Merge tag 'libata-5.15-2021-09-11' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / net / core / page_pool.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *      Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *      Copyright (C) 2016 Red Hat, Inc.
6  */
7
8 #include <linux/types.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/device.h>
12
13 #include <net/page_pool.h>
14 #include <net/xdp.h>
15
16 #include <linux/dma-direction.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/page-flags.h>
19 #include <linux/mm.h> /* for __put_page() */
20 #include <linux/poison.h>
21
22 #include <trace/events/page_pool.h>
23
24 #define DEFER_TIME (msecs_to_jiffies(1000))
25 #define DEFER_WARN_INTERVAL (60 * HZ)
26
27 #define BIAS_MAX        LONG_MAX
28
29 static int page_pool_init(struct page_pool *pool,
30                           const struct page_pool_params *params)
31 {
32         unsigned int ring_qsize = 1024; /* Default */
33
34         memcpy(&pool->p, params, sizeof(pool->p));
35
36         /* Validate only known flags were used */
37         if (pool->p.flags & ~(PP_FLAG_ALL))
38                 return -EINVAL;
39
40         if (pool->p.pool_size)
41                 ring_qsize = pool->p.pool_size;
42
43         /* Sanity limit mem that can be pinned down */
44         if (ring_qsize > 32768)
45                 return -E2BIG;
46
47         /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
48          * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
49          * which is the XDP_TX use-case.
50          */
51         if (pool->p.flags & PP_FLAG_DMA_MAP) {
52                 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
53                     (pool->p.dma_dir != DMA_BIDIRECTIONAL))
54                         return -EINVAL;
55         }
56
57         if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
58                 /* In order to request DMA-sync-for-device the page
59                  * needs to be mapped
60                  */
61                 if (!(pool->p.flags & PP_FLAG_DMA_MAP))
62                         return -EINVAL;
63
64                 if (!pool->p.max_len)
65                         return -EINVAL;
66
67                 /* pool->p.offset has to be set according to the address
68                  * offset used by the DMA engine to start copying rx data
69                  */
70         }
71
72         if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT &&
73             pool->p.flags & PP_FLAG_PAGE_FRAG)
74                 return -EINVAL;
75
76         if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
77                 return -ENOMEM;
78
79         atomic_set(&pool->pages_state_release_cnt, 0);
80
81         /* Driver calling page_pool_create() also call page_pool_destroy() */
82         refcount_set(&pool->user_cnt, 1);
83
84         if (pool->p.flags & PP_FLAG_DMA_MAP)
85                 get_device(pool->p.dev);
86
87         return 0;
88 }
89
90 struct page_pool *page_pool_create(const struct page_pool_params *params)
91 {
92         struct page_pool *pool;
93         int err;
94
95         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
96         if (!pool)
97                 return ERR_PTR(-ENOMEM);
98
99         err = page_pool_init(pool, params);
100         if (err < 0) {
101                 pr_warn("%s() gave up with errno %d\n", __func__, err);
102                 kfree(pool);
103                 return ERR_PTR(err);
104         }
105
106         return pool;
107 }
108 EXPORT_SYMBOL(page_pool_create);
109
110 static void page_pool_return_page(struct page_pool *pool, struct page *page);
111
112 noinline
113 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
114 {
115         struct ptr_ring *r = &pool->ring;
116         struct page *page;
117         int pref_nid; /* preferred NUMA node */
118
119         /* Quicker fallback, avoid locks when ring is empty */
120         if (__ptr_ring_empty(r))
121                 return NULL;
122
123         /* Softirq guarantee CPU and thus NUMA node is stable. This,
124          * assumes CPU refilling driver RX-ring will also run RX-NAPI.
