ASoC: qdsp6: Suggest more generic node names
[linux-2.6-microblaze.git] / net / core / flow_dissector.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_labels.h>
33 #endif
34
35 static DEFINE_MUTEX(flow_dissector_mutex);
36
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38                               enum flow_dissector_key_id key_id)
39 {
40         flow_dissector->used_keys |= (1 << key_id);
41 }
42
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44                              const struct flow_dissector_key *key,
45                              unsigned int key_count)
46 {
47         unsigned int i;
48
49         memset(flow_dissector, 0, sizeof(*flow_dissector));
50
51         for (i = 0; i < key_count; i++, key++) {
52                 /* User should make sure that every key target offset is withing
53                  * boundaries of unsigned short.
54                  */
55                 BUG_ON(key->offset > USHRT_MAX);
56                 BUG_ON(dissector_uses_key(flow_dissector,
57                                           key->key_id));
58
59                 dissector_set_key(flow_dissector, key->key_id);
60                 flow_dissector->offset[key->key_id] = key->offset;
61         }
62
63         /* Ensure that the dissector always includes control and basic key.
64          * That way we are able to avoid handling lack of these in fast path.
65          */
66         BUG_ON(!dissector_uses_key(flow_dissector,
67                                    FLOW_DISSECTOR_KEY_CONTROL));
68         BUG_ON(!dissector_uses_key(flow_dissector,
69                                    FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72
73 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
74                                   union bpf_attr __user *uattr)
75 {
76         __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
77         u32 prog_id, prog_cnt = 0, flags = 0;
78         struct bpf_prog *attached;
79         struct net *net;
80
81         if (attr->query.query_flags)
82                 return -EINVAL;
83
84         net = get_net_ns_by_fd(attr->query.target_fd);
85         if (IS_ERR(net))
86                 return PTR_ERR(net);
87
88         rcu_read_lock();
89         attached = rcu_dereference(net->flow_dissector_prog);
90         if (attached) {
91                 prog_cnt = 1;
92                 prog_id = attached->aux->id;
93         }
94         rcu_read_unlock();
95
96         put_net(net);
97
98         if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
99                 return -EFAULT;
100         if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
101                 return -EFAULT;
102
103         if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
104                 return 0;
105
106         if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
107                 return -EFAULT;
108
109         return 0;
110 }
111
112 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
113                                        struct bpf_prog *prog)
114 {
115         struct bpf_prog *attached;
116         struct net *net;
117         int ret = 0;
118
119         net = current->nsproxy->net_ns;
120         mutex_lock(&flow_dissector_mutex);
121
122         if (net == &init_net) {
123                 /* BPF flow dissector in the root namespace overrides
124                  * any per-net-namespace one. When attaching to root,
125                  * make sure we don't have any BPF program attached
126                  * to the non-root namespaces.
127                  */
128                 struct net *ns;
129
130                 for_each_net(ns) {
131                         if (ns == &init_net)
132                                 continue;
133                         if (rcu_access_pointer(ns->flow_dissector_prog)) {
134                                 ret = -EEXIST;
135                                 goto out;
136                         }
137                 }
138         } else {
139                 /* Make sure root flow dissector is not attached
140                  * when attaching to the non-root namespace.
141                  */
142                 if (rcu_access_pointer(init_net.flow_dissector_prog)) {
143                         ret = -EEXIST;
144                         goto out;
145                 }
146         }
147
148         attached = rcu_dereference_protected(net->flow_dissector_prog,
149                                              lockdep_is_held(&flow_dissector_mutex));
150         if (attached == prog) {
151                 /* The same program cannot be attached twice */
152                 ret = -EINVAL;
153                 goto out;
154         }
155         rcu_assign_pointer(net->flow_dissector_prog, prog);
156         if (attached)
157                 bpf_prog_put(attached);
158 out:
159         mutex_unlock(&flow_dissector_mutex);
160         return ret;
161 }
162
163 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
164 {
165         struct bpf_prog *attached;
166         struct net *net;
167
168         net = current->nsproxy->net_ns;
169         mutex_lock(&flow_dissector_mutex);
170         attached = rcu_dereference_protected(net->flow_dissector_prog,
171                                              lockdep_is_held(&flow_dissector_mutex));
172         if (!attached) {
173                 mutex_unlock(&flow_dissector_mutex);
174                 return -ENOENT;
175         }
176         RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
177         bpf_prog_put(attached);
178         mutex_unlock(&flow_dissector_mutex);
179         return 0;
180 }
181
182 /**
183  * __skb_flow_get_ports - extract the upper layer ports and return them
184  * @skb: sk_buff to extract the ports from
185  * @thoff: transport header offset
186  * @ip_proto: protocol for which to get port offset
187  * @data: raw buffer pointer to the packet, if NULL use skb->data
188  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
189  *
190  * The function will try to retrieve the ports at offset thoff + poff where poff
191  * is the protocol port offset returned from proto_ports_offset
192  */
193 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
194                             void *data, int hlen)
195 {
196         int poff = proto_ports_offset(ip_proto);
197
198         if (!data) {
199                 data = skb->data;
200                 hlen = skb_headlen(skb);
201         }
202
203         if (poff >= 0) {
204                 __be32 *ports, _ports;
205
206                 ports = __skb_header_pointer(skb, thoff + poff,
207                                              sizeof(_ports), data, hlen, &_ports);
208                 if (ports)
209                         return *ports;
210         }
211
212         return 0;
213 }
214 EXPORT_SYMBOL(__skb_flow_get_ports);
215
216 static bool icmp_has_id(u8 type)
217 {
218         switch (type) {
219         case ICMP_ECHO:
220         case ICMP_ECHOREPLY:
221         case ICMP_TIMESTAMP:
222         case ICMP_TIMESTAMPREPLY:
223         case ICMPV6_ECHO_REQUEST:
224         case ICMPV6_ECHO_REPLY:
225                 return true;
226         }
227
228         return false;
229 }
230
231 /**
232  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
233  * @skb: sk_buff to extract from
234  * @key_icmp: struct flow_dissector_key_icmp to fill
235  * @data: raw buffer pointer to the packet
236  * @thoff: offset to extract at
237  * @hlen: packet header length
238  */
239 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
240                            struct flow_dissector_key_icmp *key_icmp,
241                            void *data, int thoff, int hlen)
242 {
243         struct icmphdr *ih, _ih;
244
245         ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
246         if (!ih)
247                 return;
248
249         key_icmp->type = ih->type;
250         key_icmp->code = ih->code;
251
252         /* As we use 0 to signal that the Id field is not present,
253          * avoid confusion with packets without such field
254          */
255         if (icmp_has_id(ih->type))
256                 key_icmp->id = ih->un.echo.id ? : 1;
257         else
258                 key_icmp->id = 0;
259 }
260 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
261
262 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
263  * using skb_flow_get_icmp_tci().
