Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87         if (in_compat_syscall()) {
88                 struct compat_sock_fprog f32;
89
90                 if (len != sizeof(f32))
91                         return -EINVAL;
92                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
93                         return -EFAULT;
94                 memset(dst, 0, sizeof(*dst));
95                 dst->len = f32.len;
96                 dst->filter = compat_ptr(f32.filter);
97         } else {
98                 if (len != sizeof(*dst))
99                         return -EINVAL;
100                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
101                         return -EFAULT;
102         }
103
104         return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107
108 /**
109  *      sk_filter_trim_cap - run a packet through a socket filter
110  *      @sk: sock associated with &sk_buff
111  *      @skb: buffer to filter
112  *      @cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123         int err;
124         struct sk_filter *filter;
125
126         /*
127          * If the skb was allocated from pfmemalloc reserves, only
128          * allow SOCK_MEMALLOC sockets to use it as this socket is
129          * helping free memory
130          */
131         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133                 return -ENOMEM;
134         }
135         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136         if (err)
137                 return err;
138
139         err = security_sock_rcv_skb(sk, skb);
140         if (err)
141                 return err;
142
143         rcu_read_lock();
144         filter = rcu_dereference(sk->sk_filter);
145         if (filter) {
146                 struct sock *save_sk = skb->sk;
147                 unsigned int pkt_len;
148
149                 skb->sk = sk;
150                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151                 skb->sk = save_sk;
152                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153         }
154         rcu_read_unlock();
155
156         return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162         return skb_get_poff(skb);
163 }
164
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167         struct nlattr *nla;
168
169         if (skb_is_nonlinear(skb))
170                 return 0;
171
172         if (skb->len < sizeof(struct nlattr))
173                 return 0;
174
175         if (a > skb->len - sizeof(struct nlattr))
176                 return 0;
177
178         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179         if (nla)
180                 return (void *) nla - (void *) skb->data;
181
182         return 0;
183 }
184
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187         struct nlattr *nla;
188
189         if (skb_is_nonlinear(skb))
190                 return 0;
191
192         if (skb->len < sizeof(struct nlattr))
193                 return 0;
194
195         if (a > skb->len - sizeof(struct nlattr))
196                 return 0;
197
198         nla = (struct nlattr *) &skb->data[a];
199         if (nla->nla_len > skb->len - a)
200                 return 0;
201
202         nla = nla_find_nested(nla, x);
203         if (nla)
204                 return (void *) nla - (void *) skb->data;
205
206         return 0;
207 }
208
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210            data, int, headlen, int, offset)
211 {
212         u8 tmp, *ptr;
213         const int len = sizeof(tmp);
214
215         if (offset >= 0) {
216                 if (headlen - offset >= len)
217                         return *(u8 *)(data + offset);
218                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219                         return tmp;
220         } else {
221                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222                 if (likely(ptr))
223                         return *(u8 *)ptr;
224         }
225
226         return -EFAULT;
227 }
228
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230            int, offset)
231 {
232         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233                                          offset);
234 }
235
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237            data, int, headlen, int, offset)
238 {
239         u16 tmp, *ptr;
240         const int len = sizeof(tmp);
241
242         if (offset >= 0) {
243                 if (headlen - offset >= len)
244                         return get_unaligned_be16(data + offset);
245                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246                         return be16_to_cpu(tmp);
247         } else {
248                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249                 if (likely(ptr))
250                         return get_unaligned_be16(ptr);
251         }
252
253         return -EFAULT;
254 }
255
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257            int, offset)
258 {
259         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260                                           offset);
261 }
262
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264            data, int, headlen, int, offset)
265 {
266         u32 tmp, *ptr;
267         const int len = sizeof(tmp);
268
269         if (likely(offset >= 0)) {
270                 if (headlen - offset >= len)
271                         return get_unaligned_be32(data + offset);
272                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273                         return be32_to_cpu(tmp);
274         } else {
275                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276                 if (likely(ptr))
277                         return get_unaligned_be32(ptr);
278         }
279
280         return -EFAULT;
281 }
282
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284            int, offset)
285 {
286         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287                                           offset);
288 }
289
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291                               struct bpf_insn *insn_buf)
292 {
293         struct bpf_insn *insn = insn_buf;
294
