Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / core / flow_dissector.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_labels.h>
33 #endif
34
35 static DEFINE_MUTEX(flow_dissector_mutex);
36
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38                               enum flow_dissector_key_id key_id)
39 {
40         flow_dissector->used_keys |= (1 << key_id);
41 }
42
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44                              const struct flow_dissector_key *key,
45                              unsigned int key_count)
46 {
47         unsigned int i;
48
49         memset(flow_dissector, 0, sizeof(*flow_dissector));
50
51         for (i = 0; i < key_count; i++, key++) {
52                 /* User should make sure that every key target offset is withing
53                  * boundaries of unsigned short.
54                  */
55                 BUG_ON(key->offset > USHRT_MAX);
56                 BUG_ON(dissector_uses_key(flow_dissector,
57                                           key->key_id));
58
59                 dissector_set_key(flow_dissector, key->key_id);
60                 flow_dissector->offset[key->key_id] = key->offset;
61         }
62
63         /* Ensure that the dissector always includes control and basic key.
64          * That way we are able to avoid handling lack of these in fast path.
65          */
66         BUG_ON(!dissector_uses_key(flow_dissector,
67                                    FLOW_DISSECTOR_KEY_CONTROL));
68         BUG_ON(!dissector_uses_key(flow_dissector,
69                                    FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72
73 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
74                                   union bpf_attr __user *uattr)
75 {
76         __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
77         u32 prog_id, prog_cnt = 0, flags = 0;
78         struct bpf_prog *attached;
79         struct net *net;
80
81         if (attr->query.query_flags)
82                 return -EINVAL;
83
84         net = get_net_ns_by_fd(attr->query.target_fd);
85         if (IS_ERR(net))
86                 return PTR_ERR(net);
87
88         rcu_read_lock();
89         attached = rcu_dereference(net->flow_dissector_prog);
90         if (attached) {
91                 prog_cnt = 1;
92                 prog_id = attached->aux->id;
93         }
94         rcu_read_unlock();
95
96         put_net(net);
97
98         if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
99                 return -EFAULT;
100         if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
101                 return -EFAULT;
102
103         if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
104                 return 0;
105
106         if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
107                 return -EFAULT;
108
109         return 0;
110 }
111
112 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
113                                        struct bpf_prog *prog)
114 {
115         struct bpf_prog *attached;
116         struct net *net;
117         int ret = 0;
118
119         net = current->nsproxy->net_ns;
120         mutex_lock(&flow_dissector_mutex);
121
122         if (net == &init_net) {
123                 /* BPF flow dissector in the root namespace overrides
124                  * any per-net-namespace one. When attaching to root,
125                  * make sure we don't have any BPF program attached
126                  * to the non-root namespaces.
127                  */
128                 struct net *ns;
129
130                 for_each_net(ns) {
131                         if (ns == &init_net)
132                                 continue;
133                         if (rcu_access_pointer(ns->flow_dissector_prog)) {
134                                 ret = -EEXIST;
135                                 goto out;
136                         }
137                 }
138         } else {
139                 /* Make sure root flow dissector is not attached
140                  * when attaching to the non-root namespace.
141                  */
142                 if (rcu_access_pointer(init_net.flow_dissector_prog)) {
143                         ret = -EEXIST;
144                         goto out;
145                 }
146         }
147
148         attached = rcu_dereference_protected(net->flow_dissector_prog,
149                                              lockdep_is_held(&flow_dissector_mutex));
150         if (attached == prog) {
151                 /* The same program cannot be attached twice */
152                 ret = -EINVAL;
153                 goto out;
154         }
155         rcu_assign_pointer(net->flow_dissector_prog, prog);
156         if (attached)
157                 bpf_prog_put(attached);
158 out:
159         mutex_unlock(&flow_dissector_mutex);
160         return ret;
161 }
162
163 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
164 {
165         struct bpf_prog *attached;
166         struct net *net;
167
168         net = current->nsproxy->net_ns;
169         mutex_lock(&flow_dissector_mutex);
170         attached = rcu_dereference_protected(net->flow_dissector_prog,
171                                              lockdep_is_held(&flow_dissector_mutex));
172         if (!attached) {
173                 mutex_unlock(&flow_dissector_mutex);
174                 return -ENOENT;
175         }
176         RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
177         bpf_prog_put(attached);
178         mutex_unlock(&flow_dissector_mutex);
179         return 0;
180 }
181
182 /**
183  * __skb_flow_get_ports - extract the upper layer ports and return them
184  * @skb: sk_buff to extract the ports from
185  * @thoff: transport header offset
186  * @ip_proto: protocol for which to get port offset
187  * @data: raw buffer pointer to the packet, if NULL use skb->data
188  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
189  *
190  * The function will try to retrieve the ports at offset thoff + poff where poff
191  * is the protocol port offset returned from proto_ports_offset
192  */
193 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
194                             void *data, int hlen)
195 {
196         int poff = proto_ports_offset(ip_proto);
197
198         if (!data) {
199                 data = skb->data;
200                 hlen = skb_headlen(skb);
201         }
202
203         if (poff >= 0) {
204                 __be32 *ports, _ports;
205
206                 ports = __skb_header_pointer(skb, thoff + poff,
207                                              sizeof(_ports), data, hlen, &_ports);
208                 if (ports)
209                         return *ports;
210         }
211
212         return 0;
213 }
214 EXPORT_SYMBOL(__skb_flow_get_ports);
215
216 static bool icmp_has_id(u8 type)
217 {
218         switch (type) {
219         case ICMP_ECHO:
220         case ICMP_ECHOREPLY:
221         case ICMP_TIMESTAMP:
222         case ICMP_TIMESTAMPREPLY:
223         case ICMPV6_ECHO_REQUEST:
224         case ICMPV6_ECHO_REPLY:
225                 return true;
226         }
227
228         return false;
229 }
230
231 /**
232  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
233  * @skb: sk_buff to extract from
234  * @key_icmp: struct flow_dissector_key_icmp to fill
235  * @data: raw buffer pointer to the packet
236  * @toff: offset to extract at
237  * @hlen: packet header length
238  */
239 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
240                            struct flow_dissector_key_icmp *key_icmp,
241                            void *data, int thoff, int hlen)
242 {
243         struct icmphdr *ih, _ih;
244
245         ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
246         if (!ih)
247                 return;
248
249         key_icmp->type = ih->type;
250         key_icmp->code = ih->code;
251
252         /* As we use 0 to signal that the Id field is not present,
253          * avoid confusion with packets without such field
254          */
255         if (icmp_has_id(ih->type))
256                 key_icmp->id = ih->un.echo.id ? : 1;
257         else
258                 key_icmp->id = 0;
259 }
260 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
261
262 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
263  * using skb_flow_get_icmp_tci().
