net: page_pool: report amount of memory held by page pools
[linux-2.6-microblaze.git] / net / core / page_pool.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *      Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *      Copyright (C) 2016 Red Hat, Inc.
6  */
7
8 #include <linux/types.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/device.h>
12
13 #include <net/page_pool/helpers.h>
14 #include <net/xdp.h>
15
16 #include <linux/dma-direction.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/page-flags.h>
19 #include <linux/mm.h> /* for put_page() */
20 #include <linux/poison.h>
21 #include <linux/ethtool.h>
22 #include <linux/netdevice.h>
23
24 #include <trace/events/page_pool.h>
25
26 #include "page_pool_priv.h"
27
28 #define DEFER_TIME (msecs_to_jiffies(1000))
29 #define DEFER_WARN_INTERVAL (60 * HZ)
30
31 #define BIAS_MAX        LONG_MAX
32
33 #ifdef CONFIG_PAGE_POOL_STATS
34 /* alloc_stat_inc is intended to be used in softirq context */
35 #define alloc_stat_inc(pool, __stat)    (pool->alloc_stats.__stat++)
36 /* recycle_stat_inc is safe to use when preemption is possible. */
37 #define recycle_stat_inc(pool, __stat)                                                  \
38         do {                                                                            \
39                 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;       \
40                 this_cpu_inc(s->__stat);                                                \
41         } while (0)
42
43 #define recycle_stat_add(pool, __stat, val)                                             \
44         do {                                                                            \
45                 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;       \
46                 this_cpu_add(s->__stat, val);                                           \
47         } while (0)
48
49 static const char pp_stats[][ETH_GSTRING_LEN] = {
50         "rx_pp_alloc_fast",
51         "rx_pp_alloc_slow",
52         "rx_pp_alloc_slow_ho",
53         "rx_pp_alloc_empty",
54         "rx_pp_alloc_refill",
55         "rx_pp_alloc_waive",
56         "rx_pp_recycle_cached",
57         "rx_pp_recycle_cache_full",
58         "rx_pp_recycle_ring",
59         "rx_pp_recycle_ring_full",
60         "rx_pp_recycle_released_ref",
61 };
62
63 /**
64  * page_pool_get_stats() - fetch page pool stats
65  * @pool:       pool from which page was allocated
66  * @stats:      struct page_pool_stats to fill in
67  *
68  * Retrieve statistics about the page_pool. This API is only available
69  * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
70  * A pointer to a caller allocated struct page_pool_stats structure
71  * is passed to this API which is filled in. The caller can then report
72  * those stats to the user (perhaps via ethtool, debugfs, etc.).
73  */
74 bool page_pool_get_stats(struct page_pool *pool,
75                          struct page_pool_stats *stats)
76 {
77         int cpu = 0;
78
79         if (!stats)
80                 return false;
81
82         /* The caller is responsible to initialize stats. */
83         stats->alloc_stats.fast += pool->alloc_stats.fast;
84         stats->alloc_stats.slow += pool->alloc_stats.slow;
85         stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
86         stats->alloc_stats.empty += pool->alloc_stats.empty;
87         stats->alloc_stats.refill += pool->alloc_stats.refill;
88         stats->alloc_stats.waive += pool->alloc_stats.waive;
89
90         for_each_possible_cpu(cpu) {
91                 const struct page_pool_recycle_stats *pcpu =
92                         per_cpu_ptr(pool->recycle_stats, cpu);
93
94                 stats->recycle_stats.cached += pcpu->cached;
95                 stats->recycle_stats.cache_full += pcpu->cache_full;
96                 stats->recycle_stats.ring += pcpu->ring;
97                 stats->recycle_stats.ring_full += pcpu->ring_full;
98                 stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
99         }
100
101         return true;
102 }
103 EXPORT_SYMBOL(page_pool_get_stats);
104
105 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
106 {
107         int i;
108
109         for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
110                 memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
111                 data += ETH_GSTRING_LEN;
112         }
113
114         return data;
115 }
116 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
117
118 int page_pool_ethtool_stats_get_count(void)
119 {
120         return ARRAY_SIZE(pp_stats);
121 }
122 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
