }
3204
3205 static inline void skb_split_no_header(struct sk_buff *skb,
3206                                        struct sk_buff* skb1,
3207                                        const u32 len, int pos)
3208 {
3209         int i, k = 0;
3210         const int nfrags = skb_shinfo(skb)->nr_frags;
3211
3212         skb_shinfo(skb)->nr_frags = 0;
3213         skb1->len                 = skb1->data_len = skb->len - len;
3214         skb->len                  = len;
3215         skb->data_len             = len - pos;
3216
3217         for (i = 0; i < nfrags; i++) {
3218                 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3219
3220                 if (pos + size > len) {
3221                         skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3222
3223                         if (pos < len) {
3224                                 /* Split frag.
3225                                  * We have two variants in this case:
3226                                  * 1. Move all the frag to the second
3227                                  *    part, if it is possible. F.e.
3228                                  *    this approach is mandatory for TUX,
3229                                  *    where splitting is expensive.
3230                                  * 2. Split is accurately. We make this.
3231                                  */
3232                                 skb_frag_ref(skb, i);
3233                                 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3234                                 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3235                                 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3236                                 skb_shinfo(skb)->nr_frags++;
3237                         }
3238                         k++;
3239                 } else
3240                         skb_shinfo(skb)->nr_frags++;
3241                 pos += size;
3242         }
3243         skb_shinfo(skb1)->nr_frags = k;
3244 }
3245
3246 /**
3247  * skb_split - Split fragmented skb to two parts at length len.
3248  * @skb: the buffer to split
3249  * @skb1: the buffer to receive the second part
3250  * @len: new length for skb
3251  */
3252 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3253 {
3254         int pos = skb_headlen(skb);
3255
3256         skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3257                                       SKBTX_SHARED_FRAG;
3258         skb_zerocopy_clone(skb1, skb, 0);
3259         if (len < pos)  /* Split line is inside header. */
3260                 skb_split_inside_header(skb, skb1, len, pos);
3261         else            /* Second chunk has no header, nothing to copy. */
3262                 skb_split_no_header(skb, skb1, len, pos);
3263 }
3264 EXPORT_SYMBOL(skb_split);
3265
3266 /* Shifting from/to a cloned skb is a no-go.
3267  *
3268  * Caller cannot keep skb_shinfo related pointers past calling here!
3269  */
3270 static int skb_prepare_for_shift(struct sk_buff *skb)
3271 {
3272         return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3273 }
3274
3275 /**
3276  * skb_shift - Shifts paged data partially from skb to another
3277  * @tgt: buffer into which tail data gets added
3278  * @skb: buffer from which the paged data comes from
3279  * @shiftlen: shift up to this many bytes
3280  *
3281  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3282  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3283  * It's up to caller to free skb if everything was shifted.
3284  *
3285  * If @tgt runs out of frags, the whole operation is aborted.
3286  *
3287  * Skb cannot include anything else but paged data while tgt is allowed
3288  * to have non-paged data as well.
3289  *
3290  * TODO: full sized shift could be optimized but that would need
3291  * specialized skb free'er to handle frags without up-to-date nr_frags.
3292  */
3293 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3294 {
3295         int from, to, merge, todo;
3296         struct skb_frag_struct *fragfrom, *fragto;
3297
3298         BUG_ON(shiftlen > skb->len);
3299
3300         if (skb_headlen(skb))
3301                 return 0;
3302         if (skb_zcopy(tgt) || skb_zcopy(skb))
3303                 return 0;
3304
3305         todo = shiftlen;
3306         from = 0;
3307         to = skb_shinfo(tgt)->nr_frags;
3308         fragfrom = &skb_shinfo(skb)->frags[from];
3309
3310         /* Actual merge is delayed until the point when we know we can
3311          * commit all, so that we don't have to undo partial changes
3312          */
3313         if (!to ||
3314             !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3315                               fragfrom->page_offset)) {
3316                 merge = -1;
3317         } else {
3318                 merge = to - 1;
3319
3320                 todo -= skb_frag_size(fragfrom);
3321                 if (todo < 0) {
3322                         if (skb_prepare_for_shift(skb) ||
3323                             skb_prepare_for_shift(tgt))
3324                                 return 0;
3325
3326                         /* All previous frag pointers might be stale! */
3327                         fragfrom = &skb_shinfo(skb)->frags[from];
3328                         fragto = &skb_shinfo(tgt)->frags[merge];
3329
3330                         skb_frag_size_add(fragto, shiftlen);
3331                         skb_frag_size_sub(fragfrom, shiftlen);
3332                         fragfrom->page_offset += shiftlen;
3333
3334                         goto onlymerged;
3335                 }
3336
3337                 from++;
3338         }
3339
3340         /* Skip full, not-fitting skb to avoid expensive operations */
3341         if ((shiftlen == skb->len) &&
3342             (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3343                 return 0;
3344
3345         if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3346                 return 0;
3347
3348         while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3349                 if (to == MAX_SKB_FRAGS)
3350                         return 0;
3351
3352                 fragfrom = &skb_shinfo(skb)->frags[from];
3353                 fragto = &skb_shinfo(tgt)->frags[to];
3354
3355                 if (todo >= skb_frag_size(fragfrom)) {
3356                         *fragto = *fragfrom;
3357                         todo -= skb_frag_size(fragfrom);
3358                         from++;
3359                         to++;
3360
3361                 } else {
3362                         __skb_frag_ref(fragfrom);
3363                         fragto->page = fragfrom->page;
3364                         fragto->page_offset = fragfrom->page_offset;
3365                         skb_frag_size_set(fragto, todo);
3366
3367                         fragfrom->page_offset += todo;
3368                         skb_frag_size_sub(fragfrom, todo);
3369                         todo = 0;
3370
3371                         to++;
3372                         break;
3373                 }
3374         }
3375
3376         /* Ready to "commit" this state change to tgt */
3377         skb_shinfo(tgt)->nr_frags = to;
3378
3379         if (merge >= 0) {
3380                 fragfrom = &skb_shinfo(skb)->frags[0];
3381                 fragto = &skb_shinfo(tgt)->frags[merge];
3382
3383                 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3384                 __skb_frag_unref(fragfrom);
3385         }
3386
3387         /* Reposition in the original skb */
3388         to = 0;
3389         while (from < skb_shinfo(skb)->nr_frags)
3390                 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3391         skb_shinfo(skb)->nr_frags = to;
3392
3393         BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3394
3395 onlymerged:
3396         /* Most likely the tgt won't ever need its checksum anymore, skb on
3397          * the other hand might need it if it needs to be resent
3398          */
3399         tgt->ip_summed = CHECKSUM_PARTIAL;
3400         skb->ip_summed = CHECKSUM_PARTIAL;
3401
3402         /* Yak, is it really working this way? Some helper please? */
3403         skb->len -= shiftlen;
3404         skb->data_len -= shiftlen;
3405         skb->truesize -= shiftlen;
3406         tgt->len += shiftlen;
3407         tgt->data_len += shiftlen;
3408         tgt->truesize += shiftlen;
3409
3410         return shiftlen;
3411 }
3412
3413 /**
3414  * skb_prepare_seq_read - Prepare a sequential read of skb data
3415  * @skb: the buffer to read
3416  * @from: lower offset of data to be read
3417  * @to: upper offset of data to be read
3418  * @st: state variable
3419  *
3420  * Initializes the specified state variable. Must be called before
3421  * invoking skb_seq_read() for the first time.
3422  */
3423 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3424                           unsigned int to, struct skb_seq_state *st)
3425 {
3426         st->lower_offset = from;
3427         st->upper_offset = to;
3428         st->root_skb = st->cur_skb = skb;
3429         st->frag_idx = st->stepped_offset = 0;
3430         st->frag_data = NULL;
3431 }
3432 EXPORT_SYMBOL(skb_prepare_seq_read);
3433
3434 /**
3435  * skb_seq_read - Sequentially read skb data
3436  * @consumed: number of bytes consumed by the caller so far
3437  * @data: destination pointer for data to be returned
3438  * @st: state variable
3439  *
3440  * Reads a block of skb data at @consumed relative to the
3441  * lower offset specified to skb_prepare_seq_read(). Assigns
3442  * the head of the data block to @data and returns the length
3443  * of the block or 0 if the end of the skb data or the upper
3444  * offset has been reached.
3445  *
3446  * The caller is not required to consume all of the data
3447  * returned, i.e. @consumed is typically set to the number
3448  * of bytes already consumed and the next call to
3449  * skb_seq_read() will return the remaining part of the block.
3450  *
3451  * Note 1: The size of each block of data returned can be arbitrary,
3452  *       this limitation is the cost for zerocopy sequential
3453  *       reads of potentially non linear data.
3454  *
3455  * Note 2: Fragment lists within fragments are not implemented
3456  *       at the moment, state->root_skb could be replaced with
3457  *       a stack for this purpose.
3458  */
3459 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3460                           struct skb_seq_state *st)
3461 {
3462         unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3463         skb_frag_t *frag;
3464
3465         if (unlikely(abs_offset >= st->upper_offset)) {
3466                 if (st->frag_data) {
3467                         kunmap_atomic(st->frag_data);
3468                         st->frag_data = NULL;
3469                 }
3470                 return 0;
3471         }
3472
3473 next_skb:
3474         block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3475
3476         if (abs_offset < block_limit && !st->frag_data) {
3477                 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3478                 return block_limit - abs_offset;
3479         }
3480
3481         if (st->frag_idx == 0 && !st->frag_data)
3482                 st->stepped_offset += skb_headlen(st->cur_skb);
3483
3484         while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3485                 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3486                 block_limit = skb_frag_size(frag) + st->stepped_offset;
3487
3488                 if (abs_offset < block_limit) {
3489                         if (!st->frag_data)
3490                                 st->frag_data = kmap_atomic(skb_frag_page(frag));
3491
3492                         *data = (u8 *) st->frag_data + frag->page_offset +
3493                                 (abs_offset - st->stepped_offset);
3494
3495                         return block_limit - abs_offset;
3496                 }
3497
3498                 if (st->frag_data) {
3499                         kunmap_atomic(st->frag_data);
3500                         st->frag_data = NULL;
3501                 }
3502
3503                 st->frag_idx++;
3504                 st->stepped_offset += skb_frag_size(frag);
3505         }
3506
3507         if (st->frag_data) {
3508                 kunmap_atomic(st->frag_data);
3509                 st->frag_data = NULL;
3510         }
3511
3512         if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3513                 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3514                 st->frag_idx = 0;
3515                 goto next_skb;
3516         } else if (st->cur_skb->next) {
3517                 st->cur_skb = st->cur_skb->next;
3518                 st->frag_idx = 0;
3519                 goto next_skb;
3520         }
3521
3522         return 0;
3523 }
3524 EXPORT_SYMBOL(skb_seq_read);
3525
3526 /**
3527  * skb_abort_seq_read - Abort a sequential read of skb data
3528  * @st: state variable
3529  *
3530  * Must be called if skb_seq_read() was not called until it
3531  * returned 0.