264  */
265 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
266                                     struct flow_dissector *flow_dissector,
267                                     void *target_container,
268                                     void *data, int thoff, int hlen)
269 {
270         struct flow_dissector_key_icmp *key_icmp;
271
272         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
273                 return;
274
275         key_icmp = skb_flow_dissector_target(flow_dissector,
276                                              FLOW_DISSECTOR_KEY_ICMP,
277                                              target_container);
278
279         skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
280 }
281
282 void skb_flow_dissect_meta(const struct sk_buff *skb,
283                            struct flow_dissector *flow_dissector,
284                            void *target_container)
285 {
286         struct flow_dissector_key_meta *meta;
287
288         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
289                 return;
290
291         meta = skb_flow_dissector_target(flow_dissector,
292                                          FLOW_DISSECTOR_KEY_META,
293                                          target_container);
294         meta->ingress_ifindex = skb->skb_iif;
295 }
296 EXPORT_SYMBOL(skb_flow_dissect_meta);
297
298 static void
299 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
300                                    struct flow_dissector *flow_dissector,
301                                    void *target_container)
302 {
303         struct flow_dissector_key_control *ctrl;
304
305         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
306                 return;
307
308         ctrl = skb_flow_dissector_target(flow_dissector,
309                                          FLOW_DISSECTOR_KEY_ENC_CONTROL,
310                                          target_container);
311         ctrl->addr_type = type;
312 }
313
314 void
315 skb_flow_dissect_ct(const struct sk_buff *skb,
316                     struct flow_dissector *flow_dissector,
317                     void *target_container,
318                     u16 *ctinfo_map,
319                     size_t mapsize)
320 {
321 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
322         struct flow_dissector_key_ct *key;
323         enum ip_conntrack_info ctinfo;
324         struct nf_conn_labels *cl;
325         struct nf_conn *ct;
326
327         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
328                 return;
329
330         ct = nf_ct_get(skb, &ctinfo);
331         if (!ct)
332                 return;
333
334         key = skb_flow_dissector_target(flow_dissector,
335                                         FLOW_DISSECTOR_KEY_CT,
336                                         target_container);
337
338         if (ctinfo < mapsize)
339                 key->ct_state = ctinfo_map[ctinfo];
340 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
341         key->ct_zone = ct->zone.id;
342 #endif
343 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
344         key->ct_mark = ct->mark;
345 #endif
346
347         cl = nf_ct_labels_find(ct);
348         if (cl)
349                 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
350 #endif /* CONFIG_NF_CONNTRACK */
351 }
352 EXPORT_SYMBOL(skb_flow_dissect_ct);
353
354 void
355 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
356                              struct flow_dissector *flow_dissector,
357                              void *target_container)
358 {
359         struct ip_tunnel_info *info;
360         struct ip_tunnel_key *key;
361
362         /* A quick check to see if there might be something to do. */
363         if (!dissector_uses_key(flow_dissector,
364                                 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
365             !dissector_uses_key(flow_dissector,
366                                 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
367             !dissector_uses_key(flow_dissector,
368                                 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
369             !dissector_uses_key(flow_dissector,
370                                 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
371             !dissector_uses_key(flow_dissector,
372                                 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
373             !dissector_uses_key(flow_dissector,
374                                 FLOW_DISSECTOR_KEY_ENC_IP) &&
375             !dissector_uses_key(flow_dissector,
376                                 FLOW_DISSECTOR_KEY_ENC_OPTS))
377                 return;
378
379         info = skb_tunnel_info(skb);
380         if (!info)
381                 return;
382
383         key = &info->key;
384
385         switch (ip_tunnel_info_af(info)) {
386         case AF_INET:
387                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
388                                                    flow_dissector,
389                                                    target_container);
390                 if (dissector_uses_key(flow_dissector,
391                                        FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
392                         struct flow_dissector_key_ipv4_addrs *ipv4;
393
394                         ipv4 = skb_flow_dissector_target(flow_dissector,
395                                                          FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
396                                                          target_container);
397                         ipv4->src = key->u.ipv4.src;
398                         ipv4->dst = key->u.ipv4.dst;
399                 }
400                 break;
401         case AF_INET6:
402                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
403                                                    flow_dissector,
404                                                    target_container);
405                 if (dissector_uses_key(flow_dissector,
406                                        FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
407                         struct flow_dissector_key_ipv6_addrs *ipv6;
408
409                         ipv6 = skb_flow_dissector_target(flow_dissector,
410                                                          FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
411                                                          target_container);
412                         ipv6->src = key->u.ipv6.src;
413                         ipv6->dst = key->u.ipv6.dst;
414                 }
415                 break;
416         }
417
418         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
419                 struct flow_dissector_key_keyid *keyid;
420
421                 keyid = skb_flow_dissector_target(flow_dissector,
422                                                   FLOW_DISSECTOR_KEY_ENC_KEYID,
423                                                   target_container);
424                 keyid->keyid = tunnel_id_to_key32(key->tun_id);
425         }
426
427         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
428                 struct flow_dissector_key_ports *tp;
429
430                 tp = skb_flow_dissector_target(flow_dissector,
431                                                FLOW_DISSECTOR_KEY_ENC_PORTS,
432                                                target_container);
433                 tp->src = key->tp_src;
434                 tp->dst = key->tp_dst;
435         }
436
437         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
438                 struct flow_dissector_key_ip *ip;
439
440                 ip = skb_flow_dissector_target(flow_dissector,
441                                                FLOW_DISSECTOR_KEY_ENC_IP,
442                                                target_container);
443                 ip->tos = key->tos;
444                 ip->ttl = key->ttl;
445         }
446
447         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
448                 struct flow_dissector_key_enc_opts *enc_opt;
449
450                 enc_opt = skb_flow_dissector_target(flow_dissector,
451                                                     FLOW_DISSECTOR_KEY_ENC_OPTS,
452                                                     target_container);
453
454                 if (info->options_len) {
455                         enc_opt->len = info->options_len;
456                         ip_tunnel_info_opts_get(enc_opt->data, info);