123
124 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
125 {
126         struct page_pool_stats *pool_stats = stats;
127
128         *data++ = pool_stats->alloc_stats.fast;
129         *data++ = pool_stats->alloc_stats.slow;
130         *data++ = pool_stats->alloc_stats.slow_high_order;
131         *data++ = pool_stats->alloc_stats.empty;
132         *data++ = pool_stats->alloc_stats.refill;
133         *data++ = pool_stats->alloc_stats.waive;
134         *data++ = pool_stats->recycle_stats.cached;
135         *data++ = pool_stats->recycle_stats.cache_full;
136         *data++ = pool_stats->recycle_stats.ring;
137         *data++ = pool_stats->recycle_stats.ring_full;
138         *data++ = pool_stats->recycle_stats.released_refcnt;
139
140         return data;
141 }
142 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
143
144 #else
145 #define alloc_stat_inc(pool, __stat)
146 #define recycle_stat_inc(pool, __stat)
147 #define recycle_stat_add(pool, __stat, val)
148 #endif
149
150 static bool page_pool_producer_lock(struct page_pool *pool)
151         __acquires(&pool->ring.producer_lock)
152 {
153         bool in_softirq = in_softirq();
154
155         if (in_softirq)
156                 spin_lock(&pool->ring.producer_lock);
157         else
158                 spin_lock_bh(&pool->ring.producer_lock);
159
160         return in_softirq;
161 }
162
163 static void page_pool_producer_unlock(struct page_pool *pool,
164                                       bool in_softirq)
165         __releases(&pool->ring.producer_lock)
166 {
167         if (in_softirq)
168                 spin_unlock(&pool->ring.producer_lock);
169         else
170                 spin_unlock_bh(&pool->ring.producer_lock);
171 }
172
173 static int page_pool_init(struct page_pool *pool,
174                           const struct page_pool_params *params)
175 {
176         unsigned int ring_qsize = 1024; /* Default */
177
178         memcpy(&pool->p, &params->fast, sizeof(pool->p));
179         memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
180
181         /* Validate only known flags were used */
182         if (pool->p.flags & ~(PP_FLAG_ALL))
183                 return -EINVAL;
184
185         if (pool->p.pool_size)
186                 ring_qsize = pool->p.pool_size;
187
188         /* Sanity limit mem that can be pinned down */
189         if (ring_qsize > 32768)
190                 return -E2BIG;
191
192         /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
193          * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
194          * which is the XDP_TX use-case.
195          */
196         if (pool->p.flags & PP_FLAG_DMA_MAP) {
197                 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
198                     (pool->p.dma_dir != DMA_BIDIRECTIONAL))
199                         return -EINVAL;
200         }
201
202         if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
203                 /* In order to request DMA-sync-for-device the page
204                  * needs to be mapped
205                  */
206                 if (!(pool->p.flags & PP_FLAG_DMA_MAP))
207                         return -EINVAL;
208
209                 if (!pool->p.max_len)
210                         return -EINVAL;
211
212                 /* pool->p.offset has to be set according to the address
213                  * offset used by the DMA engine to start copying rx data
214                  */
215         }
216
217         pool->has_init_callback = !!pool->slow.init_callback;
218
219 #ifdef CONFIG_PAGE_POOL_STATS
220         pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
221         if (!pool->recycle_stats)
222                 return -ENOMEM;
223 #endif
224
225         if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
226 #ifdef CONFIG_PAGE_POOL_STATS
227                 free_percpu(pool->recycle_stats);
228 #endif
229                 return -ENOMEM;
230         }
231
232         atomic_set(&pool->pages_state_release_cnt, 0);
233
234         /* Driver calling page_pool_create() also call page_pool_destroy() */
235         refcount_set(&pool->user_cnt, 1);
236
237         if (pool->p.flags & PP_FLAG_DMA_MAP)
238                 get_device(pool->p.dev);
239
240         return 0;
241 }
242
243 static void page_pool_uninit(struct page_pool *pool)
244 {
245         ptr_ring_cleanup(&pool->ring, NULL);
246
247         if (pool->p.flags & PP_FLAG_DMA_MAP)
248                 put_device(pool->p.dev);
249
250 #ifdef CONFIG_PAGE_POOL_STATS
251         free_percpu(pool->recycle_stats);
252 #endif
253 }
254
255 /**
256  * page_pool_create() - create a page pool.