3532  */
3533 void skb_abort_seq_read(struct skb_seq_state *st)
3534 {
3535         if (st->frag_data)
3536                 kunmap_atomic(st->frag_data);
3537 }
3538 EXPORT_SYMBOL(skb_abort_seq_read);
3539
3540 #define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
3541
3542 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3543                                           struct ts_config *conf,
3544                                           struct ts_state *state)
3545 {
3546         return skb_seq_read(offset, text, TS_SKB_CB(state));
3547 }
3548
3549 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3550 {
3551         skb_abort_seq_read(TS_SKB_CB(state));
3552 }
3553
3554 /**
3555  * skb_find_text - Find a text pattern in skb data
3556  * @skb: the buffer to look in
3557  * @from: search offset
3558  * @to: search limit
3559  * @config: textsearch configuration
3560  *
3561  * Finds a pattern in the skb data according to the specified
3562  * textsearch configuration. Use textsearch_next() to retrieve
3563  * subsequent occurrences of the pattern. Returns the offset
3564  * to the first occurrence or UINT_MAX if no match was found.
3565  */
3566 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3567                            unsigned int to, struct ts_config *config)
3568 {
3569         struct ts_state state;
3570         unsigned int ret;
3571
3572         config->get_next_block = skb_ts_get_next_block;
3573         config->finish = skb_ts_finish;
3574
3575         skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3576
3577         ret = textsearch_find(config, &state);
3578         return (ret <= to - from ? ret : UINT_MAX);
3579 }
3580 EXPORT_SYMBOL(skb_find_text);
3581
3582 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3583                          int offset, size_t size)
3584 {
3585         int i = skb_shinfo(skb)->nr_frags;
3586
3587         if (skb_can_coalesce(skb, i, page, offset)) {
3588                 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3589         } else if (i < MAX_SKB_FRAGS) {
3590                 get_page(page);
3591                 skb_fill_page_desc(skb, i, page, offset, size);
3592         } else {
3593                 return -EMSGSIZE;
3594         }
3595
3596         return 0;
3597 }
3598 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3599
3600 /**
3601  *      skb_pull_rcsum - pull skb and update receive checksum
3602  *      @skb: buffer to update
3603  *      @len: length of data pulled
3604  *
3605  *      This function performs an skb_pull on the packet and updates
3606  *      the CHECKSUM_COMPLETE checksum.  It should be used on
3607  *      receive path processing instead of skb_pull unless you know
3608  *      that the checksum difference is zero (e.g., a valid IP header)
3609  *      or you are setting ip_summed to CHECKSUM_NONE.
3610  */
3611 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3612 {
3613         unsigned char *data = skb->data;
3614
3615         BUG_ON(len > skb->len);
3616         __skb_pull(skb, len);
3617         skb_postpull_rcsum(skb, data, len);
3618         return skb->data;
3619 }
3620 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3621
3622 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3623 {
3624         skb_frag_t head_frag;
3625         struct page *page;
3626
3627         page = virt_to_head_page(frag_skb->head);
3628         head_frag.page.p = page;
3629         head_frag.page_offset = frag_skb->data -
3630                 (unsigned char *)page_address(page);
3631         head_frag.size = skb_headlen(frag_skb);
3632         return head_frag;
3633 }
3634
3635 /**
3636  *      skb_segment - Perform protocol segmentation on skb.
3637  *      @head_skb: buffer to segment
3638  *      @features: features for the output path (see dev->features)
3639  *
3640  *      This function performs segmentation on the given skb.  It returns
3641  *      a pointer to the first in a list of new skbs for the segments.
3642  *      In case of error it returns ERR_PTR(err).
3643  */
3644 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3645                             netdev_features_t features)
3646 {
3647         struct sk_buff *segs = NULL;
3648         struct sk_buff *tail = NULL;
3649         struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3650         skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3651         unsigned int mss = skb_shinfo(head_skb)->gso_size;
3652         unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3653         struct sk_buff *frag_skb = head_skb;
3654         unsigned int offset = doffset;
3655         unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3656         unsigned int partial_segs = 0;
3657         unsigned int headroom;
3658         unsigned int len = head_skb->len;
3659         __be16 proto;
3660         bool csum, sg;
3661         int nfrags = skb_shinfo(head_skb)->nr_frags;
3662         int err = -ENOMEM;
3663         int i = 0;
3664         int pos;
3665         int dummy;
3666
3667         __skb_push(head_skb, doffset);
3668         proto = skb_network_protocol(head_skb, &dummy);
3669         if (unlikely(!proto))
3670                 return ERR_PTR(-EINVAL);
3671
3672         sg = !!(features & NETIF_F_SG);
3673         csum = !!can_checksum_protocol(features, proto);
3674
3675         if (sg && csum && (mss != GSO_BY_FRAGS))  {
3676                 if (!(features & NETIF_F_GSO_PARTIAL)) {
3677                         struct sk_buff *iter;
3678                         unsigned int frag_len;
3679
3680                         if (!list_skb ||
3681                             !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3682                                 goto normal;
3683
3684                         /* If we get here then all the required
3685                          * GSO features except frag_list are supported.
3686                          * Try to split the SKB to multiple GSO SKBs
3687                          * with no frag_list.
3688                          * Currently we can do that only when the buffers don't
3689                          * have a linear part and all the buffers except
3690                          * the last are of the same length.
3691                          */
3692                         frag_len = list_skb->len;
3693                         skb_walk_frags(head_skb, iter) {
3694                                 if (frag_len != iter->len && iter->next)
3695                                         goto normal;
3696                                 if (skb_headlen(iter) && !iter->head_frag)
3697                                         goto normal;
3698
3699                                 len -= iter->len;
3700                         }
3701
3702                         if (len != frag_len)
3703                                 goto normal;
3704                 }
3705
3706                 /* GSO partial only requires that we trim off any excess that
3707                  * doesn't fit into an MSS sized block, so take care of that
3708                  * now.
3709                  */
3710                 partial_segs = len / mss;
3711                 if (partial_segs > 1)
3712                         mss *= partial_segs;
3713                 else
3714                         partial_segs = 0;
3715         }
3716
3717 normal:
3718         headroom = skb_headroom(head_skb);
3719         pos = skb_headlen(head_skb);
3720
3721         do {
3722                 struct sk_buff *nskb;
3723                 skb_frag_t *nskb_frag;
3724                 int hsize;
3725                 int size;
3726
3727                 if (unlikely(mss == GSO_BY_FRAGS)) {
3728                         len = list_skb->len;
3729                 } else {
3730                         len = head_skb->len - offset;
3731                         if (len > mss)
3732                                 len = mss;
3733                 }
3734
3735                 hsize = skb_headlen(head_skb) - offset;
3736                 if (hsize < 0)
3737                         hsize = 0;
3738                 if (hsize > len || !sg)
3739                         hsize = len;
3740
3741                 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3742                     (skb_headlen(list_skb) == len || sg)) {
3743                         BUG_ON(skb_headlen(list_skb) > len);
3744
3745                         i = 0;
3746                         nfrags = skb_shinfo(list_skb)->nr_frags;
3747                         frag = skb_shinfo(list_skb)->frags;
3748                         frag_skb = list_skb;
3749                         pos += skb_headlen(list_skb);
3750
3751                         while (pos < offset + len) {
3752                                 BUG_ON(i >= nfrags);
3753
3754                                 size = skb_frag_size(frag);
3755                                 if (pos + size > offset + len)
3756                                         break;
3757
3758                                 i++;
3759                                 pos += size;
3760                                 frag++;
3761                         }
3762
3763                         nskb = skb_clone(list_skb, GFP_ATOMIC);
3764                         list_skb = list_skb->next;
3765
3766                         if (unlikely(!nskb))
3767                                 goto err;
3768
3769                         if (unlikely(pskb_trim(nskb, len))) {
3770                                 kfree_skb(nskb);
3771                                 goto err;
3772                         }
3773
3774                         hsize = skb_end_offset(nskb);
3775                         if (skb_cow_head(nskb, doffset + headroom)) {
3776                                 kfree_skb(nskb);
3777                                 goto err;
3778                         }
3779
3780                         nskb->truesize += skb_end_offset(nskb) - hsize;
3781                         skb_release_head_state(nskb);
3782                         __skb_push(nskb, doffset);
3783                 } else {
3784                         nskb = __alloc_skb(hsize + doffset + headroom,
3785                                            GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3786                                            NUMA_NO_NODE);
3787
3788                         if (unlikely(!nskb))
3789                                 goto err;
3790
3791                         skb_reserve(nskb, headroom);
3792                         __skb_put(nskb, doffset);
3793                 }
3794
3795                 if (segs)
3796                         tail->next = nskb;
3797                 else
3798                         segs = nskb;
3799                 tail = nskb;
3800
3801                 __copy_skb_header(nskb, head_skb);
3802
3803                 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3804                 skb_reset_mac_len(nskb);
3805
3806                 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3807                                                  nskb->data - tnl_hlen,
3808                                                  doffset + tnl_hlen);
3809
3810                 if (nskb->len == len + doffset)
3811                         goto perform_csum_check;
3812
3813                 if (!sg) {
3814                         if (!nskb->remcsum_offload)
3815                                 nskb->ip_summed = CHECKSUM_NONE;
3816                         SKB_GSO_CB(nskb)->csum =
3817                                 skb_copy_and_csum_bits(head_skb, offset,
3818                                                        skb_put(nskb, len),
3819                                                        len, 0);
3820                         SKB_GSO_CB(nskb)->csum_start =
3821                                 skb_headroom(nskb) + doffset;
3822                         continue;
3823                 }
3824
3825                 nskb_frag = skb_shinfo(nskb)->frags;
3826
3827                 skb_copy_from_linear_data_offset(head_skb, offset,
3828                                                  skb_put(nskb, hsize), hsize);
3829
3830                 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3831                                               SKBTX_SHARED_FRAG;
3832
3833                 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3834                     skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3835                         goto err;
3836
3837                 while (pos < offset + len) {
3838                         if (i >= nfrags) {
3839                                 i = 0;
3840                                 nfrags = skb_shinfo(list_skb)->nr_frags;
3841                                 frag = skb_shinfo(list_skb)->frags;
3842                                 frag_skb = list_skb;
3843                                 if (!skb_headlen(list_skb)) {
3844                                         BUG_ON(!nfrags);
3845                                 } else {
3846                                         BUG_ON(!list_skb->head_frag);
3847
3848                                         /* to make room for head_frag. */
3849                                         i--;
3850                                         frag--;
3851                                 }
3852                                 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3853                                     skb_zerocopy_clone(nskb, frag_skb,
3854                                                        GFP_ATOMIC))
3855                                         goto err;
3856
3857                                 list_skb = list_skb->next;
3858                         }
3859
3860                         if (unlikely(skb_shinfo(nskb)->nr_frags >=
3861                                      MAX_SKB_FRAGS)) {
3862                                 net_warn_ratelimited(
3863                                         "skb_segment: too many frags: %u %u\n",
3864                                         pos, mss);
3865                                 err = -EINVAL;
3866                                 goto err;
3867                         }
3868
3869                         *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3870                         __skb_frag_ref(nskb_frag);
3871                         size = skb_frag_size(nskb_frag);
3872
3873                         if (pos < offset) {
3874                                 nskb_frag->page_offset += offset - pos;
3875                                 skb_frag_size_sub(nskb_frag, offset - pos);
3876                         }
3877
3878                         skb_shinfo(nskb)->nr_frags++;
3879
3880                         if (pos + size <= offset + len) {
3881                                 i++;
3882                                 frag++;
3883                                 pos += size;
3884                         } else {
3885                                 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3886                                 goto skip_fraglist;
3887                         }
3888
3889                         nskb_frag++;
3890                 }
3891
3892 skip_fraglist:
3893                 nskb->data_len = len - hsize;
3894                 nskb->len += nskb->data_len;
3895                 nskb->truesize += nskb->data_len;
3896
3897 perform_csum_check:
3898                 if (!csum) {
3899                         if (skb_has_shared_frag(nskb) &&
3900                             __skb_linearize(nskb))
3901                                 goto err;
3902
3903                         if (!nskb->remcsum_offload)
3904                                 nskb->ip_summed = CHECKSUM_NONE;
3905                         SKB_GSO_CB(nskb)->csum =
3906                                 skb_checksum(nskb, doffset,
3907                                              nskb->len - doffset, 0);
3908                         SKB_GSO_CB(nskb)->csum_start =
3909                                 skb_headroom(nskb) + doffset;
3910                 }
3911         } while ((offset += len) < head_skb->len);
3912
3913         /* Some callers want to get the end of the list.