264  */
265 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
266                                     struct flow_dissector *flow_dissector,
267                                     void *target_container,
268                                     void *data, int thoff, int hlen)
269 {
270         struct flow_dissector_key_icmp *key_icmp;
271
272         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
273                 return;
274
275         key_icmp = skb_flow_dissector_target(flow_dissector,
276                                              FLOW_DISSECTOR_KEY_ICMP,
277                                              target_container);
278
279         skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
280 }
281
282 void skb_flow_dissect_meta(const struct sk_buff *skb,
283                            struct flow_dissector *flow_dissector,
284                            void *target_container)
285 {
286         struct flow_dissector_key_meta *meta;
287
288         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
289                 return;
290
291         meta = skb_flow_dissector_target(flow_dissector,
292                                          FLOW_DISSECTOR_KEY_META,
293                                          target_container);
294         meta->ingress_ifindex = skb->skb_iif;
295 }
296 EXPORT_SYMBOL(skb_flow_dissect_meta);
297
298 static void
299 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
300                                    struct flow_dissector *flow_dissector,
301                                    void *target_container)
302 {
303         struct flow_dissector_key_control *ctrl;
304
305         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
306                 return;
307
308         ctrl = skb_flow_dissector_target(flow_dissector,
309                                          FLOW_DISSECTOR_KEY_ENC_CONTROL,
310                                          target_container);
311         ctrl->addr_type = type;
312 }
313
314 void
315 skb_flow_dissect_ct(const struct sk_buff *skb,
316                     struct flow_dissector *flow_dissector,
317                     void *target_container,
318                     u16 *ctinfo_map,
319                     size_t mapsize)
320 {
321 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
322         struct flow_dissector_key_ct *key;
323         enum ip_conntrack_info ctinfo;
324         struct nf_conn_labels *cl;
325         struct nf_conn *ct;
326
327         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
328                 return;
329
330         ct = nf_ct_get(skb, &ctinfo);
331         if (!ct)
332                 return;
333
334         key = skb_flow_dissector_target(flow_dissector,
335                                         FLOW_DISSECTOR_KEY_CT,
336                                         target_container);
337
338         if (ctinfo < mapsize)
339                 key->ct_state = ctinfo_map[ctinfo];
340 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
341         key->ct_zone = ct->zone.id;
342 #endif
343 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
344         key->ct_mark = ct->mark;
345 #endif
346
347         cl = nf_ct_labels_find(ct);
348         if (cl)
349                 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
350 #endif /* CONFIG_NF_CONNTRACK */
351 }
352 EXPORT_SYMBOL(skb_flow_dissect_ct);
353
354 void
355 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
356                              struct flow_dissector *flow_dissector,
357                              void *target_container)
358 {
359         struct ip_tunnel_info *info;
360         struct ip_tunnel_key *key;
361
362         /* A quick check to see if there might be something to do. */
363         if (!dissector_uses_key(flow_dissector,
364                                 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
365             !dissector_uses_key(flow_dissector,
366                                 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
367             !dissector_uses_key(flow_dissector,
368                                 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
369             !dissector_uses_key(flow_dissector,
370                                 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
371             !dissector_uses_key(flow_dissector,
372                                 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
373             !dissector_uses_key(flow_dissector,
374                                 FLOW_DISSECTOR_KEY_ENC_IP) &&
375             !dissector_uses_key(flow_dissector,
376                                 FLOW_DISSECTOR_KEY_ENC_OPTS))
377                 return;
378
379         info = skb_tunnel_info(skb);
380         if (!info)
381                 return;
382
383         key = &info->key;
384
385         switch (ip_tunnel_info_af(info)) {
386         case AF_INET:
387                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
388                                                    flow_dissector,
389                                                    target_container);
390                 if (dissector_uses_key(flow_dissector,
391                                        FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
392                         struct flow_dissector_key_ipv4_addrs *ipv4;
393
394                         ipv4 = skb_flow_dissector_target(flow_dissector,
395                                                          FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
396                                                          target_container);
397                         ipv4->src = key->u.ipv4.src;
398                         ipv4->dst = key->u.ipv4.dst;
399                 }
400                 break;
401         case AF_INET6:
402                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
403                                                    flow_dissector,
404                                                    target_container);
405                 if (dissector_uses_key(flow_dissector,
406                                        FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
407                         struct flow_dissector_key_ipv6_addrs *ipv6;
408
409                         ipv6 = skb_flow_dissector_target(flow_dissector,
410                                                          FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
411                                                          target_container);
412                         ipv6->src = key->u.ipv6.src;
413                         ipv6->dst = key->u.ipv6.dst;
414                 }
415                 break;
416         }
417
418         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
419                 struct flow_dissector_key_keyid *keyid;
420
421                 keyid = skb_flow_dissector_target(flow_dissector,
422                                                   FLOW_DISSECTOR_KEY_ENC_KEYID,
423                                                   target_container);
424                 keyid->keyid = tunnel_id_to_key32(key->tun_id);
425         }
426
427         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
428                 struct flow_dissector_key_ports *tp;
429
430                 tp = skb_flow_dissector_target(flow_dissector,
431                                                FLOW_DISSECTOR_KEY_ENC_PORTS,
432                                                target_container);
433                 tp->src = key->tp_src;
434                 tp->dst = key->tp_dst;
435         }
436
437         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
438                 struct flow_dissector_key_ip *ip;
439
440                 ip = skb_flow_dissector_target(flow_dissector,
441                                                FLOW_DISSECTOR_KEY_ENC_IP,
442                                                target_container);
443                 ip->tos = key->tos;
444                 ip->ttl = key->ttl;
445         }
446
447         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
448                 struct flow_dissector_key_enc_opts *enc_opt;
449
450                 enc_opt = skb_flow_dissector_target(flow_dissector,
451                                                     FLOW_DISSECTOR_KEY_ENC_OPTS,
452                                                     target_container);
453
454                 if (info->options_len) {
455                         enc_opt->len = info->options_len;
456                         ip_tunnel_info_opts_get(enc_opt->data, info);