295         switch (skb_field) {
296         case SKF_AD_MARK:
297                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298
299                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, mark));
301                 break;
302
303         case SKF_AD_PKTTYPE:
304                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
305                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309                 break;
310
311         case SKF_AD_QUEUE:
312                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313
314                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315                                       offsetof(struct sk_buff, queue_mapping));
316                 break;
317
318         case SKF_AD_VLAN_TAG:
319                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320
321                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323                                       offsetof(struct sk_buff, vlan_tci));
324                 break;
325         case SKF_AD_VLAN_TAG_PRESENT:
326                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
327                 if (PKT_VLAN_PRESENT_BIT)
328                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329                 if (PKT_VLAN_PRESENT_BIT < 7)
330                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331                 break;
332         }
333
334         return insn - insn_buf;
335 }
336
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338                                    struct bpf_insn **insnp)
339 {
340         struct bpf_insn *insn = *insnp;
341         u32 cnt;
342
343         switch (fp->k) {
344         case SKF_AD_OFF + SKF_AD_PROTOCOL:
345                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346
347                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
348                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349                                       offsetof(struct sk_buff, protocol));
350                 /* A = ntohs(A) [emitting a nop or swap16] */
351                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352                 break;
353
354         case SKF_AD_OFF + SKF_AD_PKTTYPE:
355                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356                 insn += cnt - 1;
357                 break;
358
359         case SKF_AD_OFF + SKF_AD_IFINDEX:
360         case SKF_AD_OFF + SKF_AD_HATYPE:
361                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363
364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365                                       BPF_REG_TMP, BPF_REG_CTX,
366                                       offsetof(struct sk_buff, dev));
367                 /* if (tmp != 0) goto pc + 1 */
368                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369                 *insn++ = BPF_EXIT_INSN();
370                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372                                             offsetof(struct net_device, ifindex));
373                 else
374                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, type));
376                 break;
377
378         case SKF_AD_OFF + SKF_AD_MARK:
379                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380                 insn += cnt - 1;
381                 break;
382
383         case SKF_AD_OFF + SKF_AD_RXHASH:
384                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385
386                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387                                     offsetof(struct sk_buff, hash));
388                 break;
389
390         case SKF_AD_OFF + SKF_AD_QUEUE:
391                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392                 insn += cnt - 1;
393                 break;
394
395         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397                                          BPF_REG_A, BPF_REG_CTX, insn);
398                 insn += cnt - 1;
399                 break;
400
401         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403                                          BPF_REG_A, BPF_REG_CTX, insn);
404                 insn += cnt - 1;
405                 break;
406
407         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409
410                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412                                       offsetof(struct sk_buff, vlan_proto));
413                 /* A = ntohs(A) [emitting a nop or swap16] */
414                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415                 break;
416
417         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418         case SKF_AD_OFF + SKF_AD_NLATTR:
419         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420         case SKF_AD_OFF + SKF_AD_CPU:
421         case SKF_AD_OFF + SKF_AD_RANDOM:
422                 /* arg1 = CTX */
423                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424                 /* arg2 = A */
425                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426                 /* arg3 = X */
427                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
429                 switch (fp->k) {
430                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432                         break;
433                 case SKF_AD_OFF + SKF_AD_NLATTR:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_CPU:
440                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_RANDOM:
443                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444                         bpf_user_rnd_init_once();
445                         break;
446                 }
447                 break;
448
449         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450                 /* A ^= X */
451                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452                 break;
453
454         default:
455                 /* This is just a dummy call to avoid letting the compiler
456                  * evict __bpf_call_base() as an optimization. Placed here
457                  * where no-one bothers.
