Merge tag 'acpi-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / net / core / flow_dissector.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <linux/ptp_classify.h>
27 #include <net/flow_dissector.h>
28 #include <scsi/fc/fc_fcoe.h>
29 #include <uapi/linux/batadv_packet.h>
30 #include <linux/bpf.h>
31 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
32 #include <net/netfilter/nf_conntrack_core.h>
33 #include <net/netfilter/nf_conntrack_labels.h>
34 #endif
35 #include <linux/bpf-netns.h>
36
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38                               enum flow_dissector_key_id key_id)
39 {
40         flow_dissector->used_keys |= (1 << key_id);
41 }
42
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44                              const struct flow_dissector_key *key,
45                              unsigned int key_count)
46 {
47         unsigned int i;
48
49         memset(flow_dissector, 0, sizeof(*flow_dissector));
50
51         for (i = 0; i < key_count; i++, key++) {
52                 /* User should make sure that every key target offset is within
53                  * boundaries of unsigned short.
54                  */
55                 BUG_ON(key->offset > USHRT_MAX);
56                 BUG_ON(dissector_uses_key(flow_dissector,
57                                           key->key_id));
58
59                 dissector_set_key(flow_dissector, key->key_id);
60                 flow_dissector->offset[key->key_id] = key->offset;
61         }
62
63         /* Ensure that the dissector always includes control and basic key.
64          * That way we are able to avoid handling lack of these in fast path.
65          */
66         BUG_ON(!dissector_uses_key(flow_dissector,
67                                    FLOW_DISSECTOR_KEY_CONTROL));
68         BUG_ON(!dissector_uses_key(flow_dissector,
69                                    FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72
73 #ifdef CONFIG_BPF_SYSCALL
74 int flow_dissector_bpf_prog_attach_check(struct net *net,
75                                          struct bpf_prog *prog)
76 {
77         enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
78
79         if (net == &init_net) {
80                 /* BPF flow dissector in the root namespace overrides
81                  * any per-net-namespace one. When attaching to root,
82                  * make sure we don't have any BPF program attached
83                  * to the non-root namespaces.
84                  */
85                 struct net *ns;
86
87                 for_each_net(ns) {
88                         if (ns == &init_net)
89                                 continue;
90                         if (rcu_access_pointer(ns->bpf.run_array[type]))
91                                 return -EEXIST;
92                 }
93         } else {
94                 /* Make sure root flow dissector is not attached
95                  * when attaching to the non-root namespace.
96                  */
97                 if (rcu_access_pointer(init_net.bpf.run_array[type]))
98                         return -EEXIST;
99         }
100
101         return 0;
102 }
103 #endif /* CONFIG_BPF_SYSCALL */
104
105 /**
106  * __skb_flow_get_ports - extract the upper layer ports and return them
107  * @skb: sk_buff to extract the ports from
108  * @thoff: transport header offset
109  * @ip_proto: protocol for which to get port offset
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
112  *
113  * The function will try to retrieve the ports at offset thoff + poff where poff
114  * is the protocol port offset returned from proto_ports_offset
115  */
116 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
117                             const void *data, int hlen)
118 {
119         int poff = proto_ports_offset(ip_proto);
120
121         if (!data) {
122                 data = skb->data;
123                 hlen = skb_headlen(skb);
124         }
125
126         if (poff >= 0) {
127                 __be32 *ports, _ports;
128
129                 ports = __skb_header_pointer(skb, thoff + poff,
130                                              sizeof(_ports), data, hlen, &_ports);
131                 if (ports)
132                         return *ports;
133         }
134
135         return 0;
136 }
137 EXPORT_SYMBOL(__skb_flow_get_ports);
138
139 static bool icmp_has_id(u8 type)
140 {
141         switch (type) {
142         case ICMP_ECHO:
143         case ICMP_ECHOREPLY:
144         case ICMP_TIMESTAMP:
145         case ICMP_TIMESTAMPREPLY:
146         case ICMPV6_ECHO_REQUEST:
147         case ICMPV6_ECHO_REPLY:
148                 return true;
149         }
150
151         return false;
152 }
153
154 /**
155  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
156  * @skb: sk_buff to extract from
157  * @key_icmp: struct flow_dissector_key_icmp to fill
158  * @data: raw buffer pointer to the packet
159  * @thoff: offset to extract at
160  * @hlen: packet header length
161  */
162 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
163                            struct flow_dissector_key_icmp *key_icmp,
164                            const void *data, int thoff, int hlen)
165 {
166         struct icmphdr *ih, _ih;
167
168         ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
169         if (!ih)
170                 return;
171
172         key_icmp->type = ih->type;
173         key_icmp->code = ih->code;
174
175         /* As we use 0 to signal that the Id field is not present,
176          * avoid confusion with packets without such field
177          */
178         if (icmp_has_id(ih->type))
179                 key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1;
180         else
181                 key_icmp->id = 0;
182 }
183 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
184
185 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
186  * using skb_flow_get_icmp_tci().