257  * @params: parameters, see struct page_pool_params
258  */
259 struct page_pool *page_pool_create(const struct page_pool_params *params)
260 {
261         struct page_pool *pool;
262         int err;
263
264         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
265         if (!pool)
266                 return ERR_PTR(-ENOMEM);
267
268         err = page_pool_init(pool, params);
269         if (err < 0)
270                 goto err_free;
271
272         err = page_pool_list(pool);
273         if (err)
274                 goto err_uninit;
275
276         return pool;
277
278 err_uninit:
279         page_pool_uninit(pool);
280 err_free:
281         pr_warn("%s() gave up with errno %d\n", __func__, err);
282         kfree(pool);
283         return ERR_PTR(err);
284 }
285 EXPORT_SYMBOL(page_pool_create);
286
287 static void page_pool_return_page(struct page_pool *pool, struct page *page);
288
289 noinline
290 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
291 {
292         struct ptr_ring *r = &pool->ring;
293         struct page *page;
294         int pref_nid; /* preferred NUMA node */
295
296         /* Quicker fallback, avoid locks when ring is empty */
297         if (__ptr_ring_empty(r)) {
298                 alloc_stat_inc(pool, empty);
299                 return NULL;
300         }
301
302         /* Softirq guarantee CPU and thus NUMA node is stable. This,
303          * assumes CPU refilling driver RX-ring will also run RX-NAPI.
304          */
305 #ifdef CONFIG_NUMA
306         pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
307 #else
308         /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
309         pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
310 #endif
311
312         /* Refill alloc array, but only if NUMA match */
313         do {
314                 page = __ptr_ring_consume(r);
315                 if (unlikely(!page))
316                         break;
317
318                 if (likely(page_to_nid(page) == pref_nid)) {
319                         pool->alloc.cache[pool->alloc.count++] = page;
320                 } else {
321                         /* NUMA mismatch;
322                          * (1) release 1 page to page-allocator and
323                          * (2) break out to fallthrough to alloc_pages_node.
324                          * This limit stress on page buddy alloactor.
325                          */
326                         page_pool_return_page(pool, page);
327                         alloc_stat_inc(pool, waive);
328                         page = NULL;
329                         break;
330                 }
331         } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
332
333         /* Return last page */
334         if (likely(pool->alloc.count > 0)) {
335                 page = pool->alloc.cache[--pool->alloc.count];
336                 alloc_stat_inc(pool, refill);
337         }
338
339         return page;
340 }
341
342 /* fast path */
343 static struct page *__page_pool_get_cached(struct page_pool *pool)
344 {
345         struct page *page;
346
347         /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
348         if (likely(pool->alloc.count)) {
349                 /* Fast-path */
350                 page = pool->alloc.cache[--pool->alloc.count];
351                 alloc_stat_inc(pool, fast);
352         } else {
353                 page = page_pool_refill_alloc_cache(pool);
354         }
355
356         return page;
357 }
358
359 static void page_pool_dma_sync_for_device(struct page_pool *pool,
360                                           struct page *page,
361                                           unsigned int dma_sync_size)
362 {
363         dma_addr_t dma_addr = page_pool_get_dma_addr(page);
364
365         dma_sync_size = min(dma_sync_size, pool->p.max_len);
366         dma_sync_single_range_for_device(pool->p.dev, dma_addr,
367                                          pool->p.offset, dma_sync_size,
368                                          pool->p.dma_dir);
369 }
370
371 static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
372 {
373         dma_addr_t dma;
374
375         /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
376          * since dma_addr_t can be either 32 or 64 bits and does not always fit
377          * into page private data (i.e 32bit cpu with 64bit DMA caps)
378          * This mapping is kept for lifetime of page, until leaving pool.
379          */
380         dma = dma_map_page_attrs(pool->p.dev, page, 0,
381                                  (PAGE_SIZE << pool->p.order),
382                                  pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC |
383                                                   DMA_ATTR_WEAK_ORDERING);
384         if (dma_mapping_error(pool->p.dev, dma))
385                 return false;
386
387         if (page_pool_set_dma_addr(page, dma))
388                 goto unmap_failed;
389
390         if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
391                 page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
392
393         return true;
394
395 unmap_failed:
396         WARN_ON_ONCE("unexpected DMA address, please report to netdev@");
397         dma_unmap_page_attrs(pool->p.dev, dma,
398                              PAGE_SIZE << pool->p.order, pool->p.dma_dir,
399                              DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
400         return false;
401 }
402
403 static void page_pool_set_pp_info(struct page_pool *pool,
404                                   struct page *page)
405 {
406         page->pp = pool;
407         page->pp_magic |= PP_SIGNATURE;
408
409         /* Ensuring all pages have been split into one fragment initially:
410          * page_pool_set_pp_info() is only called once for every page when it
411          * is allocated from the page allocator and page_pool_fragment_page()
412          * is dirtying the same cache line as the page->pp_magic above, so
413          * the overhead is negligible.
