Merge branch 'core-smp-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <net/flow_dissector.h>
22 #include <scsi/fc/fc_fcoe.h>
23
24 static void dissector_set_key(struct flow_dissector *flow_dissector,
25                               enum flow_dissector_key_id key_id)
26 {
27         flow_dissector->used_keys |= (1 << key_id);
28 }
29
30 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
31                              const struct flow_dissector_key *key,
32                              unsigned int key_count)
33 {
34         unsigned int i;
35
36         memset(flow_dissector, 0, sizeof(*flow_dissector));
37
38         for (i = 0; i < key_count; i++, key++) {
39                 /* User should make sure that every key target offset is withing
40                  * boundaries of unsigned short.
41                  */
42                 BUG_ON(key->offset > USHRT_MAX);
43                 BUG_ON(dissector_uses_key(flow_dissector,
44                                           key->key_id));
45
46                 dissector_set_key(flow_dissector, key->key_id);
47                 flow_dissector->offset[key->key_id] = key->offset;
48         }
49
50         /* Ensure that the dissector always includes control and basic key.
51          * That way we are able to avoid handling lack of these in fast path.
52          */
53         BUG_ON(!dissector_uses_key(flow_dissector,
54                                    FLOW_DISSECTOR_KEY_CONTROL));
55         BUG_ON(!dissector_uses_key(flow_dissector,
56                                    FLOW_DISSECTOR_KEY_BASIC));
57 }
58 EXPORT_SYMBOL(skb_flow_dissector_init);
59
60 /**
61  * skb_flow_get_be16 - extract be16 entity
62  * @skb: sk_buff to extract from
63  * @poff: offset to extract at
64  * @data: raw buffer pointer to the packet
65  * @hlen: packet header length
66  *
67  * The function will try to retrieve a be32 entity at
68  * offset poff
69  */
70 __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff, void *data,
71                          int hlen)
72 {
73         __be16 *u, _u;
74
75         u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
76         if (u)
77                 return *u;
78
79         return 0;
80 }
81
82 /**
83  * __skb_flow_get_ports - extract the upper layer ports and return them
84  * @skb: sk_buff to extract the ports from
85  * @thoff: transport header offset
86  * @ip_proto: protocol for which to get port offset
87  * @data: raw buffer pointer to the packet, if NULL use skb->data
88  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
89  *
90  * The function will try to retrieve the ports at offset thoff + poff where poff
91  * is the protocol port offset returned from proto_ports_offset
92  */
93 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
94                             void *data, int hlen)
95 {
96         int poff = proto_ports_offset(ip_proto);
97
98         if (!data) {
99                 data = skb->data;
100                 hlen = skb_headlen(skb);
101         }
102
103         if (poff >= 0) {
104                 __be32 *ports, _ports;
105
106                 ports = __skb_header_pointer(skb, thoff + poff,
107                                              sizeof(_ports), data, hlen, &_ports);
108                 if (ports)
109                         return *ports;
110         }
111
112         return 0;
113 }
114 EXPORT_SYMBOL(__skb_flow_get_ports);
115
116 /**
117  * __skb_flow_dissect - extract the flow_keys struct and return it
118  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
119  * @flow_dissector: list of keys to dissect
120  * @target_container: target structure to put dissected values into
121  * @data: raw buffer pointer to the packet, if NULL use skb->data
122  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
123  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
124  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
125  *
126  * The function will try to retrieve individual keys into target specified
127  * by flow_dissector from either the skbuff or a raw buffer specified by the
128  * rest parameters.
129  *
130  * Caller must take care of zeroing target container memory.
131  */
132 bool __skb_flow_dissect(const struct sk_buff *skb,
133                         struct flow_dissector *flow_dissector,
134                         void *target_container,
135                         void *data, __be16 proto, int nhoff, int hlen,
136                         unsigned int flags)
137 {
138         struct flow_dissector_key_control *key_control;
139         struct flow_dissector_key_basic *key_basic;
140         struct flow_dissector_key_addrs *key_addrs;
141         struct flow_dissector_key_ports *key_ports;
142         struct flow_dissector_key_icmp *key_icmp;
143         struct flow_dissector_key_tags *key_tags;
144         struct flow_dissector_key_vlan *key_vlan;
145         struct flow_dissector_key_keyid *key_keyid;
146         bool skip_vlan = false;
147         u8 ip_proto = 0;
148         bool ret;
149
150         if (!data) {
151                 data = skb->data;
152                 proto = skb_vlan_tag_present(skb) ?