457                         enc_opt->dst_opt_type = info->key.tun_flags &
458                                                 TUNNEL_OPTIONS_PRESENT;
459                 }
460         }
461 }
462 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
463
464 static enum flow_dissect_ret
465 __skb_flow_dissect_mpls(const struct sk_buff *skb,
466                         struct flow_dissector *flow_dissector,
467                         void *target_container, void *data, int nhoff, int hlen)
468 {
469         struct flow_dissector_key_keyid *key_keyid;
470         struct mpls_label *hdr, _hdr[2];
471         u32 entry, label;
472
473         if (!dissector_uses_key(flow_dissector,
474                                 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
475             !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
476                 return FLOW_DISSECT_RET_OUT_GOOD;
477
478         hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
479                                    hlen, &_hdr);
480         if (!hdr)
481                 return FLOW_DISSECT_RET_OUT_BAD;
482
483         entry = ntohl(hdr[0].entry);
484         label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
485
486         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
487                 struct flow_dissector_key_mpls *key_mpls;
488
489                 key_mpls = skb_flow_dissector_target(flow_dissector,
490                                                      FLOW_DISSECTOR_KEY_MPLS,
491                                                      target_container);
492                 key_mpls->mpls_label = label;
493                 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
494                                         >> MPLS_LS_TTL_SHIFT;
495                 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
496                                         >> MPLS_LS_TC_SHIFT;
497                 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
498                                         >> MPLS_LS_S_SHIFT;
499         }
500
501         if (label == MPLS_LABEL_ENTROPY) {
502                 key_keyid = skb_flow_dissector_target(flow_dissector,
503                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
504                                                       target_container);
505                 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
506         }
507         return FLOW_DISSECT_RET_OUT_GOOD;
508 }
509
510 static enum flow_dissect_ret
511 __skb_flow_dissect_arp(const struct sk_buff *skb,
512                        struct flow_dissector *flow_dissector,
513                        void *target_container, void *data, int nhoff, int hlen)
514 {
515         struct flow_dissector_key_arp *key_arp;
516         struct {
517                 unsigned char ar_sha[ETH_ALEN];
518                 unsigned char ar_sip[4];
519                 unsigned char ar_tha[ETH_ALEN];
520                 unsigned char ar_tip[4];
521         } *arp_eth, _arp_eth;
522         const struct arphdr *arp;
523         struct arphdr _arp;
524
525         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
526                 return FLOW_DISSECT_RET_OUT_GOOD;
527
528         arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
529                                    hlen, &_arp);
530         if (!arp)
531                 return FLOW_DISSECT_RET_OUT_BAD;
532
533         if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
534             arp->ar_pro != htons(ETH_P_IP) ||
535             arp->ar_hln != ETH_ALEN ||
536             arp->ar_pln != 4 ||
537             (arp->ar_op != htons(ARPOP_REPLY) &&
538              arp->ar_op != htons(ARPOP_REQUEST)))
539                 return FLOW_DISSECT_RET_OUT_BAD;
540
541         arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
542                                        sizeof(_arp_eth), data,
543                                        hlen, &_arp_eth);
544         if (!arp_eth)
545                 return FLOW_DISSECT_RET_OUT_BAD;
546
547         key_arp = skb_flow_dissector_target(flow_dissector,
548                                             FLOW_DISSECTOR_KEY_ARP,
549                                             target_container);
550
551         memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
552         memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
553
554         /* Only store the lower byte of the opcode;
555          * this covers ARPOP_REPLY and ARPOP_REQUEST.
556          */
557         key_arp->op = ntohs(arp->ar_op) & 0xff;
558
559         ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
560         ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
561
562         return FLOW_DISSECT_RET_OUT_GOOD;
563 }
564
565 static enum flow_dissect_ret
566 __skb_flow_dissect_gre(const struct sk_buff *skb,
567                        struct flow_dissector_key_control *key_control,
568                        struct flow_dissector *flow_dissector,
569                        void *target_container, void *data,
570                        __be16 *p_proto, int *p_nhoff, int *p_hlen,
571                        unsigned int flags)
572 {
573         struct flow_dissector_key_keyid *key_keyid;
574         struct gre_base_hdr *hdr, _hdr;
575         int offset = 0;
576         u16 gre_ver;
577
578         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
579                                    data, *p_hlen, &_hdr);
580         if (!hdr)
581                 return FLOW_DISSECT_RET_OUT_BAD;
582
583         /* Only look inside GRE without routing */
584         if (hdr->flags & GRE_ROUTING)
585                 return FLOW_DISSECT_RET_OUT_GOOD;
586
587         /* Only look inside GRE for version 0 and 1 */
588         gre_ver = ntohs(hdr->flags & GRE_VERSION);
589         if (gre_ver > 1)
590                 return FLOW_DISSECT_RET_OUT_GOOD;
591
592         *p_proto = hdr->protocol;
593         if (gre_ver) {
594                 /* Version1 must be PPTP, and check the flags */
595                 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
596                         return FLOW_DISSECT_RET_OUT_GOOD;
597         }
598
599         offset += sizeof(struct gre_base_hdr);
600
601         if (hdr->flags & GRE_CSUM)
602                 offset += sizeof_field(struct gre_full_hdr, csum) +
603                           sizeof_field(struct gre_full_hdr, reserved1);
604
605         if (hdr->flags & GRE_KEY) {
606                 const __be32 *keyid;
607                 __be32 _keyid;
608
609                 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
610                                              sizeof(_keyid),
611                                              data, *p_hlen, &_keyid);
612                 if (!keyid)
613                         return FLOW_DISSECT_RET_OUT_BAD;
614
615                 if (dissector_uses_key(flow_dissector,
616                                        FLOW_DISSECTOR_KEY_GRE_KEYID)) {
617                         key_keyid = skb_flow_dissector_target(flow_dissector,
618                                                               FLOW_DISSECTOR_KEY_GRE_KEYID,
619                                                               target_container);
620                         if (gre_ver == 0)
621                                 key_keyid->keyid = *keyid;
622                         else
623                                 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
624                 }
625                 offset += sizeof_field(struct gre_full_hdr, key);
626         }
627
628         if (hdr->flags & GRE_SEQ)
629                 offset += sizeof_field(struct pptp_gre_header, seq);
630
631         if (gre_ver == 0) {
632                 if (*p_proto == htons(ETH_P_TEB)) {
633                         const struct ethhdr *eth;
634                         struct ethhdr _eth;
635
636                         eth = __skb_header_pointer(skb, *p_nhoff + offset,
637                                                    sizeof(_eth),
638                                                    data, *p_hlen, &_eth);
639                         if (!eth)
640                                 return FLOW_DISSECT_RET_OUT_BAD;
641                         *p_proto = eth->h_proto;
642                         offset += sizeof(*eth);
643
644                         /* Cap headers that we access via pointers at the
645                          * end of the Ethernet header as our maximum alignment
646                          * at that point is only 2 bytes.