414          */
415         page_pool_fragment_page(page, 1);
416         if (pool->has_init_callback)
417                 pool->slow.init_callback(page, pool->slow.init_arg);
418 }
419
420 static void page_pool_clear_pp_info(struct page *page)
421 {
422         page->pp_magic = 0;
423         page->pp = NULL;
424 }
425
426 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
427                                                  gfp_t gfp)
428 {
429         struct page *page;
430
431         gfp |= __GFP_COMP;
432         page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
433         if (unlikely(!page))
434                 return NULL;
435
436         if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
437             unlikely(!page_pool_dma_map(pool, page))) {
438                 put_page(page);
439                 return NULL;
440         }
441
442         alloc_stat_inc(pool, slow_high_order);
443         page_pool_set_pp_info(pool, page);
444
445         /* Track how many pages are held 'in-flight' */
446         pool->pages_state_hold_cnt++;
447         trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
448         return page;
449 }
450
451 /* slow path */
452 noinline
453 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
454                                                  gfp_t gfp)
455 {
456         const int bulk = PP_ALLOC_CACHE_REFILL;
457         unsigned int pp_flags = pool->p.flags;
458         unsigned int pp_order = pool->p.order;
459         struct page *page;
460         int i, nr_pages;
461
462         /* Don't support bulk alloc for high-order pages */
463         if (unlikely(pp_order))
464                 return __page_pool_alloc_page_order(pool, gfp);
465
466         /* Unnecessary as alloc cache is empty, but guarantees zero count */
467         if (unlikely(pool->alloc.count > 0))
468                 return pool->alloc.cache[--pool->alloc.count];
469
470         /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
471         memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
472
473         nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk,
474                                                pool->alloc.cache);
475         if (unlikely(!nr_pages))
476                 return NULL;
477
478         /* Pages have been filled into alloc.cache array, but count is zero and
479          * page element have not been (possibly) DMA mapped.
480          */
481         for (i = 0; i < nr_pages; i++) {
482                 page = pool->alloc.cache[i];
483                 if ((pp_flags & PP_FLAG_DMA_MAP) &&
484                     unlikely(!page_pool_dma_map(pool, page))) {
485                         put_page(page);
486                         continue;
487                 }
488
489                 page_pool_set_pp_info(pool, page);
490                 pool->alloc.cache[pool->alloc.count++] = page;
491                 /* Track how many pages are held 'in-flight' */
492                 pool->pages_state_hold_cnt++;
493                 trace_page_pool_state_hold(pool, page,
494                                            pool->pages_state_hold_cnt);
495         }
496
497         /* Return last page */
498         if (likely(pool->alloc.count > 0)) {
499                 page = pool->alloc.cache[--pool->alloc.count];
500                 alloc_stat_inc(pool, slow);
501         } else {
502                 page = NULL;
503         }
504
505         /* When page just alloc'ed is should/must have refcnt 1. */
506         return page;
507 }
508
509 /* For using page_pool replace: alloc_pages() API calls, but provide
510  * synchronization guarantee for allocation side.
511  */
512 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
513 {
514         struct page *page;
515
516         /* Fast-path: Get a page from cache */
517         page = __page_pool_get_cached(pool);
518         if (page)
519                 return page;
520
521         /* Slow-path: cache empty, do real allocation */
522         page = __page_pool_alloc_pages_slow(pool, gfp);
523         return page;
524 }
525 EXPORT_SYMBOL(page_pool_alloc_pages);
526
527 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
528  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
529  */
530 #define _distance(a, b) (s32)((a) - (b))
531
532 s32 page_pool_inflight(const struct page_pool *pool, bool strict)
533 {
534         u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
535         u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
536         s32 inflight;
537
538         inflight = _distance(hold_cnt, release_cnt);
539
540         if (strict) {
541                 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
542                 WARN(inflight < 0, "Negative(%d) inflight packet-pages",
543                      inflight);
544         } else {
545                 inflight = max(0, inflight);
546         }
547
548         return inflight;
549 }
550
551 /* Disconnects a page (from a page_pool).  API users can have a need
552  * to disconnect a page (from a page_pool), to allow it to be used as
553  * a regular page (that will eventually be returned to the normal
554  * page-allocator via put_page).