153                          skb->vlan_proto : skb->protocol;
154                 nhoff = skb_network_offset(skb);
155                 hlen = skb_headlen(skb);
156         }
157
158         /* It is ensured by skb_flow_dissector_init() that control key will
159          * be always present.
160          */
161         key_control = skb_flow_dissector_target(flow_dissector,
162                                                 FLOW_DISSECTOR_KEY_CONTROL,
163                                                 target_container);
164
165         /* It is ensured by skb_flow_dissector_init() that basic key will
166          * be always present.
167          */
168         key_basic = skb_flow_dissector_target(flow_dissector,
169                                               FLOW_DISSECTOR_KEY_BASIC,
170                                               target_container);
171
172         if (dissector_uses_key(flow_dissector,
173                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
174                 struct ethhdr *eth = eth_hdr(skb);
175                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
176
177                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
178                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
179                                                           target_container);
180                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
181         }
182
183 again:
184         switch (proto) {
185         case htons(ETH_P_IP): {
186                 const struct iphdr *iph;
187                 struct iphdr _iph;
188 ip:
189                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
190                 if (!iph || iph->ihl < 5)
191                         goto out_bad;
192                 nhoff += iph->ihl * 4;
193
194                 ip_proto = iph->protocol;
195
196                 if (dissector_uses_key(flow_dissector,
197                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
198                         key_addrs = skb_flow_dissector_target(flow_dissector,
199                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
200                                                               target_container);
201
202                         memcpy(&key_addrs->v4addrs, &iph->saddr,
203                                sizeof(key_addrs->v4addrs));
204                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
205                 }
206
207                 if (ip_is_fragment(iph)) {
208                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
209
210                         if (iph->frag_off & htons(IP_OFFSET)) {
211                                 goto out_good;
212                         } else {
213                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
214                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
215                                         goto out_good;
216                         }
217                 }
218
219                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
220                         goto out_good;
221
222                 break;
223         }
224         case htons(ETH_P_IPV6): {
225                 const struct ipv6hdr *iph;
226                 struct ipv6hdr _iph;
227
228 ipv6:
229                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
230                 if (!iph)
231                         goto out_bad;
232
233                 ip_proto = iph->nexthdr;
234                 nhoff += sizeof(struct ipv6hdr);
235
236                 if (dissector_uses_key(flow_dissector,
237                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
238                         key_addrs = skb_flow_dissector_target(flow_dissector,
239                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
240                                                               target_container);
241
242                         memcpy(&key_addrs->v6addrs, &iph->saddr,
243                                sizeof(key_addrs->v6addrs));
244                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
245                 }
246
247                 if ((dissector_uses_key(flow_dissector,
248                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
249                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
250                     ip6_flowlabel(iph)) {
251                         __be32 flow_label = ip6_flowlabel(iph);
252
253                         if (dissector_uses_key(flow_dissector,
254                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
255                                 key_tags = skb_flow_dissector_target(flow_dissector,
256                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
257                                                                      target_container);
258                                 key_tags->flow_label = ntohl(flow_label);
259                         }
260                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
261                                 goto out_good;
262                 }
263
264                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
265                         goto out_good;
266
267                 break;
268         }
269         case htons(ETH_P_8021AD):
270         case htons(ETH_P_8021Q): {
271                 const struct vlan_hdr *vlan;
272                 struct vlan_hdr _vlan;
273                 bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
274
275                 if (vlan_tag_present)
276                         proto = skb->protocol;
277
278                 if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
279                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
280                                                     data, hlen, &_vlan);
281                         if (!vlan)
282                                 goto out_bad;
283                         proto = vlan->h_vlan_encapsulated_proto;
284                         nhoff += sizeof(*vlan);
285                         if (skip_vlan)
286                                 goto again;
287                 }
288
289                 skip_vlan = true;
290                 if (dissector_uses_key(flow_dissector,
291                                        FLOW_DISSECTOR_KEY_VLAN)) {
292                         key_vlan = skb_flow_dissector_target(flow_dissector,
293                                                              FLOW_DISSECTOR_KEY_VLAN,
294                                                              target_container);
295
296                         if (vlan_tag_present) {
297                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
298                                 key_vlan->vlan_priority =
299                                         (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
300                         } else {
301                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
302                                         VLAN_VID_MASK;