187  */
188 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
189                                     struct flow_dissector *flow_dissector,
190                                     void *target_container, const void *data,
191                                     int thoff, int hlen)
192 {
193         struct flow_dissector_key_icmp *key_icmp;
194
195         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
196                 return;
197
198         key_icmp = skb_flow_dissector_target(flow_dissector,
199                                              FLOW_DISSECTOR_KEY_ICMP,
200                                              target_container);
201
202         skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
203 }
204
205 void skb_flow_dissect_meta(const struct sk_buff *skb,
206                            struct flow_dissector *flow_dissector,
207                            void *target_container)
208 {
209         struct flow_dissector_key_meta *meta;
210
211         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
212                 return;
213
214         meta = skb_flow_dissector_target(flow_dissector,
215                                          FLOW_DISSECTOR_KEY_META,
216                                          target_container);
217         meta->ingress_ifindex = skb->skb_iif;
218 }
219 EXPORT_SYMBOL(skb_flow_dissect_meta);
220
221 static void
222 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
223                                    struct flow_dissector *flow_dissector,
224                                    void *target_container)
225 {
226         struct flow_dissector_key_control *ctrl;
227
228         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
229                 return;
230
231         ctrl = skb_flow_dissector_target(flow_dissector,
232                                          FLOW_DISSECTOR_KEY_ENC_CONTROL,
233                                          target_container);
234         ctrl->addr_type = type;
235 }
236
237 void
238 skb_flow_dissect_ct(const struct sk_buff *skb,
239                     struct flow_dissector *flow_dissector,
240                     void *target_container, u16 *ctinfo_map,
241                     size_t mapsize, bool post_ct)
242 {
243 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
244         struct flow_dissector_key_ct *key;
245         enum ip_conntrack_info ctinfo;
246         struct nf_conn_labels *cl;
247         struct nf_conn *ct;
248
249         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
250                 return;
251
252         ct = nf_ct_get(skb, &ctinfo);
253         if (!ct && !post_ct)
254                 return;
255
256         key = skb_flow_dissector_target(flow_dissector,
257                                         FLOW_DISSECTOR_KEY_CT,
258                                         target_container);
259
260         if (!ct) {
261                 key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
262                                 TCA_FLOWER_KEY_CT_FLAGS_INVALID;
263                 return;
264         }
265
266         if (ctinfo < mapsize)
267                 key->ct_state = ctinfo_map[ctinfo];
268 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
269         key->ct_zone = ct->zone.id;
270 #endif
271 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
272         key->ct_mark = ct->mark;
273 #endif
274
275         cl = nf_ct_labels_find(ct);
276         if (cl)
277                 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
278 #endif /* CONFIG_NF_CONNTRACK */
279 }
280 EXPORT_SYMBOL(skb_flow_dissect_ct);
281
282 void
283 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
284                              struct flow_dissector *flow_dissector,
285                              void *target_container)
286 {
287         struct ip_tunnel_info *info;
288         struct ip_tunnel_key *key;
289
290         /* A quick check to see if there might be something to do. */
291         if (!dissector_uses_key(flow_dissector,
292                                 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
293             !dissector_uses_key(flow_dissector,
294                                 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
295             !dissector_uses_key(flow_dissector,
296                                 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
297             !dissector_uses_key(flow_dissector,
298                                 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
299             !dissector_uses_key(flow_dissector,
300                                 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
301             !dissector_uses_key(flow_dissector,
302                                 FLOW_DISSECTOR_KEY_ENC_IP) &&
303             !dissector_uses_key(flow_dissector,
304                                 FLOW_DISSECTOR_KEY_ENC_OPTS))
305                 return;
306
307         info = skb_tunnel_info(skb);
308         if (!info)
309                 return;
310
311         key = &info->key;
312
313         switch (ip_tunnel_info_af(info)) {
314         case AF_INET:
315                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
316                                                    flow_dissector,
317                                                    target_container);
318                 if (dissector_uses_key(flow_dissector,
319                                        FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
320                         struct flow_dissector_key_ipv4_addrs *ipv4;
321
322                         ipv4 = skb_flow_dissector_target(flow_dissector,
323                                                          FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
324                                                          target_container);
325                         ipv4->src = key->u.ipv4.src;
326                         ipv4->dst = key->u.ipv4.dst;
327                 }
328                 break;
329         case AF_INET6:
330                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
331                                                    flow_dissector,
332                                                    target_container);
333                 if (dissector_uses_key(flow_dissector,
334                                        FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
335                         struct flow_dissector_key_ipv6_addrs *ipv6;
336
337                         ipv6 = skb_flow_dissector_target(flow_dissector,
338                                                          FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
339                                                          target_container);
340                         ipv6->src = key->u.ipv6.src;
341                         ipv6->dst = key->u.ipv6.dst;
342                 }
343                 break;
344         }
345
346         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
347                 struct flow_dissector_key_keyid *keyid;
348
349                 keyid = skb_flow_dissector_target(flow_dissector,
350                                                   FLOW_DISSECTOR_KEY_ENC_KEYID,
351                                                   target_container);
352                 keyid->keyid = tunnel_id_to_key32(key->tun_id);
353         }
354
355         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
356                 struct flow_dissector_key_ports *tp;
357
358                 tp = skb_flow_dissector_target(flow_dissector,
359                                                FLOW_DISSECTOR_KEY_ENC_PORTS,
360                                                target_container);
361                 tp->src = key->tp_src;
362                 tp->dst = key->tp_dst;
363         }
364
365         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
366                 struct flow_dissector_key_ip *ip;
367
368                 ip = skb_flow_dissector_target(flow_dissector,
369                                                FLOW_DISSECTOR_KEY_ENC_IP,
370                                                target_container);
371                 ip->tos = key->tos;
372                 ip->ttl = key->ttl;
373         }
374
375         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
376                 struct flow_dissector_key_enc_opts *enc_opt;
377
378                 enc_opt = skb_flow_dissector_target(flow_dissector,
379                                                     FLOW_DISSECTOR_KEY_ENC_OPTS,
380                                                     target_container);
381
382                 if (info->options_len) {
383                         enc_opt->len = info->options_len;
384                         ip_tunnel_info_opts_get(enc_opt->data, info);
385                         enc_opt->dst_opt_type = info->key.tun_flags &
386                                                 TUNNEL_OPTIONS_PRESENT;
387                 }
388         }
389 }
390 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
391
392 void skb_flow_dissect_hash(const struct sk_buff *skb,
393                            struct flow_dissector *flow_dissector,
394                            void *target_container)
395 {
396         struct flow_dissector_key_hash *key;
397
398         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
399                 return;
400
401         key = skb_flow_dissector_target(flow_dissector,
402                                         FLOW_DISSECTOR_KEY_HASH,
403                                         target_container);
404
405         key->hash = skb_get_hash_raw(skb);
406 }
407 EXPORT_SYMBOL(skb_flow_dissect_hash);
408
409 static enum flow_dissect_ret
410 __skb_flow_dissect_mpls(const struct sk_buff *skb,
411                         struct flow_dissector *flow_dissector,
412                         void *target_container, const void *data, int nhoff,
413                         int hlen, int lse_index, bool *entropy_label)
414 {
415         struct mpls_label *hdr, _hdr;
416         u32 entry, label, bos;
417
418         if (!dissector_uses_key(flow_dissector,
419                                 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
420             !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
421                 return FLOW_DISSECT_RET_OUT_GOOD;
422
423         if (lse_index >= FLOW_DIS_MPLS_MAX)
424                 return FLOW_DISSECT_RET_OUT_GOOD;
425
426         hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
427                                    hlen, &_hdr);
428         if (!hdr)
429                 return FLOW_DISSECT_RET_OUT_BAD;
430
431         entry = ntohl(hdr->entry);
432         label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
433         bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
434
435         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
436                 struct flow_dissector_key_mpls *key_mpls;
437                 struct flow_dissector_mpls_lse *lse;
438
439                 key_mpls = skb_flow_dissector_target(flow_dissector,
440                                                      FLOW_DISSECTOR_KEY_MPLS,
441                                                      target_container);
442                 lse = &key_mpls->ls[lse_index];
443
444                 lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
445                 lse->mpls_bos = bos;
446                 lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
447                 lse->mpls_label = label;
448                 dissector_set_mpls_lse(key_mpls, lse_index);
449         }
450
451         if (*entropy_label &&
452             dissector_uses_key(flow_dissector,
453                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
454                 struct flow_dissector_key_keyid *key_keyid;
455
456                 key_keyid = skb_flow_dissector_target(flow_dissector,
457                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
458                                                       target_container);
459                 key_keyid->keyid = cpu_to_be32(label);
460         }
461
462         *entropy_label = label == MPLS_LABEL_ENTROPY;
463
464         return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
465 }
466
467 static enum flow_dissect_ret
468 __skb_flow_dissect_arp(const struct sk_buff *skb,
469                        struct flow_dissector *flow_dissector,
470                        void *target_container, const void *data,
471                        int nhoff, int hlen)
472 {
473         struct flow_dissector_key_arp *key_arp;
474         struct {
475                 unsigned char ar_sha[ETH_ALEN];
476                 unsigned char ar_sip[4];
477                 unsigned char ar_tha[ETH_ALEN];
478                 unsigned char ar_tip[4];
479         } *arp_eth, _arp_eth;
480         const struct arphdr *arp;
481         struct arphdr _arp;
482
483         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
484                 return FLOW_DISSECT_RET_OUT_GOOD;
485
486         arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
487                                    hlen, &_arp);
488         if (!arp)
489                 return FLOW_DISSECT_RET_OUT_BAD;
490
491         if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
492             arp->ar_pro != htons(ETH_P_IP) ||
493             arp->ar_hln != ETH_ALEN ||
494             arp->ar_pln != 4 ||
495             (arp->ar_op != htons(ARPOP_REPLY) &&
496              arp->ar_op != htons(ARPOP_REQUEST)))
497                 return FLOW_DISSECT_RET_OUT_BAD;
498
499         arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
500                                        sizeof(_arp_eth), data,
501                                        hlen, &_arp_eth);
502         if (!arp_eth)
503                 return FLOW_DISSECT_RET_OUT_BAD;
504
505         key_arp = skb_flow_dissector_target(flow_dissector,
506                                             FLOW_DISSECTOR_KEY_ARP,
507                                             target_container);
508
509         memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
510         memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
511
512         /* Only store the lower byte of the opcode;
513          * this covers ARPOP_REPLY and ARPOP_REQUEST.
