Merge tag 'ceph-for-5.12-rc1' of git://github.com/ceph/ceph-client
[linux-2.6-microblaze.git] / net / core / flow_dissector.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <linux/ptp_classify.h>
27 #include <net/flow_dissector.h>
28 #include <scsi/fc/fc_fcoe.h>
29 #include <uapi/linux/batadv_packet.h>
30 #include <linux/bpf.h>
31 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
32 #include <net/netfilter/nf_conntrack_core.h>
33 #include <net/netfilter/nf_conntrack_labels.h>
34 #endif
35 #include <linux/bpf-netns.h>
36
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38                               enum flow_dissector_key_id key_id)
39 {
40         flow_dissector->used_keys |= (1 << key_id);
41 }
42
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44                              const struct flow_dissector_key *key,
45                              unsigned int key_count)
46 {
47         unsigned int i;
48
49         memset(flow_dissector, 0, sizeof(*flow_dissector));
50
51         for (i = 0; i < key_count; i++, key++) {
52                 /* User should make sure that every key target offset is within
53                  * boundaries of unsigned short.
54                  */
55                 BUG_ON(key->offset > USHRT_MAX);
56                 BUG_ON(dissector_uses_key(flow_dissector,
57                                           key->key_id));
58
59                 dissector_set_key(flow_dissector, key->key_id);
60                 flow_dissector->offset[key->key_id] = key->offset;
61         }
62
63         /* Ensure that the dissector always includes control and basic key.
64          * That way we are able to avoid handling lack of these in fast path.
65          */
66         BUG_ON(!dissector_uses_key(flow_dissector,
67                                    FLOW_DISSECTOR_KEY_CONTROL));
68         BUG_ON(!dissector_uses_key(flow_dissector,
69                                    FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72
73 #ifdef CONFIG_BPF_SYSCALL
74 int flow_dissector_bpf_prog_attach_check(struct net *net,
75                                          struct bpf_prog *prog)
76 {
77         enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
78
79         if (net == &init_net) {
80                 /* BPF flow dissector in the root namespace overrides
81                  * any per-net-namespace one. When attaching to root,
82                  * make sure we don't have any BPF program attached
83                  * to the non-root namespaces.
84                  */
85                 struct net *ns;
86
87                 for_each_net(ns) {
88                         if (ns == &init_net)
89                                 continue;
90                         if (rcu_access_pointer(ns->bpf.run_array[type]))
91                                 return -EEXIST;
92                 }
93         } else {
94                 /* Make sure root flow dissector is not attached
95                  * when attaching to the non-root namespace.
96                  */
97                 if (rcu_access_pointer(init_net.bpf.run_array[type]))
98                         return -EEXIST;
99         }
100
101         return 0;
102 }
103 #endif /* CONFIG_BPF_SYSCALL */
104
105 /**
106  * __skb_flow_get_ports - extract the upper layer ports and return them
107  * @skb: sk_buff to extract the ports from
108  * @thoff: transport header offset
109  * @ip_proto: protocol for which to get port offset
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
112  *
113  * The function will try to retrieve the ports at offset thoff + poff where poff
114  * is the protocol port offset returned from proto_ports_offset
115  */
116 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
117                             void *data, int hlen)
118 {
119         int poff = proto_ports_offset(ip_proto);
120
121         if (!data) {
122                 data = skb->data;
123                 hlen = skb_headlen(skb);
124         }
125
126         if (poff >= 0) {
127                 __be32 *ports, _ports;
128
129                 ports = __skb_header_pointer(skb, thoff + poff,
130                                              sizeof(_ports), data, hlen, &_ports);
131                 if (ports)
132                         return *ports;
133         }
134
135         return 0;
136 }
137 EXPORT_SYMBOL(__skb_flow_get_ports);
138
139 static bool icmp_has_id(u8 type)
140 {
141         switch (type) {
142         case ICMP_ECHO:
143         case ICMP_ECHOREPLY:
144         case ICMP_TIMESTAMP:
145         case ICMP_TIMESTAMPREPLY:
146         case ICMPV6_ECHO_REQUEST:
147         case ICMPV6_ECHO_REPLY:
148                 return true;
149         }
150
151         return false;
152 }
153
154 /**
155  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
156  * @skb: sk_buff to extract from
157  * @key_icmp: struct flow_dissector_key_icmp to fill
158  * @data: raw buffer pointer to the packet
159  * @thoff: offset to extract at
160  * @hlen: packet header length
161  */
162 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
163                            struct flow_dissector_key_icmp *key_icmp,
164                            void *data, int thoff, int hlen)
165 {
166         struct icmphdr *ih, _ih;
167
168         ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
169         if (!ih)
170                 return;
171
172         key_icmp->type = ih->type;
173         key_icmp->code = ih->code;
174
175         /* As we use 0 to signal that the Id field is not present,
176          * avoid confusion with packets without such field
177          */
178         if (icmp_has_id(ih->type))
179                 key_icmp->id = ih->un.echo.id ? : 1;
180         else
181                 key_icmp->id = 0;
182 }
183 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
184
185 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
186  * using skb_flow_get_icmp_tci().