647                          */
648                         if (NET_IP_ALIGN)
649                                 *p_hlen = *p_nhoff + offset;
650                 }
651         } else { /* version 1, must be PPTP */
652                 u8 _ppp_hdr[PPP_HDRLEN];
653                 u8 *ppp_hdr;
654
655                 if (hdr->flags & GRE_ACK)
656                         offset += sizeof_field(struct pptp_gre_header, ack);
657
658                 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
659                                                sizeof(_ppp_hdr),
660                                                data, *p_hlen, _ppp_hdr);
661                 if (!ppp_hdr)
662                         return FLOW_DISSECT_RET_OUT_BAD;
663
664                 switch (PPP_PROTOCOL(ppp_hdr)) {
665                 case PPP_IP:
666                         *p_proto = htons(ETH_P_IP);
667                         break;
668                 case PPP_IPV6:
669                         *p_proto = htons(ETH_P_IPV6);
670                         break;
671                 default:
672                         /* Could probably catch some more like MPLS */
673                         break;
674                 }
675
676                 offset += PPP_HDRLEN;
677         }
678
679         *p_nhoff += offset;
680         key_control->flags |= FLOW_DIS_ENCAPSULATION;
681         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
682                 return FLOW_DISSECT_RET_OUT_GOOD;
683
684         return FLOW_DISSECT_RET_PROTO_AGAIN;
685 }
686
687 /**
688  * __skb_flow_dissect_batadv() - dissect batman-adv header
689  * @skb: sk_buff to with the batman-adv header
690  * @key_control: flow dissectors control key
691  * @data: raw buffer pointer to the packet, if NULL use skb->data
692  * @p_proto: pointer used to update the protocol to process next
693  * @p_nhoff: pointer used to update inner network header offset
694  * @hlen: packet header length
695  * @flags: any combination of FLOW_DISSECTOR_F_*
696  *
697  * ETH_P_BATMAN packets are tried to be dissected. Only
698  * &struct batadv_unicast packets are actually processed because they contain an
699  * inner ethernet header and are usually followed by actual network header. This
700  * allows the flow dissector to continue processing the packet.
701  *
702  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
703  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
704  *  otherwise FLOW_DISSECT_RET_OUT_BAD
705  */
706 static enum flow_dissect_ret
707 __skb_flow_dissect_batadv(const struct sk_buff *skb,
708                           struct flow_dissector_key_control *key_control,
709                           void *data, __be16 *p_proto, int *p_nhoff, int hlen,
710                           unsigned int flags)
711 {
712         struct {
713                 struct batadv_unicast_packet batadv_unicast;
714                 struct ethhdr eth;
715         } *hdr, _hdr;
716
717         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
718                                    &_hdr);
719         if (!hdr)
720                 return FLOW_DISSECT_RET_OUT_BAD;
721
722         if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
723                 return FLOW_DISSECT_RET_OUT_BAD;
724
725         if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
726                 return FLOW_DISSECT_RET_OUT_BAD;
727
728         *p_proto = hdr->eth.h_proto;
729         *p_nhoff += sizeof(*hdr);
730
731         key_control->flags |= FLOW_DIS_ENCAPSULATION;
732         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
733                 return FLOW_DISSECT_RET_OUT_GOOD;
734
735         return FLOW_DISSECT_RET_PROTO_AGAIN;
736 }
737
738 static void
739 __skb_flow_dissect_tcp(const struct sk_buff *skb,
740                        struct flow_dissector *flow_dissector,
741                        void *target_container, void *data, int thoff, int hlen)
742 {
743         struct flow_dissector_key_tcp *key_tcp;
744         struct tcphdr *th, _th;
745
746         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
747                 return;
748
749         th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
750         if (!th)
751                 return;
752
753         if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
754                 return;
755
756         key_tcp = skb_flow_dissector_target(flow_dissector,
757                                             FLOW_DISSECTOR_KEY_TCP,
758                                             target_container);
759         key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
760 }
761
762 static void
763 __skb_flow_dissect_ports(const struct sk_buff *skb,
764                          struct flow_dissector *flow_dissector,
765                          void *target_container, void *data, int nhoff,
766                          u8 ip_proto, int hlen)
767 {
768         enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
769         struct flow_dissector_key_ports *key_ports;
770
771         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
772                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
773         else if (dissector_uses_key(flow_dissector,
774                                     FLOW_DISSECTOR_KEY_PORTS_RANGE))
775                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
776
777         if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
778                 return;
779
780         key_ports = skb_flow_dissector_target(flow_dissector,
781                                               dissector_ports,
782                                               target_container);
783         key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
784                                                 data, hlen);
785 }
786
787 static void
788 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
789                         struct flow_dissector *flow_dissector,
790                         void *target_container, void *data, const struct iphdr *iph)
791 {
792         struct flow_dissector_key_ip *key_ip;
793
794         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
795                 return;
796
797         key_ip = skb_flow_dissector_target(flow_dissector,
798                                            FLOW_DISSECTOR_KEY_IP,
799                                            target_container);
800         key_ip->tos = iph->tos;
801         key_ip->ttl = iph->ttl;
802 }
803
804 static void
805 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
806                         struct flow_dissector *flow_dissector,
807                         void *target_container, void *data, const struct ipv6hdr *iph)
808 {
809         struct flow_dissector_key_ip *key_ip;
810
811         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
812                 return;
813
814         key_ip = skb_flow_dissector_target(flow_dissector,
815                                            FLOW_DISSECTOR_KEY_IP,
816                                            target_container);
817         key_ip->tos = ipv6_get_dsfield(iph);
818         key_ip->ttl = iph->hop_limit;
819 }
820
821 /* Maximum number of protocol headers that can be parsed in
822  * __skb_flow_dissect
823  */
824 #define MAX_FLOW_DISSECT_HDRS   15
825
826 static bool skb_flow_dissect_allowed(int *num_hdrs)
827 {
828         ++*num_hdrs;
829
830         return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
831 }
832
833 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
834                                      struct flow_dissector *flow_dissector,
835                                      void *target_container)
836 {
837         struct flow_dissector_key_ports *key_ports = NULL;
838         struct flow_dissector_key_control *key_control;
839         struct flow_dissector_key_basic *key_basic;
840         struct flow_dissector_key_addrs *key_addrs;
841         struct flow_dissector_key_tags *key_tags;
842
843         key_control = skb_flow_dissector_target(flow_dissector,
844                                                 FLOW_DISSECTOR_KEY_CONTROL,
845                                                 target_container);
846         key_control->thoff = flow_keys->thoff;
847         if (flow_keys->is_frag)
848                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
849         if (flow_keys->is_first_frag)
850                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
851         if (flow_keys->is_encap)
852                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
853
854         key_basic = skb_flow_dissector_target(flow_dissector,
855                                               FLOW_DISSECTOR_KEY_BASIC,
856                                               target_container);
857         key_basic->n_proto = flow_keys->n_proto;
858         key_basic->ip_proto = flow_keys->ip_proto;
859
860         if (flow_keys->addr_proto == ETH_P_IP &&
861             dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
862                 key_addrs = skb_flow_dissector_target(flow_dissector,
863                                                       FLOW_DISSECTOR_KEY_IPV4_ADDRS,
864                                                       target_container);
865                 key_addrs->v4addrs.src = flow_keys->ipv4_src;
866                 key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
867                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
868         } else if (flow_keys->addr_proto == ETH_P_IPV6 &&
869                    dissector_uses_key(flow_dissector,
870                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
871                 key_addrs = skb_flow_dissector_target(flow_dissector,
872                                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS,
873                                                       target_container);
874                 memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
875                        sizeof(key_addrs->v6addrs));
876                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
877         }
878
879         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
880                 key_ports = skb_flow_dissector_target(flow_dissector,
881                                                       FLOW_DISSECTOR_KEY_PORTS,
882                                                       target_container);
883         else if (dissector_uses_key(flow_dissector,
884                                     FLOW_DISSECTOR_KEY_PORTS_RANGE))
885                 key_ports = skb_flow_dissector_target(flow_dissector,
886                                                       FLOW_DISSECTOR_KEY_PORTS_RANGE,
887                                                       target_container);
888
889         if (key_ports) {
890                 key_ports->src = flow_keys->sport;
891                 key_ports->dst = flow_keys->dport;
892         }
893
894         if (dissector_uses_key(flow_dissector,
895                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
896                 key_tags = skb_flow_dissector_target(flow_dissector,
897                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
898                                                      target_container);
899                 key_tags->flow_label = ntohl(flow_keys->flow_label);
900         }
901 }
902
903 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
904                       __be16 proto, int nhoff, int hlen, unsigned int flags)
905 {
906         struct bpf_flow_keys *flow_keys = ctx->flow_keys;
907         u32 result;
908
909         /* Pass parameters to the BPF program */
910         memset(flow_keys, 0, sizeof(*flow_keys));
911         flow_keys->n_proto = proto;
912         flow_keys->nhoff = nhoff;
913         flow_keys->thoff = flow_keys->nhoff;
914
915         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
916                      (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
917         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
918                      (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
919         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
920                      (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
921         flow_keys->flags = flags;
922
923         result = bpf_prog_run_pin_on_cpu(prog, ctx);
924
925         flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
926         flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
927                                    flow_keys->nhoff, hlen);
928
929         return result == BPF_OK;
930 }
931
932 /**
933  * __skb_flow_dissect - extract the flow_keys struct and return it
934  * @net: associated network namespace, derived from @skb if NULL
935  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
936  * @flow_dissector: list of keys to dissect
937  * @target_container: target structure to put dissected values into
938  * @data: raw buffer pointer to the packet, if NULL use skb->data
939  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
940  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
941  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
942  * @flags: flags that control the dissection process, e.g.