514          */
515         key_arp->op = ntohs(arp->ar_op) & 0xff;
516
517         ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
518         ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
519
520         return FLOW_DISSECT_RET_OUT_GOOD;
521 }
522
523 static enum flow_dissect_ret
524 __skb_flow_dissect_gre(const struct sk_buff *skb,
525                        struct flow_dissector_key_control *key_control,
526                        struct flow_dissector *flow_dissector,
527                        void *target_container, const void *data,
528                        __be16 *p_proto, int *p_nhoff, int *p_hlen,
529                        unsigned int flags)
530 {
531         struct flow_dissector_key_keyid *key_keyid;
532         struct gre_base_hdr *hdr, _hdr;
533         int offset = 0;
534         u16 gre_ver;
535
536         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
537                                    data, *p_hlen, &_hdr);
538         if (!hdr)
539                 return FLOW_DISSECT_RET_OUT_BAD;
540
541         /* Only look inside GRE without routing */
542         if (hdr->flags & GRE_ROUTING)
543                 return FLOW_DISSECT_RET_OUT_GOOD;
544
545         /* Only look inside GRE for version 0 and 1 */
546         gre_ver = ntohs(hdr->flags & GRE_VERSION);
547         if (gre_ver > 1)
548                 return FLOW_DISSECT_RET_OUT_GOOD;
549
550         *p_proto = hdr->protocol;
551         if (gre_ver) {
552                 /* Version1 must be PPTP, and check the flags */
553                 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
554                         return FLOW_DISSECT_RET_OUT_GOOD;
555         }
556
557         offset += sizeof(struct gre_base_hdr);
558
559         if (hdr->flags & GRE_CSUM)
560                 offset += sizeof_field(struct gre_full_hdr, csum) +
561                           sizeof_field(struct gre_full_hdr, reserved1);
562
563         if (hdr->flags & GRE_KEY) {
564                 const __be32 *keyid;
565                 __be32 _keyid;
566
567                 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
568                                              sizeof(_keyid),
569                                              data, *p_hlen, &_keyid);
570                 if (!keyid)
571                         return FLOW_DISSECT_RET_OUT_BAD;
572
573                 if (dissector_uses_key(flow_dissector,
574                                        FLOW_DISSECTOR_KEY_GRE_KEYID)) {
575                         key_keyid = skb_flow_dissector_target(flow_dissector,
576                                                               FLOW_DISSECTOR_KEY_GRE_KEYID,
577                                                               target_container);
578                         if (gre_ver == 0)
579                                 key_keyid->keyid = *keyid;
580                         else
581                                 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
582                 }
583                 offset += sizeof_field(struct gre_full_hdr, key);
584         }
585
586         if (hdr->flags & GRE_SEQ)
587                 offset += sizeof_field(struct pptp_gre_header, seq);
588
589         if (gre_ver == 0) {
590                 if (*p_proto == htons(ETH_P_TEB)) {
591                         const struct ethhdr *eth;
592                         struct ethhdr _eth;
593
594                         eth = __skb_header_pointer(skb, *p_nhoff + offset,
595                                                    sizeof(_eth),
596                                                    data, *p_hlen, &_eth);
597                         if (!eth)
598                                 return FLOW_DISSECT_RET_OUT_BAD;
599                         *p_proto = eth->h_proto;
600                         offset += sizeof(*eth);
601
602                         /* Cap headers that we access via pointers at the
603                          * end of the Ethernet header as our maximum alignment
604                          * at that point is only 2 bytes.
605                          */
606                         if (NET_IP_ALIGN)
607                                 *p_hlen = *p_nhoff + offset;
608                 }
609         } else { /* version 1, must be PPTP */
610                 u8 _ppp_hdr[PPP_HDRLEN];
611                 u8 *ppp_hdr;
612
613                 if (hdr->flags & GRE_ACK)
614                         offset += sizeof_field(struct pptp_gre_header, ack);
615
616                 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
617                                                sizeof(_ppp_hdr),
618                                                data, *p_hlen, _ppp_hdr);
619                 if (!ppp_hdr)
620                         return FLOW_DISSECT_RET_OUT_BAD;
621
622                 switch (PPP_PROTOCOL(ppp_hdr)) {
623                 case PPP_IP:
624                         *p_proto = htons(ETH_P_IP);
625                         break;
626                 case PPP_IPV6:
627                         *p_proto = htons(ETH_P_IPV6);
628                         break;
629                 default:
630                         /* Could probably catch some more like MPLS */
631                         break;
632                 }
633
634                 offset += PPP_HDRLEN;
635         }
636
637         *p_nhoff += offset;
638         key_control->flags |= FLOW_DIS_ENCAPSULATION;
639         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
640                 return FLOW_DISSECT_RET_OUT_GOOD;
641
642         return FLOW_DISSECT_RET_PROTO_AGAIN;
643 }
644
645 /**
646  * __skb_flow_dissect_batadv() - dissect batman-adv header
647  * @skb: sk_buff to with the batman-adv header
648  * @key_control: flow dissectors control key
649  * @data: raw buffer pointer to the packet, if NULL use skb->data
650  * @p_proto: pointer used to update the protocol to process next
651  * @p_nhoff: pointer used to update inner network header offset
652  * @hlen: packet header length
653  * @flags: any combination of FLOW_DISSECTOR_F_*
654  *
655  * ETH_P_BATMAN packets are tried to be dissected. Only
656  * &struct batadv_unicast packets are actually processed because they contain an
657  * inner ethernet header and are usually followed by actual network header. This
658  * allows the flow dissector to continue processing the packet.