187  */
188 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
189                                     struct flow_dissector *flow_dissector,
190                                     void *target_container,
191                                     void *data, int thoff, int hlen)
192 {
193         struct flow_dissector_key_icmp *key_icmp;
194
195         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
196                 return;
197
198         key_icmp = skb_flow_dissector_target(flow_dissector,
199                                              FLOW_DISSECTOR_KEY_ICMP,
200                                              target_container);
201
202         skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
203 }
204
205 void skb_flow_dissect_meta(const struct sk_buff *skb,
206                            struct flow_dissector *flow_dissector,
207                            void *target_container)
208 {
209         struct flow_dissector_key_meta *meta;
210
211         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
212                 return;
213
214         meta = skb_flow_dissector_target(flow_dissector,
215                                          FLOW_DISSECTOR_KEY_META,
216                                          target_container);
217         meta->ingress_ifindex = skb->skb_iif;
218 }
219 EXPORT_SYMBOL(skb_flow_dissect_meta);
220
221 static void
222 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
223                                    struct flow_dissector *flow_dissector,
224                                    void *target_container)
225 {
226         struct flow_dissector_key_control *ctrl;
227
228         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
229                 return;
230
231         ctrl = skb_flow_dissector_target(flow_dissector,
232                                          FLOW_DISSECTOR_KEY_ENC_CONTROL,
233                                          target_container);
234         ctrl->addr_type = type;
235 }
236
237 void
238 skb_flow_dissect_ct(const struct sk_buff *skb,
239                     struct flow_dissector *flow_dissector,
240                     void *target_container, u16 *ctinfo_map,
241                     size_t mapsize, bool post_ct)
242 {
243 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
244         struct flow_dissector_key_ct *key;
245         enum ip_conntrack_info ctinfo;
246         struct nf_conn_labels *cl;
247         struct nf_conn *ct;
248
249         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
250                 return;
251
252         ct = nf_ct_get(skb, &ctinfo);
253         if (!ct && !post_ct)
254                 return;
255
256         key = skb_flow_dissector_target(flow_dissector,
257                                         FLOW_DISSECTOR_KEY_CT,
258                                         target_container);
259
260         if (!ct) {
261                 key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
262                                 TCA_FLOWER_KEY_CT_FLAGS_INVALID;
263                 return;
264         }
265
266         if (ctinfo < mapsize)
267                 key->ct_state = ctinfo_map[ctinfo];
268 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
269         key->ct_zone = ct->zone.id;
270 #endif
271 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
272         key->ct_mark = ct->mark;
273 #endif
274
275         cl = nf_ct_labels_find(ct);
276         if (cl)
277                 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
278 #endif /* CONFIG_NF_CONNTRACK */
279 }
280 EXPORT_SYMBOL(skb_flow_dissect_ct);
281
282 void
283 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
284                              struct flow_dissector *flow_dissector,
285                              void *target_container)
286 {
287         struct ip_tunnel_info *info;
288         struct ip_tunnel_key *key;
289
290         /* A quick check to see if there might be something to do. */
291         if (!dissector_uses_key(flow_dissector,
292                                 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
293             !dissector_uses_key(flow_dissector,
294                                 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
295             !dissector_uses_key(flow_dissector,
296                                 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
297             !dissector_uses_key(flow_dissector,
298                                 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
299             !dissector_uses_key(flow_dissector,
300                                 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
301             !dissector_uses_key(flow_dissector,
302                                 FLOW_DISSECTOR_KEY_ENC_IP) &&
303             !dissector_uses_key(flow_dissector,
304                                 FLOW_DISSECTOR_KEY_ENC_OPTS))
305                 return;
306
307         info = skb_tunnel_info(skb);
308         if (!info)
309                 return;
310
311         key = &info->key;
312
313         switch (ip_tunnel_info_af(info)) {
314         case AF_INET:
315                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
316                                                    flow_dissector,
317                                                    target_container);
318                 if (dissector_uses_key(flow_dissector,
319                                        FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
320                         struct flow_dissector_key_ipv4_addrs *ipv4;
321
322                         ipv4 = skb_flow_dissector_target(flow_dissector,
323                                                          FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
324                                                          target_container);
325                         ipv4->src = key->u.ipv4.src;
326                         ipv4->dst = key->u.ipv4.dst;
327                 }
328                 break;
329         case AF_INET6:
330                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
331                                                    flow_dissector,
332                                                    target_container);
333                 if (dissector_uses_key(flow_dissector,
334                                        FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
335                         struct flow_dissector_key_ipv6_addrs *ipv6;
336
337                         ipv6 = skb_flow_dissector_target(flow_dissector,
338                                                          FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
339                                                          target_container);
340                         ipv6->src = key->u.ipv6.src;
341                         ipv6->dst = key->u.ipv6.dst;
342                 }
343                 break;
344         }
345
346         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
347                 struct flow_dissector_key_keyid *keyid;
348
349                 keyid = skb_flow_dissector_target(flow_dissector,
350                                                   FLOW_DISSECTOR_KEY_ENC_KEYID,
351                                                   target_container);
352                 keyid->keyid = tunnel_id_to_key32(key->tun_id);
353         }
354
355         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
356                 struct flow_dissector_key_ports *tp;
357
358                 tp = skb_flow_dissector_target(flow_dissector,
359                                                FLOW_DISSECTOR_KEY_ENC_PORTS,
360                                                target_container);
361                 tp->src = key->tp_src;
362                 tp->dst = key->tp_dst;
363         }
364
365         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
366                 struct flow_dissector_key_ip *ip;
367
368                 ip = skb_flow_dissector_target(flow_dissector,
369                                                FLOW_DISSECTOR_KEY_ENC_IP,
370                                                target_container);
371                 ip->tos = key->tos;
372                 ip->ttl = key->ttl;
373         }
374
375         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
376                 struct flow_dissector_key_enc_opts *enc_opt;
377
378                 enc_opt = skb_flow_dissector_target(flow_dissector,
379                                                     FLOW_DISSECTOR_KEY_ENC_OPTS,
380                                                     target_container);
381
382                 if (info->options_len) {
383                         enc_opt->len = info->options_len;
384                         ip_tunnel_info_opts_get(enc_opt->data, info);
385                         enc_opt->dst_opt_type = info->key.tun_flags &
386                                                 TUNNEL_OPTIONS_PRESENT;
387                 }
388         }
389 }
390 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
391
392 void skb_flow_dissect_hash(const struct sk_buff *skb,
393                            struct flow_dissector *flow_dissector,
394                            void *target_container)
395 {
396         struct flow_dissector_key_hash *key;
397
398         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
399                 return;
400
401         key = skb_flow_dissector_target(flow_dissector,
402                                         FLOW_DISSECTOR_KEY_HASH,
403                                         target_container);
404
405         key->hash = skb_get_hash_raw(skb);
406 }
407 EXPORT_SYMBOL(skb_flow_dissect_hash);
408
409 static enum flow_dissect_ret
410 __skb_flow_dissect_mpls(const struct sk_buff *skb,
411                         struct flow_dissector *flow_dissector,
412                         void *target_container, void *data, int nhoff, int hlen,
413                         int lse_index, bool *entropy_label)
414 {
415         struct mpls_label *hdr, _hdr;
416         u32 entry, label, bos;
417
418         if (!dissector_uses_key(flow_dissector,
419                                 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
420             !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
421                 return FLOW_DISSECT_RET_OUT_GOOD;
422
423         if (lse_index >= FLOW_DIS_MPLS_MAX)
424                 return FLOW_DISSECT_RET_OUT_GOOD;
425
426         hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
427                                    hlen, &_hdr);
428         if (!hdr)
429                 return FLOW_DISSECT_RET_OUT_BAD;
430
431         entry = ntohl(hdr->entry);
432         label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
433         bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
434
435         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
436                 struct flow_dissector_key_mpls *key_mpls;
437                 struct flow_dissector_mpls_lse *lse;
438
439                 key_mpls = skb_flow_dissector_target(flow_dissector,
440                                                      FLOW_DISSECTOR_KEY_MPLS,
441                                                      target_container);
442                 lse = &key_mpls->ls[lse_index];
443
444                 lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
445                 lse->mpls_bos = bos;
446                 lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
447                 lse->mpls_label = label;
448                 dissector_set_mpls_lse(key_mpls, lse_index);
449         }
450
451         if (*entropy_label &&
452             dissector_uses_key(flow_dissector,
453                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
454                 struct flow_dissector_key_keyid *key_keyid;
455
456                 key_keyid = skb_flow_dissector_target(flow_dissector,
457                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
458                                                       target_container);
459                 key_keyid->keyid = cpu_to_be32(label);
460         }
461
462         *entropy_label = label == MPLS_LABEL_ENTROPY;
463
464         return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
465 }
466
467 static enum flow_dissect_ret
468 __skb_flow_dissect_arp(const struct sk_buff *skb,
469                        struct flow_dissector *flow_dissector,
470                        void *target_container, void *data, int nhoff, int hlen)
471 {
472         struct flow_dissector_key_arp *key_arp;
473         struct {
474                 unsigned char ar_sha[ETH_ALEN];
475                 unsigned char ar_sip[4];
476                 unsigned char ar_tha[ETH_ALEN];
477                 unsigned char ar_tip[4];
478         } *arp_eth, _arp_eth;
479         const struct arphdr *arp;
480         struct arphdr _arp;
481
482         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
483                 return FLOW_DISSECT_RET_OUT_GOOD;
484
485         arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
486                                    hlen, &_arp);
487         if (!arp)
488                 return FLOW_DISSECT_RET_OUT_BAD;
489
490         if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
491             arp->ar_pro != htons(ETH_P_IP) ||
492             arp->ar_hln != ETH_ALEN ||
493             arp->ar_pln != 4 ||
494             (arp->ar_op != htons(ARPOP_REPLY) &&
495              arp->ar_op != htons(ARPOP_REQUEST)))
496                 return FLOW_DISSECT_RET_OUT_BAD;
497
498         arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
499                                        sizeof(_arp_eth), data,
500                                        hlen, &_arp_eth);
501         if (!arp_eth)
502                 return FLOW_DISSECT_RET_OUT_BAD;
503
504         key_arp = skb_flow_dissector_target(flow_dissector,
505                                             FLOW_DISSECTOR_KEY_ARP,
506                                             target_container);
507
508         memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
509         memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
510
511         /* Only store the lower byte of the opcode;
512          * this covers ARPOP_REPLY and ARPOP_REQUEST.