457                         enc_opt->dst_opt_type = info->key.tun_flags &
458                                                 TUNNEL_OPTIONS_PRESENT;
459                 }
460         }
461 }
462 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
463
464 static enum flow_dissect_ret
465 __skb_flow_dissect_mpls(const struct sk_buff *skb,
466                         struct flow_dissector *flow_dissector,
467                         void *target_container, void *data, int nhoff, int hlen)
468 {
469         struct flow_dissector_key_keyid *key_keyid;
470         struct mpls_label *hdr, _hdr[2];
471         u32 entry, label;
472
473         if (!dissector_uses_key(flow_dissector,
474                                 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
475             !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
476                 return FLOW_DISSECT_RET_OUT_GOOD;
477
478         hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
479                                    hlen, &_hdr);
480         if (!hdr)
481                 return FLOW_DISSECT_RET_OUT_BAD;
482
483         entry = ntohl(hdr[0].entry);
484         label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
485
486         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
487                 struct flow_dissector_key_mpls *key_mpls;
488
489                 key_mpls = skb_flow_dissector_target(flow_dissector,
490                                                      FLOW_DISSECTOR_KEY_MPLS,
491                                                      target_container);
492                 key_mpls->mpls_label = label;
493                 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
494                                         >> MPLS_LS_TTL_SHIFT;
495                 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
496                                         >> MPLS_LS_TC_SHIFT;
497                 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
498                                         >> MPLS_LS_S_SHIFT;
499         }
500
501         if (label == MPLS_LABEL_ENTROPY) {
502                 key_keyid = skb_flow_dissector_target(flow_dissector,
503                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
504                                                       target_container);
505                 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
506         }
507         return FLOW_DISSECT_RET_OUT_GOOD;
508 }
509
510 static enum flow_dissect_ret
511 __skb_flow_dissect_arp(const struct sk_buff *skb,
512                        struct flow_dissector *flow_dissector,
513                        void *target_container, void *data, int nhoff, int hlen)
514 {
515         struct flow_dissector_key_arp *key_arp;
516         struct {
517                 unsigned char ar_sha[ETH_ALEN];
518                 unsigned char ar_sip[4];
519                 unsigned char ar_tha[ETH_ALEN];
520                 unsigned char ar_tip[4];
521         } *arp_eth, _arp_eth;
522         const struct arphdr *arp;
523         struct arphdr _arp;
524
525         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
526                 return FLOW_DISSECT_RET_OUT_GOOD;
527
528         arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
529                                    hlen, &_arp);
530         if (!arp)
531                 return FLOW_DISSECT_RET_OUT_BAD;
532
533         if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
534             arp->ar_pro != htons(ETH_P_IP) ||
535             arp->ar_hln != ETH_ALEN ||
536             arp->ar_pln != 4 ||
537             (arp->ar_op != htons(ARPOP_REPLY) &&
538              arp->ar_op != htons(ARPOP_REQUEST)))
539                 return FLOW_DISSECT_RET_OUT_BAD;
540
541         arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
542                                        sizeof(_arp_eth), data,
543                                        hlen, &_arp_eth);
544         if (!arp_eth)
545                 return FLOW_DISSECT_RET_OUT_BAD;
546
547         key_arp = skb_flow_dissector_target(flow_dissector,
548                                             FLOW_DISSECTOR_KEY_ARP,
549                                             target_container);
550
551         memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
552         memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
553
554         /* Only store the lower byte of the opcode;
555          * this covers ARPOP_REPLY and ARPOP_REQUEST.
556          */
557         key_arp->op = ntohs(arp->ar_op) & 0xff;
558
559         ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
560         ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
561
562         return FLOW_DISSECT_RET_OUT_GOOD;
563 }
564
565 static enum flow_dissect_ret
566 __skb_flow_dissect_gre(const struct sk_buff *skb,
567                        struct flow_dissector_key_control *key_control,
568                        struct flow_dissector *flow_dissector,
569                        void *target_container, void *data,
570                        __be16 *p_proto, int *p_nhoff, int *p_hlen,
571                        unsigned int flags)
572 {
573         struct flow_dissector_key_keyid *key_keyid;
574         struct gre_base_hdr *hdr, _hdr;
575         int offset = 0;
576         u16 gre_ver;
577
578         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
579                                    data, *p_hlen, &_hdr);
580         if (!hdr)
581                 return FLOW_DISSECT_RET_OUT_BAD;
582
583         /* Only look inside GRE without routing */
584         if (hdr->flags & GRE_ROUTING)
585                 return FLOW_DISSECT_RET_OUT_GOOD;
586
587         /* Only look inside GRE for version 0 and 1 */
588         gre_ver = ntohs(hdr->flags & GRE_VERSION);
589         if (gre_ver > 1)
590                 return FLOW_DISSECT_RET_OUT_GOOD;
591
592         *p_proto = hdr->protocol;
593         if (gre_ver) {
594                 /* Version1 must be PPTP, and check the flags */
595                 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
596                         return FLOW_DISSECT_RET_OUT_GOOD;
597         }
598
599         offset += sizeof(struct gre_base_hdr);
600
601         if (hdr->flags & GRE_CSUM)
602                 offset += sizeof_field(struct gre_full_hdr, csum) +
603                           sizeof_field(struct gre_full_hdr, reserved1);
604
605         if (hdr->flags & GRE_KEY) {
606                 const __be32 *keyid;
607                 __be32 _keyid;
608
609                 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
610                                              sizeof(_keyid),
611                                              data, *p_hlen, &_keyid);
612                 if (!keyid)
613                         return FLOW_DISSECT_RET_OUT_BAD;
614
615                 if (dissector_uses_key(flow_dissector,
616                                        FLOW_DISSECTOR_KEY_GRE_KEYID)) {
617                         key_keyid = skb_flow_dissector_target(flow_dissector,
618                                                               FLOW_DISSECTOR_KEY_GRE_KEYID,
619                                                               target_container);
620                         if (gre_ver == 0)
621                                 key_keyid->keyid = *keyid;
622                         else
623                                 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
624                 }
625                 offset += sizeof_field(struct gre_full_hdr, key);
626         }
627
628         if (hdr->flags & GRE_SEQ)
629                 offset += sizeof_field(struct pptp_gre_header, seq);
630
631         if (gre_ver == 0) {
632                 if (*p_proto == htons(ETH_P_TEB)) {
633                         const struct ethhdr *eth;
634                         struct ethhdr _eth;
635
636                         eth = __skb_header_pointer(skb, *p_nhoff + offset,
637                                                    sizeof(_eth),
638                                                    data, *p_hlen, &_eth);
639                         if (!eth)
640                                 return FLOW_DISSECT_RET_OUT_BAD;
641                         *p_proto = eth->h_proto;
642                         offset += sizeof(*eth);
643
644                         /* Cap headers that we access via pointers at the
645                          * end of the Ethernet header as our maximum alignment
646                          * at that point is only 2 bytes.