125          */
126 #ifdef CONFIG_NUMA
127         pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
128 #else
129         /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
130         pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
131 #endif
132
133         /* Slower-path: Get pages from locked ring queue */
134         spin_lock(&r->consumer_lock);
135
136         /* Refill alloc array, but only if NUMA match */
137         do {
138                 page = __ptr_ring_consume(r);
139                 if (unlikely(!page))
140                         break;
141
142                 if (likely(page_to_nid(page) == pref_nid)) {
143                         pool->alloc.cache[pool->alloc.count++] = page;
144                 } else {
145                         /* NUMA mismatch;
146                          * (1) release 1 page to page-allocator and
147                          * (2) break out to fallthrough to alloc_pages_node.
148                          * This limit stress on page buddy alloactor.
149                          */
150                         page_pool_return_page(pool, page);
151                         page = NULL;
152                         break;
153                 }
154         } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
155
156         /* Return last page */
157         if (likely(pool->alloc.count > 0))
158                 page = pool->alloc.cache[--pool->alloc.count];
159
160         spin_unlock(&r->consumer_lock);
161         return page;
162 }
163
164 /* fast path */
165 static struct page *__page_pool_get_cached(struct page_pool *pool)
166 {
167         struct page *page;
168
169         /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
170         if (likely(pool->alloc.count)) {
171                 /* Fast-path */
172                 page = pool->alloc.cache[--pool->alloc.count];
173         } else {
174                 page = page_pool_refill_alloc_cache(pool);
175         }
176
177         return page;
178 }
179
180 static void page_pool_dma_sync_for_device(struct page_pool *pool,
181                                           struct page *page,
182                                           unsigned int dma_sync_size)
183 {
184         dma_addr_t dma_addr = page_pool_get_dma_addr(page);
185
186         dma_sync_size = min(dma_sync_size, pool->p.max_len);
187         dma_sync_single_range_for_device(pool->p.dev, dma_addr,
188                                          pool->p.offset, dma_sync_size,
189                                          pool->p.dma_dir);
190 }
191
192 static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
193 {
194         dma_addr_t dma;
195
196         /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
197          * since dma_addr_t can be either 32 or 64 bits and does not always fit
198          * into page private data (i.e 32bit cpu with 64bit DMA caps)
199          * This mapping is kept for lifetime of page, until leaving pool.
200          */
201         dma = dma_map_page_attrs(pool->p.dev, page, 0,
202                                  (PAGE_SIZE << pool->p.order),
203                                  pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
204         if (dma_mapping_error(pool->p.dev, dma))
205                 return false;
206
207         page_pool_set_dma_addr(page, dma);
208
209         if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
210                 page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
211
212         return true;
213 }
214
215 static void page_pool_set_pp_info(struct page_pool *pool,
216                                   struct page *page)
217 {
218         page->pp = pool;
219         page->pp_magic |= PP_SIGNATURE;
220 }
221
222 static void page_pool_clear_pp_info(struct page *page)
223 {
224         page->pp_magic = 0;
225         page->pp = NULL;
226 }
227
228 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
229                                                  gfp_t gfp)
230 {
231         struct page *page;
232
233         gfp |= __GFP_COMP;
234         page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
235         if (unlikely(!page))
236                 return NULL;
237
238         if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
239             unlikely(!page_pool_dma_map(pool, page))) {
240                 put_page(page);
241                 return NULL;
242         }
243
244         page_pool_set_pp_info(pool, page);
245
246         /* Track how many pages are held 'in-flight' */
247         pool->pages_state_hold_cnt++;
248         trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
249         return page;
250 }
251
252 /* slow path */
253 noinline
254 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
255                                                  gfp_t gfp)
256 {
257         const int bulk = PP_ALLOC_CACHE_REFILL;
258         unsigned int pp_flags = pool->p.flags;
259         unsigned int pp_order = pool->p.order;
260         struct page *page;
261         int i, nr_pages;
262
263         /* Don't support bulk alloc for high-order pages */
264         if (unlikely(pp_order))
265                 return __page_pool_alloc_page_order(pool, gfp);
266
267         /* Unnecessary as alloc cache is empty, but guarantees zero count */
268         if (unlikely(pool->alloc.count > 0))
269                 return pool->alloc.cache[--pool->alloc.count];
270
271         /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
272         memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
273
274         nr_pages = alloc_pages_bulk_array(gfp, bulk, pool->alloc.cache);
275         if (unlikely(!nr_pages))
276                 return NULL;
277
278         /* Pages have been filled into alloc.cache array, but count is zero and
279          * page element have not been (possibly) DMA mapped.