513          */
514         key_arp->op = ntohs(arp->ar_op) & 0xff;
515
516         ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
517         ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
518
519         return FLOW_DISSECT_RET_OUT_GOOD;
520 }
521
522 static enum flow_dissect_ret
523 __skb_flow_dissect_gre(const struct sk_buff *skb,
524                        struct flow_dissector_key_control *key_control,
525                        struct flow_dissector *flow_dissector,
526                        void *target_container, void *data,
527                        __be16 *p_proto, int *p_nhoff, int *p_hlen,
528                        unsigned int flags)
529 {
530         struct flow_dissector_key_keyid *key_keyid;
531         struct gre_base_hdr *hdr, _hdr;
532         int offset = 0;
533         u16 gre_ver;
534
535         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
536                                    data, *p_hlen, &_hdr);
537         if (!hdr)
538                 return FLOW_DISSECT_RET_OUT_BAD;
539
540         /* Only look inside GRE without routing */
541         if (hdr->flags & GRE_ROUTING)
542                 return FLOW_DISSECT_RET_OUT_GOOD;
543
544         /* Only look inside GRE for version 0 and 1 */
545         gre_ver = ntohs(hdr->flags & GRE_VERSION);
546         if (gre_ver > 1)
547                 return FLOW_DISSECT_RET_OUT_GOOD;
548
549         *p_proto = hdr->protocol;
550         if (gre_ver) {
551                 /* Version1 must be PPTP, and check the flags */
552                 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
553                         return FLOW_DISSECT_RET_OUT_GOOD;
554         }
555
556         offset += sizeof(struct gre_base_hdr);
557
558         if (hdr->flags & GRE_CSUM)
559                 offset += sizeof_field(struct gre_full_hdr, csum) +
560                           sizeof_field(struct gre_full_hdr, reserved1);
561
562         if (hdr->flags & GRE_KEY) {
563                 const __be32 *keyid;
564                 __be32 _keyid;
565
566                 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
567                                              sizeof(_keyid),
568                                              data, *p_hlen, &_keyid);
569                 if (!keyid)
570                         return FLOW_DISSECT_RET_OUT_BAD;
571
572                 if (dissector_uses_key(flow_dissector,
573                                        FLOW_DISSECTOR_KEY_GRE_KEYID)) {
574                         key_keyid = skb_flow_dissector_target(flow_dissector,
575                                                               FLOW_DISSECTOR_KEY_GRE_KEYID,
576                                                               target_container);
577                         if (gre_ver == 0)
578                                 key_keyid->keyid = *keyid;
579                         else
580                                 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
581                 }
582                 offset += sizeof_field(struct gre_full_hdr, key);
583         }
584
585         if (hdr->flags & GRE_SEQ)
586                 offset += sizeof_field(struct pptp_gre_header, seq);
587
588         if (gre_ver == 0) {
589                 if (*p_proto == htons(ETH_P_TEB)) {
590                         const struct ethhdr *eth;
591                         struct ethhdr _eth;
592
593                         eth = __skb_header_pointer(skb, *p_nhoff + offset,
594                                                    sizeof(_eth),
595                                                    data, *p_hlen, &_eth);
596                         if (!eth)
597                                 return FLOW_DISSECT_RET_OUT_BAD;
598                         *p_proto = eth->h_proto;
599                         offset += sizeof(*eth);
600
601                         /* Cap headers that we access via pointers at the
602                          * end of the Ethernet header as our maximum alignment
603                          * at that point is only 2 bytes.
604                          */
605                         if (NET_IP_ALIGN)
606                                 *p_hlen = *p_nhoff + offset;
607                 }
608         } else { /* version 1, must be PPTP */
609                 u8 _ppp_hdr[PPP_HDRLEN];
610                 u8 *ppp_hdr;
611
612                 if (hdr->flags & GRE_ACK)
613                         offset += sizeof_field(struct pptp_gre_header, ack);
614
615                 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
616                                                sizeof(_ppp_hdr),
617                                                data, *p_hlen, _ppp_hdr);
618                 if (!ppp_hdr)
619                         return FLOW_DISSECT_RET_OUT_BAD;
620
621                 switch (PPP_PROTOCOL(ppp_hdr)) {
622                 case PPP_IP:
623                         *p_proto = htons(ETH_P_IP);
624                         break;
625                 case PPP_IPV6:
626                         *p_proto = htons(ETH_P_IPV6);
627                         break;
628                 default:
629                         /* Could probably catch some more like MPLS */
630                         break;
631                 }
632
633                 offset += PPP_HDRLEN;
634         }
635
636         *p_nhoff += offset;
637         key_control->flags |= FLOW_DIS_ENCAPSULATION;
638         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
639                 return FLOW_DISSECT_RET_OUT_GOOD;
640
641         return FLOW_DISSECT_RET_PROTO_AGAIN;
642 }
643
644 /**
645  * __skb_flow_dissect_batadv() - dissect batman-adv header
646  * @skb: sk_buff to with the batman-adv header
647  * @key_control: flow dissectors control key
648  * @data: raw buffer pointer to the packet, if NULL use skb->data
649  * @p_proto: pointer used to update the protocol to process next
650  * @p_nhoff: pointer used to update inner network header offset
651  * @hlen: packet header length
652  * @flags: any combination of FLOW_DISSECTOR_F_*
653  *
654  * ETH_P_BATMAN packets are tried to be dissected. Only
655  * &struct batadv_unicast packets are actually processed because they contain an
656  * inner ethernet header and are usually followed by actual network header. This
657  * allows the flow dissector to continue processing the packet.