555  */
556 static void page_pool_return_page(struct page_pool *pool, struct page *page)
557 {
558         dma_addr_t dma;
559         int count;
560
561         if (!(pool->p.flags & PP_FLAG_DMA_MAP))
562                 /* Always account for inflight pages, even if we didn't
563                  * map them
564                  */
565                 goto skip_dma_unmap;
566
567         dma = page_pool_get_dma_addr(page);
568
569         /* When page is unmapped, it cannot be returned to our pool */
570         dma_unmap_page_attrs(pool->p.dev, dma,
571                              PAGE_SIZE << pool->p.order, pool->p.dma_dir,
572                              DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
573         page_pool_set_dma_addr(page, 0);
574 skip_dma_unmap:
575         page_pool_clear_pp_info(page);
576
577         /* This may be the last page returned, releasing the pool, so
578          * it is not safe to reference pool afterwards.
579          */
580         count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
581         trace_page_pool_state_release(pool, page, count);
582
583         put_page(page);
584         /* An optimization would be to call __free_pages(page, pool->p.order)
585          * knowing page is not part of page-cache (thus avoiding a
586          * __page_cache_release() call).
587          */
588 }
589
590 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
591 {
592         int ret;
593         /* BH protection not needed if current is softirq */
594         if (in_softirq())
595                 ret = ptr_ring_produce(&pool->ring, page);
596         else
597                 ret = ptr_ring_produce_bh(&pool->ring, page);
598
599         if (!ret) {
600                 recycle_stat_inc(pool, ring);
601                 return true;
602         }
603
604         return false;
605 }
606
607 /* Only allow direct recycling in special circumstances, into the
608  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
609  *
610  * Caller must provide appropriate safe context.
611  */
612 static bool page_pool_recycle_in_cache(struct page *page,
613                                        struct page_pool *pool)
614 {
615         if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
616                 recycle_stat_inc(pool, cache_full);
617                 return false;
618         }
619
620         /* Caller MUST have verified/know (page_ref_count(page) == 1) */
621         pool->alloc.cache[pool->alloc.count++] = page;
622         recycle_stat_inc(pool, cached);
623         return true;
624 }
625
626 /* If the page refcnt == 1, this will try to recycle the page.
627  * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
628  * the configured size min(dma_sync_size, pool->max_len).
629  * If the page refcnt != 1, then the page will be returned to memory
630  * subsystem.
631  */
632 static __always_inline struct page *
633 __page_pool_put_page(struct page_pool *pool, struct page *page,
634                      unsigned int dma_sync_size, bool allow_direct)
635 {
636         lockdep_assert_no_hardirq();
637
638         /* This allocator is optimized for the XDP mode that uses
639          * one-frame-per-page, but have fallbacks that act like the
640          * regular page allocator APIs.
641          *
642          * refcnt == 1 means page_pool owns page, and can recycle it.
643          *
644          * page is NOT reusable when allocated when system is under
645          * some pressure. (page_is_pfmemalloc)
646          */
647         if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
648                 /* Read barrier done in page_ref_count / READ_ONCE */
649
650                 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
651                         page_pool_dma_sync_for_device(pool, page,
652                                                       dma_sync_size);
653
654                 if (allow_direct && in_softirq() &&
655                     page_pool_recycle_in_cache(page, pool))
656                         return NULL;
657
658                 /* Page found as candidate for recycling */
659                 return page;
660         }
661         /* Fallback/non-XDP mode: API user have elevated refcnt.
662          *
663          * Many drivers split up the page into fragments, and some
664          * want to keep doing this to save memory and do refcnt based
665          * recycling. Support this use case too, to ease drivers
666          * switching between XDP/non-XDP.
667          *
668          * In-case page_pool maintains the DMA mapping, API user must
669          * call page_pool_put_page once.  In this elevated refcnt
670          * case, the DMA is unmapped/released, as driver is likely
671          * doing refcnt based recycle tricks, meaning another process
672          * will be invoking put_page.