943  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
944  *
945  * The function will try to retrieve individual keys into target specified
946  * by flow_dissector from either the skbuff or a raw buffer specified by the
947  * rest parameters.
948  *
949  * Caller must take care of zeroing target container memory.
950  */
951 bool __skb_flow_dissect(const struct net *net,
952                         const struct sk_buff *skb,
953                         struct flow_dissector *flow_dissector,
954                         void *target_container,
955                         void *data, __be16 proto, int nhoff, int hlen,
956                         unsigned int flags)
957 {
958         struct flow_dissector_key_control *key_control;
959         struct flow_dissector_key_basic *key_basic;
960         struct flow_dissector_key_addrs *key_addrs;
961         struct flow_dissector_key_tags *key_tags;
962         struct flow_dissector_key_vlan *key_vlan;
963         struct bpf_prog *attached = NULL;
964         enum flow_dissect_ret fdret;
965         enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
966         int num_hdrs = 0;
967         u8 ip_proto = 0;
968         bool ret;
969
970         if (!data) {
971                 data = skb->data;
972                 proto = skb_vlan_tag_present(skb) ?
973                          skb->vlan_proto : skb->protocol;
974                 nhoff = skb_network_offset(skb);
975                 hlen = skb_headlen(skb);
976 #if IS_ENABLED(CONFIG_NET_DSA)
977                 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
978                              proto == htons(ETH_P_XDSA))) {
979                         const struct dsa_device_ops *ops;
980                         int offset = 0;
981
982                         ops = skb->dev->dsa_ptr->tag_ops;
983                         if (ops->flow_dissect &&
984                             !ops->flow_dissect(skb, &proto, &offset)) {
985                                 hlen -= offset;
986                                 nhoff += offset;
987                         }
988                 }
989 #endif
990         }
991
992         /* It is ensured by skb_flow_dissector_init() that control key will
993          * be always present.
994          */
995         key_control = skb_flow_dissector_target(flow_dissector,
996                                                 FLOW_DISSECTOR_KEY_CONTROL,
997                                                 target_container);
998
999         /* It is ensured by skb_flow_dissector_init() that basic key will
1000          * be always present.
1001          */
1002         key_basic = skb_flow_dissector_target(flow_dissector,
1003                                               FLOW_DISSECTOR_KEY_BASIC,
1004                                               target_container);
1005
1006         if (skb) {
1007                 if (!net) {
1008                         if (skb->dev)
1009                                 net = dev_net(skb->dev);
1010                         else if (skb->sk)
1011                                 net = sock_net(skb->sk);
1012                 }
1013         }
1014
1015         WARN_ON_ONCE(!net);
1016         if (net) {
1017                 rcu_read_lock();
1018                 attached = rcu_dereference(init_net.flow_dissector_prog);
1019
1020                 if (!attached)
1021                         attached = rcu_dereference(net->flow_dissector_prog);
1022
1023                 if (attached) {
1024                         struct bpf_flow_keys flow_keys;
1025                         struct bpf_flow_dissector ctx = {
1026                                 .flow_keys = &flow_keys,
1027                                 .data = data,
1028                                 .data_end = data + hlen,
1029                         };
1030                         __be16 n_proto = proto;
1031
1032                         if (skb) {
1033                                 ctx.skb = skb;
1034                                 /* we can't use 'proto' in the skb case
1035                                  * because it might be set to skb->vlan_proto
1036                                  * which has been pulled from the data
1037                                  */
1038                                 n_proto = skb->protocol;
1039                         }
1040
1041                         ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
1042                                                hlen, flags);
1043                         __skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1044                                                  target_container);
1045                         rcu_read_unlock();
1046                         return ret;
1047                 }
1048                 rcu_read_unlock();
1049         }
1050
1051         if (dissector_uses_key(flow_dissector,
1052                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1053                 struct ethhdr *eth = eth_hdr(skb);
1054                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
1055
1056                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1057                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
1058                                                           target_container);
1059                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1060         }
1061
1062 proto_again:
1063         fdret = FLOW_DISSECT_RET_CONTINUE;
1064
1065         switch (proto) {
1066         case htons(ETH_P_IP): {
1067                 const struct iphdr *iph;
1068                 struct iphdr _iph;
1069
1070                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1071                 if (!iph || iph->ihl < 5) {
1072                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1073                         break;
1074                 }
1075
1076                 nhoff += iph->ihl * 4;
1077
1078                 ip_proto = iph->protocol;
1079
1080                 if (dissector_uses_key(flow_dissector,
1081                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1082                         key_addrs = skb_flow_dissector_target(flow_dissector,
1083                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1084                                                               target_container);
1085
1086                         memcpy(&key_addrs->v4addrs, &iph->saddr,
1087                                sizeof(key_addrs->v4addrs));
1088                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1089                 }
1090
1091                 if (ip_is_fragment(iph)) {
1092                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1093
1094                         if (iph->frag_off & htons(IP_OFFSET)) {
1095                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1096                                 break;
1097                         } else {
1098                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
1099                                 if (!(flags &
1100                                       FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1101                                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1102                                         break;
1103                                 }
1104                         }
1105                 }
1106
1107                 __skb_flow_dissect_ipv4(skb, flow_dissector,
1108                                         target_container, data, iph);
1109
1110                 break;
1111         }
1112         case htons(ETH_P_IPV6): {
1113                 const struct ipv6hdr *iph;
1114                 struct ipv6hdr _iph;
1115
1116                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1117                 if (!iph) {
1118                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1119                         break;
1120                 }
1121
1122                 ip_proto = iph->nexthdr;
1123                 nhoff += sizeof(struct ipv6hdr);
1124
1125                 if (dissector_uses_key(flow_dissector,
1126                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1127                         key_addrs = skb_flow_dissector_target(flow_dissector,
1128                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1129                                                               target_container);
1130
1131                         memcpy(&key_addrs->v6addrs, &iph->saddr,
1132                                sizeof(key_addrs->v6addrs));
1133                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1134                 }
1135
1136                 if ((dissector_uses_key(flow_dissector,
1137                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1138                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1139                     ip6_flowlabel(iph)) {
1140                         __be32 flow_label = ip6_flowlabel(iph);
1141
1142                         if (dissector_uses_key(flow_dissector,
1143                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1144                                 key_tags = skb_flow_dissector_target(flow_dissector,
1145                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
1146                                                                      target_container);
1147                                 key_tags->flow_label = ntohl(flow_label);
1148                         }
1149                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1150                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1151                                 break;