647                          */
648                         if (NET_IP_ALIGN)
649                                 *p_hlen = *p_nhoff + offset;
650                 }
651         } else { /* version 1, must be PPTP */
652                 u8 _ppp_hdr[PPP_HDRLEN];
653                 u8 *ppp_hdr;
654
655                 if (hdr->flags & GRE_ACK)
656                         offset += sizeof_field(struct pptp_gre_header, ack);
657
658                 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
659                                                sizeof(_ppp_hdr),
660                                                data, *p_hlen, _ppp_hdr);
661                 if (!ppp_hdr)
662                         return FLOW_DISSECT_RET_OUT_BAD;
663
664                 switch (PPP_PROTOCOL(ppp_hdr)) {
665                 case PPP_IP:
666                         *p_proto = htons(ETH_P_IP);
667                         break;
668                 case PPP_IPV6:
669                         *p_proto = htons(ETH_P_IPV6);
670                         break;
671                 default:
672                         /* Could probably catch some more like MPLS */
673                         break;
674                 }
675
676                 offset += PPP_HDRLEN;
677         }
678
679         *p_nhoff += offset;
680         key_control->flags |= FLOW_DIS_ENCAPSULATION;
681         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
682                 return FLOW_DISSECT_RET_OUT_GOOD;
683
684         return FLOW_DISSECT_RET_PROTO_AGAIN;
685 }
686
687 /**
688  * __skb_flow_dissect_batadv() - dissect batman-adv header
689  * @skb: sk_buff to with the batman-adv header
690  * @key_control: flow dissectors control key
691  * @data: raw buffer pointer to the packet, if NULL use skb->data
692  * @p_proto: pointer used to update the protocol to process next
693  * @p_nhoff: pointer used to update inner network header offset
694  * @hlen: packet header length
695  * @flags: any combination of FLOW_DISSECTOR_F_*
696  *
697  * ETH_P_BATMAN packets are tried to be dissected. Only
698  * &struct batadv_unicast packets are actually processed because they contain an
699  * inner ethernet header and are usually followed by actual network header. This
700  * allows the flow dissector to continue processing the packet.
701  *
702  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
703  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
704  *  otherwise FLOW_DISSECT_RET_OUT_BAD
705  */
706 static enum flow_dissect_ret
707 __skb_flow_dissect_batadv(const struct sk_buff *skb,
708                           struct flow_dissector_key_control *key_control,
709                           void *data, __be16 *p_proto, int *p_nhoff, int hlen,
710                           unsigned int flags)
711 {
712         struct {
713                 struct batadv_unicast_packet batadv_unicast;
714                 struct ethhdr eth;
715         } *hdr, _hdr;
716
717         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
718                                    &_hdr);
719         if (!hdr)
720                 return FLOW_DISSECT_RET_OUT_BAD;
721
722         if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
723                 return FLOW_DISSECT_RET_OUT_BAD;
724
725         if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
726                 return FLOW_DISSECT_RET_OUT_BAD;
727
728         *p_proto = hdr->eth.h_proto;
729         *p_nhoff += sizeof(*hdr);
730
731         key_control->flags |= FLOW_DIS_ENCAPSULATION;
732         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
733                 return FLOW_DISSECT_RET_OUT_GOOD;
734
735         return FLOW_DISSECT_RET_PROTO_AGAIN;
736 }
737
738 static void
739 __skb_flow_dissect_tcp(const struct sk_buff *skb,
740                        struct flow_dissector *flow_dissector,
741                        void *target_container, void *data, int thoff, int hlen)
742 {
743         struct flow_dissector_key_tcp *key_tcp;
744         struct tcphdr *th, _th;
745
746         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
747                 return;
748
749         th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
750         if (!th)
751                 return;
752
753         if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
754                 return;
755
756         key_tcp = skb_flow_dissector_target(flow_dissector,
757                                             FLOW_DISSECTOR_KEY_TCP,
758                                             target_container);
759         key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
760 }
761
762 static void
763 __skb_flow_dissect_ports(const struct sk_buff *skb,
764                          struct flow_dissector *flow_dissector,
765                          void *target_container, void *data, int nhoff,
766                          u8 ip_proto, int hlen)
767 {
768         enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
769         struct flow_dissector_key_ports *key_ports;
770
771         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
772                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
773         else if (dissector_uses_key(flow_dissector,
774                                     FLOW_DISSECTOR_KEY_PORTS_RANGE))
775                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
776
777         if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
778                 return;
779
780         key_ports = skb_flow_dissector_target(flow_dissector,
781                                               dissector_ports,
782                                               target_container);
783         key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
784                                                 data, hlen);
785 }
786
787 static void
788 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
789                         struct flow_dissector *flow_dissector,
790                         void *target_container, void *data, const struct iphdr *iph)
791 {
792         struct flow_dissector_key_ip *key_ip;
793
794         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
795                 return;
796
797         key_ip = skb_flow_dissector_target(flow_dissector,
798                                            FLOW_DISSECTOR_KEY_IP,
799                                            target_container);
800         key_ip->tos = iph->tos;
801         key_ip->ttl = iph->ttl;
802 }
803
804 static void
805 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
806                         struct flow_dissector *flow_dissector,
807                         void *target_container, void *data, const struct ipv6hdr *iph)
808 {
809         struct flow_dissector_key_ip *key_ip;
810
811         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
812                 return;
813
814         key_ip = skb_flow_dissector_target(flow_dissector,
815                                            FLOW_DISSECTOR_KEY_IP,
816                                            target_container);
817         key_ip->tos = ipv6_get_dsfield(iph);
818         key_ip->ttl = iph->hop_limit;
819 }
820
821 /* Maximum number of protocol headers that can be parsed in
822  * __skb_flow_dissect
823  */
824 #define MAX_FLOW_DISSECT_HDRS   15
825
826 static bool skb_flow_dissect_allowed(int *num_hdrs)
827 {
828         ++*num_hdrs;
829
830         return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
831 }
832
833 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
834                                      struct flow_dissector *flow_dissector,
835                                      void *target_container)
836 {
837         struct flow_dissector_key_control *key_control;
838         struct flow_dissector_key_basic *key_basic;
839         struct flow_dissector_key_addrs *key_addrs;
840         struct flow_dissector_key_ports *key_ports;
841         struct flow_dissector_key_tags *key_tags;
842
843         key_control = skb_flow_dissector_target(flow_dissector,
844                                                 FLOW_DISSECTOR_KEY_CONTROL,
845                                                 target_container);
846         key_control->thoff = flow_keys->thoff;
847         if (flow_keys->is_frag)
848                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
849         if (flow_keys->is_first_frag)
850                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
851         if (flow_keys->is_encap)
852                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
853
854         key_basic = skb_flow_dissector_target(flow_dissector,
855                                               FLOW_DISSECTOR_KEY_BASIC,
856                                               target_container);
857         key_basic->n_proto = flow_keys->n_proto;
858         key_basic->ip_proto = flow_keys->ip_proto;
859
860         if (flow_keys->addr_proto == ETH_P_IP &&
861             dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
862                 key_addrs = skb_flow_dissector_target(flow_dissector,
863                                                       FLOW_DISSECTOR_KEY_IPV4_ADDRS,
864                                                       target_container);
865                 key_addrs->v4addrs.src = flow_keys->ipv4_src;
866                 key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
867                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
868         } else if (flow_keys->addr_proto == ETH_P_IPV6 &&
869                    dissector_uses_key(flow_dissector,
870                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
871                 key_addrs = skb_flow_dissector_target(flow_dissector,
872                                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS,
873                                                       target_container);
874                 memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
875                        sizeof(key_addrs->v6addrs));
876                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
877         }
878
879         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
880                 key_ports = skb_flow_dissector_target(flow_dissector,
881                                                       FLOW_DISSECTOR_KEY_PORTS,
882                                                       target_container);
883                 key_ports->src = flow_keys->sport;
884                 key_ports->dst = flow_keys->dport;
885         }
886
887         if (dissector_uses_key(flow_dissector,
888                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
889                 key_tags = skb_flow_dissector_target(flow_dissector,
890                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
891                                                      target_container);
892                 key_tags->flow_label = ntohl(flow_keys->flow_label);
893         }
894 }
895
896 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
897                       __be16 proto, int nhoff, int hlen, unsigned int flags)
898 {
899         struct bpf_flow_keys *flow_keys = ctx->flow_keys;
900         u32 result;
901
902         /* Pass parameters to the BPF program */
903         memset(flow_keys, 0, sizeof(*flow_keys));
904         flow_keys->n_proto = proto;
905         flow_keys->nhoff = nhoff;
906         flow_keys->thoff = flow_keys->nhoff;
907
908         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
909                      (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
910         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
911                      (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
912         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
913                      (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
914         flow_keys->flags = flags;
915
916         preempt_disable();
917         result = BPF_PROG_RUN(prog, ctx);
918         preempt_enable();
919
920         flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
921         flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
922                                    flow_keys->nhoff, hlen);
923
924         return result == BPF_OK;
925 }
926
927 /**
928  * __skb_flow_dissect - extract the flow_keys struct and return it
929  * @net: associated network namespace, derived from @skb if NULL
930  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
931  * @flow_dissector: list of keys to dissect
932  * @target_container: target structure to put dissected values into
933  * @data: raw buffer pointer to the packet, if NULL use skb->data
934  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
935  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
936  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
937  * @flags: flags that control the dissection process, e.g.