673          */
674         recycle_stat_inc(pool, released_refcnt);
675         page_pool_return_page(pool, page);
676
677         return NULL;
678 }
679
680 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page,
681                                   unsigned int dma_sync_size, bool allow_direct)
682 {
683         page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
684         if (page && !page_pool_recycle_in_ring(pool, page)) {
685                 /* Cache full, fallback to free pages */
686                 recycle_stat_inc(pool, ring_full);
687                 page_pool_return_page(pool, page);
688         }
689 }
690 EXPORT_SYMBOL(page_pool_put_defragged_page);
691
692 /**
693  * page_pool_put_page_bulk() - release references on multiple pages
694  * @pool:       pool from which pages were allocated
695  * @data:       array holding page pointers
696  * @count:      number of pages in @data
697  *
698  * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring
699  * producer lock. If the ptr_ring is full, page_pool_put_page_bulk()
700  * will release leftover pages to the page allocator.
701  * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx
702  * completion loop for the XDP_REDIRECT use case.
703  *
704  * Please note the caller must not use data area after running
705  * page_pool_put_page_bulk(), as this function overwrites it.
706  */
707 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
708                              int count)
709 {
710         int i, bulk_len = 0;
711         bool in_softirq;
712
713         for (i = 0; i < count; i++) {
714                 struct page *page = virt_to_head_page(data[i]);
715
716                 /* It is not the last user for the page frag case */
717                 if (!page_pool_is_last_frag(page))
718                         continue;
719
720                 page = __page_pool_put_page(pool, page, -1, false);
721                 /* Approved for bulk recycling in ptr_ring cache */
722                 if (page)
723                         data[bulk_len++] = page;
724         }
725
726         if (unlikely(!bulk_len))
727                 return;
728
729         /* Bulk producer into ptr_ring page_pool cache */
730         in_softirq = page_pool_producer_lock(pool);
731         for (i = 0; i < bulk_len; i++) {
732                 if (__ptr_ring_produce(&pool->ring, data[i])) {
733                         /* ring full */
734                         recycle_stat_inc(pool, ring_full);
735                         break;
736                 }
737         }
738         recycle_stat_add(pool, ring, i);
739         page_pool_producer_unlock(pool, in_softirq);
740
741         /* Hopefully all pages was return into ptr_ring */
742         if (likely(i == bulk_len))
743                 return;
744
745         /* ptr_ring cache full, free remaining pages outside producer lock
746          * since put_page() with refcnt == 1 can be an expensive operation
747          */
748         for (; i < bulk_len; i++)
749                 page_pool_return_page(pool, data[i]);
750 }
751 EXPORT_SYMBOL(page_pool_put_page_bulk);
752
753 static struct page *page_pool_drain_frag(struct page_pool *pool,
754                                          struct page *page)
755 {
756         long drain_count = BIAS_MAX - pool->frag_users;
757
758         /* Some user is still using the page frag */
759         if (likely(page_pool_defrag_page(page, drain_count)))
760                 return NULL;
761
762         if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
763                 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
764                         page_pool_dma_sync_for_device(pool, page, -1);
765
766                 return page;
767         }
768
769         page_pool_return_page(pool, page);
770         return NULL;
771 }
772
773 static void page_pool_free_frag(struct page_pool *pool)
774 {
775         long drain_count = BIAS_MAX - pool->frag_users;
776         struct page *page = pool->frag_page;
777
778         pool->frag_page = NULL;
779
780         if (!page || page_pool_defrag_page(page, drain_count))
781                 return;
782
783         page_pool_return_page(pool, page);
784 }
785
786 struct page *page_pool_alloc_frag(struct page_pool *pool,
787                                   unsigned int *offset,
788                                   unsigned int size, gfp_t gfp)
789 {
790         unsigned int max_size = PAGE_SIZE << pool->p.order;
791         struct page *page = pool->frag_page;
792
793         if (WARN_ON(size > max_size))
794                 return NULL;
795
796         size = ALIGN(size, dma_get_cache_alignment());
797         *offset = pool->frag_offset;
798
799         if (page && *offset + size > max_size) {
800                 page = page_pool_drain_frag(pool, page);
801                 if (page) {
802                         alloc_stat_inc(pool, fast);
803                         goto frag_reset;
804                 }
805         }
806
807         if (!page) {
808                 page = page_pool_alloc_pages(pool, gfp);
809                 if (unlikely(!page)) {
810                         pool->frag_page = NULL;
811                         return NULL;
812                 }
813
814                 pool->frag_page = page;
815
816 frag_reset:
817                 pool->frag_users = 1;
818                 *offset = 0;
819                 pool->frag_offset = size;
820                 page_pool_fragment_page(page, BIAS_MAX);
821                 return page;
822         }
823
824         pool->frag_users++;
825         pool->frag_offset = *offset + size;
826         alloc_stat_inc(pool, fast);
827         return page;
828 }
829 EXPORT_SYMBOL(page_pool_alloc_frag);
830
831 static void page_pool_empty_ring(struct page_pool *pool)
832 {
833         struct page *page;
834
835         /* Empty recycle ring */
836         while ((page = ptr_ring_consume_bh(&pool->ring))) {
837                 /* Verify the refcnt invariant of cached pages */
838                 if (!(page_ref_count(page) == 1))
839                         pr_crit("%s() page_pool refcnt %d violation\n",
840                                 __func__, page_ref_count(page));
841
842                 page_pool_return_page(pool, page);
843         }
844 }
845
846 static void __page_pool_destroy(struct page_pool *pool)
847 {
848         if (pool->disconnect)
849                 pool->disconnect(pool);
850
851         page_pool_unlist(pool);
852         page_pool_uninit(pool);
853         kfree(pool);
854 }
855
856 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
857 {
858         struct page *page;
859
860         if (pool->destroy_cnt)
861                 return;
862
863         /* Empty alloc cache, assume caller made sure this is
864          * no-longer in use, and page_pool_alloc_pages() cannot be
865          * call concurrently.