3914          * Put it in segs->prev to avoid walking the list.
3915          * (see validate_xmit_skb_list() for example)
3916          */
3917         segs->prev = tail;
3918
3919         if (partial_segs) {
3920                 struct sk_buff *iter;
3921                 int type = skb_shinfo(head_skb)->gso_type;
3922                 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3923
3924                 /* Update type to add partial and then remove dodgy if set */
3925                 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3926                 type &= ~SKB_GSO_DODGY;
3927
3928                 /* Update GSO info and prepare to start updating headers on
3929                  * our way back down the stack of protocols.
3930                  */
3931                 for (iter = segs; iter; iter = iter->next) {
3932                         skb_shinfo(iter)->gso_size = gso_size;
3933                         skb_shinfo(iter)->gso_segs = partial_segs;
3934                         skb_shinfo(iter)->gso_type = type;
3935                         SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3936                 }
3937
3938                 if (tail->len - doffset <= gso_size)
3939                         skb_shinfo(tail)->gso_size = 0;
3940                 else if (tail != segs)
3941                         skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3942         }
3943
3944         /* Following permits correct backpressure, for protocols
3945          * using skb_set_owner_w().
3946          * Idea is to tranfert ownership from head_skb to last segment.
3947          */
3948         if (head_skb->destructor == sock_wfree) {
3949                 swap(tail->truesize, head_skb->truesize);
3950                 swap(tail->destructor, head_skb->destructor);
3951                 swap(tail->sk, head_skb->sk);
3952         }
3953         return segs;
3954
3955 err:
3956         kfree_skb_list(segs);
3957         return ERR_PTR(err);
3958 }
3959 EXPORT_SYMBOL_GPL(skb_segment);
3960
3961 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3962 {
3963         struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3964         unsigned int offset = skb_gro_offset(skb);
3965         unsigned int headlen = skb_headlen(skb);
3966         unsigned int len = skb_gro_len(skb);
3967         unsigned int delta_truesize;
3968         struct sk_buff *lp;
3969
3970         if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3971                 return -E2BIG;
3972
3973         lp = NAPI_GRO_CB(p)->last;
3974         pinfo = skb_shinfo(lp);
3975
3976         if (headlen <= offset) {
3977                 skb_frag_t *frag;
3978                 skb_frag_t *frag2;
3979                 int i = skbinfo->nr_frags;
3980                 int nr_frags = pinfo->nr_frags + i;
3981
3982                 if (nr_frags > MAX_SKB_FRAGS)
3983                         goto merge;
3984
3985                 offset -= headlen;
3986                 pinfo->nr_frags = nr_frags;
3987                 skbinfo->nr_frags = 0;
3988
3989                 frag = pinfo->frags + nr_frags;
3990                 frag2 = skbinfo->frags + i;
3991                 do {
3992                         *--frag = *--frag2;
3993                 } while (--i);
3994
3995                 frag->page_offset += offset;
3996                 skb_frag_size_sub(frag, offset);
3997
3998                 /* all fragments truesize : remove (head size + sk_buff) */
3999                 delta_truesize = skb->truesize -
4000                                  SKB_TRUESIZE(skb_end_offset(skb));
4001
4002                 skb->truesize -= skb->data_len;
4003                 skb->len -= skb->data_len;
4004                 skb->data_len = 0;
4005
4006                 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4007                 goto done;
4008         } else if (skb->head_frag) {
4009                 int nr_frags = pinfo->nr_frags;
4010                 skb_frag_t *frag = pinfo->frags + nr_frags;
4011                 struct page *page = virt_to_head_page(skb->head);
4012                 unsigned int first_size = headlen - offset;
4013                 unsigned int first_offset;
4014
4015                 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4016                         goto merge;
4017
4018                 first_offset = skb->data -
4019                                (unsigned char *)page_address(page) +
4020                                offset;
4021
4022                 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4023
4024                 frag->page.p      = page;
4025                 frag->page_offset = first_offset;
4026                 skb_frag_size_set(frag, first_size);
4027
4028                 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4029                 /* We dont need to clear skbinfo->nr_frags here */
4030
4031                 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4032                 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4033                 goto done;
4034         }
4035
4036 merge:
4037         delta_truesize = skb->truesize;
4038         if (offset > headlen) {
4039                 unsigned int eat = offset - headlen;
4040
4041                 skbinfo->frags[0].page_offset += eat;
4042                 skb_frag_size_sub(&skbinfo->frags[0], eat);
4043                 skb->data_len -= eat;
4044                 skb->len -= eat;
4045                 offset = headlen;
4046         }
4047
4048         __skb_pull(skb, offset);
4049
4050         if (NAPI_GRO_CB(p)->last == p)
4051                 skb_shinfo(p)->frag_list = skb;
4052         else
4053                 NAPI_GRO_CB(p)->last->next = skb;
4054         NAPI_GRO_CB(p)->last = skb;
4055         __skb_header_release(skb);
4056         lp = p;
4057
4058 done:
4059         NAPI_GRO_CB(p)->count++;
4060         p->data_len += len;
4061         p->truesize += delta_truesize;
4062         p->len += len;
4063         if (lp != p) {
4064                 lp->data_len += len;
4065                 lp->truesize += delta_truesize;
4066                 lp->len += len;
4067         }
4068         NAPI_GRO_CB(skb)->same_flow = 1;
4069         return 0;
4070 }
4071 EXPORT_SYMBOL_GPL(skb_gro_receive);
4072
4073 #ifdef CONFIG_SKB_EXTENSIONS
4074 #define SKB_EXT_ALIGN_VALUE     8
4075 #define SKB_EXT_CHUNKSIZEOF(x)  (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4076
4077 static const u8 skb_ext_type_len[] = {
4078 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4079         [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4080 #endif
4081 #ifdef CONFIG_XFRM
4082         [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4083 #endif
4084 };
4085
4086 static __always_inline unsigned int skb_ext_total_length(void)
4087 {
4088         return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4089 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4090                 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4091 #endif
4092 #ifdef CONFIG_XFRM
4093                 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4094 #endif
4095                 0;
4096 }
4097
4098 static void skb_extensions_init(void)
4099 {
4100         BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4101         BUILD_BUG_ON(skb_ext_total_length() > 255);
4102
4103         skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4104                                              SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4105                                              0,
4106                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4107                                              NULL);
4108 }
4109 #else
4110 static void skb_extensions_init(void) {}
4111 #endif
4112
4113 void __init skb_init(void)
4114 {
4115         skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4116                                               sizeof(struct sk_buff),
4117                                               0,
4118                                               SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4119                                               offsetof(struct sk_buff, cb),
4120                                               sizeof_field(struct sk_buff, cb),
4121                                               NULL);
4122         skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4123                                                 sizeof(struct sk_buff_fclones),
4124                                                 0,
4125                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4126                                                 NULL);
4127         skb_extensions_init();
4128 }
4129
4130 static int
4131 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4132                unsigned int recursion_level)
4133 {
4134         int start = skb_headlen(skb);
4135         int i, copy = start - offset;
4136         struct sk_buff *frag_iter;
4137         int elt = 0;
4138
4139         if (unlikely(recursion_level >= 24))
4140                 return -EMSGSIZE;
4141
4142         if (copy > 0) {
4143                 if (copy > len)
4144                         copy = len;
4145                 sg_set_buf(sg, skb->data + offset, copy);
4146                 elt++;
4147                 if ((len -= copy) == 0)
4148                         return elt;
4149                 offset += copy;
4150         }
4151
4152         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4153                 int end;
4154
4155                 WARN_ON(start > offset + len);
4156
4157                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4158                 if ((copy = end - offset) > 0) {
4159                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4160                         if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4161                                 return -EMSGSIZE;
4162
4163                         if (copy > len)
4164                                 copy = len;
4165                         sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4166                                         frag->page_offset+offset-start);
4167                         elt++;
4168                         if (!(len -= copy))
4169                                 return elt;
4170                         offset += copy;
4171                 }
4172                 start = end;
4173         }
4174
4175         skb_walk_frags(skb, frag_iter) {
4176                 int end, ret;
4177
4178                 WARN_ON(start > offset + len);
4179
4180                 end = start + frag_iter->len;
4181                 if ((copy = end - offset) > 0) {
4182                         if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4183                                 return -EMSGSIZE;
4184
4185                         if (copy > len)
4186                                 copy = len;
4187                         ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4188                                               copy, recursion_level + 1);
4189                         if (unlikely(ret < 0))
4190                                 return ret;
4191                         elt += ret;
4192                         if ((len -= copy) == 0)
4193                                 return elt;
4194                         offset += copy;
4195                 }
4196                 start = end;
4197         }
4198         BUG_ON(len);
4199         return elt;
4200 }
4201
4202 /**
4203  *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4204  *      @skb: Socket buffer containing the buffers to be mapped
4205  *      @sg: The scatter-gather list to map into
4206  *      @offset: The offset into the buffer's contents to start mapping
4207  *      @len: Length of buffer space to be mapped
4208  *
4209  *      Fill the specified scatter-gather list with mappings/pointers into a
4210  *      region of the buffer space attached to a socket buffer. Returns either
4211  *      the number of scatterlist items used, or -EMSGSIZE if the contents
4212  *      could not fit.
4213  */
4214 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4215 {
4216         int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4217
4218         if (nsg <= 0)
4219                 return nsg;
4220
4221         sg_mark_end(&sg[nsg - 1]);
4222
4223         return nsg;
4224 }
4225 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4226
4227 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4228  * sglist without mark the sg which contain last skb data as the end.
4229  * So the caller can mannipulate sg list as will when padding new data after
4230  * the first call without calling sg_unmark_end to expend sg list.