938  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
939  *
940  * The function will try to retrieve individual keys into target specified
941  * by flow_dissector from either the skbuff or a raw buffer specified by the
942  * rest parameters.
943  *
944  * Caller must take care of zeroing target container memory.
945  */
946 bool __skb_flow_dissect(const struct net *net,
947                         const struct sk_buff *skb,
948                         struct flow_dissector *flow_dissector,
949                         void *target_container,
950                         void *data, __be16 proto, int nhoff, int hlen,
951                         unsigned int flags)
952 {
953         struct flow_dissector_key_control *key_control;
954         struct flow_dissector_key_basic *key_basic;
955         struct flow_dissector_key_addrs *key_addrs;
956         struct flow_dissector_key_tags *key_tags;
957         struct flow_dissector_key_vlan *key_vlan;
958         struct bpf_prog *attached = NULL;
959         enum flow_dissect_ret fdret;
960         enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
961         int num_hdrs = 0;
962         u8 ip_proto = 0;
963         bool ret;
964
965         if (!data) {
966                 data = skb->data;
967                 proto = skb_vlan_tag_present(skb) ?
968                          skb->vlan_proto : skb->protocol;
969                 nhoff = skb_network_offset(skb);
970                 hlen = skb_headlen(skb);
971 #if IS_ENABLED(CONFIG_NET_DSA)
972                 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
973                              proto == htons(ETH_P_XDSA))) {
974                         const struct dsa_device_ops *ops;
975                         int offset = 0;
976
977                         ops = skb->dev->dsa_ptr->tag_ops;
978                         if (ops->flow_dissect &&
979                             !ops->flow_dissect(skb, &proto, &offset)) {
980                                 hlen -= offset;
981                                 nhoff += offset;
982                         }
983                 }
984 #endif
985         }
986
987         /* It is ensured by skb_flow_dissector_init() that control key will
988          * be always present.
989          */
990         key_control = skb_flow_dissector_target(flow_dissector,
991                                                 FLOW_DISSECTOR_KEY_CONTROL,
992                                                 target_container);
993
994         /* It is ensured by skb_flow_dissector_init() that basic key will
995          * be always present.
996          */
997         key_basic = skb_flow_dissector_target(flow_dissector,
998                                               FLOW_DISSECTOR_KEY_BASIC,
999                                               target_container);
1000
1001         if (skb) {
1002                 if (!net) {
1003                         if (skb->dev)
1004                                 net = dev_net(skb->dev);
1005                         else if (skb->sk)
1006                                 net = sock_net(skb->sk);
1007                 }
1008         }
1009
1010         WARN_ON_ONCE(!net);
1011         if (net) {
1012                 rcu_read_lock();
1013                 attached = rcu_dereference(init_net.flow_dissector_prog);
1014
1015                 if (!attached)
1016                         attached = rcu_dereference(net->flow_dissector_prog);
1017
1018                 if (attached) {
1019                         struct bpf_flow_keys flow_keys;
1020                         struct bpf_flow_dissector ctx = {
1021                                 .flow_keys = &flow_keys,
1022                                 .data = data,
1023                                 .data_end = data + hlen,
1024                         };
1025                         __be16 n_proto = proto;
1026
1027                         if (skb) {
1028                                 ctx.skb = skb;
1029                                 /* we can't use 'proto' in the skb case
1030                                  * because it might be set to skb->vlan_proto
1031                                  * which has been pulled from the data
1032                                  */
1033                                 n_proto = skb->protocol;
1034                         }
1035
1036                         ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
1037                                                hlen, flags);
1038                         __skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1039                                                  target_container);
1040                         rcu_read_unlock();
1041                         return ret;
1042                 }
1043                 rcu_read_unlock();
1044         }
1045
1046         if (dissector_uses_key(flow_dissector,
1047                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1048                 struct ethhdr *eth = eth_hdr(skb);
1049                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
1050
1051                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1052                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
1053                                                           target_container);
1054                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1055         }
1056
1057 proto_again:
1058         fdret = FLOW_DISSECT_RET_CONTINUE;
1059
1060         switch (proto) {
1061         case htons(ETH_P_IP): {
1062                 const struct iphdr *iph;
1063                 struct iphdr _iph;
1064
1065                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1066                 if (!iph || iph->ihl < 5) {
1067                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1068                         break;
1069                 }
1070
1071                 nhoff += iph->ihl * 4;
1072
1073                 ip_proto = iph->protocol;
1074
1075                 if (dissector_uses_key(flow_dissector,
1076                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1077                         key_addrs = skb_flow_dissector_target(flow_dissector,
1078                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1079                                                               target_container);
1080
1081                         memcpy(&key_addrs->v4addrs, &iph->saddr,
1082                                sizeof(key_addrs->v4addrs));
1083                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1084                 }
1085
1086                 if (ip_is_fragment(iph)) {
1087                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1088
1089                         if (iph->frag_off & htons(IP_OFFSET)) {
1090                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1091                                 break;
1092                         } else {
1093                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
1094                                 if (!(flags &
1095                                       FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1096                                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1097                                         break;
1098                                 }
1099                         }
1100                 }
1101
1102                 __skb_flow_dissect_ipv4(skb, flow_dissector,
1103                                         target_container, data, iph);
1104
1105                 break;
1106         }
1107         case htons(ETH_P_IPV6): {
1108                 const struct ipv6hdr *iph;
1109                 struct ipv6hdr _iph;
1110
1111                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1112                 if (!iph) {
1113                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1114                         break;
1115                 }
1116
1117                 ip_proto = iph->nexthdr;
1118                 nhoff += sizeof(struct ipv6hdr);
1119
1120                 if (dissector_uses_key(flow_dissector,
1121                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1122                         key_addrs = skb_flow_dissector_target(flow_dissector,
1123                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1124                                                               target_container);
1125
1126                         memcpy(&key_addrs->v6addrs, &iph->saddr,
1127                                sizeof(key_addrs->v6addrs));
1128                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1129                 }
1130
1131                 if ((dissector_uses_key(flow_dissector,
1132                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1133                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1134                     ip6_flowlabel(iph)) {
1135                         __be32 flow_label = ip6_flowlabel(iph);
1136
1137                         if (dissector_uses_key(flow_dissector,
1138                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1139                                 key_tags = skb_flow_dissector_target(flow_dissector,
1140                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
1141                                                                      target_container);
1142                                 key_tags->flow_label = ntohl(flow_label);
1143                         }
1144                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1145                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1146                                 break;