659  *
660  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
661  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
662  *  otherwise FLOW_DISSECT_RET_OUT_BAD
663  */
664 static enum flow_dissect_ret
665 __skb_flow_dissect_batadv(const struct sk_buff *skb,
666                           struct flow_dissector_key_control *key_control,
667                           const void *data, __be16 *p_proto, int *p_nhoff,
668                           int hlen, unsigned int flags)
669 {
670         struct {
671                 struct batadv_unicast_packet batadv_unicast;
672                 struct ethhdr eth;
673         } *hdr, _hdr;
674
675         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
676                                    &_hdr);
677         if (!hdr)
678                 return FLOW_DISSECT_RET_OUT_BAD;
679
680         if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
681                 return FLOW_DISSECT_RET_OUT_BAD;
682
683         if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
684                 return FLOW_DISSECT_RET_OUT_BAD;
685
686         *p_proto = hdr->eth.h_proto;
687         *p_nhoff += sizeof(*hdr);
688
689         key_control->flags |= FLOW_DIS_ENCAPSULATION;
690         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
691                 return FLOW_DISSECT_RET_OUT_GOOD;
692
693         return FLOW_DISSECT_RET_PROTO_AGAIN;
694 }
695
696 static void
697 __skb_flow_dissect_tcp(const struct sk_buff *skb,
698                        struct flow_dissector *flow_dissector,
699                        void *target_container, const void *data,
700                        int thoff, int hlen)
701 {
702         struct flow_dissector_key_tcp *key_tcp;
703         struct tcphdr *th, _th;
704
705         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
706                 return;
707
708         th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
709         if (!th)
710                 return;
711
712         if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
713                 return;
714
715         key_tcp = skb_flow_dissector_target(flow_dissector,
716                                             FLOW_DISSECTOR_KEY_TCP,
717                                             target_container);
718         key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
719 }
720
721 static void
722 __skb_flow_dissect_ports(const struct sk_buff *skb,
723                          struct flow_dissector *flow_dissector,
724                          void *target_container, const void *data,
725                          int nhoff, u8 ip_proto, int hlen)
726 {
727         enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
728         struct flow_dissector_key_ports *key_ports;
729
730         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
731                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
732         else if (dissector_uses_key(flow_dissector,
733                                     FLOW_DISSECTOR_KEY_PORTS_RANGE))
734                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
735
736         if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
737                 return;
738
739         key_ports = skb_flow_dissector_target(flow_dissector,
740                                               dissector_ports,
741                                               target_container);
742         key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
743                                                 data, hlen);
744 }
745
746 static void
747 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
748                         struct flow_dissector *flow_dissector,
749                         void *target_container, const void *data,
750                         const struct iphdr *iph)
751 {
752         struct flow_dissector_key_ip *key_ip;
753
754         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
755                 return;
756
757         key_ip = skb_flow_dissector_target(flow_dissector,
758                                            FLOW_DISSECTOR_KEY_IP,
759                                            target_container);
760         key_ip->tos = iph->tos;
761         key_ip->ttl = iph->ttl;
762 }
763
764 static void
765 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
766                         struct flow_dissector *flow_dissector,
767                         void *target_container, const void *data,
768                         const struct ipv6hdr *iph)
769 {
770         struct flow_dissector_key_ip *key_ip;
771
772         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
773                 return;
774
775         key_ip = skb_flow_dissector_target(flow_dissector,
776                                            FLOW_DISSECTOR_KEY_IP,
777                                            target_container);
778         key_ip->tos = ipv6_get_dsfield(iph);
779         key_ip->ttl = iph->hop_limit;
780 }
781
782 /* Maximum number of protocol headers that can be parsed in
783  * __skb_flow_dissect
784  */
785 #define MAX_FLOW_DISSECT_HDRS   15
786
787 static bool skb_flow_dissect_allowed(int *num_hdrs)
788 {
789         ++*num_hdrs;
790
791         return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
792 }
793
794 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
795                                      struct flow_dissector *flow_dissector,
796                                      void *target_container)
797 {
798         struct flow_dissector_key_ports *key_ports = NULL;
799         struct flow_dissector_key_control *key_control;
800         struct flow_dissector_key_basic *key_basic;
801         struct flow_dissector_key_addrs *key_addrs;
802         struct flow_dissector_key_tags *key_tags;
803
804         key_control = skb_flow_dissector_target(flow_dissector,
805                                                 FLOW_DISSECTOR_KEY_CONTROL,
806                                                 target_container);
807         key_control->thoff = flow_keys->thoff;
808         if (flow_keys->is_frag)
809                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
810         if (flow_keys->is_first_frag)
811                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
812         if (flow_keys->is_encap)
813                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
814
815         key_basic = skb_flow_dissector_target(flow_dissector,
816                                               FLOW_DISSECTOR_KEY_BASIC,
817                                               target_container);
818         key_basic->n_proto = flow_keys->n_proto;
819         key_basic->ip_proto = flow_keys->ip_proto;
820
821         if (flow_keys->addr_proto == ETH_P_IP &&
822             dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
823                 key_addrs = skb_flow_dissector_target(flow_dissector,
824                                                       FLOW_DISSECTOR_KEY_IPV4_ADDRS,
825                                                       target_container);
826                 key_addrs->v4addrs.src = flow_keys->ipv4_src;
827                 key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
828                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
829         } else if (flow_keys->addr_proto == ETH_P_IPV6 &&
830                    dissector_uses_key(flow_dissector,
831                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
832                 key_addrs = skb_flow_dissector_target(flow_dissector,
833                                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS,
834                                                       target_container);
835                 memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src,
836                        sizeof(key_addrs->v6addrs.src));
837                 memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst,
838                        sizeof(key_addrs->v6addrs.dst));
839                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
840         }
841
842         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
843                 key_ports = skb_flow_dissector_target(flow_dissector,
844                                                       FLOW_DISSECTOR_KEY_PORTS,
845                                                       target_container);
846         else if (dissector_uses_key(flow_dissector,
847                                     FLOW_DISSECTOR_KEY_PORTS_RANGE))
848                 key_ports = skb_flow_dissector_target(flow_dissector,
849                                                       FLOW_DISSECTOR_KEY_PORTS_RANGE,
850                                                       target_container);
851
852         if (key_ports) {
853                 key_ports->src = flow_keys->sport;
854                 key_ports->dst = flow_keys->dport;
855         }
856
857         if (dissector_uses_key(flow_dissector,
858                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
859                 key_tags = skb_flow_dissector_target(flow_dissector,
860                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
861                                                      target_container);
862                 key_tags->flow_label = ntohl(flow_keys->flow_label);
863         }
864 }
865
866 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
867                       __be16 proto, int nhoff, int hlen, unsigned int flags)
868 {
869         struct bpf_flow_keys *flow_keys = ctx->flow_keys;
870         u32 result;
871
872         /* Pass parameters to the BPF program */
873         memset(flow_keys, 0, sizeof(*flow_keys));
874         flow_keys->n_proto = proto;
875         flow_keys->nhoff = nhoff;
876         flow_keys->thoff = flow_keys->nhoff;
877
878         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
879                      (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
880         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
881                      (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
882         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
883                      (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
884         flow_keys->flags = flags;
885
886         result = bpf_prog_run_pin_on_cpu(prog, ctx);
887
888         flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
889         flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
890                                    flow_keys->nhoff, hlen);
891
892         return result == BPF_OK;
893 }
894
895 /**
896  * __skb_flow_dissect - extract the flow_keys struct and return it
897  * @net: associated network namespace, derived from @skb if NULL
898  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
899  * @flow_dissector: list of keys to dissect
900  * @target_container: target structure to put dissected values into
901  * @data: raw buffer pointer to the packet, if NULL use skb->data
902  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
903  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
904  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
905  * @flags: flags that control the dissection process, e.g.