1152                         }
1153                 }
1154
1155                 __skb_flow_dissect_ipv6(skb, flow_dissector,
1156                                         target_container, data, iph);
1157
1158                 break;
1159         }
1160         case htons(ETH_P_8021AD):
1161         case htons(ETH_P_8021Q): {
1162                 const struct vlan_hdr *vlan = NULL;
1163                 struct vlan_hdr _vlan;
1164                 __be16 saved_vlan_tpid = proto;
1165
1166                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1167                     skb && skb_vlan_tag_present(skb)) {
1168                         proto = skb->protocol;
1169                 } else {
1170                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1171                                                     data, hlen, &_vlan);
1172                         if (!vlan) {
1173                                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1174                                 break;
1175                         }
1176
1177                         proto = vlan->h_vlan_encapsulated_proto;
1178                         nhoff += sizeof(*vlan);
1179                 }
1180
1181                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1182                         dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1183                 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1184                         dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1185                 } else {
1186                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1187                         break;
1188                 }
1189
1190                 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1191                         key_vlan = skb_flow_dissector_target(flow_dissector,
1192                                                              dissector_vlan,
1193                                                              target_container);
1194
1195                         if (!vlan) {
1196                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1197                                 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1198                         } else {
1199                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1200                                         VLAN_VID_MASK;
1201                                 key_vlan->vlan_priority =
1202                                         (ntohs(vlan->h_vlan_TCI) &
1203                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1204                         }
1205                         key_vlan->vlan_tpid = saved_vlan_tpid;
1206                 }
1207
1208                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1209                 break;
1210         }
1211         case htons(ETH_P_PPP_SES): {
1212                 struct {
1213                         struct pppoe_hdr hdr;
1214                         __be16 proto;
1215                 } *hdr, _hdr;
1216                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1217                 if (!hdr) {
1218                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1219                         break;
1220                 }
1221
1222                 proto = hdr->proto;
1223                 nhoff += PPPOE_SES_HLEN;
1224                 switch (proto) {
1225                 case htons(PPP_IP):
1226                         proto = htons(ETH_P_IP);
1227                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1228                         break;
1229                 case htons(PPP_IPV6):
1230                         proto = htons(ETH_P_IPV6);
1231                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1232                         break;
1233                 default:
1234                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1235                         break;
1236                 }
1237                 break;
1238         }
1239         case htons(ETH_P_TIPC): {
1240                 struct tipc_basic_hdr *hdr, _hdr;
1241
1242                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1243                                            data, hlen, &_hdr);
1244                 if (!hdr) {
1245                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1246                         break;
1247                 }
1248
1249                 if (dissector_uses_key(flow_dissector,
1250                                        FLOW_DISSECTOR_KEY_TIPC)) {
1251                         key_addrs = skb_flow_dissector_target(flow_dissector,
1252                                                               FLOW_DISSECTOR_KEY_TIPC,
1253                                                               target_container);
1254                         key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1255                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1256                 }
1257                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1258                 break;
1259         }
1260
1261         case htons(ETH_P_MPLS_UC):
1262         case htons(ETH_P_MPLS_MC):
1263                 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1264                                                 target_container, data,
1265                                                 nhoff, hlen);
1266                 break;
1267         case htons(ETH_P_FCOE):
1268                 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1269                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1270                         break;
1271                 }
1272
1273                 nhoff += FCOE_HEADER_LEN;
1274                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1275                 break;
1276
1277         case htons(ETH_P_ARP):
1278         case htons(ETH_P_RARP):
1279                 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1280                                                target_container, data,
1281                                                nhoff, hlen);
1282                 break;
1283
1284         case htons(ETH_P_BATMAN):
1285                 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1286                                                   &proto, &nhoff, hlen, flags);
1287                 break;
1288
1289         default:
1290                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1291                 break;
1292         }
1293
1294         /* Process result of proto processing */
1295         switch (fdret) {
1296         case FLOW_DISSECT_RET_OUT_GOOD:
1297                 goto out_good;
1298         case FLOW_DISSECT_RET_PROTO_AGAIN:
1299                 if (skb_flow_dissect_allowed(&num_hdrs))
1300                         goto proto_again;
1301                 goto out_good;
1302         case FLOW_DISSECT_RET_CONTINUE:
1303         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1304                 break;
1305         case FLOW_DISSECT_RET_OUT_BAD:
1306         default:
1307                 goto out_bad;
1308         }
1309
1310 ip_proto_again:
1311         fdret = FLOW_DISSECT_RET_CONTINUE;
1312
1313         switch (ip_proto) {
1314         case IPPROTO_GRE:
1315                 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1316                                                target_container, data,
1317                                                &proto, &nhoff, &hlen, flags);
1318                 break;
1319
1320         case NEXTHDR_HOP:
1321         case NEXTHDR_ROUTING:
1322         case NEXTHDR_DEST: {
1323                 u8 _opthdr[2], *opthdr;
1324
1325                 if (proto != htons(ETH_P_IPV6))
1326                         break;
1327
1328                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1329                                               data, hlen, &_opthdr);
1330                 if (!opthdr) {
1331                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1332                         break;
1333                 }
1334
1335                 ip_proto = opthdr[0];
1336                 nhoff += (opthdr[1] + 1) << 3;
1337
1338                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1339                 break;
1340         }
1341         case NEXTHDR_FRAGMENT: {
1342                 struct frag_hdr _fh, *fh;
1343
1344                 if (proto != htons(ETH_P_IPV6))
1345                         break;
1346
1347                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1348                                           data, hlen, &_fh);
1349
1350                 if (!fh) {
1351                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1352                         break;
1353                 }
1354
1355                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1356
1357                 nhoff += sizeof(_fh);
1358                 ip_proto = fh->nexthdr;
1359
1360                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
1361                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
1362                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1363                                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1364                                 break;
1365                         }
1366                 }
1367
1368                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1369                 break;
1370         }
1371         case IPPROTO_IPIP:
1372                 proto = htons(ETH_P_IP);
1373