4231  *
4232  * Scenario to use skb_to_sgvec_nomark:
4233  * 1. sg_init_table
4234  * 2. skb_to_sgvec_nomark(payload1)
4235  * 3. skb_to_sgvec_nomark(payload2)
4236  *
4237  * This is equivalent to:
4238  * 1. sg_init_table
4239  * 2. skb_to_sgvec(payload1)
4240  * 3. sg_unmark_end
4241  * 4. skb_to_sgvec(payload2)
4242  *
4243  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4244  * is more preferable.
4245  */
4246 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4247                         int offset, int len)
4248 {
4249         return __skb_to_sgvec(skb, sg, offset, len, 0);
4250 }
4251 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4252
4253
4254
4255 /**
4256  *      skb_cow_data - Check that a socket buffer's data buffers are writable
4257  *      @skb: The socket buffer to check.
4258  *      @tailbits: Amount of trailing space to be added
4259  *      @trailer: Returned pointer to the skb where the @tailbits space begins
4260  *
4261  *      Make sure that the data buffers attached to a socket buffer are
4262  *      writable. If they are not, private copies are made of the data buffers
4263  *      and the socket buffer is set to use these instead.
4264  *
4265  *      If @tailbits is given, make sure that there is space to write @tailbits
4266  *      bytes of data beyond current end of socket buffer.  @trailer will be
4267  *      set to point to the skb in which this space begins.
4268  *
4269  *      The number of scatterlist elements required to completely map the
4270  *      COW'd and extended socket buffer will be returned.
4271  */
4272 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4273 {
4274         int copyflag;
4275         int elt;
4276         struct sk_buff *skb1, **skb_p;
4277
4278         /* If skb is cloned or its head is paged, reallocate
4279          * head pulling out all the pages (pages are considered not writable
4280          * at the moment even if they are anonymous).
4281          */
4282         if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4283             __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4284                 return -ENOMEM;
4285
4286         /* Easy case. Most of packets will go this way. */
4287         if (!skb_has_frag_list(skb)) {
4288                 /* A little of trouble, not enough of space for trailer.
4289                  * This should not happen, when stack is tuned to generate
4290                  * good frames. OK, on miss we reallocate and reserve even more
4291                  * space, 128 bytes is fair. */
4292
4293                 if (skb_tailroom(skb) < tailbits &&
4294                     pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4295                         return -ENOMEM;
4296
4297                 /* Voila! */
4298                 *trailer = skb;
4299                 return 1;
4300         }
4301
4302         /* Misery. We are in troubles, going to mincer fragments... */
4303
4304         elt = 1;
4305         skb_p = &skb_shinfo(skb)->frag_list;
4306         copyflag = 0;
4307
4308         while ((skb1 = *skb_p) != NULL) {
4309                 int ntail = 0;
4310
4311                 /* The fragment is partially pulled by someone,
4312                  * this can happen on input. Copy it and everything
4313                  * after it. */
4314
4315                 if (skb_shared(skb1))
4316                         copyflag = 1;
4317
4318                 /* If the skb is the last, worry about trailer. */
4319
4320                 if (skb1->next == NULL && tailbits) {
4321                         if (skb_shinfo(skb1)->nr_frags ||
4322                             skb_has_frag_list(skb1) ||
4323                             skb_tailroom(skb1) < tailbits)
4324                                 ntail = tailbits + 128;
4325                 }
4326
4327                 if (copyflag ||
4328                     skb_cloned(skb1) ||
4329                     ntail ||
4330                     skb_shinfo(skb1)->nr_frags ||
4331                     skb_has_frag_list(skb1)) {
4332                         struct sk_buff *skb2;
4333
4334                         /* Fuck, we are miserable poor guys... */
4335                         if (ntail == 0)
4336                                 skb2 = skb_copy(skb1, GFP_ATOMIC);
4337                         else
4338                                 skb2 = skb_copy_expand(skb1,
4339                                                        skb_headroom(skb1),
4340                                                        ntail,
4341                                                        GFP_ATOMIC);
4342                         if (unlikely(skb2 == NULL))
4343                                 return -ENOMEM;
4344
4345                         if (skb1->sk)
4346                                 skb_set_owner_w(skb2, skb1->sk);
4347
4348                         /* Looking around. Are we still alive?
4349                          * OK, link new skb, drop old one */
4350
4351                         skb2->next = skb1->next;
4352                         *skb_p = skb2;
4353                         kfree_skb(skb1);
4354                         skb1 = skb2;
4355                 }
4356                 elt++;
4357                 *trailer = skb1;
4358                 skb_p = &skb1->next;
4359         }
4360
4361         return elt;
4362 }
4363 EXPORT_SYMBOL_GPL(skb_cow_data);
4364
4365 static void sock_rmem_free(struct sk_buff *skb)
4366 {
4367         struct sock *sk = skb->sk;
4368
4369         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4370 }
4371
4372 static void skb_set_err_queue(struct sk_buff *skb)
4373 {
4374         /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4375          * So, it is safe to (mis)use it to mark skbs on the error queue.
4376          */
4377         skb->pkt_type = PACKET_OUTGOING;
4378         BUILD_BUG_ON(PACKET_OUTGOING == 0);
4379 }
4380
4381 /*
4382  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4383  */
4384 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4385 {
4386         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4387             (unsigned int)sk->sk_rcvbuf)
4388                 return -ENOMEM;
4389
4390         skb_orphan(skb);
4391         skb->sk = sk;
4392         skb->destructor = sock_rmem_free;
4393         atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4394         skb_set_err_queue(skb);
4395
4396         /* before exiting rcu section, make sure dst is refcounted */
4397         skb_dst_force(skb);
4398
4399         skb_queue_tail(&sk->sk_error_queue, skb);
4400         if (!sock_flag(sk, SOCK_DEAD))
4401                 sk->sk_error_report(sk);
4402         return 0;
4403 }
4404 EXPORT_SYMBOL(sock_queue_err_skb);
4405
4406 static bool is_icmp_err_skb(const struct sk_buff *skb)
4407 {
4408         return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4409                        SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4410 }
4411
4412 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4413 {
4414         struct sk_buff_head *q = &sk->sk_error_queue;
4415         struct sk_buff *skb, *skb_next = NULL;
4416         bool icmp_next = false;
4417         unsigned long flags;
4418
4419         spin_lock_irqsave(&q->lock, flags);
4420         skb = __skb_dequeue(q);
4421         if (skb && (skb_next = skb_peek(q))) {
4422                 icmp_next = is_icmp_err_skb(skb_next);
4423                 if (icmp_next)
4424                         sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4425         }
4426         spin_unlock_irqrestore(&q->lock, flags);
4427
4428         if (is_icmp_err_skb(skb) && !icmp_next)
4429                 sk->sk_err = 0;
4430
4431         if (skb_next)
4432                 sk->sk_error_report(sk);
4433
4434         return skb;
4435 }
4436 EXPORT_SYMBOL(sock_dequeue_err_skb);
4437
4438 /**
4439  * skb_clone_sk - create clone of skb, and take reference to socket
4440  * @skb: the skb to clone
4441  *
4442  * This function creates a clone of a buffer that holds a reference on
4443  * sk_refcnt.  Buffers created via this function are meant to be
4444  * returned using sock_queue_err_skb, or free via kfree_skb.
4445  *
4446  * When passing buffers allocated with this function to sock_queue_err_skb
4447  * it is necessary to wrap the call with sock_hold/sock_put in order to
4448  * prevent the socket from being released prior to being enqueued on
4449  * the sk_error_queue.
4450  */
4451 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4452 {
4453         struct sock *sk = skb->sk;
4454         struct sk_buff *clone;
4455
4456         if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4457                 return NULL;
4458
4459         clone = skb_clone(skb, GFP_ATOMIC);
4460         if (!clone) {
4461                 sock_put(sk);
4462                 return NULL;
4463         }
4464
4465         clone->sk = sk;
4466         clone->destructor = sock_efree;
4467
4468         return clone;
4469 }
4470 EXPORT_SYMBOL(skb_clone_sk);
4471
4472 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4473                                         struct sock *sk,
4474                                         int tstype,
4475                                         bool opt_stats)
4476 {
4477         struct sock_exterr_skb *serr;
4478         int err;
4479
4480         BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4481
4482         serr = SKB_EXT_ERR(skb);
4483         memset(serr, 0, sizeof(*serr));
4484         serr->ee.ee_errno = ENOMSG;
4485         serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4486         serr->ee.ee_info = tstype;
4487         serr->opt_stats = opt_stats;
4488         serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4489         if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4490                 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4491                 if (sk->sk_protocol == IPPROTO_TCP &&
4492                     sk->sk_type == SOCK_STREAM)
4493                         serr->ee.ee_data -= sk->sk_tskey;
4494         }
4495
4496         err = sock_queue_err_skb(sk, skb);
4497
4498         if (err)
4499                 kfree_skb(skb);
4500 }
4501
4502 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4503 {
4504         bool ret;
4505
4506         if (likely(sysctl_tstamp_allow_data || tsonly))
4507                 return true;
4508
4509         read_lock_bh(&sk->sk_callback_lock);
4510         ret = sk->sk_socket && sk->sk_socket->file &&
4511               file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4512         read_unlock_bh(&sk->sk_callback_lock);
4513         return ret;
4514 }
4515
4516 void skb_complete_tx_timestamp(struct sk_buff *skb,
4517                                struct skb_shared_hwtstamps *hwtstamps)
4518 {
4519         struct sock *sk = skb->sk;
4520
4521         if (!skb_may_tx_timestamp(sk, false))
4522                 goto err;
4523
4524         /* Take a reference to prevent skb_orphan() from freeing the socket,
4525          * but only if the socket refcount is not zero.
4526          */
4527         if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4528                 *skb_hwtstamps(skb) = *hwtstamps;
4529                 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4530                 sock_put(sk);
4531                 return;
4532         }
4533
4534 err:
4535         kfree_skb(skb);
4536 }
4537 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4538
4539 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4540                      struct skb_shared_hwtstamps *hwtstamps,
4541                      struct sock *sk, int tstype)
4542 {
4543         struct sk_buff *skb;
4544         bool tsonly, opt_stats = false;
4545
4546         if (!sk)
4547                 return;
4548
4549         if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4550             skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4551                 return;
4552
4553         tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4554         if (!skb_may_tx_timestamp(sk, tsonly))
4555                 return;
4556
4557         if (tsonly) {
4558 #ifdef CONFIG_INET
4559                 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4560                     sk->sk_protocol == IPPROTO_TCP &&
4561                     sk->sk_type == SOCK_STREAM) {
4562                         skb = tcp_get_timestamping_opt_stats(sk);
4563                         opt_stats = true;
4564                 } else
4565 #endif
4566                         skb = alloc_skb(0, GFP_ATOMIC);
4567         } else {
4568                 skb = skb_clone(orig_skb, GFP_ATOMIC);
4569         }
4570         if (!skb)
4571                 return;
4572
4573         if (tsonly) {
4574                 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4575                                              SKBTX_ANY_TSTAMP;
4576                 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4577         }
4578
4579         if (hwtstamps)
4580                 *skb_hwtstamps(skb) = *hwtstamps;
4581         else
4582                 skb->tstamp = ktime_get_real();
4583
4584         __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4585 }
4586 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4587
4588 void skb_tstamp_tx(struct sk_buff *orig_skb,
4589                    struct skb_shared_hwtstamps *hwtstamps)
4590 {
4591         return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4592                                SCM_TSTAMP_SND);
4593 }
4594 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4595
4596 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4597 {
4598         struct sock *sk = skb->sk;
4599         struct sock_exterr_skb *serr;
4600         int err = 1;
4601
4602         skb->wifi_acked_valid = 1;
4603         skb->wifi_acked = acked;
4604
4605         serr = SKB_EXT_ERR(skb);
4606         memset(serr, 0, sizeof(*serr));
4607         serr->ee.ee_errno = ENOMSG;
4608         serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4609
4610         /* Take a reference to prevent skb_orphan() from freeing the socket,
4611          * but only if the socket refcount is not zero.