906  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
907  *
908  * The function will try to retrieve individual keys into target specified
909  * by flow_dissector from either the skbuff or a raw buffer specified by the
910  * rest parameters.
911  *
912  * Caller must take care of zeroing target container memory.
913  */
914 bool __skb_flow_dissect(const struct net *net,
915                         const struct sk_buff *skb,
916                         struct flow_dissector *flow_dissector,
917                         void *target_container, const void *data,
918                         __be16 proto, int nhoff, int hlen, unsigned int flags)
919 {
920         struct flow_dissector_key_control *key_control;
921         struct flow_dissector_key_basic *key_basic;
922         struct flow_dissector_key_addrs *key_addrs;
923         struct flow_dissector_key_tags *key_tags;
924         struct flow_dissector_key_vlan *key_vlan;
925         enum flow_dissect_ret fdret;
926         enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
927         bool mpls_el = false;
928         int mpls_lse = 0;
929         int num_hdrs = 0;
930         u8 ip_proto = 0;
931         bool ret;
932
933         if (!data) {
934                 data = skb->data;
935                 proto = skb_vlan_tag_present(skb) ?
936                          skb->vlan_proto : skb->protocol;
937                 nhoff = skb_network_offset(skb);
938                 hlen = skb_headlen(skb);
939 #if IS_ENABLED(CONFIG_NET_DSA)
940                 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
941                              proto == htons(ETH_P_XDSA))) {
942                         const struct dsa_device_ops *ops;
943                         int offset = 0;
944
945                         ops = skb->dev->dsa_ptr->tag_ops;
946                         /* Tail taggers don't break flow dissection */
947                         if (!ops->tail_tag) {
948                                 if (ops->flow_dissect)
949                                         ops->flow_dissect(skb, &proto, &offset);
950                                 else
951                                         dsa_tag_generic_flow_dissect(skb,
952                                                                      &proto,
953                                                                      &offset);
954                                 hlen -= offset;
955                                 nhoff += offset;
956                         }
957                 }
958 #endif
959         }
960
961         /* It is ensured by skb_flow_dissector_init() that control key will
962          * be always present.
963          */
964         key_control = skb_flow_dissector_target(flow_dissector,
965                                                 FLOW_DISSECTOR_KEY_CONTROL,
966                                                 target_container);
967
968         /* It is ensured by skb_flow_dissector_init() that basic key will
969          * be always present.
970          */
971         key_basic = skb_flow_dissector_target(flow_dissector,
972                                               FLOW_DISSECTOR_KEY_BASIC,
973                                               target_container);
974
975         if (skb) {
976                 if (!net) {
977                         if (skb->dev)
978                                 net = dev_net(skb->dev);
979                         else if (skb->sk)
980                                 net = sock_net(skb->sk);
981                 }
982         }
983
984         WARN_ON_ONCE(!net);
985         if (net) {
986                 enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
987                 struct bpf_prog_array *run_array;
988
989                 rcu_read_lock();
990                 run_array = rcu_dereference(init_net.bpf.run_array[type]);
991                 if (!run_array)
992                         run_array = rcu_dereference(net->bpf.run_array[type]);
993
994                 if (run_array) {
995                         struct bpf_flow_keys flow_keys;
996                         struct bpf_flow_dissector ctx = {
997                                 .flow_keys = &flow_keys,
998                                 .data = data,
999                                 .data_end = data + hlen,
1000                         };
1001                         __be16 n_proto = proto;
1002                         struct bpf_prog *prog;
1003
1004                         if (skb) {
1005                                 ctx.skb = skb;
1006                                 /* we can't use 'proto' in the skb case
1007                                  * because it might be set to skb->vlan_proto
1008                                  * which has been pulled from the data
1009                                  */
1010                                 n_proto = skb->protocol;
1011                         }
1012
1013                         prog = READ_ONCE(run_array->items[0].prog);
1014                         ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
1015                                                hlen, flags);
1016                         __skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1017                                                  target_container);
1018                         rcu_read_unlock();
1019                         return ret;
1020                 }
1021                 rcu_read_unlock();
1022         }
1023
1024         if (dissector_uses_key(flow_dissector,
1025                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1026                 struct ethhdr *eth = eth_hdr(skb);
1027                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
1028
1029                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1030                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
1031                                                           target_container);
1032                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1033         }
1034
1035 proto_again:
1036         fdret = FLOW_DISSECT_RET_CONTINUE;
1037
1038         switch (proto) {
1039         case htons(ETH_P_IP): {
1040                 const struct iphdr *iph;
1041                 struct iphdr _iph;
1042
1043                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1044                 if (!iph || iph->ihl < 5) {
1045                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1046                         break;
1047                 }
1048
1049                 nhoff += iph->ihl * 4;
1050
1051                 ip_proto = iph->protocol;
1052
1053                 if (dissector_uses_key(flow_dissector,
1054                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1055                         key_addrs = skb_flow_dissector_target(flow_dissector,
1056                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1057                                                               target_container);
1058
1059                         memcpy(&key_addrs->v4addrs, &iph->saddr,
1060                                sizeof(key_addrs->v4addrs));
1061                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1062                 }
1063
1064                 __skb_flow_dissect_ipv4(skb, flow_dissector,
1065                                         target_container, data, iph);
1066
1067                 if (ip_is_fragment(iph)) {
1068                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1069
1070                         if (iph->frag_off & htons(IP_OFFSET)) {
1071                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1072                                 break;
1073                         } else {
1074                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
1075                                 if (!(flags &
1076                                       FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1077                                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1078                                         break;
1079                                 }
1080                         }
1081                 }
1082
1083                 break;
1084         }
1085         case htons(ETH_P_IPV6): {
1086                 const struct ipv6hdr *iph;
1087                 struct ipv6hdr _iph;
1088
1089                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1090                 if (!iph) {
1091                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1092                         break;
1093                 }
1094
1095                 ip_proto = iph->nexthdr;
1096                 nhoff += sizeof(struct ipv6hdr);
1097
1098                 if (dissector_uses_key(flow_dissector,
1099                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1100                         key_addrs = skb_flow_dissector_target(flow_dissector,
1101                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1102                                                               target_container);
1103
1104                         memcpy(&key_addrs->v6addrs, &iph->saddr,
1105                                sizeof(key_addrs->v6addrs));
1106                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1107                 }
1108
1109                 if ((dissector_uses_key(flow_dissector,
1110                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1111                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1112                     ip6_flowlabel(iph)) {
1113                         __be32 flow_label = ip6_flowlabel(iph);
1114
1115                         if (dissector_uses_key(flow_dissector,
1116                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1117                                 key_tags = skb_flow_dissector_target(flow_dissector,
1118                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
1119                                                                      target_container);
1120                                 key_tags->flow_label = ntohl(flow_label);
1121                         }