866          */
867         while (pool->alloc.count) {
868                 page = pool->alloc.cache[--pool->alloc.count];
869                 page_pool_return_page(pool, page);
870         }
871 }
872
873 static void page_pool_scrub(struct page_pool *pool)
874 {
875         page_pool_empty_alloc_cache_once(pool);
876         pool->destroy_cnt++;
877
878         /* No more consumers should exist, but producers could still
879          * be in-flight.
880          */
881         page_pool_empty_ring(pool);
882 }
883
884 static int page_pool_release(struct page_pool *pool)
885 {
886         int inflight;
887
888         page_pool_scrub(pool);
889         inflight = page_pool_inflight(pool, true);
890         if (!inflight)
891                 __page_pool_destroy(pool);
892
893         return inflight;
894 }
895
896 static void page_pool_release_retry(struct work_struct *wq)
897 {
898         struct delayed_work *dwq = to_delayed_work(wq);
899         struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
900         int inflight;
901
902         inflight = page_pool_release(pool);
903         if (!inflight)
904                 return;
905
906         /* Periodic warning */
907         if (time_after_eq(jiffies, pool->defer_warn)) {
908                 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
909
910                 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
911                         __func__, inflight, sec);
912                 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
913         }
914
915         /* Still not ready to be disconnected, retry later */
916         schedule_delayed_work(&pool->release_dw, DEFER_TIME);
917 }
918
919 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
920                            struct xdp_mem_info *mem)
921 {
922         refcount_inc(&pool->user_cnt);
923         pool->disconnect = disconnect;
924         pool->xdp_mem_id = mem->id;
925 }
926
927 void page_pool_unlink_napi(struct page_pool *pool)
928 {
929         if (!pool->p.napi)
930                 return;
931
932         /* To avoid races with recycling and additional barriers make sure
933          * pool and NAPI are unlinked when NAPI is disabled.
934          */
935         WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) ||
936                 READ_ONCE(pool->p.napi->list_owner) != -1);
937
938         WRITE_ONCE(pool->p.napi, NULL);
939 }
940 EXPORT_SYMBOL(page_pool_unlink_napi);
941
942 void page_pool_destroy(struct page_pool *pool)
943 {
944         if (!pool)
945                 return;
946
947         if (!page_pool_put(pool))
948                 return;
949
950         page_pool_unlink_napi(pool);
951         page_pool_free_frag(pool);
952
953         if (!page_pool_release(pool))
954                 return;
955
956         pool->defer_start = jiffies;
957         pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
958
959         INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
960         schedule_delayed_work(&pool->release_dw, DEFER_TIME);
961 }
962 EXPORT_SYMBOL(page_pool_destroy);
963
964 /* Caller must provide appropriate safe context, e.g. NAPI. */
965 void page_pool_update_nid(struct page_pool *pool, int new_nid)
966 {
967         struct page *page;
968
969         trace_page_pool_update_nid(pool, new_nid);
970         pool->p.nid = new_nid;
971
972         /* Flush pool alloc cache, as refill will check NUMA node */
973         while (pool->alloc.count) {
974                 page = pool->alloc.cache[--pool->alloc.count];
975                 page_pool_return_page(pool, page);
976         }
977 }
978 EXPORT_SYMBOL(page_pool_update_nid);