280          */
281         for (i = 0; i < nr_pages; i++) {
282                 page = pool->alloc.cache[i];
283                 if ((pp_flags & PP_FLAG_DMA_MAP) &&
284                     unlikely(!page_pool_dma_map(pool, page))) {
285                         put_page(page);
286                         continue;
287                 }
288
289                 page_pool_set_pp_info(pool, page);
290                 pool->alloc.cache[pool->alloc.count++] = page;
291                 /* Track how many pages are held 'in-flight' */
292                 pool->pages_state_hold_cnt++;
293                 trace_page_pool_state_hold(pool, page,
294                                            pool->pages_state_hold_cnt);
295         }
296
297         /* Return last page */
298         if (likely(pool->alloc.count > 0))
299                 page = pool->alloc.cache[--pool->alloc.count];
300         else
301                 page = NULL;
302
303         /* When page just alloc'ed is should/must have refcnt 1. */
304         return page;
305 }
306
307 /* For using page_pool replace: alloc_pages() API calls, but provide
308  * synchronization guarantee for allocation side.
309  */
310 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
311 {
312         struct page *page;
313
314         /* Fast-path: Get a page from cache */
315         page = __page_pool_get_cached(pool);
316         if (page)
317                 return page;
318
319         /* Slow-path: cache empty, do real allocation */
320         page = __page_pool_alloc_pages_slow(pool, gfp);
321         return page;
322 }
323 EXPORT_SYMBOL(page_pool_alloc_pages);
324
325 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
326  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
327  */
328 #define _distance(a, b) (s32)((a) - (b))
329
330 static s32 page_pool_inflight(struct page_pool *pool)
331 {
332         u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
333         u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
334         s32 inflight;
335
336         inflight = _distance(hold_cnt, release_cnt);
337
338         trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
339         WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
340
341         return inflight;
342 }
343
344 /* Disconnects a page (from a page_pool).  API users can have a need
345  * to disconnect a page (from a page_pool), to allow it to be used as
346  * a regular page (that will eventually be returned to the normal
347  * page-allocator via put_page).
348  */
349 void page_pool_release_page(struct page_pool *pool, struct page *page)
350 {
351         dma_addr_t dma;
352         int count;
353
354         if (!(pool->p.flags & PP_FLAG_DMA_MAP))
355                 /* Always account for inflight pages, even if we didn't
356                  * map them
357                  */
358                 goto skip_dma_unmap;
359
360         dma = page_pool_get_dma_addr(page);
361
362         /* When page is unmapped, it cannot be returned to our pool */
363         dma_unmap_page_attrs(pool->p.dev, dma,
364                              PAGE_SIZE << pool->p.order, pool->p.dma_dir,
365                              DMA_ATTR_SKIP_CPU_SYNC);
366         page_pool_set_dma_addr(page, 0);
367 skip_dma_unmap:
368         page_pool_clear_pp_info(page);
369
370         /* This may be the last page returned, releasing the pool, so
371          * it is not safe to reference pool afterwards.
372          */
373         count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
374         trace_page_pool_state_release(pool, page, count);
375 }
376 EXPORT_SYMBOL(page_pool_release_page);
377
378 /* Return a page to the page allocator, cleaning up our state */
379 static void page_pool_return_page(struct page_pool *pool, struct page *page)
380 {
381         page_pool_release_page(pool, page);
382
383         put_page(page);
384         /* An optimization would be to call __free_pages(page, pool->p.order)
385          * knowing page is not part of page-cache (thus avoiding a
386          * __page_cache_release() call).