303                                 key_vlan->vlan_priority =
304                                         (ntohs(vlan->h_vlan_TCI) &
305                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
306                         }
307                 }
308
309                 goto again;
310         }
311         case htons(ETH_P_PPP_SES): {
312                 struct {
313                         struct pppoe_hdr hdr;
314                         __be16 proto;
315                 } *hdr, _hdr;
316                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
317                 if (!hdr)
318                         goto out_bad;
319                 proto = hdr->proto;
320                 nhoff += PPPOE_SES_HLEN;
321                 switch (proto) {
322                 case htons(PPP_IP):
323                         goto ip;
324                 case htons(PPP_IPV6):
325                         goto ipv6;
326                 default:
327                         goto out_bad;
328                 }
329         }
330         case htons(ETH_P_TIPC): {
331                 struct {
332                         __be32 pre[3];
333                         __be32 srcnode;
334                 } *hdr, _hdr;
335                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
336                 if (!hdr)
337                         goto out_bad;
338
339                 if (dissector_uses_key(flow_dissector,
340                                        FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
341                         key_addrs = skb_flow_dissector_target(flow_dissector,
342                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
343                                                               target_container);
344                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
345                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
346                 }
347                 goto out_good;
348         }
349
350         case htons(ETH_P_MPLS_UC):
351         case htons(ETH_P_MPLS_MC): {
352                 struct mpls_label *hdr, _hdr[2];
353 mpls:
354                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
355                                            hlen, &_hdr);
356                 if (!hdr)
357                         goto out_bad;
358
359                 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
360                      MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
361                         if (dissector_uses_key(flow_dissector,
362                                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
363                                 key_keyid = skb_flow_dissector_target(flow_dissector,
364                                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
365                                                                       target_container);
366                                 key_keyid->keyid = hdr[1].entry &
367                                         htonl(MPLS_LS_LABEL_MASK);
368                         }
369
370                         goto out_good;
371                 }
372
373                 goto out_good;
374         }
375
376         case htons(ETH_P_FCOE):
377                 if ((hlen - nhoff) < FCOE_HEADER_LEN)
378                         goto out_bad;
379
380                 nhoff += FCOE_HEADER_LEN;
381                 goto out_good;
382         default:
383                 goto out_bad;
384         }
385
386 ip_proto_again:
387         switch (ip_proto) {
388         case IPPROTO_GRE: {
389                 struct gre_base_hdr *hdr, _hdr;
390                 u16 gre_ver;
391                 int offset = 0;
392
393                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
394                 if (!hdr)
395                         goto out_bad;
396
397                 /* Only look inside GRE without routing */
398                 if (hdr->flags & GRE_ROUTING)
399                         break;
400
401                 /* Only look inside GRE for version 0 and 1 */
402                 gre_ver = ntohs(hdr->flags & GRE_VERSION);
403                 if (gre_ver > 1)
404                         break;
405
406                 proto = hdr->protocol;
407                 if (gre_ver) {
408                         /* Version1 must be PPTP, and check the flags */
409                         if (!(proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
410                                 break;
411                 }
412
413                 offset += sizeof(struct gre_base_hdr);
414
415                 if (hdr->flags & GRE_CSUM)
416                         offset += sizeof(((struct gre_full_hdr *)0)->csum) +
417                                   sizeof(((struct gre_full_hdr *)0)->reserved1);
418
419                 if (hdr->flags & GRE_KEY) {
420                         const __be32 *keyid;
421                         __be32 _keyid;
422
423                         keyid = __skb_header_pointer(skb, nhoff + offset, sizeof(_keyid),
424                                                      data, hlen, &_keyid);
425                         if (!keyid)
426                                 goto out_bad;
427
428                         if (dissector_uses_key(flow_dissector,
429                                                FLOW_DISSECTOR_KEY_GRE_KEYID)) {
430                                 key_keyid = skb_flow_dissector_target(flow_dissector,
431                                                                       FLOW_DISSECTOR_KEY_GRE_KEYID,
432                                                                       target_container);
433                                 if (gre_ver == 0)
434                                         key_keyid->keyid = *keyid;
435                                 else
436                                         key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
437                         }
438                         offset += sizeof(((struct gre_full_hdr *)0)->key);
439                 }
440
441                 if (hdr->flags & GRE_SEQ)
442                         offset += sizeof(((struct pptp_gre_header *)0)->seq);
443
444                 if (gre_ver == 0) {
445                         if (proto == htons(ETH_P_TEB)) {
446                                 const struct ethhdr *eth;
447                                 struct ethhdr _eth;
448
449                                 eth = __skb_header_pointer(skb, nhoff + offset,
450                                                            sizeof(_eth),
451                                                            data, hlen, &_eth);
452                                 if (!eth)
453                                         goto out_bad;
454                                 proto = eth->h_proto;
455                                 offset += sizeof(*eth);
456
457                                 /* Cap headers that we access via pointers at the
458                                  * end of the Ethernet header as our maximum alignment
459                                  * at that point is only 2 bytes.