658  *
659  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
660  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
661  *  otherwise FLOW_DISSECT_RET_OUT_BAD
662  */
663 static enum flow_dissect_ret
664 __skb_flow_dissect_batadv(const struct sk_buff *skb,
665                           struct flow_dissector_key_control *key_control,
666                           void *data, __be16 *p_proto, int *p_nhoff, int hlen,
667                           unsigned int flags)
668 {
669         struct {
670                 struct batadv_unicast_packet batadv_unicast;
671                 struct ethhdr eth;
672         } *hdr, _hdr;
673
674         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
675                                    &_hdr);
676         if (!hdr)
677                 return FLOW_DISSECT_RET_OUT_BAD;
678
679         if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
680                 return FLOW_DISSECT_RET_OUT_BAD;
681
682         if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
683                 return FLOW_DISSECT_RET_OUT_BAD;
684
685         *p_proto = hdr->eth.h_proto;
686         *p_nhoff += sizeof(*hdr);
687
688         key_control->flags |= FLOW_DIS_ENCAPSULATION;
689         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
690                 return FLOW_DISSECT_RET_OUT_GOOD;
691
692         return FLOW_DISSECT_RET_PROTO_AGAIN;
693 }
694
695 static void
696 __skb_flow_dissect_tcp(const struct sk_buff *skb,
697                        struct flow_dissector *flow_dissector,
698                        void *target_container, void *data, int thoff, int hlen)
699 {
700         struct flow_dissector_key_tcp *key_tcp;
701         struct tcphdr *th, _th;
702
703         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
704                 return;
705
706         th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
707         if (!th)
708                 return;
709
710         if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
711                 return;
712
713         key_tcp = skb_flow_dissector_target(flow_dissector,
714                                             FLOW_DISSECTOR_KEY_TCP,
715                                             target_container);
716         key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
717 }
718
719 static void
720 __skb_flow_dissect_ports(const struct sk_buff *skb,
721                          struct flow_dissector *flow_dissector,
722                          void *target_container, void *data, int nhoff,
723                          u8 ip_proto, int hlen)
724 {
725         enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
726         struct flow_dissector_key_ports *key_ports;
727
728         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
729                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
730         else if (dissector_uses_key(flow_dissector,
731                                     FLOW_DISSECTOR_KEY_PORTS_RANGE))
732                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
733
734         if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
735                 return;
736
737         key_ports = skb_flow_dissector_target(flow_dissector,
738                                               dissector_ports,
739                                               target_container);
740         key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
741                                                 data, hlen);
742 }
743
744 static void
745 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
746                         struct flow_dissector *flow_dissector,
747                         void *target_container, void *data, const struct iphdr *iph)
748 {
749         struct flow_dissector_key_ip *key_ip;
750
751         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
752                 return;
753
754         key_ip = skb_flow_dissector_target(flow_dissector,
755                                            FLOW_DISSECTOR_KEY_IP,
756                                            target_container);
757         key_ip->tos = iph->tos;
758         key_ip->ttl = iph->ttl;
759 }
760
761 static void
762 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
763                         struct flow_dissector *flow_dissector,
764                         void *target_container, void *data, const struct ipv6hdr *iph)
765 {
766         struct flow_dissector_key_ip *key_ip;
767
768         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
769                 return;
770
771         key_ip = skb_flow_dissector_target(flow_dissector,
772                                            FLOW_DISSECTOR_KEY_IP,
773                                            target_container);
774         key_ip->tos = ipv6_get_dsfield(iph);
775         key_ip->ttl = iph->hop_limit;
776 }
777
778 /* Maximum number of protocol headers that can be parsed in
779  * __skb_flow_dissect
780  */
781 #define MAX_FLOW_DISSECT_HDRS   15
782
783 static bool skb_flow_dissect_allowed(int *num_hdrs)
784 {
785         ++*num_hdrs;
786
787         return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
788 }
789
790 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
791                                      struct flow_dissector *flow_dissector,
792                                      void *target_container)
793 {
794         struct flow_dissector_key_ports *key_ports = NULL;
795         struct flow_dissector_key_control *key_control;
796         struct flow_dissector_key_basic *key_basic;
797         struct flow_dissector_key_addrs *key_addrs;
798         struct flow_dissector_key_tags *key_tags;
799
800         key_control = skb_flow_dissector_target(flow_dissector,
801                                                 FLOW_DISSECTOR_KEY_CONTROL,
802                                                 target_container);
803         key_control->thoff = flow_keys->thoff;
804         if (flow_keys->is_frag)
805                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
806         if (flow_keys->is_first_frag)
807                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
808         if (flow_keys->is_encap)
809                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
810
811         key_basic = skb_flow_dissector_target(flow_dissector,
812                                               FLOW_DISSECTOR_KEY_BASIC,
813                                               target_container);
814         key_basic->n_proto = flow_keys->n_proto;
815         key_basic->ip_proto = flow_keys->ip_proto;
816
817         if (flow_keys->addr_proto == ETH_P_IP &&
818             dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
819                 key_addrs = skb_flow_dissector_target(flow_dissector,
820                                                       FLOW_DISSECTOR_KEY_IPV4_ADDRS,
821                                                       target_container);
822                 key_addrs->v4addrs.src = flow_keys->ipv4_src;
823                 key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
824                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
825         } else if (flow_keys->addr_proto == ETH_P_IPV6 &&
826                    dissector_uses_key(flow_dissector,
827                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
828                 key_addrs = skb_flow_dissector_target(flow_dissector,
829                                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS,
830                                                       target_container);
831                 memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
832                        sizeof(key_addrs->v6addrs));
833                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
834         }
835
836         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
837                 key_ports = skb_flow_dissector_target(flow_dissector,
838                                                       FLOW_DISSECTOR_KEY_PORTS,
839                                                       target_container);
840         else if (dissector_uses_key(flow_dissector,
841                                     FLOW_DISSECTOR_KEY_PORTS_RANGE))
842                 key_ports = skb_flow_dissector_target(flow_dissector,
843                                                       FLOW_DISSECTOR_KEY_PORTS_RANGE,
844                                                       target_container);
845
846         if (key_ports) {
847                 key_ports->src = flow_keys->sport;
848                 key_ports->dst = flow_keys->dport;
849         }
850
851         if (dissector_uses_key(flow_dissector,
852                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
853                 key_tags = skb_flow_dissector_target(flow_dissector,
854                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
855                                                      target_container);
856                 key_tags->flow_label = ntohl(flow_keys->flow_label);
857         }
858 }
859
860 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
861                       __be16 proto, int nhoff, int hlen, unsigned int flags)
862 {
863         struct bpf_flow_keys *flow_keys = ctx->flow_keys;
864         u32 result;
865
866         /* Pass parameters to the BPF program */
867         memset(flow_keys, 0, sizeof(*flow_keys));
868         flow_keys->n_proto = proto;
869         flow_keys->nhoff = nhoff;
870         flow_keys->thoff = flow_keys->nhoff;
871
872         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
873                      (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
874         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
875                      (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
876         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
877                      (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
878         flow_keys->flags = flags;
879
880         result = bpf_prog_run_pin_on_cpu(prog, ctx);
881
882         flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
883         flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
884                                    flow_keys->nhoff, hlen);
885
886         return result == BPF_OK;
887 }
888
889 /**
890  * __skb_flow_dissect - extract the flow_keys struct and return it
891  * @net: associated network namespace, derived from @skb if NULL
892  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
893  * @flow_dissector: list of keys to dissect
894  * @target_container: target structure to put dissected values into
895  * @data: raw buffer pointer to the packet, if NULL use skb->data
896  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
897  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
898  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
899  * @flags: flags that control the dissection process, e.g.