458                  */
459                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460                 return false;
461         }
462
463         *insnp = insn;
464         return true;
465 }
466
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471         bool endian = BPF_SIZE(fp->code) == BPF_H ||
472                       BPF_SIZE(fp->code) == BPF_W;
473         bool indirect = BPF_MODE(fp->code) == BPF_IND;
474         const int ip_align = NET_IP_ALIGN;
475         struct bpf_insn *insn = *insnp;
476         int offset = fp->k;
477
478         if (!indirect &&
479             ((unaligned_ok && offset >= 0) ||
480              (!unaligned_ok && offset >= 0 &&
481               offset + ip_align >= 0 &&
482               offset + ip_align % size == 0))) {
483                 bool ldx_off_ok = offset <= S16_MAX;
484
485                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486                 if (offset)
487                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489                                       size, 2 + endian + (!ldx_off_ok * 2));
490                 if (ldx_off_ok) {
491                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492                                               BPF_REG_D, offset);
493                 } else {
494                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497                                               BPF_REG_TMP, 0);
498                 }
499                 if (endian)
500                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501                 *insn++ = BPF_JMP_A(8);
502         }
503
504         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507         if (!indirect) {
508                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509         } else {
510                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511                 if (fp->k)
512                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513         }
514
515         switch (BPF_SIZE(fp->code)) {
516         case BPF_B:
517                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518                 break;
519         case BPF_H:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521                 break;
522         case BPF_W:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524                 break;
525         default:
526                 return false;
527         }
528
529         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531         *insn   = BPF_EXIT_INSN();
532
533         *insnp = insn;
534         return true;
535 }
536
537 /**
538  *      bpf_convert_filter - convert filter program
539  *      @prog: the user passed filter program
540  *      @len: the length of the user passed filter program
541  *      @new_prog: allocated 'struct bpf_prog' or NULL
542  *      @new_len: pointer to store length of converted program
543  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557                               struct bpf_prog *new_prog, int *new_len,
558                               bool *seen_ld_abs)
559 {
560         int new_flen = 0, pass = 0, target, i, stack_off;
561         struct bpf_insn *new_insn, *first_insn = NULL;
562         struct sock_filter *fp;
563         int *addrs = NULL;
564         u8 bpf_src;
565
566         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568
569         if (len <= 0 || len > BPF_MAXINSNS)
570                 return -EINVAL;
571
572         if (new_prog) {
573                 first_insn = new_prog->insnsi;
574                 addrs = kcalloc(len, sizeof(*addrs),
575                                 GFP_KERNEL | __GFP_NOWARN);
576                 if (!addrs)
577                         return -ENOMEM;
578         }
579
580 do_pass:
581         new_insn = first_insn;
582         fp = prog;
583
584         /* Classic BPF related prologue emission. */
585         if (new_prog) {
586                 /* Classic BPF expects A and X to be reset first. These need
587                  * to be guaranteed to be the first two instructions.
588                  */
589                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591
592                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
593                  * In eBPF case it's done by the compiler, here we need to
594                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595                  */
596                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597                 if (*seen_ld_abs) {
598                         /* For packet access in classic BPF, cache skb->data
599                          * in callee-saved BPF R8 and skb->len - skb->data_len
600                          * (headlen) in BPF R9. Since classic BPF is read-only
601                          * on CTX, we only need to cache it once.