1147                         }
1148                 }
1149
1150                 __skb_flow_dissect_ipv6(skb, flow_dissector,
1151                                         target_container, data, iph);
1152
1153                 break;
1154         }
1155         case htons(ETH_P_8021AD):
1156         case htons(ETH_P_8021Q): {
1157                 const struct vlan_hdr *vlan = NULL;
1158                 struct vlan_hdr _vlan;
1159                 __be16 saved_vlan_tpid = proto;
1160
1161                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1162                     skb && skb_vlan_tag_present(skb)) {
1163                         proto = skb->protocol;
1164                 } else {
1165                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1166                                                     data, hlen, &_vlan);
1167                         if (!vlan) {
1168                                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1169                                 break;
1170                         }
1171
1172                         proto = vlan->h_vlan_encapsulated_proto;
1173                         nhoff += sizeof(*vlan);
1174                 }
1175
1176                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1177                         dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1178                 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1179                         dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1180                 } else {
1181                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1182                         break;
1183                 }
1184
1185                 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1186                         key_vlan = skb_flow_dissector_target(flow_dissector,
1187                                                              dissector_vlan,
1188                                                              target_container);
1189
1190                         if (!vlan) {
1191                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1192                                 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1193                         } else {
1194                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1195                                         VLAN_VID_MASK;
1196                                 key_vlan->vlan_priority =
1197                                         (ntohs(vlan->h_vlan_TCI) &
1198                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1199                         }
1200                         key_vlan->vlan_tpid = saved_vlan_tpid;
1201                 }
1202
1203                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1204                 break;
1205         }
1206         case htons(ETH_P_PPP_SES): {
1207                 struct {
1208                         struct pppoe_hdr hdr;
1209                         __be16 proto;
1210                 } *hdr, _hdr;
1211                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1212                 if (!hdr) {
1213                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1214                         break;
1215                 }
1216
1217                 proto = hdr->proto;
1218                 nhoff += PPPOE_SES_HLEN;
1219                 switch (proto) {
1220                 case htons(PPP_IP):
1221                         proto = htons(ETH_P_IP);
1222                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1223                         break;
1224                 case htons(PPP_IPV6):
1225                         proto = htons(ETH_P_IPV6);
1226                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1227                         break;
1228                 default:
1229                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1230                         break;
1231                 }
1232                 break;
1233         }
1234         case htons(ETH_P_TIPC): {
1235                 struct tipc_basic_hdr *hdr, _hdr;
1236
1237                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1238                                            data, hlen, &_hdr);
1239                 if (!hdr) {
1240                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1241                         break;
1242                 }
1243
1244                 if (dissector_uses_key(flow_dissector,
1245                                        FLOW_DISSECTOR_KEY_TIPC)) {
1246                         key_addrs = skb_flow_dissector_target(flow_dissector,
1247                                                               FLOW_DISSECTOR_KEY_TIPC,
1248                                                               target_container);
1249                         key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1250                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1251                 }
1252                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1253                 break;
1254         }
1255
1256         case htons(ETH_P_MPLS_UC):
1257         case htons(ETH_P_MPLS_MC):
1258                 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1259                                                 target_container, data,
1260                                                 nhoff, hlen);
1261                 break;
1262         case htons(ETH_P_FCOE):
1263                 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1264                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1265                         break;
1266                 }
1267
1268                 nhoff += FCOE_HEADER_LEN;
1269                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1270                 break;
1271
1272         case htons(ETH_P_ARP):
1273         case htons(ETH_P_RARP):
1274                 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1275                                                target_container, data,
1276                                                nhoff, hlen);
1277                 break;
1278
1279         case htons(ETH_P_BATMAN):
1280                 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1281                                                   &proto, &nhoff, hlen, flags);
1282                 break;
1283
1284         default:
1285                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1286                 break;
1287         }
1288
1289         /* Process result of proto processing */
1290         switch (fdret) {
1291         case FLOW_DISSECT_RET_OUT_GOOD:
1292                 goto out_good;
1293         case FLOW_DISSECT_RET_PROTO_AGAIN:
1294                 if (skb_flow_dissect_allowed(&num_hdrs))
1295                         goto proto_again;
1296                 goto out_good;
1297         case FLOW_DISSECT_RET_CONTINUE:
1298         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1299                 break;
1300         case FLOW_DISSECT_RET_OUT_BAD:
1301         default:
1302                 goto out_bad;
1303         }
1304
1305 ip_proto_again:
1306         fdret = FLOW_DISSECT_RET_CONTINUE;
1307
1308         switch (ip_proto) {
1309         case IPPROTO_GRE:
1310                 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1311                                                target_container, data,
1312                                                &proto, &nhoff, &hlen, flags);
1313                 break;
1314
1315         case NEXTHDR_HOP:
1316         case NEXTHDR_ROUTING:
1317         case NEXTHDR_DEST: {
1318                 u8 _opthdr[2], *opthdr;
1319
1320                 if (proto != htons(ETH_P_IPV6))
1321                         break;
1322
1323                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1324                                               data, hlen, &_opthdr);
1325                 if (!opthdr) {
1326                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1327                         break;
1328                 }
1329
1330                 ip_proto = opthdr[0];
1331                 nhoff += (opthdr[1] + 1) << 3;
1332
1333                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1334                 break;
1335         }
1336         case NEXTHDR_FRAGMENT: {
1337                 struct frag_hdr _fh, *fh;
1338
1339                 if (proto != htons(ETH_P_IPV6))
1340                         break;
1341
1342                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1343                                           data, hlen, &_fh);
1344
1345                 if (!fh) {
1346                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1347                         break;
1348                 }
1349
1350                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1351
1352                 nhoff += sizeof(_fh);
1353                 ip_proto = fh->nexthdr;
1354
1355                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
1356                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
1357                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1358                                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1359                                 break;
1360                         }
1361                 }
1362
1363                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1364                 break;
1365         }
1366         case IPPROTO_IPIP:
1367                 proto = htons(ETH_P_IP);
1368