900  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
901  *
902  * The function will try to retrieve individual keys into target specified
903  * by flow_dissector from either the skbuff or a raw buffer specified by the
904  * rest parameters.
905  *
906  * Caller must take care of zeroing target container memory.
907  */
908 bool __skb_flow_dissect(const struct net *net,
909                         const struct sk_buff *skb,
910                         struct flow_dissector *flow_dissector,
911                         void *target_container,
912                         void *data, __be16 proto, int nhoff, int hlen,
913                         unsigned int flags)
914 {
915         struct flow_dissector_key_control *key_control;
916         struct flow_dissector_key_basic *key_basic;
917         struct flow_dissector_key_addrs *key_addrs;
918         struct flow_dissector_key_tags *key_tags;
919         struct flow_dissector_key_vlan *key_vlan;
920         enum flow_dissect_ret fdret;
921         enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
922         bool mpls_el = false;
923         int mpls_lse = 0;
924         int num_hdrs = 0;
925         u8 ip_proto = 0;
926         bool ret;
927
928         if (!data) {
929                 data = skb->data;
930                 proto = skb_vlan_tag_present(skb) ?
931                          skb->vlan_proto : skb->protocol;
932                 nhoff = skb_network_offset(skb);
933                 hlen = skb_headlen(skb);
934 #if IS_ENABLED(CONFIG_NET_DSA)
935                 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
936                              proto == htons(ETH_P_XDSA))) {
937                         const struct dsa_device_ops *ops;
938                         int offset = 0;
939
940                         ops = skb->dev->dsa_ptr->tag_ops;
941                         /* Tail taggers don't break flow dissection */
942                         if (!ops->tail_tag) {
943                                 if (ops->flow_dissect)
944                                         ops->flow_dissect(skb, &proto, &offset);
945                                 else
946                                         dsa_tag_generic_flow_dissect(skb,
947                                                                      &proto,
948                                                                      &offset);
949                                 hlen -= offset;
950                                 nhoff += offset;
951                         }
952                 }
953 #endif
954         }
955
956         /* It is ensured by skb_flow_dissector_init() that control key will
957          * be always present.
958          */
959         key_control = skb_flow_dissector_target(flow_dissector,
960                                                 FLOW_DISSECTOR_KEY_CONTROL,
961                                                 target_container);
962
963         /* It is ensured by skb_flow_dissector_init() that basic key will
964          * be always present.
965          */
966         key_basic = skb_flow_dissector_target(flow_dissector,
967                                               FLOW_DISSECTOR_KEY_BASIC,
968                                               target_container);
969
970         if (skb) {
971                 if (!net) {
972                         if (skb->dev)
973                                 net = dev_net(skb->dev);
974                         else if (skb->sk)
975                                 net = sock_net(skb->sk);
976                 }
977         }
978
979         WARN_ON_ONCE(!net);
980         if (net) {
981                 enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
982                 struct bpf_prog_array *run_array;
983
984                 rcu_read_lock();
985                 run_array = rcu_dereference(init_net.bpf.run_array[type]);
986                 if (!run_array)
987                         run_array = rcu_dereference(net->bpf.run_array[type]);
988
989                 if (run_array) {
990                         struct bpf_flow_keys flow_keys;
991                         struct bpf_flow_dissector ctx = {
992                                 .flow_keys = &flow_keys,
993                                 .data = data,
994                                 .data_end = data + hlen,
995                         };
996                         __be16 n_proto = proto;
997                         struct bpf_prog *prog;
998
999                         if (skb) {
1000                                 ctx.skb = skb;
1001                                 /* we can't use 'proto' in the skb case
1002                                  * because it might be set to skb->vlan_proto
1003                                  * which has been pulled from the data
1004                                  */
1005                                 n_proto = skb->protocol;
1006                         }
1007
1008                         prog = READ_ONCE(run_array->items[0].prog);
1009                         ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
1010                                                hlen, flags);
1011                         __skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1012                                                  target_container);
1013                         rcu_read_unlock();
1014                         return ret;
1015                 }
1016                 rcu_read_unlock();
1017         }
1018
1019         if (dissector_uses_key(flow_dissector,
1020                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1021                 struct ethhdr *eth = eth_hdr(skb);
1022                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
1023
1024                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1025                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
1026                                                           target_container);
1027                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1028         }
1029
1030 proto_again:
1031         fdret = FLOW_DISSECT_RET_CONTINUE;
1032
1033         switch (proto) {
1034         case htons(ETH_P_IP): {
1035                 const struct iphdr *iph;
1036                 struct iphdr _iph;
1037
1038                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1039                 if (!iph || iph->ihl < 5) {
1040                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1041                         break;
1042                 }
1043
1044                 nhoff += iph->ihl * 4;
1045
1046                 ip_proto = iph->protocol;
1047
1048                 if (dissector_uses_key(flow_dissector,
1049                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1050                         key_addrs = skb_flow_dissector_target(flow_dissector,
1051                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1052                                                               target_container);
1053
1054                         memcpy(&key_addrs->v4addrs, &iph->saddr,
1055                                sizeof(key_addrs->v4addrs));
1056                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1057                 }
1058
1059                 __skb_flow_dissect_ipv4(skb, flow_dissector,
1060                                         target_container, data, iph);
1061
1062                 if (ip_is_fragment(iph)) {
1063                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1064
1065                         if (iph->frag_off & htons(IP_OFFSET)) {
1066                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1067                                 break;
1068                         } else {
1069                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
1070                                 if (!(flags &
1071                                       FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1072                                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1073                                         break;
1074                                 }
1075                         }
1076                 }
1077
1078                 break;
1079         }
1080         case htons(ETH_P_IPV6): {
1081                 const struct ipv6hdr *iph;
1082                 struct ipv6hdr _iph;
1083
1084                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1085                 if (!iph) {
1086                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1087                         break;
1088                 }
1089
1090                 ip_proto = iph->nexthdr;
1091                 nhoff += sizeof(struct ipv6hdr);
1092
1093                 if (dissector_uses_key(flow_dissector,
1094                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1095                         key_addrs = skb_flow_dissector_target(flow_dissector,
1096                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1097                                                               target_container);
1098
1099                         memcpy(&key_addrs->v6addrs, &iph->saddr,
1100                                sizeof(key_addrs->v6addrs));
1101                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1102                 }
1103
1104                 if ((dissector_uses_key(flow_dissector,
1105                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1106                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1107                     ip6_flowlabel(iph)) {
1108                         __be32 flow_label = ip6_flowlabel(iph);
1109
1110                         if (dissector_uses_key(flow_dissector,
1111                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1112                                 key_tags = skb_flow_dissector_target(flow_dissector,
1113                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
1114                                                                      target_container);
1115                                 key_tags->flow_label = ntohl(flow_label);
1116                         }