1374                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1375                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1376                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1377                         break;
1378                 }
1379
1380                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1381                 break;
1382
1383         case IPPROTO_IPV6:
1384                 proto = htons(ETH_P_IPV6);
1385
1386                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1387                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1388                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1389                         break;
1390                 }
1391
1392                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1393                 break;
1394
1395
1396         case IPPROTO_MPLS:
1397                 proto = htons(ETH_P_MPLS_UC);
1398                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1399                 break;
1400
1401         case IPPROTO_TCP:
1402                 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1403                                        data, nhoff, hlen);
1404                 break;
1405
1406         case IPPROTO_ICMP:
1407         case IPPROTO_ICMPV6:
1408                 __skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1409                                         data, nhoff, hlen);
1410                 break;
1411
1412         default:
1413                 break;
1414         }
1415
1416         if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1417                 __skb_flow_dissect_ports(skb, flow_dissector, target_container,
1418                                          data, nhoff, ip_proto, hlen);
1419
1420         /* Process result of IP proto processing */
1421         switch (fdret) {
1422         case FLOW_DISSECT_RET_PROTO_AGAIN:
1423                 if (skb_flow_dissect_allowed(&num_hdrs))
1424                         goto proto_again;
1425                 break;
1426         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1427                 if (skb_flow_dissect_allowed(&num_hdrs))
1428                         goto ip_proto_again;
1429                 break;
1430         case FLOW_DISSECT_RET_OUT_GOOD:
1431         case FLOW_DISSECT_RET_CONTINUE:
1432                 break;
1433         case FLOW_DISSECT_RET_OUT_BAD:
1434         default:
1435                 goto out_bad;
1436         }
1437
1438 out_good:
1439         ret = true;
1440
1441 out:
1442         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1443         key_basic->n_proto = proto;
1444         key_basic->ip_proto = ip_proto;
1445
1446         return ret;
1447
1448 out_bad:
1449         ret = false;
1450         goto out;
1451 }
1452 EXPORT_SYMBOL(__skb_flow_dissect);
1453
1454 static siphash_key_t hashrnd __read_mostly;
1455 static __always_inline void __flow_hash_secret_init(void)
1456 {
1457         net_get_random_once(&hashrnd, sizeof(hashrnd));
1458 }
1459
1460 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1461 {
1462         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1463         return &flow->FLOW_KEYS_HASH_START_FIELD;
1464 }
1465
1466 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1467 {
1468         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1469
1470         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1471
1472         switch (flow->control.addr_type) {
1473         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1474                 diff -= sizeof(flow->addrs.v4addrs);
1475                 break;
1476         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1477                 diff -= sizeof(flow->addrs.v6addrs);
1478                 break;
1479         case FLOW_DISSECTOR_KEY_TIPC:
1480                 diff -= sizeof(flow->addrs.tipckey);
1481                 break;
1482         }
1483         return sizeof(*flow) - diff;
1484 }
1485
1486 __be32 flow_get_u32_src(const struct flow_keys *flow)
1487 {
1488         switch (flow->control.addr_type) {
1489         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1490                 return flow->addrs.v4addrs.src;
1491         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1492                 return (__force __be32)ipv6_addr_hash(
1493                         &flow->addrs.v6addrs.src);
1494         case FLOW_DISSECTOR_KEY_TIPC:
1495                 return flow->addrs.tipckey.key;
1496         default:
1497                 return 0;
1498         }
1499 }
1500 EXPORT_SYMBOL(flow_get_u32_src);
1501
1502 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1503 {
1504         switch (flow->control.addr_type) {
1505         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1506                 return flow->addrs.v4addrs.dst;
1507         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1508                 return (__force __be32)ipv6_addr_hash(
1509                         &flow->addrs.v6addrs.dst);
1510         default:
1511                 return 0;
1512         }
1513 }
1514 EXPORT_SYMBOL(flow_get_u32_dst);
1515
1516 /* Sort the source and destination IP (and the ports if the IP are the same),
1517  * to have consistent hash within the two directions
1518  */
1519 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1520 {
1521         int addr_diff, i;
1522
1523         switch (keys->control.addr_type) {
1524         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1525                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1526                             (__force u32)keys->addrs.v4addrs.src;
1527                 if ((addr_diff < 0) ||
1528                     (addr_diff == 0 &&
1529                      ((__force u16)keys->ports.dst <
1530                       (__force u16)keys->ports.src))) {
1531                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1532                         swap(keys->ports.src, keys->ports.dst);
1533                 }
1534                 break;
1535         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1536                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1537                                    &keys->addrs.v6addrs.src,
1538                                    sizeof(keys->addrs.v6addrs.dst));
1539                 if ((addr_diff < 0) ||
1540                     (addr_diff == 0 &&
1541                      ((__force u16)keys->ports.dst <
1542                       (__force u16)keys->ports.src))) {
1543                         for (i = 0; i < 4; i++)
1544                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1545                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
1546                         swap(keys->ports.src, keys->ports.dst);
1547                 }
1548                 break;
1549         }
1550 }
1551
1552 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1553                                         const siphash_key_t *keyval)
1554 {
1555         u32 hash;
1556
1557         __flow_hash_consistentify(keys);
1558
1559         hash = siphash(flow_keys_hash_start(keys),
1560                        flow_keys_hash_length(keys), keyval);
1561         if (!hash)
1562                 hash = 1;
1563
1564         return hash;
1565 }
1566
1567 u32 flow_hash_from_keys(struct flow_keys *keys)
1568 {
1569         __flow_hash_secret_init();
1570         return __flow_hash_from_keys(keys, &hashrnd);
1571 }
1572 EXPORT_SYMBOL(flow_hash_from_keys);
1573
1574 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1575                                   struct flow_keys *keys,
1576                                   const siphash_key_t *keyval)
1577 {
1578         skb_flow_dissect_flow_keys(skb, keys,
1579                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1580
1581         return __flow_hash_from_keys(keys, keyval);
1582 }
1583
1584 struct _flow_keys_digest_data {
1585         __be16  n_proto;
1586         u8      ip_proto;
1587         u8      padding;
1588         __be32  ports;
1589         __be32  src;
1590         __be32  dst;
1591 };
1592
1593 void make_flow_keys_digest(struct flow_keys_digest *digest,
1594                            const struct flow_keys *flow)
1595 {
1596         struct _flow_keys_digest_data *data =
1597             (struct _flow_keys_digest_data *)digest;
1598
1599         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1600
1601         memset(digest, 0, sizeof(*digest));
1602
1603         data->n_proto = flow->basic.n_proto;
1604         data->ip_proto = flow->basic.ip_proto;
1605         data->ports = flow->ports.ports;
1606         data->src = flow->addrs.v4addrs.src;
1607         data->dst = flow->addrs.v4addrs.dst;
1608 }
1609 EXPORT_SYMBOL(make_flow_keys_digest);
1610
1611 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1612
1613 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1614 {
1615         struct flow_keys keys;
1616
1617         __flow_hash_secret_init();
1618
1619         memset(&keys, 0, sizeof(keys));
1620         __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1621                            &keys, NULL, 0, 0, 0,
1622                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1623
1624         return __flow_hash_from_keys(&keys, &hashrnd);
1625 }
1626 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1627
1628 /**
1629  * __skb_get_hash: calculate a flow hash
1630  * @skb: sk_buff to calculate flow hash from
1631  *
1632  * This function calculates a flow hash based on src/dst addresses
1633  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1634  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1635  * if hash is a canonical 4-tuple hash over transport ports.