4612          */
4613         if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4614                 err = sock_queue_err_skb(sk, skb);
4615                 sock_put(sk);
4616         }
4617         if (err)
4618                 kfree_skb(skb);
4619 }
4620 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4621
4622 /**
4623  * skb_partial_csum_set - set up and verify partial csum values for packet
4624  * @skb: the skb to set
4625  * @start: the number of bytes after skb->data to start checksumming.
4626  * @off: the offset from start to place the checksum.
4627  *
4628  * For untrusted partially-checksummed packets, we need to make sure the values
4629  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4630  *
4631  * This function checks and sets those values and skb->ip_summed: if this
4632  * returns false you should drop the packet.
4633  */
4634 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4635 {
4636         u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4637         u32 csum_start = skb_headroom(skb) + (u32)start;
4638
4639         if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4640                 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4641                                      start, off, skb_headroom(skb), skb_headlen(skb));
4642                 return false;
4643         }
4644         skb->ip_summed = CHECKSUM_PARTIAL;
4645         skb->csum_start = csum_start;
4646         skb->csum_offset = off;
4647         skb_set_transport_header(skb, start);
4648         return true;
4649 }
4650 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4651
4652 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4653                                unsigned int max)
4654 {
4655         if (skb_headlen(skb) >= len)
4656                 return 0;
4657
4658         /* If we need to pullup then pullup to the max, so we
4659          * won't need to do it again.
4660          */
4661         if (max > skb->len)
4662                 max = skb->len;
4663
4664         if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4665                 return -ENOMEM;
4666
4667         if (skb_headlen(skb) < len)
4668                 return -EPROTO;
4669
4670         return 0;
4671 }
4672
4673 #define MAX_TCP_HDR_LEN (15 * 4)
4674
4675 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4676                                       typeof(IPPROTO_IP) proto,
4677                                       unsigned int off)
4678 {
4679         switch (proto) {
4680                 int err;
4681
4682         case IPPROTO_TCP:
4683                 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4684                                           off + MAX_TCP_HDR_LEN);
4685                 if (!err && !skb_partial_csum_set(skb, off,
4686                                                   offsetof(struct tcphdr,
4687                                                            check)))
4688                         err = -EPROTO;
4689                 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4690
4691         case IPPROTO_UDP:
4692                 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4693                                           off + sizeof(struct udphdr));
4694                 if (!err && !skb_partial_csum_set(skb, off,
4695                                                   offsetof(struct udphdr,
4696                                                            check)))
4697                         err = -EPROTO;
4698                 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4699         }
4700
4701         return ERR_PTR(-EPROTO);
4702 }
4703
4704 /* This value should be large enough to cover a tagged ethernet header plus
4705  * maximally sized IP and TCP or UDP headers.
4706  */
4707 #define MAX_IP_HDR_LEN 128
4708
4709 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4710 {
4711         unsigned int off;
4712         bool fragment;
4713         __sum16 *csum;
4714         int err;
4715
4716         fragment = false;
4717
4718         err = skb_maybe_pull_tail(skb,
4719                                   sizeof(struct iphdr),
4720                                   MAX_IP_HDR_LEN);
4721         if (err < 0)
4722                 goto out;
4723
4724         if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4725                 fragment = true;
4726
4727         off = ip_hdrlen(skb);
4728
4729         err = -EPROTO;
4730
4731         if (fragment)
4732                 goto out;
4733
4734         csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4735         if (IS_ERR(csum))
4736                 return PTR_ERR(csum);
4737
4738         if (recalculate)
4739                 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4740                                            ip_hdr(skb)->daddr,
4741                                            skb->len - off,
4742                                            ip_hdr(skb)->protocol, 0);
4743         err = 0;
4744
4745 out:
4746         return err;
4747 }
4748
4749 /* This value should be large enough to cover a tagged ethernet header plus
4750  * an IPv6 header, all options, and a maximal TCP or UDP header.
4751  */
4752 #define MAX_IPV6_HDR_LEN 256
4753
4754 #define OPT_HDR(type, skb, off) \
4755         (type *)(skb_network_header(skb) + (off))
4756
4757 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4758 {
4759         int err;
4760         u8 nexthdr;
4761         unsigned int off;
4762         unsigned int len;
4763         bool fragment;
4764         bool done;
4765         __sum16 *csum;
4766
4767         fragment = false;
4768         done = false;
4769
4770         off = sizeof(struct ipv6hdr);
4771
4772         err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4773         if (err < 0)
4774                 goto out;
4775
4776         nexthdr = ipv6_hdr(skb)->nexthdr;
4777
4778         len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4779         while (off <= len && !done) {
4780                 switch (nexthdr) {
4781                 case IPPROTO_DSTOPTS:
4782                 case IPPROTO_HOPOPTS:
4783                 case IPPROTO_ROUTING: {
4784                         struct ipv6_opt_hdr *hp;
4785
4786                         err = skb_maybe_pull_tail(skb,
4787                                                   off +
4788                                                   sizeof(struct ipv6_opt_hdr),
4789                                                   MAX_IPV6_HDR_LEN);
4790                         if (err < 0)
4791                                 goto out;
4792
4793                         hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4794                         nexthdr = hp->nexthdr;
4795                         off += ipv6_optlen(hp);
4796                         break;
4797                 }
4798                 case IPPROTO_AH: {
4799                         struct ip_auth_hdr *hp;
4800
4801                         err = skb_maybe_pull_tail(skb,
4802                                                   off +
4803                                                   sizeof(struct ip_auth_hdr),
4804                                                   MAX_IPV6_HDR_LEN);
4805                         if (err < 0)
4806                                 goto out;
4807
4808                         hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4809                         nexthdr = hp->nexthdr;
4810                         off += ipv6_authlen(hp);
4811                         break;
4812                 }
4813                 case IPPROTO_FRAGMENT: {
4814                         struct frag_hdr *hp;
4815
4816                         err = skb_maybe_pull_tail(skb,
4817                                                   off +
4818                                                   sizeof(struct frag_hdr),
4819                                                   MAX_IPV6_HDR_LEN);
4820                         if (err < 0)
4821                                 goto out;
4822
4823                         hp = OPT_HDR(struct frag_hdr, skb, off);
4824
4825                         if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4826                                 fragment = true;
4827
4828                         nexthdr = hp->nexthdr;
4829                         off += sizeof(struct frag_hdr);
4830                         break;
4831                 }
4832                 default:
4833                         done = true;
4834                         break;
4835                 }
4836         }
4837
4838         err = -EPROTO;
4839
4840         if (!done || fragment)
4841                 goto out;
4842
4843         csum = skb_checksum_setup_ip(skb, nexthdr, off);
4844         if (IS_ERR(csum))
4845                 return PTR_ERR(csum);
4846
4847         if (recalculate)
4848                 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4849                                          &ipv6_hdr(skb)->daddr,
4850                                          skb->len - off, nexthdr, 0);
4851         err = 0;
4852
4853 out:
4854         return err;
4855 }
4856
4857 /**
4858  * skb_checksum_setup - set up partial checksum offset
4859  * @skb: the skb to set up
4860  * @recalculate: if true the pseudo-header checksum will be recalculated
4861  */
4862 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4863 {
4864         int err;
4865
4866         switch (skb->protocol) {
4867         case htons(ETH_P_IP):
4868                 err = skb_checksum_setup_ipv4(skb, recalculate);
4869                 break;
4870
4871         case htons(ETH_P_IPV6):
4872                 err = skb_checksum_setup_ipv6(skb, recalculate);
4873                 break;
4874
4875         default:
4876                 err = -EPROTO;
4877                 break;
4878         }
4879
4880         return err;
4881 }
4882 EXPORT_SYMBOL(skb_checksum_setup);
4883
4884 /**
4885  * skb_checksum_maybe_trim - maybe trims the given skb
4886  * @skb: the skb to check
4887  * @transport_len: the data length beyond the network header
4888  *
4889  * Checks whether the given skb has data beyond the given transport length.
4890  * If so, returns a cloned skb trimmed to this transport length.
4891  * Otherwise returns the provided skb. Returns NULL in error cases
4892  * (e.g. transport_len exceeds skb length or out-of-memory).
4893  *
4894  * Caller needs to set the skb transport header and free any returned skb if it
4895  * differs from the provided skb.
4896  */
4897 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4898                                                unsigned int transport_len)
4899 {
4900         struct sk_buff *skb_chk;
4901         unsigned int len = skb_transport_offset(skb) + transport_len;
4902         int ret;
4903
4904         if (skb->len < len)
4905                 return NULL;
4906         else if (skb->len == len)
4907                 return skb;
4908
4909         skb_chk = skb_clone(skb, GFP_ATOMIC);
4910         if (!skb_chk)
4911                 return NULL;
4912
4913         ret = pskb_trim_rcsum(skb_chk, len);
4914         if (ret) {
4915                 kfree_skb(skb_chk);
4916                 return NULL;
4917         }
4918
4919         return skb_chk;
4920 }
4921
4922 /**
4923  * skb_checksum_trimmed - validate checksum of an skb
4924  * @skb: the skb to check
4925  * @transport_len: the data length beyond the network header
4926  * @skb_chkf: checksum function to use
4927  *
4928  * Applies the given checksum function skb_chkf to the provided skb.
4929  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4930  *
4931  * If the skb has data beyond the given transport length, then a
4932  * trimmed & cloned skb is checked and returned.
4933  *
4934  * Caller needs to set the skb transport header and free any returned skb if it
4935  * differs from the provided skb.