1117                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1118                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1119                                 break;
1120                         }
1121                 }
1122
1123                 __skb_flow_dissect_ipv6(skb, flow_dissector,
1124                                         target_container, data, iph);
1125
1126                 break;
1127         }
1128         case htons(ETH_P_8021AD):
1129         case htons(ETH_P_8021Q): {
1130                 const struct vlan_hdr *vlan = NULL;
1131                 struct vlan_hdr _vlan;
1132                 __be16 saved_vlan_tpid = proto;
1133
1134                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1135                     skb && skb_vlan_tag_present(skb)) {
1136                         proto = skb->protocol;
1137                 } else {
1138                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1139                                                     data, hlen, &_vlan);
1140                         if (!vlan) {
1141                                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1142                                 break;
1143                         }
1144
1145                         proto = vlan->h_vlan_encapsulated_proto;
1146                         nhoff += sizeof(*vlan);
1147                 }
1148
1149                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1150                         dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1151                 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1152                         dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1153                 } else {
1154                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1155                         break;
1156                 }
1157
1158                 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1159                         key_vlan = skb_flow_dissector_target(flow_dissector,
1160                                                              dissector_vlan,
1161                                                              target_container);
1162
1163                         if (!vlan) {
1164                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1165                                 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1166                         } else {
1167                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1168                                         VLAN_VID_MASK;
1169                                 key_vlan->vlan_priority =
1170                                         (ntohs(vlan->h_vlan_TCI) &
1171                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1172                         }
1173                         key_vlan->vlan_tpid = saved_vlan_tpid;
1174                 }
1175
1176                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1177                 break;
1178         }
1179         case htons(ETH_P_PPP_SES): {
1180                 struct {
1181                         struct pppoe_hdr hdr;
1182                         __be16 proto;
1183                 } *hdr, _hdr;
1184                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1185                 if (!hdr) {
1186                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1187                         break;
1188                 }
1189
1190                 proto = hdr->proto;
1191                 nhoff += PPPOE_SES_HLEN;
1192                 switch (proto) {
1193                 case htons(PPP_IP):
1194                         proto = htons(ETH_P_IP);
1195                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1196                         break;
1197                 case htons(PPP_IPV6):
1198                         proto = htons(ETH_P_IPV6);
1199                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1200                         break;
1201                 default:
1202                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1203                         break;
1204                 }
1205                 break;
1206         }
1207         case htons(ETH_P_TIPC): {
1208                 struct tipc_basic_hdr *hdr, _hdr;
1209
1210                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1211                                            data, hlen, &_hdr);
1212                 if (!hdr) {
1213                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1214                         break;
1215                 }
1216
1217                 if (dissector_uses_key(flow_dissector,
1218                                        FLOW_DISSECTOR_KEY_TIPC)) {
1219                         key_addrs = skb_flow_dissector_target(flow_dissector,
1220                                                               FLOW_DISSECTOR_KEY_TIPC,
1221                                                               target_container);
1222                         key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1223                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1224                 }
1225                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1226                 break;
1227         }
1228
1229         case htons(ETH_P_MPLS_UC):
1230         case htons(ETH_P_MPLS_MC):
1231                 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1232                                                 target_container, data,
1233                                                 nhoff, hlen, mpls_lse,
1234                                                 &mpls_el);
1235                 nhoff += sizeof(struct mpls_label);
1236                 mpls_lse++;
1237                 break;
1238         case htons(ETH_P_FCOE):
1239                 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1240                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1241                         break;
1242                 }
1243
1244                 nhoff += FCOE_HEADER_LEN;
1245                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1246                 break;
1247
1248         case htons(ETH_P_ARP):
1249         case htons(ETH_P_RARP):
1250                 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1251                                                target_container, data,
1252                                                nhoff, hlen);
1253                 break;
1254
1255         case htons(ETH_P_BATMAN):
1256                 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1257                                                   &proto, &nhoff, hlen, flags);
1258                 break;
1259
1260         case htons(ETH_P_1588): {
1261                 struct ptp_header *hdr, _hdr;
1262
1263                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
1264                                            hlen, &_hdr);
1265                 if (!hdr) {
1266                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1267                         break;
1268                 }
1269
1270                 nhoff += ntohs(hdr->message_length);
1271                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1272                 break;
1273         }
1274
1275         default:
1276                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1277                 break;
1278         }
1279
1280         /* Process result of proto processing */
1281         switch (fdret) {
1282         case FLOW_DISSECT_RET_OUT_GOOD:
1283                 goto out_good;
1284         case FLOW_DISSECT_RET_PROTO_AGAIN:
1285                 if (skb_flow_dissect_allowed(&num_hdrs))
1286                         goto proto_again;
1287                 goto out_good;
1288         case FLOW_DISSECT_RET_CONTINUE:
1289         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1290                 break;
1291         case FLOW_DISSECT_RET_OUT_BAD:
1292         default:
1293                 goto out_bad;
1294         }
1295
1296 ip_proto_again:
1297         fdret = FLOW_DISSECT_RET_CONTINUE;
1298
1299         switch (ip_proto) {
1300         case IPPROTO_GRE:
1301                 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1302                                                target_container, data,
1303                                                &proto, &nhoff, &hlen, flags);
1304                 break;
1305
1306         case NEXTHDR_HOP:
1307         case NEXTHDR_ROUTING:
1308         case NEXTHDR_DEST: {
1309                 u8 _opthdr[2], *opthdr;
1310
1311                 if (proto != htons(ETH_P_IPV6))
1312                         break;
1313
1314                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1315                                               data, hlen, &_opthdr);
1316                 if (!opthdr) {
1317                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1318                         break;
1319                 }
1320
1321                 ip_proto = opthdr[0];
1322                 nhoff += (opthdr[1] + 1) << 3;
1323
1324                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1325                 break;
1326         }
1327         case NEXTHDR_FRAGMENT: {
1328                 struct frag_hdr _fh, *fh;
1329
1330                 if (proto != htons(ETH_P_IPV6))
1331                         break;
1332
1333                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1334                                           data, hlen, &_fh);
1335
1336                 if (!fh) {
1337                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1338                         break;
1339                 }
1340
1341                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1342
1343                 nhoff += sizeof(_fh);
1344                 ip_proto = fh->nexthdr;
1345
1346                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
1347                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