1369                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1370                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1371                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1372                         break;
1373                 }
1374
1375                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1376                 break;
1377
1378         case IPPROTO_IPV6:
1379                 proto = htons(ETH_P_IPV6);
1380
1381                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1382                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1383                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1384                         break;
1385                 }
1386
1387                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1388                 break;
1389
1390
1391         case IPPROTO_MPLS:
1392                 proto = htons(ETH_P_MPLS_UC);
1393                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1394                 break;
1395
1396         case IPPROTO_TCP:
1397                 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1398                                        data, nhoff, hlen);
1399                 break;
1400
1401         case IPPROTO_ICMP:
1402         case IPPROTO_ICMPV6:
1403                 __skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1404                                         data, nhoff, hlen);
1405                 break;
1406
1407         default:
1408                 break;
1409         }
1410
1411         if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1412                 __skb_flow_dissect_ports(skb, flow_dissector, target_container,
1413                                          data, nhoff, ip_proto, hlen);
1414
1415         /* Process result of IP proto processing */
1416         switch (fdret) {
1417         case FLOW_DISSECT_RET_PROTO_AGAIN:
1418                 if (skb_flow_dissect_allowed(&num_hdrs))
1419                         goto proto_again;
1420                 break;
1421         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1422                 if (skb_flow_dissect_allowed(&num_hdrs))
1423                         goto ip_proto_again;
1424                 break;
1425         case FLOW_DISSECT_RET_OUT_GOOD:
1426         case FLOW_DISSECT_RET_CONTINUE:
1427                 break;
1428         case FLOW_DISSECT_RET_OUT_BAD:
1429         default:
1430                 goto out_bad;
1431         }
1432
1433 out_good:
1434         ret = true;
1435
1436 out:
1437         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1438         key_basic->n_proto = proto;
1439         key_basic->ip_proto = ip_proto;
1440
1441         return ret;
1442
1443 out_bad:
1444         ret = false;
1445         goto out;
1446 }
1447 EXPORT_SYMBOL(__skb_flow_dissect);
1448
1449 static siphash_key_t hashrnd __read_mostly;
1450 static __always_inline void __flow_hash_secret_init(void)
1451 {
1452         net_get_random_once(&hashrnd, sizeof(hashrnd));
1453 }
1454
1455 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1456 {
1457         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1458         return &flow->FLOW_KEYS_HASH_START_FIELD;
1459 }
1460
1461 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1462 {
1463         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1464
1465         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1466
1467         switch (flow->control.addr_type) {
1468         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1469                 diff -= sizeof(flow->addrs.v4addrs);
1470                 break;
1471         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1472                 diff -= sizeof(flow->addrs.v6addrs);
1473                 break;
1474         case FLOW_DISSECTOR_KEY_TIPC:
1475                 diff -= sizeof(flow->addrs.tipckey);
1476                 break;
1477         }
1478         return sizeof(*flow) - diff;
1479 }
1480
1481 __be32 flow_get_u32_src(const struct flow_keys *flow)
1482 {
1483         switch (flow->control.addr_type) {
1484         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1485                 return flow->addrs.v4addrs.src;
1486         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1487                 return (__force __be32)ipv6_addr_hash(
1488                         &flow->addrs.v6addrs.src);
1489         case FLOW_DISSECTOR_KEY_TIPC:
1490                 return flow->addrs.tipckey.key;
1491         default:
1492                 return 0;
1493         }
1494 }
1495 EXPORT_SYMBOL(flow_get_u32_src);
1496
1497 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1498 {
1499         switch (flow->control.addr_type) {
1500         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1501                 return flow->addrs.v4addrs.dst;
1502         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1503                 return (__force __be32)ipv6_addr_hash(
1504                         &flow->addrs.v6addrs.dst);
1505         default:
1506                 return 0;
1507         }
1508 }
1509 EXPORT_SYMBOL(flow_get_u32_dst);
1510
1511 /* Sort the source and destination IP (and the ports if the IP are the same),
1512  * to have consistent hash within the two directions
1513  */
1514 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1515 {
1516         int addr_diff, i;
1517
1518         switch (keys->control.addr_type) {
1519         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1520                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1521                             (__force u32)keys->addrs.v4addrs.src;
1522                 if ((addr_diff < 0) ||
1523                     (addr_diff == 0 &&
1524                      ((__force u16)keys->ports.dst <
1525                       (__force u16)keys->ports.src))) {
1526                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1527                         swap(keys->ports.src, keys->ports.dst);
1528                 }
1529                 break;
1530         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1531                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1532                                    &keys->addrs.v6addrs.src,
1533                                    sizeof(keys->addrs.v6addrs.dst));
1534                 if ((addr_diff < 0) ||
1535                     (addr_diff == 0 &&
1536                      ((__force u16)keys->ports.dst <
1537                       (__force u16)keys->ports.src))) {
1538                         for (i = 0; i < 4; i++)
1539                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1540                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
1541                         swap(keys->ports.src, keys->ports.dst);
1542                 }
1543                 break;
1544         }
1545 }
1546
1547 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1548                                         const siphash_key_t *keyval)
1549 {
1550         u32 hash;
1551
1552         __flow_hash_consistentify(keys);
1553
1554         hash = siphash(flow_keys_hash_start(keys),
1555                        flow_keys_hash_length(keys), keyval);
1556         if (!hash)
1557                 hash = 1;
1558
1559         return hash;
1560 }
1561
1562 u32 flow_hash_from_keys(struct flow_keys *keys)
1563 {
1564         __flow_hash_secret_init();
1565         return __flow_hash_from_keys(keys, &hashrnd);
1566 }
1567 EXPORT_SYMBOL(flow_hash_from_keys);
1568
1569 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1570                                   struct flow_keys *keys,
1571                                   const siphash_key_t *keyval)
1572 {
1573         skb_flow_dissect_flow_keys(skb, keys,
1574                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1575
1576         return __flow_hash_from_keys(keys, keyval);
1577 }
1578
1579 struct _flow_keys_digest_data {
1580         __be16  n_proto;
1581         u8      ip_proto;
1582         u8      padding;
1583         __be32  ports;
1584         __be32  src;
1585         __be32  dst;
1586 };
1587
1588 void make_flow_keys_digest(struct flow_keys_digest *digest,
1589                            const struct flow_keys *flow)
1590 {
1591         struct _flow_keys_digest_data *data =
1592             (struct _flow_keys_digest_data *)digest;
1593
1594         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1595
1596         memset(digest, 0, sizeof(*digest));
1597
1598         data->n_proto = flow->basic.n_proto;
1599         data->ip_proto = flow->basic.ip_proto;
1600         data->ports = flow->ports.ports;
1601         data->src = flow->addrs.v4addrs.src;
1602         data->dst = flow->addrs.v4addrs.dst;
1603 }
1604 EXPORT_SYMBOL(make_flow_keys_digest);
1605
1606 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1607
1608 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1609 {
1610         struct flow_keys keys;
1611
1612         __flow_hash_secret_init();
1613
1614         memset(&keys, 0, sizeof(keys));
1615         __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1616                            &keys, NULL, 0, 0, 0,
1617                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1618
1619         return __flow_hash_from_keys(&keys, &hashrnd);
1620 }
1621 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1622
1623 /**
1624  * __skb_get_hash: calculate a flow hash
1625  * @skb: sk_buff to calculate flow hash from
1626  *
1627  * This function calculates a flow hash based on src/dst addresses
1628  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1629  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1630  * if hash is a canonical 4-tuple hash over transport ports.