460                                  */
461                                 if (NET_IP_ALIGN)
462                                         hlen = (nhoff + offset);
463                         }
464                 } else { /* version 1, must be PPTP */
465                         u8 _ppp_hdr[PPP_HDRLEN];
466                         u8 *ppp_hdr;
467
468                         if (hdr->flags & GRE_ACK)
469                                 offset += sizeof(((struct pptp_gre_header *)0)->ack);
470
471                         ppp_hdr = skb_header_pointer(skb, nhoff + offset,
472                                                      sizeof(_ppp_hdr), _ppp_hdr);
473                         if (!ppp_hdr)
474                                 goto out_bad;
475
476                         switch (PPP_PROTOCOL(ppp_hdr)) {
477                         case PPP_IP:
478                                 proto = htons(ETH_P_IP);
479                                 break;
480                         case PPP_IPV6:
481                                 proto = htons(ETH_P_IPV6);
482                                 break;
483                         default:
484                                 /* Could probably catch some more like MPLS */
485                                 break;
486                         }
487
488                         offset += PPP_HDRLEN;
489                 }
490
491                 nhoff += offset;
492                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
493                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
494                         goto out_good;
495
496                 goto again;
497         }
498         case NEXTHDR_HOP:
499         case NEXTHDR_ROUTING:
500         case NEXTHDR_DEST: {
501                 u8 _opthdr[2], *opthdr;
502
503                 if (proto != htons(ETH_P_IPV6))
504                         break;
505
506                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
507                                               data, hlen, &_opthdr);
508                 if (!opthdr)
509                         goto out_bad;
510
511                 ip_proto = opthdr[0];
512                 nhoff += (opthdr[1] + 1) << 3;
513
514                 goto ip_proto_again;
515         }
516         case NEXTHDR_FRAGMENT: {
517                 struct frag_hdr _fh, *fh;
518
519                 if (proto != htons(ETH_P_IPV6))
520                         break;
521
522                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
523                                           data, hlen, &_fh);
524
525                 if (!fh)
526                         goto out_bad;
527
528                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
529
530                 nhoff += sizeof(_fh);
531                 ip_proto = fh->nexthdr;
532
533                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
534                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
535                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
536                                 goto ip_proto_again;
537                 }
538                 goto out_good;
539         }
540         case IPPROTO_IPIP:
541                 proto = htons(ETH_P_IP);
542
543                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
544                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
545                         goto out_good;
546
547                 goto ip;
548         case IPPROTO_IPV6:
549                 proto = htons(ETH_P_IPV6);
550
551                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
552                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
553                         goto out_good;
554
555                 goto ipv6;
556         case IPPROTO_MPLS:
557                 proto = htons(ETH_P_MPLS_UC);
558                 goto mpls;
559         default:
560                 break;
561         }
562
563         if (dissector_uses_key(flow_dissector,
564                                FLOW_DISSECTOR_KEY_PORTS)) {
565                 key_ports = skb_flow_dissector_target(flow_dissector,
566                                                       FLOW_DISSECTOR_KEY_PORTS,
567                                                       target_container);
568                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
569                                                         data, hlen);
570         }
571
572         if (dissector_uses_key(flow_dissector,
573                                FLOW_DISSECTOR_KEY_ICMP)) {
574                 key_icmp = skb_flow_dissector_target(flow_dissector,
575                                                      FLOW_DISSECTOR_KEY_ICMP,
576                                                      target_container);
577                 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
578         }
579
580 out_good:
581         ret = true;
582
583         key_control->thoff = (u16)nhoff;
584 out:
585         key_basic->n_proto = proto;
586         key_basic->ip_proto = ip_proto;
587
588         return ret;
589
590 out_bad:
591         ret = false;
592         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