4936  */
4937 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4938                                      unsigned int transport_len,
4939                                      __sum16(*skb_chkf)(struct sk_buff *skb))
4940 {
4941         struct sk_buff *skb_chk;
4942         unsigned int offset = skb_transport_offset(skb);
4943         __sum16 ret;
4944
4945         skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4946         if (!skb_chk)
4947                 goto err;
4948
4949         if (!pskb_may_pull(skb_chk, offset))
4950                 goto err;
4951
4952         skb_pull_rcsum(skb_chk, offset);
4953         ret = skb_chkf(skb_chk);
4954         skb_push_rcsum(skb_chk, offset);
4955
4956         if (ret)
4957                 goto err;
4958
4959         return skb_chk;
4960
4961 err:
4962         if (skb_chk && skb_chk != skb)
4963                 kfree_skb(skb_chk);
4964
4965         return NULL;
4966
4967 }
4968 EXPORT_SYMBOL(skb_checksum_trimmed);
4969
4970 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4971 {
4972         net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4973                              skb->dev->name);
4974 }
4975 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4976
4977 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4978 {
4979         if (head_stolen) {
4980                 skb_release_head_state(skb);
4981                 kmem_cache_free(skbuff_head_cache, skb);
4982         } else {
4983                 __kfree_skb(skb);
4984         }
4985 }
4986 EXPORT_SYMBOL(kfree_skb_partial);
4987
4988 /**
4989  * skb_try_coalesce - try to merge skb to prior one
4990  * @to: prior buffer
4991  * @from: buffer to add
4992  * @fragstolen: pointer to boolean
4993  * @delta_truesize: how much more was allocated than was requested
4994  */
4995 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4996                       bool *fragstolen, int *delta_truesize)
4997 {
4998         struct skb_shared_info *to_shinfo, *from_shinfo;
4999         int i, delta, len = from->len;
5000
5001         *fragstolen = false;
5002
5003         if (skb_cloned(to))
5004                 return false;
5005
5006         if (len <= skb_tailroom(to)) {
5007                 if (len)
5008                         BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5009                 *delta_truesize = 0;
5010                 return true;
5011         }
5012
5013         to_shinfo = skb_shinfo(to);
5014         from_shinfo = skb_shinfo(from);
5015         if (to_shinfo->frag_list || from_shinfo->frag_list)
5016                 return false;
5017         if (skb_zcopy(to) || skb_zcopy(from))
5018                 return false;
5019
5020         if (skb_headlen(from) != 0) {
5021                 struct page *page;
5022                 unsigned int offset;
5023
5024                 if (to_shinfo->nr_frags +
5025                     from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5026                         return false;
5027
5028                 if (skb_head_is_locked(from))
5029                         return false;
5030
5031                 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5032
5033                 page = virt_to_head_page(from->head);
5034                 offset = from->data - (unsigned char *)page_address(page);
5035
5036                 skb_fill_page_desc(to, to_shinfo->nr_frags,
5037                                    page, offset, skb_headlen(from));
5038                 *fragstolen = true;
5039         } else {
5040                 if (to_shinfo->nr_frags +
5041                     from_shinfo->nr_frags > MAX_SKB_FRAGS)
5042                         return false;
5043
5044                 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5045         }
5046
5047         WARN_ON_ONCE(delta < len);
5048
5049         memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5050                from_shinfo->frags,
5051                from_shinfo->nr_frags * sizeof(skb_frag_t));
5052         to_shinfo->nr_frags += from_shinfo->nr_frags;
5053
5054         if (!skb_cloned(from))
5055                 from_shinfo->nr_frags = 0;
5056
5057         /* if the skb is not cloned this does nothing
5058          * since we set nr_frags to 0.
5059          */
5060         for (i = 0; i < from_shinfo->nr_frags; i++)
5061                 __skb_frag_ref(&from_shinfo->frags[i]);
5062
5063         to->truesize += delta;
5064         to->len += len;
5065         to->data_len += len;
5066
5067         *delta_truesize = delta;
5068         return true;
5069 }
5070 EXPORT_SYMBOL(skb_try_coalesce);
5071
5072 /**
5073  * skb_scrub_packet - scrub an skb
5074  *
5075  * @skb: buffer to clean
5076  * @xnet: packet is crossing netns
5077  *
5078  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5079  * into/from a tunnel. Some information have to be cleared during these
5080  * operations.
5081  * skb_scrub_packet can also be used to clean a skb before injecting it in
5082  * another namespace (@xnet == true). We have to clear all information in the
5083  * skb that could impact namespace isolation.
5084  */
5085 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5086 {
5087         skb->pkt_type = PACKET_HOST;
5088         skb->skb_iif = 0;
5089         skb->ignore_df = 0;
5090         skb_dst_drop(skb);
5091         secpath_reset(skb);
5092         nf_reset(skb);
5093         nf_reset_trace(skb);
5094
5095 #ifdef CONFIG_NET_SWITCHDEV
5096         skb->offload_fwd_mark = 0;
5097         skb->offload_l3_fwd_mark = 0;
5098 #endif
5099
5100         if (!xnet)
5101                 return;
5102
5103         ipvs_reset(skb);
5104         skb->mark = 0;
5105         skb->tstamp = 0;
5106 }
5107 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5108
5109 /**
5110  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5111  *
5112  * @skb: GSO skb
5113  *
5114  * skb_gso_transport_seglen is used to determine the real size of the
5115  * individual segments, including Layer4 headers (TCP/UDP).
5116  *
5117  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5118  */
5119 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5120 {
5121         const struct skb_shared_info *shinfo = skb_shinfo(skb);
5122         unsigned int thlen = 0;
5123
5124         if (skb->encapsulation) {
5125                 thlen = skb_inner_transport_header(skb) -
5126                         skb_transport_header(skb);
5127
5128                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5129                         thlen += inner_tcp_hdrlen(skb);
5130         } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5131                 thlen = tcp_hdrlen(skb);
5132         } else if (unlikely(skb_is_gso_sctp(skb))) {
5133                 thlen = sizeof(struct sctphdr);
5134         } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5135                 thlen = sizeof(struct udphdr);
5136         }
5137         /* UFO sets gso_size to the size of the fragmentation
5138          * payload, i.e. the size of the L4 (UDP) header is already
5139          * accounted for.
5140          */
5141         return thlen + shinfo->gso_size;
5142 }
5143
5144 /**
5145  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5146  *
5147  * @skb: GSO skb
5148  *
5149  * skb_gso_network_seglen is used to determine the real size of the
5150  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5151  *
5152  * The MAC/L2 header is not accounted for.
5153  */
5154 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5155 {
5156         unsigned int hdr_len = skb_transport_header(skb) -
5157                                skb_network_header(skb);
5158
5159         return hdr_len + skb_gso_transport_seglen(skb);
5160 }
5161
5162 /**
5163  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5164  *
5165  * @skb: GSO skb
5166  *
5167  * skb_gso_mac_seglen is used to determine the real size of the
5168  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5169  * headers (TCP/UDP).
5170  */
5171 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5172 {
5173         unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5174
5175         return hdr_len + skb_gso_transport_seglen(skb);
5176 }
5177
5178 /**
5179  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5180  *
5181  * There are a couple of instances where we have a GSO skb, and we
5182  * want to determine what size it would be after it is segmented.
5183  *
5184  * We might want to check:
5185  * -    L3+L4+payload size (e.g. IP forwarding)
5186  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5187  *
5188  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5189  *
5190  * @skb: GSO skb
5191  *
5192  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5193  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5194  *
5195  * @max_len: The maximum permissible length.
5196  *
5197  * Returns true if the segmented length <= max length.
5198  */
5199 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5200                                       unsigned int seg_len,
5201                                       unsigned int max_len) {
5202         const struct skb_shared_info *shinfo = skb_shinfo(skb);
5203         const struct sk_buff *iter;
5204
5205         if (shinfo->gso_size != GSO_BY_FRAGS)
5206                 return seg_len <= max_len;
5207
5208         /* Undo this so we can re-use header sizes */
5209         seg_len -= GSO_BY_FRAGS;
5210
5211         skb_walk_frags(skb, iter) {
5212                 if (seg_len + skb_headlen(iter) > max_len)
5213                         return false;
5214         }
5215
5216         return true;
5217 }
5218
5219 /**
5220  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5221  *
5222  * @skb: GSO skb
5223  * @mtu: MTU to validate against
5224  *
5225  * skb_gso_validate_network_len validates if a given skb will fit a
5226  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5227  * payload.
5228  */
5229 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5230 {
5231         return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5232 }
5233 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5234
5235 /**
5236  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5237  *
5238  * @skb: GSO skb
5239  * @len: length to validate against
5240  *
5241  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5242  * length once split, including L2, L3 and L4 headers and the payload.
5243  */
5244 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5245 {
5246         return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5247 }
5248 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5249
5250 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5251 {
5252         int mac_len, meta_len;
5253         void *meta;
5254
5255         if (skb_cow(skb, skb_headroom(skb)) < 0) {
5256                 kfree_skb(skb);
5257                 return NULL;
5258         }
5259
5260         mac_len = skb->data - skb_mac_header(skb);
5261         if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5262                 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5263                         mac_len - VLAN_HLEN - ETH_TLEN);
5264         }
5265
5266         meta_len = skb_metadata_len(skb);
5267         if (meta_len) {
5268                 meta = skb_metadata_end(skb) - meta_len;
5269                 memmove(meta + VLAN_HLEN, meta, meta_len);
5270         }
5271
5272         skb->mac_header += VLAN_HLEN;
5273         return skb;
5274 }
5275
5276 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5277 {
5278         struct vlan_hdr *vhdr;
5279         u16 vlan_tci;
5280
5281         if (unlikely(skb_vlan_tag_present(skb))) {
5282                 /* vlan_tci is already set-up so leave this for another time */
5283                 return skb;
5284         }
5285
5286         skb = skb_share_check(skb, GFP_ATOMIC);
5287         if (unlikely(!skb))
5288                 goto err_free;
5289
5290         if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5291                 goto err_free;
5292
5293         vhdr = (struct vlan_hdr *)skb->data;
5294         vlan_tci = ntohs(vhdr->h_vlan_TCI);
5295         __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5296
5297         skb_pull_rcsum(skb, VLAN_HLEN);
5298         vlan_set_encap_proto(skb, vhdr);
5299
5300         skb = skb_reorder_vlan_header(skb);
5301         if (unlikely(!skb))
5302                 goto err_free;
5303
5304         skb_reset_network_header(skb);
5305         skb_reset_transport_header(skb);
5306         skb_reset_mac_len(skb);
5307
5308         return skb;
5309
5310 err_free:
5311         kfree_skb(skb);
5312         return NULL;
5313 }
5314 EXPORT_SYMBOL(skb_vlan_untag);
5315
5316 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5317 {
5318         if (!pskb_may_pull(skb, write_len))
5319                 return -ENOMEM;
5320
5321         if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5322                 return 0;
5323
5324         return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5325 }
5326 EXPORT_SYMBOL(skb_ensure_writable);
5327
5328 /* remove VLAN header from packet and update csum accordingly.
5329  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5330  */
5331 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5332 {
5333         struct vlan_hdr *vhdr;
5334         int offset = skb->data - skb_mac_header(skb);
5335         int err;
5336
5337         if (WARN_ONCE(offset,
5338                       "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5339                       offset)) {
5340                 return -EINVAL;
5341         }
5342
5343         err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5344         if (unlikely(err))
5345                 return err;
5346
5347         skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5348
5349         vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5350         *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5351
5352         memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5353         __skb_pull(skb, VLAN_HLEN);
5354
5355         vlan_set_encap_proto(skb, vhdr);
5356         skb->mac_header += VLAN_HLEN;
5357
5358         if (skb_network_offset(skb) < ETH_HLEN)
5359                 skb_set_network_header(skb, ETH_HLEN);
5360
5361         skb_reset_mac_len(skb);
5362
5363         return err;
5364 }
5365 EXPORT_SYMBOL(__skb_vlan_pop);
5366
5367 /* Pop a vlan tag either from hwaccel or from payload.