1122                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1123                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1124                                 break;
1125                         }
1126                 }
1127
1128                 __skb_flow_dissect_ipv6(skb, flow_dissector,
1129                                         target_container, data, iph);
1130
1131                 break;
1132         }
1133         case htons(ETH_P_8021AD):
1134         case htons(ETH_P_8021Q): {
1135                 const struct vlan_hdr *vlan = NULL;
1136                 struct vlan_hdr _vlan;
1137                 __be16 saved_vlan_tpid = proto;
1138
1139                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1140                     skb && skb_vlan_tag_present(skb)) {
1141                         proto = skb->protocol;
1142                 } else {
1143                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1144                                                     data, hlen, &_vlan);
1145                         if (!vlan) {
1146                                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1147                                 break;
1148                         }
1149
1150                         proto = vlan->h_vlan_encapsulated_proto;
1151                         nhoff += sizeof(*vlan);
1152                 }
1153
1154                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1155                         dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1156                 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1157                         dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1158                 } else {
1159                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1160                         break;
1161                 }
1162
1163                 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1164                         key_vlan = skb_flow_dissector_target(flow_dissector,
1165                                                              dissector_vlan,
1166                                                              target_container);
1167
1168                         if (!vlan) {
1169                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1170                                 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1171                         } else {
1172                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1173                                         VLAN_VID_MASK;
1174                                 key_vlan->vlan_priority =
1175                                         (ntohs(vlan->h_vlan_TCI) &
1176                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1177                         }
1178                         key_vlan->vlan_tpid = saved_vlan_tpid;
1179                 }
1180
1181                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1182                 break;
1183         }
1184         case htons(ETH_P_PPP_SES): {
1185                 struct {
1186                         struct pppoe_hdr hdr;
1187                         __be16 proto;
1188                 } *hdr, _hdr;
1189                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1190                 if (!hdr) {
1191                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1192                         break;
1193                 }
1194
1195                 proto = hdr->proto;
1196                 nhoff += PPPOE_SES_HLEN;
1197                 switch (proto) {
1198                 case htons(PPP_IP):
1199                         proto = htons(ETH_P_IP);
1200                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1201                         break;
1202                 case htons(PPP_IPV6):
1203                         proto = htons(ETH_P_IPV6);
1204                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1205                         break;
1206                 default:
1207                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1208                         break;
1209                 }
1210                 break;
1211         }
1212         case htons(ETH_P_TIPC): {
1213                 struct tipc_basic_hdr *hdr, _hdr;
1214
1215                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1216                                            data, hlen, &_hdr);
1217                 if (!hdr) {
1218                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1219                         break;
1220                 }
1221
1222                 if (dissector_uses_key(flow_dissector,
1223                                        FLOW_DISSECTOR_KEY_TIPC)) {
1224                         key_addrs = skb_flow_dissector_target(flow_dissector,
1225                                                               FLOW_DISSECTOR_KEY_TIPC,
1226                                                               target_container);
1227                         key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1228                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1229                 }
1230                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1231                 break;
1232         }
1233
1234         case htons(ETH_P_MPLS_UC):
1235         case htons(ETH_P_MPLS_MC):
1236                 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1237                                                 target_container, data,
1238                                                 nhoff, hlen, mpls_lse,
1239                                                 &mpls_el);
1240                 nhoff += sizeof(struct mpls_label);
1241                 mpls_lse++;
1242                 break;
1243         case htons(ETH_P_FCOE):
1244                 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1245                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1246                         break;
1247                 }
1248
1249                 nhoff += FCOE_HEADER_LEN;
1250                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1251                 break;
1252
1253         case htons(ETH_P_ARP):
1254         case htons(ETH_P_RARP):
1255                 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1256                                                target_container, data,
1257                                                nhoff, hlen);
1258                 break;
1259
1260         case htons(ETH_P_BATMAN):
1261                 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1262                                                   &proto, &nhoff, hlen, flags);
1263                 break;
1264
1265         case htons(ETH_P_1588): {
1266                 struct ptp_header *hdr, _hdr;
1267
1268                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
1269                                            hlen, &_hdr);
1270                 if (!hdr) {
1271                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1272                         break;
1273                 }
1274
1275                 nhoff += ntohs(hdr->message_length);
1276                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1277                 break;
1278         }
1279
1280         default:
1281                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1282                 break;
1283         }
1284
1285         /* Process result of proto processing */
1286         switch (fdret) {
1287         case FLOW_DISSECT_RET_OUT_GOOD:
1288                 goto out_good;
1289         case FLOW_DISSECT_RET_PROTO_AGAIN:
1290                 if (skb_flow_dissect_allowed(&num_hdrs))
1291                         goto proto_again;
1292                 goto out_good;
1293         case FLOW_DISSECT_RET_CONTINUE:
1294         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1295                 break;
1296         case FLOW_DISSECT_RET_OUT_BAD:
1297         default:
1298                 goto out_bad;
1299         }
1300
1301 ip_proto_again:
1302         fdret = FLOW_DISSECT_RET_CONTINUE;
1303
1304         switch (ip_proto) {
1305         case IPPROTO_GRE:
1306                 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1307                                                target_container, data,
1308                                                &proto, &nhoff, &hlen, flags);
1309                 break;
1310
1311         case NEXTHDR_HOP:
1312         case NEXTHDR_ROUTING:
1313         case NEXTHDR_DEST: {
1314                 u8 _opthdr[2], *opthdr;
1315
1316                 if (proto != htons(ETH_P_IPV6))
1317                         break;
1318
1319                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1320                                               data, hlen, &_opthdr);
1321                 if (!opthdr) {
1322                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1323                         break;
1324                 }
1325
1326                 ip_proto = opthdr[0];
1327                 nhoff += (opthdr[1] + 1) << 3;
1328
1329                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1330                 break;
1331         }
1332         case NEXTHDR_FRAGMENT: {
1333                 struct frag_hdr _fh, *fh;
1334
1335                 if (proto != htons(ETH_P_IPV6))
1336                         break;
1337
1338                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1339                                           data, hlen, &_fh);
1340
1341                 if (!fh) {
1342                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1343                         break;
1344                 }
1345
1346                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1347
1348                 nhoff += sizeof(_fh);
1349                 ip_proto = fh->nexthdr;
1350
1351                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
1352                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