1348                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1349                                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1350                                 break;
1351                         }
1352                 }
1353
1354                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1355                 break;
1356         }
1357         case IPPROTO_IPIP:
1358                 proto = htons(ETH_P_IP);
1359
1360                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1361                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1362                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1363                         break;
1364                 }
1365
1366                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1367                 break;
1368
1369         case IPPROTO_IPV6:
1370                 proto = htons(ETH_P_IPV6);
1371
1372                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1373                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1374                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1375                         break;
1376                 }
1377
1378                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1379                 break;
1380
1381
1382         case IPPROTO_MPLS:
1383                 proto = htons(ETH_P_MPLS_UC);
1384                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1385                 break;
1386
1387         case IPPROTO_TCP:
1388                 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1389                                        data, nhoff, hlen);
1390                 break;
1391
1392         case IPPROTO_ICMP:
1393         case IPPROTO_ICMPV6:
1394                 __skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1395                                         data, nhoff, hlen);
1396                 break;
1397
1398         default:
1399                 break;
1400         }
1401
1402         if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1403                 __skb_flow_dissect_ports(skb, flow_dissector, target_container,
1404                                          data, nhoff, ip_proto, hlen);
1405
1406         /* Process result of IP proto processing */
1407         switch (fdret) {
1408         case FLOW_DISSECT_RET_PROTO_AGAIN:
1409                 if (skb_flow_dissect_allowed(&num_hdrs))
1410                         goto proto_again;
1411                 break;
1412         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1413                 if (skb_flow_dissect_allowed(&num_hdrs))
1414                         goto ip_proto_again;
1415                 break;
1416         case FLOW_DISSECT_RET_OUT_GOOD:
1417         case FLOW_DISSECT_RET_CONTINUE:
1418                 break;
1419         case FLOW_DISSECT_RET_OUT_BAD:
1420         default:
1421                 goto out_bad;
1422         }
1423
1424 out_good:
1425         ret = true;
1426
1427 out:
1428         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1429         key_basic->n_proto = proto;
1430         key_basic->ip_proto = ip_proto;
1431
1432         return ret;
1433
1434 out_bad:
1435         ret = false;
1436         goto out;
1437 }
1438 EXPORT_SYMBOL(__skb_flow_dissect);
1439
1440 static siphash_key_t hashrnd __read_mostly;
1441 static __always_inline void __flow_hash_secret_init(void)
1442 {
1443         net_get_random_once(&hashrnd, sizeof(hashrnd));
1444 }
1445
1446 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1447 {
1448         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1449         return &flow->FLOW_KEYS_HASH_START_FIELD;
1450 }
1451
1452 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1453 {
1454         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1455
1456         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1457
1458         switch (flow->control.addr_type) {
1459         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1460                 diff -= sizeof(flow->addrs.v4addrs);
1461                 break;
1462         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1463                 diff -= sizeof(flow->addrs.v6addrs);
1464                 break;
1465         case FLOW_DISSECTOR_KEY_TIPC:
1466                 diff -= sizeof(flow->addrs.tipckey);
1467                 break;
1468         }
1469         return sizeof(*flow) - diff;
1470 }
1471
1472 __be32 flow_get_u32_src(const struct flow_keys *flow)
1473 {
1474         switch (flow->control.addr_type) {
1475         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1476                 return flow->addrs.v4addrs.src;
1477         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1478                 return (__force __be32)ipv6_addr_hash(
1479                         &flow->addrs.v6addrs.src);
1480         case FLOW_DISSECTOR_KEY_TIPC:
1481                 return flow->addrs.tipckey.key;
1482         default:
1483                 return 0;
1484         }
1485 }
1486 EXPORT_SYMBOL(flow_get_u32_src);
1487
1488 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1489 {
1490         switch (flow->control.addr_type) {
1491         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1492                 return flow->addrs.v4addrs.dst;
1493         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1494                 return (__force __be32)ipv6_addr_hash(
1495                         &flow->addrs.v6addrs.dst);
1496         default:
1497                 return 0;
1498         }
1499 }
1500 EXPORT_SYMBOL(flow_get_u32_dst);
1501
1502 /* Sort the source and destination IP (and the ports if the IP are the same),
1503  * to have consistent hash within the two directions
1504  */
1505 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1506 {
1507         int addr_diff, i;
1508
1509         switch (keys->control.addr_type) {
1510         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1511                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1512                             (__force u32)keys->addrs.v4addrs.src;
1513                 if ((addr_diff < 0) ||
1514                     (addr_diff == 0 &&
1515                      ((__force u16)keys->ports.dst <
1516                       (__force u16)keys->ports.src))) {
1517                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1518                         swap(keys->ports.src, keys->ports.dst);
1519                 }
1520                 break;
1521         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1522                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1523                                    &keys->addrs.v6addrs.src,
1524                                    sizeof(keys->addrs.v6addrs.dst));
1525                 if ((addr_diff < 0) ||
1526                     (addr_diff == 0 &&
1527                      ((__force u16)keys->ports.dst <
1528                       (__force u16)keys->ports.src))) {
1529                         for (i = 0; i < 4; i++)
1530                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1531                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
1532                         swap(keys->ports.src, keys->ports.dst);
1533                 }
1534                 break;
1535         }
1536 }
1537
1538 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1539                                         const siphash_key_t *keyval)
1540 {
1541         u32 hash;
1542
1543         __flow_hash_consistentify(keys);
1544
1545         hash = siphash(flow_keys_hash_start(keys),
1546                        flow_keys_hash_length(keys), keyval);
1547         if (!hash)
1548                 hash = 1;
1549
1550         return hash;
1551 }
1552
1553 u32 flow_hash_from_keys(struct flow_keys *keys)
1554 {
1555         __flow_hash_secret_init();
1556         return __flow_hash_from_keys(keys, &hashrnd);
1557 }
1558 EXPORT_SYMBOL(flow_hash_from_keys);
1559
1560 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1561                                   struct flow_keys *keys,
1562                                   const siphash_key_t *keyval)
1563 {
1564         skb_flow_dissect_flow_keys(skb, keys,
1565                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1566
1567         return __flow_hash_from_keys(keys, keyval);
1568 }
1569
1570 struct _flow_keys_digest_data {
1571         __be16  n_proto;
1572         u8      ip_proto;
1573         u8      padding;
1574         __be32  ports;
1575         __be32  src;
1576         __be32  dst;
1577 };
1578
1579 void make_flow_keys_digest(struct flow_keys_digest *digest,
1580                            const struct flow_keys *flow)
1581 {
1582         struct _flow_keys_digest_data *data =
1583             (struct _flow_keys_digest_data *)digest;
1584
1585         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1586
1587         memset(digest, 0, sizeof(*digest));
1588
1589         data->n_proto = flow->basic.n_proto;
1590         data->ip_proto = flow->basic.ip_proto;
1591         data->ports = flow->ports.ports;
1592         data->src = flow->addrs.v4addrs.src;
1593         data->dst = flow->addrs.v4addrs.dst;
1594 }
1595 EXPORT_SYMBOL(make_flow_keys_digest);
1596
1597 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1598
1599 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1600 {
1601         struct flow_keys keys;
1602
1603         __flow_hash_secret_init();
1604
1605         memset(&keys, 0, sizeof(keys));
1606         __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1607                            &keys, NULL, 0, 0, 0,
1608                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1609
1610         return __flow_hash_from_keys(&keys, &hashrnd);
1611 }
1612 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1613
1614 /**
1615  * __skb_get_hash: calculate a flow hash
1616  * @skb: sk_buff to calculate flow hash from
1617  *
1618  * This function calculates a flow hash based on src/dst addresses
1619  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1620  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1621  * if hash is a canonical 4-tuple hash over transport ports.