5368  * Expects skb->data at mac header.
5369  */
5370 int skb_vlan_pop(struct sk_buff *skb)
5371 {
5372         u16 vlan_tci;
5373         __be16 vlan_proto;
5374         int err;
5375
5376         if (likely(skb_vlan_tag_present(skb))) {
5377                 __vlan_hwaccel_clear_tag(skb);
5378         } else {
5379                 if (unlikely(!eth_type_vlan(skb->protocol)))
5380                         return 0;
5381
5382                 err = __skb_vlan_pop(skb, &vlan_tci);
5383                 if (err)
5384                         return err;
5385         }
5386         /* move next vlan tag to hw accel tag */
5387         if (likely(!eth_type_vlan(skb->protocol)))
5388                 return 0;
5389
5390         vlan_proto = skb->protocol;
5391         err = __skb_vlan_pop(skb, &vlan_tci);
5392         if (unlikely(err))
5393                 return err;
5394
5395         __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5396         return 0;
5397 }
5398 EXPORT_SYMBOL(skb_vlan_pop);
5399
5400 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5401  * Expects skb->data at mac header.
5402  */
5403 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5404 {
5405         if (skb_vlan_tag_present(skb)) {
5406                 int offset = skb->data - skb_mac_header(skb);
5407                 int err;
5408
5409                 if (WARN_ONCE(offset,
5410                               "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5411                               offset)) {
5412                         return -EINVAL;
5413                 }
5414
5415                 err = __vlan_insert_tag(skb, skb->vlan_proto,
5416                                         skb_vlan_tag_get(skb));
5417                 if (err)
5418                         return err;
5419
5420                 skb->protocol = skb->vlan_proto;
5421                 skb->mac_len += VLAN_HLEN;
5422
5423                 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5424         }
5425         __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5426         return 0;
5427 }
5428 EXPORT_SYMBOL(skb_vlan_push);
5429
5430 /* Update the ethertype of hdr and the skb csum value if required. */
5431 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5432                              __be16 ethertype)
5433 {
5434         if (skb->ip_summed == CHECKSUM_COMPLETE) {
5435                 __be16 diff[] = { ~hdr->h_proto, ethertype };
5436
5437                 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5438         }
5439
5440         hdr->h_proto = ethertype;
5441 }
5442
5443 /**
5444  * skb_mpls_push() - push a new MPLS header after the mac header
5445  *
5446  * @skb: buffer
5447  * @mpls_lse: MPLS label stack entry to push
5448  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5449  *
5450  * Expects skb->data at mac header.
5451  *
5452  * Returns 0 on success, -errno otherwise.
5453  */
5454 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto)
5455 {
5456         struct mpls_shim_hdr *lse;
5457         int err;
5458
5459         if (unlikely(!eth_p_mpls(mpls_proto)))
5460                 return -EINVAL;
5461
5462         /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5463         if (skb->encapsulation)
5464                 return -EINVAL;
5465
5466         err = skb_cow_head(skb, MPLS_HLEN);
5467         if (unlikely(err))
5468                 return err;
5469
5470         if (!skb->inner_protocol) {
5471                 skb_set_inner_network_header(skb, skb->mac_len);
5472                 skb_set_inner_protocol(skb, skb->protocol);
5473         }
5474
5475         skb_push(skb, MPLS_HLEN);
5476         memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5477                 skb->mac_len);
5478         skb_reset_mac_header(skb);
5479         skb_set_network_header(skb, skb->mac_len);
5480
5481         lse = mpls_hdr(skb);
5482         lse->label_stack_entry = mpls_lse;
5483         skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5484
5485         if (skb->dev && skb->dev->type == ARPHRD_ETHER)
5486                 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5487         skb->protocol = mpls_proto;
5488
5489         return 0;
5490 }
5491 EXPORT_SYMBOL_GPL(skb_mpls_push);
5492
5493 /**
5494  * skb_mpls_pop() - pop the outermost MPLS header
5495  *
5496  * @skb: buffer
5497  * @next_proto: ethertype of header after popped MPLS header
5498  *
5499  * Expects skb->data at mac header.
5500  *
5501  * Returns 0 on success, -errno otherwise.
5502  */
5503 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto)
5504 {
5505         int err;
5506
5507         if (unlikely(!eth_p_mpls(skb->protocol)))
5508                 return -EINVAL;
5509
5510         err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5511         if (unlikely(err))
5512                 return err;
5513
5514         skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5515         memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5516                 skb->mac_len);
5517
5518         __skb_pull(skb, MPLS_HLEN);
5519         skb_reset_mac_header(skb);
5520         skb_set_network_header(skb, skb->mac_len);
5521
5522         if (skb->dev && skb->dev->type == ARPHRD_ETHER) {
5523                 struct ethhdr *hdr;
5524
5525                 /* use mpls_hdr() to get ethertype to account for VLANs. */
5526                 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5527                 skb_mod_eth_type(skb, hdr, next_proto);
5528         }
5529         skb->protocol = next_proto;
5530
5531         return 0;
5532 }
5533 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5534
5535 /**
5536  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5537  *
5538  * @skb: buffer
5539  * @mpls_lse: new MPLS label stack entry to update to
5540  *
5541  * Expects skb->data at mac header.
5542  *
5543  * Returns 0 on success, -errno otherwise.
5544  */
5545 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5546 {
5547         int err;
5548
5549         if (unlikely(!eth_p_mpls(skb->protocol)))
5550                 return -EINVAL;
5551
5552         err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5553         if (unlikely(err))
5554                 return err;
5555
5556         if (skb->ip_summed == CHECKSUM_COMPLETE) {
5557                 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5558
5559                 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5560         }
5561
5562         mpls_hdr(skb)->label_stack_entry = mpls_lse;
5563
5564         return 0;
5565 }
5566 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5567
5568 /**
5569  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5570  *
5571  * @skb: buffer
5572  *
5573  * Expects skb->data at mac header.
5574  *
5575  * Returns 0 on success, -errno otherwise.
5576  */
5577 int skb_mpls_dec_ttl(struct sk_buff *skb)
5578 {
5579         u32 lse;
5580         u8 ttl;
5581
5582         if (unlikely(!eth_p_mpls(skb->protocol)))
5583                 return -EINVAL;
5584
5585         lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5586         ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5587         if (!--ttl)
5588                 return -EINVAL;
5589
5590         lse &= ~MPLS_LS_TTL_MASK;
5591         lse |= ttl << MPLS_LS_TTL_SHIFT;
5592
5593         return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5594 }
5595 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5596
5597 /**
5598  * alloc_skb_with_frags - allocate skb with page frags
5599  *
5600  * @header_len: size of linear part
5601  * @data_len: needed length in frags
5602  * @max_page_order: max page order desired.
5603  * @errcode: pointer to error code if any
5604  * @gfp_mask: allocation mask
5605  *
5606  * This can be used to allocate a paged skb, given a maximal order for frags.
5607  */
5608 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5609                                      unsigned long data_len,
5610                                      int max_page_order,
5611                                      int *errcode,
5612                                      gfp_t gfp_mask)
5613 {
5614         int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5615         unsigned long chunk;
5616         struct sk_buff *skb;
5617         struct page *page;
5618         int i;
5619
5620         *errcode = -EMSGSIZE;
5621         /* Note this test could be relaxed, if we succeed to allocate
5622          * high order pages...
5623          */
5624         if (npages > MAX_SKB_FRAGS)
5625                 return NULL;
5626
5627         *errcode = -ENOBUFS;
5628         skb = alloc_skb(header_len, gfp_mask);
5629         if (!skb)
5630                 return NULL;
5631
5632         skb->truesize += npages << PAGE_SHIFT;
5633
5634         for (i = 0; npages > 0; i++) {
5635                 int order = max_page_order;
5636
5637                 while (order) {
5638                         if (npages >= 1 << order) {
5639                                 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5640                                                    __GFP_COMP |
5641                                                    __GFP_NOWARN,
5642                                                    order);
5643                                 if (page)
5644                                         goto fill_page;
5645                                 /* Do not retry other high order allocations */
5646                                 order = 1;
5647                                 max_page_order = 0;
5648                         }
5649                         order--;
5650                 }
5651                 page = alloc_page(gfp_mask);
5652                 if (!page)
5653                         goto failure;
5654 fill_page:
5655                 chunk = min_t(unsigned long, data_len,
5656                               PAGE_SIZE << order);
5657                 skb_fill_page_desc(skb, i, page, 0, chunk);
5658                 data_len -= chunk;
5659                 npages -= 1 << order;
5660         }
5661         return skb;
5662
5663 failure:
5664         kfree_skb(skb);
5665         return NULL;
5666 }
5667 EXPORT_SYMBOL(alloc_skb_with_frags);
5668
5669 /* carve out the first off bytes from skb when off < headlen */
5670 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5671                                     const int headlen, gfp_t gfp_mask)
5672 {
5673         int i;
5674         int size = skb_end_offset(skb);
5675         int new_hlen = headlen - off;
5676         u8 *data;
5677
5678         size = SKB_DATA_ALIGN(size);
5679
5680         if (skb_pfmemalloc(skb))
5681                 gfp_mask |= __GFP_MEMALLOC;
5682         data = kmalloc_reserve(size +
5683                                SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5684                                gfp_mask, NUMA_NO_NODE, NULL);
5685         if (!data)
5686                 return -ENOMEM;
5687
5688         size = SKB_WITH_OVERHEAD(ksize(data));
5689
5690         /* Copy real data, and all frags */
5691         skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5692         skb->len -= off;
5693
5694         memcpy((struct skb_shared_info *)(data + size),
5695                skb_shinfo(skb),
5696                offsetof(struct skb_shared_info,
5697                         frags[skb_shinfo(skb)->nr_frags]));
5698         if (skb_cloned(skb)) {
5699                 /* drop the old head gracefully */
5700                 if (skb_orphan_frags(skb, gfp_mask)) {
5701                         kfree(data);
5702                         return -ENOMEM;
5703                 }
5704                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5705                         skb_frag_ref(skb, i);
5706                 if (skb_has_frag_list(skb))
5707                         skb_clone_fraglist(skb);
5708                 skb_release_data(skb);
5709         } else {
5710                 /* we can reuse existing recount- all we did was
5711                  * relocate values
5712                  */
5713                 skb_free_head(skb);
5714         }
5715
5716         skb->head = data;
5717         skb->data = data;
5718         skb->head_frag = 0;
5719 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5720         skb->end = size;
5721 #else
5722         skb->end = skb->head + size;
5723 #endif
5724         skb_set_tail_pointer(skb, skb_headlen(skb));
5725         skb_headers_offset_update(skb, 0);
5726         skb->cloned = 0;
5727         skb->hdr_len = 0;
5728         skb->nohdr = 0;
5729         atomic_set(&skb_shinfo(skb)->dataref, 1);
5730
5731         return 0;
5732 }
5733