593         goto out;
594 }
595 EXPORT_SYMBOL(__skb_flow_dissect);
596
597 static u32 hashrnd __read_mostly;
598 static __always_inline void __flow_hash_secret_init(void)
599 {
600         net_get_random_once(&hashrnd, sizeof(hashrnd));
601 }
602
603 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
604                                              u32 keyval)
605 {
606         return jhash2(words, length, keyval);
607 }
608
609 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
610 {
611         const void *p = flow;
612
613         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
614         return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
615 }
616
617 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
618 {
619         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
620         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
621         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
622                      sizeof(*flow) - sizeof(flow->addrs));
623
624         switch (flow->control.addr_type) {
625         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
626                 diff -= sizeof(flow->addrs.v4addrs);
627                 break;
628         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
629                 diff -= sizeof(flow->addrs.v6addrs);
630                 break;
631         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
632                 diff -= sizeof(flow->addrs.tipcaddrs);
633                 break;
634         }
635         return (sizeof(*flow) - diff) / sizeof(u32);
636 }
637
638 __be32 flow_get_u32_src(const struct flow_keys *flow)
639 {
640         switch (flow->control.addr_type) {
641         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
642                 return flow->addrs.v4addrs.src;
643         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
644                 return (__force __be32)ipv6_addr_hash(
645                         &flow->addrs.v6addrs.src);
646         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
647                 return flow->addrs.tipcaddrs.srcnode;
648         default:
649                 return 0;
650         }
651 }
652 EXPORT_SYMBOL(flow_get_u32_src);
653
654 __be32 flow_get_u32_dst(const struct flow_keys *flow)
655 {
656         switch (flow->control.addr_type) {
657         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
658                 return flow->addrs.v4addrs.dst;
659         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
660                 return (__force __be32)ipv6_addr_hash(
661                         &flow->addrs.v6addrs.dst);
662         default:
663                 return 0;
664         }
665 }
666 EXPORT_SYMBOL(flow_get_u32_dst);
667
668 static inline void __flow_hash_consistentify(struct flow_keys *keys)
669 {
670         int addr_diff, i;
671
672         switch (keys->control.addr_type) {
673         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
674                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
675                             (__force u32)keys->addrs.v4addrs.src;
676                 if ((addr_diff < 0) ||
677                     (addr_diff == 0 &&
678                      ((__force u16)keys->ports.dst <
679                       (__force u16)keys->ports.src))) {
680                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
681                         swap(keys->ports.src, keys->ports.dst);
682                 }
683                 break;
684         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
685                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
686                                    &keys->addrs.v6addrs.src,
687                                    sizeof(keys->addrs.v6addrs.dst));
688                 if ((addr_diff < 0) ||
689                     (addr_diff == 0 &&
690                      ((__force u16)keys->ports.dst <
691                       (__force u16)keys->ports.src))) {
692                         for (i = 0; i < 4; i++)
693                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
694                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
695                         swap(keys->ports.src, keys->ports.dst);
696                 }
697                 break;
698         }
699 }
700
701 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
702 {
703         u32 hash;
704
705         __flow_hash_consistentify(keys);
706
707         hash = __flow_hash_words(flow_keys_hash_start(keys),
708                                  flow_keys_hash_length(keys), keyval);
709         if (!hash)
710                 hash = 1;
711
712         return hash;
713 }
714
715 u32 flow_hash_from_keys(struct flow_keys *keys)
716 {
717         __flow_hash_secret_init();
718         return __flow_hash_from_keys(keys, hashrnd);
719 }
720 EXPORT_SYMBOL(flow_hash_from_keys);
721
722 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
723                                   struct flow_keys *keys, u32 keyval)
724 {
725         skb_flow_dissect_flow_keys(skb, keys,
726                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
727
728         return __flow_hash_from_keys(keys, keyval);