1631  */
1632 void __skb_get_hash(struct sk_buff *skb)
1633 {
1634         struct flow_keys keys;
1635         u32 hash;
1636
1637         __flow_hash_secret_init();
1638
1639         hash = ___skb_get_hash(skb, &keys, &hashrnd);
1640
1641         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1642 }
1643 EXPORT_SYMBOL(__skb_get_hash);
1644
1645 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1646                            const siphash_key_t *perturb)
1647 {
1648         struct flow_keys keys;
1649
1650         return ___skb_get_hash(skb, &keys, perturb);
1651 }
1652 EXPORT_SYMBOL(skb_get_hash_perturb);
1653
1654 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1655                    const struct flow_keys_basic *keys, int hlen)
1656 {
1657         u32 poff = keys->control.thoff;
1658
1659         /* skip L4 headers for fragments after the first */
1660         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1661             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1662                 return poff;
1663
1664         switch (keys->basic.ip_proto) {
1665         case IPPROTO_TCP: {
1666                 /* access doff as u8 to avoid unaligned access */
1667                 const u8 *doff;
1668                 u8 _doff;
1669
1670                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1671                                             data, hlen, &_doff);
1672                 if (!doff)
1673                         return poff;
1674
1675                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1676                 break;
1677         }
1678         case IPPROTO_UDP:
1679         case IPPROTO_UDPLITE:
1680                 poff += sizeof(struct udphdr);
1681                 break;
1682         /* For the rest, we do not really care about header
1683          * extensions at this point for now.
1684          */
1685         case IPPROTO_ICMP:
1686                 poff += sizeof(struct icmphdr);
1687                 break;
1688         case IPPROTO_ICMPV6:
1689                 poff += sizeof(struct icmp6hdr);
1690                 break;
1691         case IPPROTO_IGMP:
1692                 poff += sizeof(struct igmphdr);
1693                 break;
1694         case IPPROTO_DCCP:
1695                 poff += sizeof(struct dccp_hdr);
1696                 break;
1697         case IPPROTO_SCTP:
1698                 poff += sizeof(struct sctphdr);
1699                 break;
1700         }
1701
1702         return poff;
1703 }
1704
1705 /**
1706  * skb_get_poff - get the offset to the payload
1707  * @skb: sk_buff to get the payload offset from
1708  *
1709  * The function will get the offset to the payload as far as it could
1710  * be dissected.  The main user is currently BPF, so that we can dynamically
1711  * truncate packets without needing to push actual payload to the user
1712  * space and can analyze headers only, instead.
1713  */
1714 u32 skb_get_poff(const struct sk_buff *skb)
1715 {
1716         struct flow_keys_basic keys;
1717
1718         if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1719                                               NULL, 0, 0, 0, 0))
1720                 return 0;
1721
1722         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1723 }
1724
1725 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1726 {
1727         memset(keys, 0, sizeof(*keys));
1728
1729         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1730             sizeof(keys->addrs.v6addrs.src));
1731         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1732             sizeof(keys->addrs.v6addrs.dst));
1733         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1734         keys->ports.src = fl6->fl6_sport;
1735         keys->ports.dst = fl6->fl6_dport;
1736         keys->keyid.keyid = fl6->fl6_gre_key;
1737         keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1738         keys->basic.ip_proto = fl6->flowi6_proto;
1739
1740         return flow_hash_from_keys(keys);
1741 }
1742 EXPORT_SYMBOL(__get_hash_from_flowi6);
1743
1744 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1745         {
1746                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1747                 .offset = offsetof(struct flow_keys, control),
1748         },
1749         {
1750                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1751                 .offset = offsetof(struct flow_keys, basic),
1752         },
1753         {
1754                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1755                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1756         },
1757         {
1758                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1759                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1760         },
1761         {
1762                 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1763                 .offset = offsetof(struct flow_keys, addrs.tipckey),
1764         },
1765         {
1766                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1767                 .offset = offsetof(struct flow_keys, ports),
1768         },
1769         {
1770                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1771                 .offset = offsetof(struct flow_keys, vlan),
1772         },
1773         {
1774                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1775                 .offset = offsetof(struct flow_keys, tags),
1776         },
1777         {
1778                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1779                 .offset = offsetof(struct flow_keys, keyid),
1780         },
1781 };
1782
1783 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1784         {
1785                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1786                 .offset = offsetof(struct flow_keys, control),
1787         },
1788         {
1789                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1790                 .offset = offsetof(struct flow_keys, basic),
1791         },
1792         {
1793                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1794                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1795         },
1796         {
1797                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1798                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1799         },
1800         {
1801                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1802                 .offset = offsetof(struct flow_keys, ports),
1803         },
1804 };
1805
1806 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1807         {
1808                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1809                 .offset = offsetof(struct flow_keys, control),
1810         },
1811         {
1812                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1813                 .offset = offsetof(struct flow_keys, basic),
1814         },
1815 };
1816
1817 struct flow_dissector flow_keys_dissector __read_mostly;
1818 EXPORT_SYMBOL(flow_keys_dissector);
1819
1820 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1821 EXPORT_SYMBOL(flow_keys_basic_dissector);
1822
1823 static int __init init_default_flow_dissectors(void)
1824 {
1825         skb_flow_dissector_init(&flow_keys_dissector,
1826                                 flow_keys_dissector_keys,
1827                                 ARRAY_SIZE(flow_keys_dissector_keys));
1828         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1829                                 flow_keys_dissector_symmetric_keys,
1830                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1831         skb_flow_dissector_init(&flow_keys_basic_dissector,
1832                                 flow_keys_basic_dissector_keys,
1833                                 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1834         return 0;
1835 }
1836
1837 core_initcall(init_default_flow_dissectors);