1353                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1354                                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1355                                 break;
1356                         }
1357                 }
1358
1359                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1360                 break;
1361         }
1362         case IPPROTO_IPIP:
1363                 proto = htons(ETH_P_IP);
1364
1365                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1366                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1367                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1368                         break;
1369                 }
1370
1371                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1372                 break;
1373
1374         case IPPROTO_IPV6:
1375                 proto = htons(ETH_P_IPV6);
1376
1377                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1378                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1379                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1380                         break;
1381                 }
1382
1383                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1384                 break;
1385
1386
1387         case IPPROTO_MPLS:
1388                 proto = htons(ETH_P_MPLS_UC);
1389                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1390                 break;
1391
1392         case IPPROTO_TCP:
1393                 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1394                                        data, nhoff, hlen);
1395                 break;
1396
1397         case IPPROTO_ICMP:
1398         case IPPROTO_ICMPV6:
1399                 __skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1400                                         data, nhoff, hlen);
1401                 break;
1402
1403         default:
1404                 break;
1405         }
1406
1407         if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1408                 __skb_flow_dissect_ports(skb, flow_dissector, target_container,
1409                                          data, nhoff, ip_proto, hlen);
1410
1411         /* Process result of IP proto processing */
1412         switch (fdret) {
1413         case FLOW_DISSECT_RET_PROTO_AGAIN:
1414                 if (skb_flow_dissect_allowed(&num_hdrs))
1415                         goto proto_again;
1416                 break;
1417         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1418                 if (skb_flow_dissect_allowed(&num_hdrs))
1419                         goto ip_proto_again;
1420                 break;
1421         case FLOW_DISSECT_RET_OUT_GOOD:
1422         case FLOW_DISSECT_RET_CONTINUE:
1423                 break;
1424         case FLOW_DISSECT_RET_OUT_BAD:
1425         default:
1426                 goto out_bad;
1427         }
1428
1429 out_good:
1430         ret = true;
1431
1432 out:
1433         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1434         key_basic->n_proto = proto;
1435         key_basic->ip_proto = ip_proto;
1436
1437         return ret;
1438
1439 out_bad:
1440         ret = false;
1441         goto out;
1442 }
1443 EXPORT_SYMBOL(__skb_flow_dissect);
1444
1445 static siphash_key_t hashrnd __read_mostly;
1446 static __always_inline void __flow_hash_secret_init(void)
1447 {
1448         net_get_random_once(&hashrnd, sizeof(hashrnd));
1449 }
1450
1451 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1452 {
1453         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1454         return &flow->FLOW_KEYS_HASH_START_FIELD;
1455 }
1456
1457 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1458 {
1459         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1460
1461         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1462
1463         switch (flow->control.addr_type) {
1464         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1465                 diff -= sizeof(flow->addrs.v4addrs);
1466                 break;
1467         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1468                 diff -= sizeof(flow->addrs.v6addrs);
1469                 break;
1470         case FLOW_DISSECTOR_KEY_TIPC:
1471                 diff -= sizeof(flow->addrs.tipckey);
1472                 break;
1473         }
1474         return sizeof(*flow) - diff;
1475 }
1476
1477 __be32 flow_get_u32_src(const struct flow_keys *flow)
1478 {
1479         switch (flow->control.addr_type) {
1480         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1481                 return flow->addrs.v4addrs.src;
1482         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1483                 return (__force __be32)ipv6_addr_hash(
1484                         &flow->addrs.v6addrs.src);
1485         case FLOW_DISSECTOR_KEY_TIPC:
1486                 return flow->addrs.tipckey.key;
1487         default:
1488                 return 0;
1489         }
1490 }
1491 EXPORT_SYMBOL(flow_get_u32_src);
1492
1493 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1494 {
1495         switch (flow->control.addr_type) {
1496         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1497                 return flow->addrs.v4addrs.dst;
1498         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1499                 return (__force __be32)ipv6_addr_hash(
1500                         &flow->addrs.v6addrs.dst);
1501         default:
1502                 return 0;
1503         }
1504 }
1505 EXPORT_SYMBOL(flow_get_u32_dst);
1506
1507 /* Sort the source and destination IP (and the ports if the IP are the same),
1508  * to have consistent hash within the two directions
1509  */
1510 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1511 {
1512         int addr_diff, i;
1513
1514         switch (keys->control.addr_type) {
1515         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1516                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1517                             (__force u32)keys->addrs.v4addrs.src;
1518                 if ((addr_diff < 0) ||
1519                     (addr_diff == 0 &&
1520                      ((__force u16)keys->ports.dst <
1521                       (__force u16)keys->ports.src))) {
1522                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1523                         swap(keys->ports.src, keys->ports.dst);
1524                 }
1525                 break;
1526         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1527                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1528                                    &keys->addrs.v6addrs.src,
1529                                    sizeof(keys->addrs.v6addrs.dst));
1530                 if ((addr_diff < 0) ||
1531                     (addr_diff == 0 &&
1532                      ((__force u16)keys->ports.dst <
1533                       (__force u16)keys->ports.src))) {
1534                         for (i = 0; i < 4; i++)
1535                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1536                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
1537                         swap(keys->ports.src, keys->ports.dst);
1538                 }
1539                 break;
1540         }
1541 }
1542
1543 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1544                                         const siphash_key_t *keyval)
1545 {
1546         u32 hash;
1547
1548         __flow_hash_consistentify(keys);
1549
1550         hash = siphash(flow_keys_hash_start(keys),
1551                        flow_keys_hash_length(keys), keyval);
1552         if (!hash)
1553                 hash = 1;
1554
1555         return hash;
1556 }
1557
1558 u32 flow_hash_from_keys(struct flow_keys *keys)
1559 {
1560         __flow_hash_secret_init();
1561         return __flow_hash_from_keys(keys, &hashrnd);
1562 }
1563 EXPORT_SYMBOL(flow_hash_from_keys);
1564
1565 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1566                                   struct flow_keys *keys,
1567                                   const siphash_key_t *keyval)
1568 {
1569         skb_flow_dissect_flow_keys(skb, keys,
1570                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1571
1572         return __flow_hash_from_keys(keys, keyval);
1573 }
1574
1575 struct _flow_keys_digest_data {
1576         __be16  n_proto;
1577         u8      ip_proto;
1578         u8      padding;
1579         __be32  ports;
1580         __be32  src;
1581         __be32  dst;
1582 };
1583
1584 void make_flow_keys_digest(struct flow_keys_digest *digest,
1585                            const struct flow_keys *flow)
1586 {
1587         struct _flow_keys_digest_data *data =
1588             (struct _flow_keys_digest_data *)digest;
1589
1590         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1591
1592         memset(digest, 0, sizeof(*digest));
1593
1594         data->n_proto = flow->basic.n_proto;
1595         data->ip_proto = flow->basic.ip_proto;
1596         data->ports = flow->ports.ports;
1597         data->src = flow->addrs.v4addrs.src;
1598         data->dst = flow->addrs.v4addrs.dst;
1599 }
1600 EXPORT_SYMBOL(make_flow_keys_digest);
1601
1602 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1603
1604 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1605 {
1606         struct flow_keys keys;
1607
1608         __flow_hash_secret_init();
1609
1610         memset(&keys, 0, sizeof(keys));
1611         __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1612                            &keys, NULL, 0, 0, 0,
1613                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1614
1615         return __flow_hash_from_keys(&keys, &hashrnd);
1616 }
1617 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1618
1619 /**
1620  * __skb_get_hash: calculate a flow hash
1621  * @skb: sk_buff to calculate flow hash from
1622  *
1623  * This function calculates a flow hash based on src/dst addresses
1624  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1625  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1626  * if hash is a canonical 4-tuple hash over transport ports.