602                          */
603                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604                                                   BPF_REG_D, BPF_REG_CTX,
605                                                   offsetof(struct sk_buff, data));
606                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607                                                   offsetof(struct sk_buff, len));
608                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609                                                   offsetof(struct sk_buff, data_len));
610                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611                 }
612         } else {
613                 new_insn += 3;
614         }
615
616         for (i = 0; i < len; fp++, i++) {
617                 struct bpf_insn tmp_insns[32] = { };
618                 struct bpf_insn *insn = tmp_insns;
619
620                 if (addrs)
621                         addrs[i] = new_insn - first_insn;
622
623                 switch (fp->code) {
624                 /* All arithmetic insns and skb loads map as-is. */
625                 case BPF_ALU | BPF_ADD | BPF_X:
626                 case BPF_ALU | BPF_ADD | BPF_K:
627                 case BPF_ALU | BPF_SUB | BPF_X:
628                 case BPF_ALU | BPF_SUB | BPF_K:
629                 case BPF_ALU | BPF_AND | BPF_X:
630                 case BPF_ALU | BPF_AND | BPF_K:
631                 case BPF_ALU | BPF_OR | BPF_X:
632                 case BPF_ALU | BPF_OR | BPF_K:
633                 case BPF_ALU | BPF_LSH | BPF_X:
634                 case BPF_ALU | BPF_LSH | BPF_K:
635                 case BPF_ALU | BPF_RSH | BPF_X:
636                 case BPF_ALU | BPF_RSH | BPF_K:
637                 case BPF_ALU | BPF_XOR | BPF_X:
638                 case BPF_ALU | BPF_XOR | BPF_K:
639                 case BPF_ALU | BPF_MUL | BPF_X:
640                 case BPF_ALU | BPF_MUL | BPF_K:
641                 case BPF_ALU | BPF_DIV | BPF_X:
642                 case BPF_ALU | BPF_DIV | BPF_K:
643                 case BPF_ALU | BPF_MOD | BPF_X:
644                 case BPF_ALU | BPF_MOD | BPF_K:
645                 case BPF_ALU | BPF_NEG:
646                 case BPF_LD | BPF_ABS | BPF_W:
647                 case BPF_LD | BPF_ABS | BPF_H:
648                 case BPF_LD | BPF_ABS | BPF_B:
649                 case BPF_LD | BPF_IND | BPF_W:
650                 case BPF_LD | BPF_IND | BPF_H:
651                 case BPF_LD | BPF_IND | BPF_B:
652                         /* Check for overloaded BPF extension and
653                          * directly convert it if found, otherwise
654                          * just move on with mapping.
655                          */
656                         if (BPF_CLASS(fp->code) == BPF_LD &&
657                             BPF_MODE(fp->code) == BPF_ABS &&
658                             convert_bpf_extensions(fp, &insn))
659                                 break;
660                         if (BPF_CLASS(fp->code) == BPF_LD &&
661                             convert_bpf_ld_abs(fp, &insn)) {
662                                 *seen_ld_abs = true;
663                                 break;
664                         }
665
666                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669                                 /* Error with exception code on div/mod by 0.
670                                  * For cBPF programs, this was always return 0.
671                                  */
672                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674                                 *insn++ = BPF_EXIT_INSN();
675                         }
676
677                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678                         break;
679
680                 /* Jump transformation cannot use BPF block macros
681                  * everywhere as offset calculation and target updates
682                  * require a bit more work than the rest, i.e. jump
683                  * opcodes map as-is, but offsets need adjustment.
684                  */
685
686 #define BPF_EMIT_JMP                                                    \
687         do {                                                            \
688                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
689                 s32 off;                                                \
690                                                                         \
691                 if (target >= len || target < 0)                        \
692                         goto err;                                       \
693                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
694                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
695                 off -= insn - tmp_insns;                                \
696                 /* Reject anything not fitting into insn->off. */       \
697                 if (off < off_min || off > off_max)                     \
698                         goto err;                                       \
699                 insn->off = off;                                        \
700         } while (0)
701
702                 case BPF_JMP | BPF_JA:
703                         target = i + fp->k + 1;
704                         insn->code = fp->code;
705                         BPF_EMIT_JMP;
706                         break;
707
708                 case BPF_JMP | BPF_JEQ | BPF_K:
709                 case BPF_JMP | BPF_JEQ | BPF_X:
710                 case BPF_JMP | BPF_JSET | BPF_K:
711                 case BPF_JMP | BPF_JSET | BPF_X:
712                 case BPF_JMP | BPF_JGT | BPF_K:
713                 case BPF_JMP | BPF_JGT | BPF_X:
714                 case BPF_JMP | BPF_JGE | BPF_K:
715                 case BPF_JMP | BPF_JGE | BPF_X:
716                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717                                 /* BPF immediates are signed, zero extend
718                                  * immediate into tmp register and use it
719                                  * in compare insn.