1622  */
1623 void __skb_get_hash(struct sk_buff *skb)
1624 {
1625         struct flow_keys keys;
1626         u32 hash;
1627
1628         __flow_hash_secret_init();
1629
1630         hash = ___skb_get_hash(skb, &keys, &hashrnd);
1631
1632         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1633 }
1634 EXPORT_SYMBOL(__skb_get_hash);
1635
1636 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1637                            const siphash_key_t *perturb)
1638 {
1639         struct flow_keys keys;
1640
1641         return ___skb_get_hash(skb, &keys, perturb);
1642 }
1643 EXPORT_SYMBOL(skb_get_hash_perturb);
1644
1645 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1646                    const struct flow_keys_basic *keys, int hlen)
1647 {
1648         u32 poff = keys->control.thoff;
1649
1650         /* skip L4 headers for fragments after the first */
1651         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1652             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1653                 return poff;
1654
1655         switch (keys->basic.ip_proto) {
1656         case IPPROTO_TCP: {
1657                 /* access doff as u8 to avoid unaligned access */
1658                 const u8 *doff;
1659                 u8 _doff;
1660
1661                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1662                                             data, hlen, &_doff);
1663                 if (!doff)
1664                         return poff;
1665
1666                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1667                 break;
1668         }
1669         case IPPROTO_UDP:
1670         case IPPROTO_UDPLITE:
1671                 poff += sizeof(struct udphdr);
1672                 break;
1673         /* For the rest, we do not really care about header
1674          * extensions at this point for now.
1675          */
1676         case IPPROTO_ICMP:
1677                 poff += sizeof(struct icmphdr);
1678                 break;
1679         case IPPROTO_ICMPV6:
1680                 poff += sizeof(struct icmp6hdr);
1681                 break;
1682         case IPPROTO_IGMP:
1683                 poff += sizeof(struct igmphdr);
1684                 break;
1685         case IPPROTO_DCCP:
1686                 poff += sizeof(struct dccp_hdr);
1687                 break;
1688         case IPPROTO_SCTP:
1689                 poff += sizeof(struct sctphdr);
1690                 break;
1691         }
1692
1693         return poff;
1694 }
1695
1696 /**
1697  * skb_get_poff - get the offset to the payload
1698  * @skb: sk_buff to get the payload offset from
1699  *
1700  * The function will get the offset to the payload as far as it could
1701  * be dissected.  The main user is currently BPF, so that we can dynamically
1702  * truncate packets without needing to push actual payload to the user
1703  * space and can analyze headers only, instead.
1704  */
1705 u32 skb_get_poff(const struct sk_buff *skb)
1706 {
1707         struct flow_keys_basic keys;
1708
1709         if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1710                                               NULL, 0, 0, 0, 0))
1711                 return 0;
1712
1713         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1714 }
1715
1716 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1717 {
1718         memset(keys, 0, sizeof(*keys));
1719
1720         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1721             sizeof(keys->addrs.v6addrs.src));
1722         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1723             sizeof(keys->addrs.v6addrs.dst));
1724         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1725         keys->ports.src = fl6->fl6_sport;
1726         keys->ports.dst = fl6->fl6_dport;
1727         keys->keyid.keyid = fl6->fl6_gre_key;
1728         keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1729         keys->basic.ip_proto = fl6->flowi6_proto;
1730
1731         return flow_hash_from_keys(keys);
1732 }
1733 EXPORT_SYMBOL(__get_hash_from_flowi6);
1734
1735 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1736         {
1737                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1738                 .offset = offsetof(struct flow_keys, control),
1739         },
1740         {
1741                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1742                 .offset = offsetof(struct flow_keys, basic),
1743         },
1744         {
1745                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1746                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1747         },
1748         {
1749                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1750                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1751         },
1752         {
1753                 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1754                 .offset = offsetof(struct flow_keys, addrs.tipckey),
1755         },
1756         {
1757                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1758                 .offset = offsetof(struct flow_keys, ports),
1759         },
1760         {
1761                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1762                 .offset = offsetof(struct flow_keys, vlan),
1763         },
1764         {
1765                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1766                 .offset = offsetof(struct flow_keys, tags),
1767         },
1768         {
1769                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1770                 .offset = offsetof(struct flow_keys, keyid),
1771         },
1772 };
1773
1774 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1775         {
1776                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1777                 .offset = offsetof(struct flow_keys, control),
1778         },
1779         {
1780                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1781                 .offset = offsetof(struct flow_keys, basic),
1782         },
1783         {
1784                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1785                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1786         },
1787         {
1788                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1789                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1790         },
1791         {
1792                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1793                 .offset = offsetof(struct flow_keys, ports),
1794         },
1795 };
1796
1797 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1798         {
1799                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1800                 .offset = offsetof(struct flow_keys, control),
1801         },
1802         {
1803                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1804                 .offset = offsetof(struct flow_keys, basic),
1805         },
1806 };
1807
1808 struct flow_dissector flow_keys_dissector __read_mostly;
1809 EXPORT_SYMBOL(flow_keys_dissector);
1810
1811 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1812 EXPORT_SYMBOL(flow_keys_basic_dissector);
1813
1814 static int __init init_default_flow_dissectors(void)
1815 {
1816         skb_flow_dissector_init(&flow_keys_dissector,
1817                                 flow_keys_dissector_keys,
1818                                 ARRAY_SIZE(flow_keys_dissector_keys));
1819         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1820                                 flow_keys_dissector_symmetric_keys,
1821                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1822         skb_flow_dissector_init(&flow_keys_basic_dissector,
1823                                 flow_keys_basic_dissector_keys,
1824                                 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1825         return 0;
1826 }
1827 core_initcall(init_default_flow_dissectors);