1627  */
1628 void __skb_get_hash(struct sk_buff *skb)
1629 {
1630         struct flow_keys keys;
1631         u32 hash;
1632
1633         __flow_hash_secret_init();
1634
1635         hash = ___skb_get_hash(skb, &keys, &hashrnd);
1636
1637         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1638 }
1639 EXPORT_SYMBOL(__skb_get_hash);
1640
1641 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1642                            const siphash_key_t *perturb)
1643 {
1644         struct flow_keys keys;
1645
1646         return ___skb_get_hash(skb, &keys, perturb);
1647 }
1648 EXPORT_SYMBOL(skb_get_hash_perturb);
1649
1650 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1651                    const struct flow_keys_basic *keys, int hlen)
1652 {
1653         u32 poff = keys->control.thoff;
1654
1655         /* skip L4 headers for fragments after the first */
1656         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1657             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1658                 return poff;
1659
1660         switch (keys->basic.ip_proto) {
1661         case IPPROTO_TCP: {
1662                 /* access doff as u8 to avoid unaligned access */
1663                 const u8 *doff;
1664                 u8 _doff;
1665
1666                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1667                                             data, hlen, &_doff);
1668                 if (!doff)
1669                         return poff;
1670
1671                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1672                 break;
1673         }
1674         case IPPROTO_UDP:
1675         case IPPROTO_UDPLITE:
1676                 poff += sizeof(struct udphdr);
1677                 break;
1678         /* For the rest, we do not really care about header
1679          * extensions at this point for now.
1680          */
1681         case IPPROTO_ICMP:
1682                 poff += sizeof(struct icmphdr);
1683                 break;
1684         case IPPROTO_ICMPV6:
1685                 poff += sizeof(struct icmp6hdr);
1686                 break;
1687         case IPPROTO_IGMP:
1688                 poff += sizeof(struct igmphdr);
1689                 break;
1690         case IPPROTO_DCCP:
1691                 poff += sizeof(struct dccp_hdr);
1692                 break;
1693         case IPPROTO_SCTP:
1694                 poff += sizeof(struct sctphdr);
1695                 break;
1696         }
1697
1698         return poff;
1699 }
1700
1701 /**
1702  * skb_get_poff - get the offset to the payload
1703  * @skb: sk_buff to get the payload offset from
1704  *
1705  * The function will get the offset to the payload as far as it could
1706  * be dissected.  The main user is currently BPF, so that we can dynamically
1707  * truncate packets without needing to push actual payload to the user
1708  * space and can analyze headers only, instead.
1709  */
1710 u32 skb_get_poff(const struct sk_buff *skb)
1711 {
1712         struct flow_keys_basic keys;
1713
1714         if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1715                                               NULL, 0, 0, 0, 0))
1716                 return 0;
1717
1718         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1719 }
1720
1721 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1722 {
1723         memset(keys, 0, sizeof(*keys));
1724
1725         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1726             sizeof(keys->addrs.v6addrs.src));
1727         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1728             sizeof(keys->addrs.v6addrs.dst));
1729         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1730         keys->ports.src = fl6->fl6_sport;
1731         keys->ports.dst = fl6->fl6_dport;
1732         keys->keyid.keyid = fl6->fl6_gre_key;
1733         keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1734         keys->basic.ip_proto = fl6->flowi6_proto;
1735
1736         return flow_hash_from_keys(keys);
1737 }
1738 EXPORT_SYMBOL(__get_hash_from_flowi6);
1739
1740 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1741         {
1742                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1743                 .offset = offsetof(struct flow_keys, control),
1744         },
1745         {
1746                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1747                 .offset = offsetof(struct flow_keys, basic),
1748         },
1749         {
1750                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1751                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1752         },
1753         {
1754                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1755                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1756         },
1757         {
1758                 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1759                 .offset = offsetof(struct flow_keys, addrs.tipckey),
1760         },
1761         {
1762                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1763                 .offset = offsetof(struct flow_keys, ports),
1764         },
1765         {
1766                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1767                 .offset = offsetof(struct flow_keys, vlan),
1768         },
1769         {
1770                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1771                 .offset = offsetof(struct flow_keys, tags),
1772         },
1773         {
1774                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1775                 .offset = offsetof(struct flow_keys, keyid),
1776         },
1777 };
1778
1779 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1780         {
1781                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1782                 .offset = offsetof(struct flow_keys, control),
1783         },
1784         {
1785                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1786                 .offset = offsetof(struct flow_keys, basic),
1787         },
1788         {
1789                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1790                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1791         },
1792         {
1793                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1794                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1795         },
1796         {
1797                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1798                 .offset = offsetof(struct flow_keys, ports),
1799         },
1800 };
1801
1802 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1803         {
1804                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1805                 .offset = offsetof(struct flow_keys, control),
1806         },
1807         {
1808                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1809                 .offset = offsetof(struct flow_keys, basic),
1810         },
1811 };
1812
1813 struct flow_dissector flow_keys_dissector __read_mostly;
1814 EXPORT_SYMBOL(flow_keys_dissector);
1815
1816 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1817 EXPORT_SYMBOL(flow_keys_basic_dissector);
1818
1819 static int __init init_default_flow_dissectors(void)
1820 {
1821         skb_flow_dissector_init(&flow_keys_dissector,
1822                                 flow_keys_dissector_keys,
1823                                 ARRAY_SIZE(flow_keys_dissector_keys));
1824         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1825                                 flow_keys_dissector_symmetric_keys,
1826                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1827         skb_flow_dissector_init(&flow_keys_basic_dissector,
1828                                 flow_keys_basic_dissector_keys,
1829                                 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1830         return 0;
1831 }
1832 core_initcall(init_default_flow_dissectors);