387          */
388 }
389
390 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
391 {
392         int ret;
393         /* BH protection not needed if current is serving softirq */
394         if (in_serving_softirq())
395                 ret = ptr_ring_produce(&pool->ring, page);
396         else
397                 ret = ptr_ring_produce_bh(&pool->ring, page);
398
399         return (ret == 0) ? true : false;
400 }
401
402 /* Only allow direct recycling in special circumstances, into the
403  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
404  *
405  * Caller must provide appropriate safe context.
406  */
407 static bool page_pool_recycle_in_cache(struct page *page,
408                                        struct page_pool *pool)
409 {
410         if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE))
411                 return false;
412
413         /* Caller MUST have verified/know (page_ref_count(page) == 1) */
414         pool->alloc.cache[pool->alloc.count++] = page;
415         return true;
416 }
417
418 /* If the page refcnt == 1, this will try to recycle the page.
419  * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
420  * the configured size min(dma_sync_size, pool->max_len).
421  * If the page refcnt != 1, then the page will be returned to memory
422  * subsystem.
423  */
424 static __always_inline struct page *
425 __page_pool_put_page(struct page_pool *pool, struct page *page,
426                      unsigned int dma_sync_size, bool allow_direct)
427 {
428         /* It is not the last user for the page frag case */
429         if (pool->p.flags & PP_FLAG_PAGE_FRAG &&
430             page_pool_atomic_sub_frag_count_return(page, 1))
431                 return NULL;
432
433         /* This allocator is optimized for the XDP mode that uses
434          * one-frame-per-page, but have fallbacks that act like the
435          * regular page allocator APIs.
436          *
437          * refcnt == 1 means page_pool owns page, and can recycle it.
438          *
439          * page is NOT reusable when allocated when system is under
440          * some pressure. (page_is_pfmemalloc)
441          */
442         if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
443                 /* Read barrier done in page_ref_count / READ_ONCE */
444
445                 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
446                         page_pool_dma_sync_for_device(pool, page,
447                                                       dma_sync_size);
448
449                 if (allow_direct && in_serving_softirq() &&
450                     page_pool_recycle_in_cache(page, pool))
451                         return NULL;
452
453                 /* Page found as candidate for recycling */
454                 return page;
455         }
456         /* Fallback/non-XDP mode: API user have elevated refcnt.
457          *
458          * Many drivers split up the page into fragments, and some
459          * want to keep doing this to save memory and do refcnt based
460          * recycling. Support this use case too, to ease drivers
461          * switching between XDP/non-XDP.
462          *
463          * In-case page_pool maintains the DMA mapping, API user must
464          * call page_pool_put_page once.  In this elevated refcnt
465          * case, the DMA is unmapped/released, as driver is likely
466          * doing refcnt based recycle tricks, meaning another process
467          * will be invoking put_page.