729 }
730
731 struct _flow_keys_digest_data {
732         __be16  n_proto;
733         u8      ip_proto;
734         u8      padding;
735         __be32  ports;
736         __be32  src;
737         __be32  dst;
738 };
739
740 void make_flow_keys_digest(struct flow_keys_digest *digest,
741                            const struct flow_keys *flow)
742 {
743         struct _flow_keys_digest_data *data =
744             (struct _flow_keys_digest_data *)digest;
745
746         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
747
748         memset(digest, 0, sizeof(*digest));
749
750         data->n_proto = flow->basic.n_proto;
751         data->ip_proto = flow->basic.ip_proto;
752         data->ports = flow->ports.ports;
753         data->src = flow->addrs.v4addrs.src;
754         data->dst = flow->addrs.v4addrs.dst;
755 }
756 EXPORT_SYMBOL(make_flow_keys_digest);
757
758 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
759
760 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
761 {
762         struct flow_keys keys;
763
764         __flow_hash_secret_init();
765
766         memset(&keys, 0, sizeof(keys));
767         __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
768                            NULL, 0, 0, 0,
769                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
770
771         return __flow_hash_from_keys(&keys, hashrnd);
772 }
773 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
774
775 /**
776  * __skb_get_hash: calculate a flow hash
777  * @skb: sk_buff to calculate flow hash from
778  *
779  * This function calculates a flow hash based on src/dst addresses
780  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
781  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
782  * if hash is a canonical 4-tuple hash over transport ports.
783  */
784 void __skb_get_hash(struct sk_buff *skb)
785 {
786         struct flow_keys keys;
787         u32 hash;
788
789         __flow_hash_secret_init();
790
791         hash = ___skb_get_hash(skb, &keys, hashrnd);
792
793         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
794 }
795 EXPORT_SYMBOL(__skb_get_hash);
796
797 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
798 {
799         struct flow_keys keys;
800
801         return ___skb_get_hash(skb, &keys, perturb);
802 }
803 EXPORT_SYMBOL(skb_get_hash_perturb);
804
805 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
806 {
807         struct flow_keys keys;
808
809         memset(&keys, 0, sizeof(keys));
810
811         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
812                sizeof(keys.addrs.v6addrs.src));
813         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
814                sizeof(keys.addrs.v6addrs.dst));
815         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
816         keys.ports.src = fl6->fl6_sport;
817         keys.ports.dst = fl6->fl6_dport;
818         keys.keyid.keyid = fl6->fl6_gre_key;
819         keys.tags.flow_label = (__force u32)fl6->flowlabel;
820         keys.basic.ip_proto = fl6->flowi6_proto;
821
822         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
823                           flow_keys_have_l4(&keys));
824
825         return skb->hash;
826 }
827 EXPORT_SYMBOL(__skb_get_hash_flowi6);
828
829 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
830 {
831         struct flow_keys keys;
832
833         memset(&keys, 0, sizeof(keys));
834
835         keys.addrs.v4addrs.src = fl4->saddr;
836         keys.addrs.v4addrs.dst = fl4->daddr;
837         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
838         keys.ports.src = fl4->fl4_sport;
839         keys.ports.dst = fl4->fl4_dport;
840         keys.keyid.keyid = fl4->fl4_gre_key;
841         keys.basic.ip_proto = fl4->flowi4_proto;
842
843         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
844                           flow_keys_have_l4(&keys));
845
846         return skb->hash;
847 }
848 EXPORT_SYMBOL(__skb_get_hash_flowi4);
849
850 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
851                    const struct flow_keys *keys, int hlen)
852 {
853         u32 poff = keys->control.thoff;
854
855         /* skip L4 headers for fragments after the first */
856         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
857             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
858                 return poff;
859
860         switch (keys->basic.ip_proto) {
861         case IPPROTO_TCP: {
862                 /* access doff as u8 to avoid unaligned access */
863                 const u8 *doff;
864                 u8 _doff;
865
866                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
867                                             data, hlen, &_doff);
868                 if (!doff)
869                         return poff;
870
871                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
872                 break;
873         }
874         case IPPROTO_UDP:
875         case IPPROTO_UDPLITE:
876                 poff += sizeof(struct udphdr);
877                 break;
878         /* For the rest, we do not really care about header
879          * extensions at this point for now.