1636  */
1637 void __skb_get_hash(struct sk_buff *skb)
1638 {
1639         struct flow_keys keys;
1640         u32 hash;
1641
1642         __flow_hash_secret_init();
1643
1644         hash = ___skb_get_hash(skb, &keys, &hashrnd);
1645
1646         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1647 }
1648 EXPORT_SYMBOL(__skb_get_hash);
1649
1650 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1651                            const siphash_key_t *perturb)
1652 {
1653         struct flow_keys keys;
1654
1655         return ___skb_get_hash(skb, &keys, perturb);
1656 }
1657 EXPORT_SYMBOL(skb_get_hash_perturb);
1658
1659 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1660                    const struct flow_keys_basic *keys, int hlen)
1661 {
1662         u32 poff = keys->control.thoff;
1663
1664         /* skip L4 headers for fragments after the first */
1665         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1666             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1667                 return poff;
1668
1669         switch (keys->basic.ip_proto) {
1670         case IPPROTO_TCP: {
1671                 /* access doff as u8 to avoid unaligned access */
1672                 const u8 *doff;
1673                 u8 _doff;
1674
1675                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1676                                             data, hlen, &_doff);
1677                 if (!doff)
1678                         return poff;
1679
1680                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1681                 break;
1682         }
1683         case IPPROTO_UDP:
1684         case IPPROTO_UDPLITE:
1685                 poff += sizeof(struct udphdr);
1686                 break;
1687         /* For the rest, we do not really care about header
1688          * extensions at this point for now.
1689          */
1690         case IPPROTO_ICMP:
1691                 poff += sizeof(struct icmphdr);
1692                 break;
1693         case IPPROTO_ICMPV6:
1694                 poff += sizeof(struct icmp6hdr);
1695                 break;
1696         case IPPROTO_IGMP:
1697                 poff += sizeof(struct igmphdr);
1698                 break;
1699         case IPPROTO_DCCP:
1700                 poff += sizeof(struct dccp_hdr);
1701                 break;
1702         case IPPROTO_SCTP:
1703                 poff += sizeof(struct sctphdr);
1704                 break;
1705         }
1706
1707         return poff;
1708 }
1709
1710 /**
1711  * skb_get_poff - get the offset to the payload
1712  * @skb: sk_buff to get the payload offset from
1713  *
1714  * The function will get the offset to the payload as far as it could
1715  * be dissected.  The main user is currently BPF, so that we can dynamically
1716  * truncate packets without needing to push actual payload to the user
1717  * space and can analyze headers only, instead.
1718  */
1719 u32 skb_get_poff(const struct sk_buff *skb)
1720 {
1721         struct flow_keys_basic keys;
1722
1723         if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1724                                               NULL, 0, 0, 0, 0))
1725                 return 0;
1726
1727         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1728 }
1729
1730 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1731 {
1732         memset(keys, 0, sizeof(*keys));
1733
1734         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1735             sizeof(keys->addrs.v6addrs.src));
1736         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1737             sizeof(keys->addrs.v6addrs.dst));
1738         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1739         keys->ports.src = fl6->fl6_sport;
1740         keys->ports.dst = fl6->fl6_dport;
1741         keys->keyid.keyid = fl6->fl6_gre_key;
1742         keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1743         keys->basic.ip_proto = fl6->flowi6_proto;
1744
1745         return flow_hash_from_keys(keys);
1746 }
1747 EXPORT_SYMBOL(__get_hash_from_flowi6);
1748
1749 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1750         {
1751                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1752                 .offset = offsetof(struct flow_keys, control),
1753         },
1754         {
1755                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1756                 .offset = offsetof(struct flow_keys, basic),
1757         },
1758         {
1759                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1760                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1761         },
1762         {
1763                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1764                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1765         },
1766         {
1767                 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1768                 .offset = offsetof(struct flow_keys, addrs.tipckey),
1769         },
1770         {
1771                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1772                 .offset = offsetof(struct flow_keys, ports),
1773         },
1774         {
1775                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1776                 .offset = offsetof(struct flow_keys, vlan),
1777         },
1778         {
1779                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1780                 .offset = offsetof(struct flow_keys, tags),
1781         },
1782         {
1783                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1784                 .offset = offsetof(struct flow_keys, keyid),
1785         },
1786 };
1787
1788 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1789         {
1790                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1791                 .offset = offsetof(struct flow_keys, control),
1792         },
1793         {
1794                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1795                 .offset = offsetof(struct flow_keys, basic),
1796         },
1797         {
1798                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1799                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1800         },
1801         {
1802                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1803                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1804         },
1805         {
1806                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1807                 .offset = offsetof(struct flow_keys, ports),
1808         },
1809 };
1810
1811 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1812         {
1813                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1814                 .offset = offsetof(struct flow_keys, control),
1815         },
1816         {
1817                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1818                 .offset = offsetof(struct flow_keys, basic),
1819         },
1820 };
1821
1822 struct flow_dissector flow_keys_dissector __read_mostly;
1823 EXPORT_SYMBOL(flow_keys_dissector);
1824
1825 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1826 EXPORT_SYMBOL(flow_keys_basic_dissector);
1827
1828 static int __init init_default_flow_dissectors(void)
1829 {
1830         skb_flow_dissector_init(&flow_keys_dissector,
1831                                 flow_keys_dissector_keys,
1832                                 ARRAY_SIZE(flow_keys_dissector_keys));
1833         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1834                                 flow_keys_dissector_symmetric_keys,
1835                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1836         skb_flow_dissector_init(&flow_keys_basic_dissector,
1837                                 flow_keys_basic_dissector_keys,
1838                                 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1839         return 0;
1840 }
1841
1842 core_initcall(init_default_flow_dissectors);