468          */
469         /* Do not replace this with page_pool_return_page() */
470         page_pool_release_page(pool, page);
471         put_page(page);
472
473         return NULL;
474 }
475
476 void page_pool_put_page(struct page_pool *pool, struct page *page,
477                         unsigned int dma_sync_size, bool allow_direct)
478 {
479         page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
480         if (page && !page_pool_recycle_in_ring(pool, page)) {
481                 /* Cache full, fallback to free pages */
482                 page_pool_return_page(pool, page);
483         }
484 }
485 EXPORT_SYMBOL(page_pool_put_page);
486
487 /* Caller must not use data area after call, as this function overwrites it */
488 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
489                              int count)
490 {
491         int i, bulk_len = 0;
492
493         for (i = 0; i < count; i++) {
494                 struct page *page = virt_to_head_page(data[i]);
495
496                 page = __page_pool_put_page(pool, page, -1, false);
497                 /* Approved for bulk recycling in ptr_ring cache */
498                 if (page)
499                         data[bulk_len++] = page;
500         }
501
502         if (unlikely(!bulk_len))
503                 return;
504
505         /* Bulk producer into ptr_ring page_pool cache */
506         page_pool_ring_lock(pool);
507         for (i = 0; i < bulk_len; i++) {
508                 if (__ptr_ring_produce(&pool->ring, data[i]))
509                         break; /* ring full */
510         }
511         page_pool_ring_unlock(pool);
512
513         /* Hopefully all pages was return into ptr_ring */
514         if (likely(i == bulk_len))
515                 return;
516
517         /* ptr_ring cache full, free remaining pages outside producer lock
518          * since put_page() with refcnt == 1 can be an expensive operation
519          */
520         for (; i < bulk_len; i++)
521                 page_pool_return_page(pool, data[i]);
522 }
523 EXPORT_SYMBOL(page_pool_put_page_bulk);
524
525 static struct page *page_pool_drain_frag(struct page_pool *pool,
526                                          struct page *page)
527 {
528         long drain_count = BIAS_MAX - pool->frag_users;
529
530         /* Some user is still using the page frag */
531         if (likely(page_pool_atomic_sub_frag_count_return(page,
532                                                           drain_count)))
533                 return NULL;
534
535         if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
536                 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
537                         page_pool_dma_sync_for_device(pool, page, -1);
538
539                 return page;
540         }
541
542         page_pool_return_page(pool, page);
543         return NULL;
544 }
545
546 static void page_pool_free_frag(struct page_pool *pool)
547 {
548         long drain_count = BIAS_MAX - pool->frag_users;
549         struct page *page = pool->frag_page;
550
551         pool->frag_page = NULL;
552
553         if (!page ||
554             page_pool_atomic_sub_frag_count_return(page, drain_count))
555                 return;
556
557         page_pool_return_page(pool, page);
558 }
559
560 struct page *page_pool_alloc_frag(struct page_pool *pool,
561                                   unsigned int *offset,
562                                   unsigned int size, gfp_t gfp)
563 {
564         unsigned int max_size = PAGE_SIZE << pool->p.order;
565         struct page *page = pool->frag_page;
566
567         if (WARN_ON(!(pool->p.flags & PP_FLAG_PAGE_FRAG) ||
568                     size > max_size))
569                 return NULL;
570
571         size = ALIGN(size, dma_get_cache_alignment());
572         *offset = pool->frag_offset;
573
574         if (page && *offset + size > max_size) {
575                 page = page_pool_drain_frag(pool, page);
576                 if (page)
577                         goto frag_reset;
578         }
579
580         if (!page) {
581                 page = page_pool_alloc_pages(pool, gfp);
582                 if (unlikely(!page)) {
583                         pool->frag_page = NULL;
584                         return NULL;
585                 }
586
587                 pool->frag_page = page;
588
589 frag_reset:
590                 pool->frag_users = 1;
591                 *offset = 0;
592                 pool->frag_offset = size;
593                 page_pool_set_frag_count(page, BIAS_MAX);
594                 return page;
595         }
596
597         pool->frag_users++;
598         pool->frag_offset = *offset + size;
599         return page;
600 }
601 EXPORT_SYMBOL(page_pool_alloc_frag);
602
603 static void page_pool_empty_ring(struct page_pool *pool)
604 {
605         struct page *page;
606
607         /* Empty recycle ring */
608         while ((page = ptr_ring_consume_bh(&pool->ring))) {
609                 /* Verify the refcnt invariant of cached pages */
610                 if (!(page_ref_count(page) == 1))
611                         pr_crit("%s() page_pool refcnt %d violation\n",
612                                 __func__, page_ref_count(page));
613
614                 page_pool_return_page(pool, page);
615         }
616 }
617
618 static void page_pool_free(struct page_pool *pool)
619 {
620         if (pool->disconnect)
621                 pool->disconnect(pool);
622
623         ptr_ring_cleanup(&pool->ring, NULL);
624
625         if (pool->p.flags & PP_FLAG_DMA_MAP)
626                 put_device(pool->p.dev);
627
628         kfree(pool);
629 }
630
631 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
632 {
633         struct page *page;
634
635         if (pool->destroy_cnt)
636                 return;
637
638         /* Empty alloc cache, assume caller made sure this is
639          * no-longer in use, and page_pool_alloc_pages() cannot be
640          * call concurrently.