880          */
881         case IPPROTO_ICMP:
882                 poff += sizeof(struct icmphdr);
883                 break;
884         case IPPROTO_ICMPV6:
885                 poff += sizeof(struct icmp6hdr);
886                 break;
887         case IPPROTO_IGMP:
888                 poff += sizeof(struct igmphdr);
889                 break;
890         case IPPROTO_DCCP:
891                 poff += sizeof(struct dccp_hdr);
892                 break;
893         case IPPROTO_SCTP:
894                 poff += sizeof(struct sctphdr);
895                 break;
896         }
897
898         return poff;
899 }
900
901 /**
902  * skb_get_poff - get the offset to the payload
903  * @skb: sk_buff to get the payload offset from
904  *
905  * The function will get the offset to the payload as far as it could
906  * be dissected.  The main user is currently BPF, so that we can dynamically
907  * truncate packets without needing to push actual payload to the user
908  * space and can analyze headers only, instead.
909  */
910 u32 skb_get_poff(const struct sk_buff *skb)
911 {
912         struct flow_keys keys;
913
914         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
915                 return 0;
916
917         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
918 }
919
920 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
921 {
922         memset(keys, 0, sizeof(*keys));
923
924         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
925             sizeof(keys->addrs.v6addrs.src));
926         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
927             sizeof(keys->addrs.v6addrs.dst));
928         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
929         keys->ports.src = fl6->fl6_sport;
930         keys->ports.dst = fl6->fl6_dport;
931         keys->keyid.keyid = fl6->fl6_gre_key;
932         keys->tags.flow_label = (__force u32)fl6->flowlabel;
933         keys->basic.ip_proto = fl6->flowi6_proto;
934
935         return flow_hash_from_keys(keys);
936 }
937 EXPORT_SYMBOL(__get_hash_from_flowi6);
938
939 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
940 {
941         memset(keys, 0, sizeof(*keys));
942
943         keys->addrs.v4addrs.src = fl4->saddr;
944         keys->addrs.v4addrs.dst = fl4->daddr;
945         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
946         keys->ports.src = fl4->fl4_sport;
947         keys->ports.dst = fl4->fl4_dport;
948         keys->keyid.keyid = fl4->fl4_gre_key;
949         keys->basic.ip_proto = fl4->flowi4_proto;
950
951         return flow_hash_from_keys(keys);
952 }
953 EXPORT_SYMBOL(__get_hash_from_flowi4);
954
955 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
956         {
957                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
958                 .offset = offsetof(struct flow_keys, control),
959         },
960         {
961                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
962                 .offset = offsetof(struct flow_keys, basic),
963         },
964         {
965                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
966                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
967         },
968         {
969                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
970                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
971         },
972         {
973                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
974                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
975         },
976         {
977                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
978                 .offset = offsetof(struct flow_keys, ports),
979         },
980         {
981                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
982                 .offset = offsetof(struct flow_keys, vlan),
983         },
984         {
985                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
986                 .offset = offsetof(struct flow_keys, tags),
987         },
988         {
989                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
990                 .offset = offsetof(struct flow_keys, keyid),
991         },
992 };
993
994 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
995         {
996                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
997                 .offset = offsetof(struct flow_keys, control),
998         },
999         {
1000                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1001                 .offset = offsetof(struct flow_keys, basic),
1002         },
1003         {
1004                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1005                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1006         },
1007         {
1008                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1009                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1010         },
1011         {
1012                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1013                 .offset = offsetof(struct flow_keys, ports),
1014         },
1015 };
1016
1017 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
1018         {
1019                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1020                 .offset = offsetof(struct flow_keys, control),
1021         },
1022         {
1023                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1024                 .offset = offsetof(struct flow_keys, basic),
1025         },
1026 };
1027
1028 struct flow_dissector flow_keys_dissector __read_mostly;
1029 EXPORT_SYMBOL(flow_keys_dissector);
1030
1031 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1032
1033 static int __init init_default_flow_dissectors(void)
1034 {
1035         skb_flow_dissector_init(&flow_keys_dissector,
1036                                 flow_keys_dissector_keys,
1037                                 ARRAY_SIZE(flow_keys_dissector_keys));
1038         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1039                                 flow_keys_dissector_symmetric_keys,
1040                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1041         skb_flow_dissector_init(&flow_keys_buf_dissector,
1042                                 flow_keys_buf_dissector_keys,
1043                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
1044         return 0;
1045 }
1046
1047 core_initcall(init_default_flow_dissectors);