5734 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5735
5736 /* carve out the first eat bytes from skb's frag_list. May recurse into
5737  * pskb_carve()
5738  */
5739 static int pskb_carve_frag_list(struct sk_buff *skb,
5740                                 struct skb_shared_info *shinfo, int eat,
5741                                 gfp_t gfp_mask)
5742 {
5743         struct sk_buff *list = shinfo->frag_list;
5744         struct sk_buff *clone = NULL;
5745         struct sk_buff *insp = NULL;
5746
5747         do {
5748                 if (!list) {
5749                         pr_err("Not enough bytes to eat. Want %d\n", eat);
5750                         return -EFAULT;
5751                 }
5752                 if (list->len <= eat) {
5753                         /* Eaten as whole. */
5754                         eat -= list->len;
5755                         list = list->next;
5756                         insp = list;
5757                 } else {
5758                         /* Eaten partially. */
5759                         if (skb_shared(list)) {
5760                                 clone = skb_clone(list, gfp_mask);
5761                                 if (!clone)
5762                                         return -ENOMEM;
5763                                 insp = list->next;
5764                                 list = clone;
5765                         } else {
5766                                 /* This may be pulled without problems. */
5767                                 insp = list;
5768                         }
5769                         if (pskb_carve(list, eat, gfp_mask) < 0) {
5770                                 kfree_skb(clone);
5771                                 return -ENOMEM;
5772                         }
5773                         break;
5774                 }
5775         } while (eat);
5776
5777         /* Free pulled out fragments. */
5778         while ((list = shinfo->frag_list) != insp) {
5779                 shinfo->frag_list = list->next;
5780                 kfree_skb(list);
5781         }
5782         /* And insert new clone at head. */
5783         if (clone) {
5784                 clone->next = list;
5785                 shinfo->frag_list = clone;
5786         }
5787         return 0;
5788 }
5789
5790 /* carve off first len bytes from skb. Split line (off) is in the
5791  * non-linear part of skb
5792  */
5793 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5794                                        int pos, gfp_t gfp_mask)
5795 {
5796         int i, k = 0;
5797         int size = skb_end_offset(skb);
5798         u8 *data;
5799         const int nfrags = skb_shinfo(skb)->nr_frags;
5800         struct skb_shared_info *shinfo;
5801
5802         size = SKB_DATA_ALIGN(size);
5803
5804         if (skb_pfmemalloc(skb))
5805                 gfp_mask |= __GFP_MEMALLOC;
5806         data = kmalloc_reserve(size +
5807                                SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5808                                gfp_mask, NUMA_NO_NODE, NULL);
5809         if (!data)
5810                 return -ENOMEM;
5811
5812         size = SKB_WITH_OVERHEAD(ksize(data));
5813
5814         memcpy((struct skb_shared_info *)(data + size),
5815                skb_shinfo(skb), offsetof(struct skb_shared_info,
5816                                          frags[skb_shinfo(skb)->nr_frags]));
5817         if (skb_orphan_frags(skb, gfp_mask)) {
5818                 kfree(data);
5819                 return -ENOMEM;
5820         }
5821         shinfo = (struct skb_shared_info *)(data + size);
5822         for (i = 0; i < nfrags; i++) {
5823                 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5824
5825                 if (pos + fsize > off) {
5826                         shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5827
5828                         if (pos < off) {
5829                                 /* Split frag.
5830                                  * We have two variants in this case:
5831                                  * 1. Move all the frag to the second
5832                                  *    part, if it is possible. F.e.
5833                                  *    this approach is mandatory for TUX,
5834                                  *    where splitting is expensive.
5835                                  * 2. Split is accurately. We make this.
5836                                  */
5837                                 shinfo->frags[0].page_offset += off - pos;
5838                                 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5839                         }
5840                         skb_frag_ref(skb, i);
5841                         k++;
5842                 }
5843                 pos += fsize;
5844         }
5845         shinfo->nr_frags = k;
5846         if (skb_has_frag_list(skb))
5847                 skb_clone_fraglist(skb);
5848
5849         if (k == 0) {
5850                 /* split line is in frag list */
5851                 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5852         }
5853         skb_release_data(skb);
5854
5855         skb->head = data;
5856         skb->head_frag = 0;
5857         skb->data = data;
5858 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5859         skb->end = size;
5860 #else
5861         skb->end = skb->head + size;
5862 #endif
5863         skb_reset_tail_pointer(skb);
5864         skb_headers_offset_update(skb, 0);
5865         skb->cloned   = 0;
5866         skb->hdr_len  = 0;
5867         skb->nohdr    = 0;
5868         skb->len -= off;
5869         skb->data_len = skb->len;
5870         atomic_set(&skb_shinfo(skb)->dataref, 1);
5871         return 0;
5872 }
5873
5874 /* remove len bytes from the beginning of the skb */
5875 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5876 {
5877         int headlen = skb_headlen(skb);
5878
5879         if (len < headlen)
5880                 return pskb_carve_inside_header(skb, len, headlen, gfp);
5881         else
5882                 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5883 }
5884
5885 /* Extract to_copy bytes starting at off from skb, and return this in
5886  * a new skb
5887  */
5888 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5889                              int to_copy, gfp_t gfp)
5890 {
5891         struct sk_buff  *clone = skb_clone(skb, gfp);
5892
5893         if (!clone)
5894                 return NULL;
5895
5896         if (pskb_carve(clone, off, gfp) < 0 ||
5897             pskb_trim(clone, to_copy)) {
5898                 kfree_skb(clone);
5899                 return NULL;
5900         }
5901         return clone;
5902 }
5903 EXPORT_SYMBOL(pskb_extract);
5904
5905 /**
5906  * skb_condense - try to get rid of fragments/frag_list if possible
5907  * @skb: buffer
5908  *
5909  * Can be used to save memory before skb is added to a busy queue.
5910  * If packet has bytes in frags and enough tail room in skb->head,
5911  * pull all of them, so that we can free the frags right now and adjust
5912  * truesize.
5913  * Notes:
5914  *      We do not reallocate skb->head thus can not fail.
5915  *      Caller must re-evaluate skb->truesize if needed.
5916  */
5917 void skb_condense(struct sk_buff *skb)
5918 {
5919         if (skb->data_len) {
5920                 if (skb->data_len > skb->end - skb->tail ||
5921                     skb_cloned(skb))
5922                         return;
5923
5924                 /* Nice, we can free page frag(s) right now */
5925                 __pskb_pull_tail(skb, skb->data_len);
5926         }
5927         /* At this point, skb->truesize might be over estimated,
5928          * because skb had a fragment, and fragments do not tell
5929          * their truesize.
5930          * When we pulled its content into skb->head, fragment
5931          * was freed, but __pskb_pull_tail() could not possibly
5932          * adjust skb->truesize, not knowing the frag truesize.
5933          */
5934         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5935 }
5936
5937 #ifdef CONFIG_SKB_EXTENSIONS
5938 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5939 {
5940         return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5941 }
5942
5943 static struct skb_ext *skb_ext_alloc(void)
5944 {
5945         struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5946
5947         if (new) {
5948                 memset(new->offset, 0, sizeof(new->offset));
5949                 refcount_set(&new->refcnt, 1);
5950         }
5951
5952         return new;
5953 }
5954
5955 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5956                                          unsigned int old_active)
5957 {
5958         struct skb_ext *new;
5959
5960         if (refcount_read(&old->refcnt) == 1)
5961                 return old;
5962
5963         new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5964         if (!new)
5965                 return NULL;
5966
5967         memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5968         refcount_set(&new->refcnt, 1);
5969
5970 #ifdef CONFIG_XFRM
5971         if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5972                 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5973                 unsigned int i;
5974
5975                 for (i = 0; i < sp->len; i++)
5976                         xfrm_state_hold(sp->xvec[i]);
5977         }
5978 #endif
5979         __skb_ext_put(old);
5980         return new;
5981 }
5982
5983 /**
5984  * skb_ext_add - allocate space for given extension, COW if needed
5985  * @skb: buffer
5986  * @id: extension to allocate space for
5987  *
5988  * Allocates enough space for the given extension.
5989  * If the extension is already present, a pointer to that extension
5990  * is returned.
5991  *
5992  * If the skb was cloned, COW applies and the returned memory can be
5993  * modified without changing the extension space of clones buffers.
5994  *
5995  * Returns pointer to the extension or NULL on allocation failure.
5996  */
5997 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
5998 {
5999         struct skb_ext *new, *old = NULL;
6000         unsigned int newlen, newoff;
6001
6002         if (skb->active_extensions) {
6003                 old = skb->extensions;
6004
6005                 new = skb_ext_maybe_cow(old, skb->active_extensions);
6006                 if (!new)
6007                         return NULL;
6008
6009                 if (__skb_ext_exist(new, id))
6010                         goto set_active;
6011
6012                 newoff = new->chunks;
6013         } else {
6014                 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6015
6016                 new = skb_ext_alloc();
6017                 if (!new)
6018                         return NULL;
6019         }
6020
6021         newlen = newoff + skb_ext_type_len[id];
6022         new->chunks = newlen;
6023         new->offset[id] = newoff;
6024 set_active:
6025         skb->extensions = new;
6026         skb->active_extensions |= 1 << id;
6027         return skb_ext_get_ptr(new, id);
6028 }
6029 EXPORT_SYMBOL(skb_ext_add);
6030
6031 #ifdef CONFIG_XFRM
6032 static void skb_ext_put_sp(struct sec_path *sp)
6033 {
6034         unsigned int i;
6035
6036         for (i = 0; i < sp->len; i++)
6037                 xfrm_state_put(sp->xvec[i]);
6038 }
6039 #endif
6040
6041 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6042 {
6043         struct skb_ext *ext = skb->extensions;
6044
6045         skb->active_extensions &= ~(1 << id);
6046         if (skb->active_extensions == 0) {
6047                 skb->extensions = NULL;
6048                 __skb_ext_put(ext);
6049 #ifdef CONFIG_XFRM
6050         } else if (id == SKB_EXT_SEC_PATH &&
6051                    refcount_read(&ext->refcnt) == 1) {
6052                 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6053
6054                 skb_ext_put_sp(sp);
6055                 sp->len = 0;
6056 #endif
6057         }
6058 }
6059 EXPORT_SYMBOL(__skb_ext_del);
6060
6061 void __skb_ext_put(struct skb_ext *ext)
6062 {
6063         /* If this is last clone, nothing can increment
6064          * it after check passes.  Avoids one atomic op.
6065          */
6066         if (refcount_read(&ext->refcnt) == 1)
6067                 goto free_now;
6068
6069         if (!refcount_dec_and_test(&ext->refcnt))
6070                 return;
6071 free_now:
6072 #ifdef CONFIG_XFRM
6073         if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6074                 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6075 #endif
6076
6077         kmem_cache_free(skbuff_ext_cache, ext);
6078 }
6079 EXPORT_SYMBOL(__skb_ext_put);
6080 #endif /* CONFIG_SKB_EXTENSIONS */