641          */
642         while (pool->alloc.count) {
643                 page = pool->alloc.cache[--pool->alloc.count];
644                 page_pool_return_page(pool, page);
645         }
646 }
647
648 static void page_pool_scrub(struct page_pool *pool)
649 {
650         page_pool_empty_alloc_cache_once(pool);
651         pool->destroy_cnt++;
652
653         /* No more consumers should exist, but producers could still
654          * be in-flight.
655          */
656         page_pool_empty_ring(pool);
657 }
658
659 static int page_pool_release(struct page_pool *pool)
660 {
661         int inflight;
662
663         page_pool_scrub(pool);
664         inflight = page_pool_inflight(pool);
665         if (!inflight)
666                 page_pool_free(pool);
667
668         return inflight;
669 }
670
671 static void page_pool_release_retry(struct work_struct *wq)
672 {
673         struct delayed_work *dwq = to_delayed_work(wq);
674         struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
675         int inflight;
676
677         inflight = page_pool_release(pool);
678         if (!inflight)
679                 return;
680
681         /* Periodic warning */
682         if (time_after_eq(jiffies, pool->defer_warn)) {
683                 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
684
685                 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
686                         __func__, inflight, sec);
687                 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
688         }
689
690         /* Still not ready to be disconnected, retry later */
691         schedule_delayed_work(&pool->release_dw, DEFER_TIME);
692 }
693
694 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *))
695 {
696         refcount_inc(&pool->user_cnt);
697         pool->disconnect = disconnect;
698 }
699
700 void page_pool_destroy(struct page_pool *pool)
701 {
702         if (!pool)
703                 return;
704
705         if (!page_pool_put(pool))
706                 return;
707
708         page_pool_free_frag(pool);
709
710         if (!page_pool_release(pool))
711                 return;
712
713         pool->defer_start = jiffies;
714         pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
715
716         INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
717         schedule_delayed_work(&pool->release_dw, DEFER_TIME);
718 }
719 EXPORT_SYMBOL(page_pool_destroy);
720
721 /* Caller must provide appropriate safe context, e.g. NAPI. */
722 void page_pool_update_nid(struct page_pool *pool, int new_nid)
723 {
724         struct page *page;
725
726         trace_page_pool_update_nid(pool, new_nid);
727         pool->p.nid = new_nid;
728
729         /* Flush pool alloc cache, as refill will check NUMA node */
730         while (pool->alloc.count) {
731                 page = pool->alloc.cache[--pool->alloc.count];
732                 page_pool_return_page(pool, page);
733         }
734 }
735 EXPORT_SYMBOL(page_pool_update_nid);
736
737 bool page_pool_return_skb_page(struct page *page)
738 {
739         struct page_pool *pp;
740
741         page = compound_head(page);
742
743         /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
744          * in order to preserve any existing bits, such as bit 0 for the
745          * head page of compound page and bit 1 for pfmemalloc page, so
746          * mask those bits for freeing side when doing below checking,
747          * and page_is_pfmemalloc() is checked in __page_pool_put_page()
748          * to avoid recycling the pfmemalloc page.
749          */
750         if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
751                 return false;
752
753         pp = page->pp;
754
755         /* Driver set this to memory recycling info. Reset it on recycle.
756          * This will *not* work for NIC using a split-page memory model.
757          * The page will be returned to the pool here regardless of the
758          * 'flipped' fragment being in use or not.
759          */
760         page_pool_put_full_page(pp, page, false);
761
762         return true;
763 }
764 EXPORT_SYMBOL(page_pool_return_skb_page);