720                                  */
721                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722
723                                 insn->dst_reg = BPF_REG_A;
724                                 insn->src_reg = BPF_REG_TMP;
725                                 bpf_src = BPF_X;
726                         } else {
727                                 insn->dst_reg = BPF_REG_A;
728                                 insn->imm = fp->k;
729                                 bpf_src = BPF_SRC(fp->code);
730                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731                         }
732
733                         /* Common case where 'jump_false' is next insn. */
734                         if (fp->jf == 0) {
735                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736                                 target = i + fp->jt + 1;
737                                 BPF_EMIT_JMP;
738                                 break;
739                         }
740
741                         /* Convert some jumps when 'jump_true' is next insn. */
742                         if (fp->jt == 0) {
743                                 switch (BPF_OP(fp->code)) {
744                                 case BPF_JEQ:
745                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
746                                         break;
747                                 case BPF_JGT:
748                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
749                                         break;
750                                 case BPF_JGE:
751                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
752                                         break;
753                                 default:
754                                         goto jmp_rest;
755                                 }
756
757                                 target = i + fp->jf + 1;
758                                 BPF_EMIT_JMP;
759                                 break;
760                         }
761 jmp_rest:
762                         /* Other jumps are mapped into two insns: Jxx and JA. */
763                         target = i + fp->jt + 1;
764                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765                         BPF_EMIT_JMP;
766                         insn++;
767
768                         insn->code = BPF_JMP | BPF_JA;
769                         target = i + fp->jf + 1;
770                         BPF_EMIT_JMP;
771                         break;
772
773                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774                 case BPF_LDX | BPF_MSH | BPF_B: {
775                         struct sock_filter tmp = {
776                                 .code   = BPF_LD | BPF_ABS | BPF_B,
777                                 .k      = fp->k,
778                         };
779
780                         *seen_ld_abs = true;
781
782                         /* X = A */
783                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
785                         convert_bpf_ld_abs(&tmp, &insn);
786                         insn++;
787                         /* A &= 0xf */
788                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789                         /* A <<= 2 */
790                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791                         /* tmp = X */
792                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793                         /* X = A */
794                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795                         /* A = tmp */
796                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797                         break;
798                 }
799                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
800                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801                  */
802                 case BPF_RET | BPF_A:
803                 case BPF_RET | BPF_K:
804                         if (BPF_RVAL(fp->code) == BPF_K)
805                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806                                                         0, fp->k);
807                         *insn = BPF_EXIT_INSN();
808                         break;
809
810                 /* Store to stack. */
811                 case BPF_ST:
812                 case BPF_STX:
813                         stack_off = fp->k * 4  + 4;
814                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
816                                             -stack_off);
817                         /* check_load_and_stores() verifies that classic BPF can
818                          * load from stack only after write, so tracking
819                          * stack_depth for ST|STX insns is enough
820                          */
821                         if (new_prog && new_prog->aux->stack_depth < stack_off)
822                                 new_prog->aux->stack_depth = stack_off;
823                         break;
824
825                 /* Load from stack. */
826                 case BPF_LD | BPF_MEM:
827                 case BPF_LDX | BPF_MEM:
828                         stack_off = fp->k * 4  + 4;
829                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831                                             -stack_off);
832                         break;
833
834                 /* A = K or X = K */
835                 case BPF_LD | BPF_IMM:
836                 case BPF_LDX | BPF_IMM:
837                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838                                               BPF_REG_A : BPF_REG_X, fp->k);
839                         break;
840
841                 /* X = A */
842                 case BPF_MISC | BPF_TAX:
843                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844                         break;
845
846                 /* A = X */
847                 case BPF_MISC | BPF_TXA:
848                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849                         break;
850
851                 /* A = skb->len or X = skb->len */
852                 case BPF_LD | BPF_W | BPF_LEN:
853                 case BPF_LDX | BPF_W | BPF_LEN:
854                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856                                             offsetof(struct sk_buff, len));
857                         break;
858
859                 /* Access seccomp_data fields. */
860                 case BPF_LDX | BPF_ABS | BPF_W:
861                         /* A = *(u32 *) (ctx + K) */
862                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863                         break;
864
865                 /* Unknown instruction. */
866                 default:
867                         goto err;
868                 }
869
870                 insn++;
871                 if (new_prog)
872                         memcpy(new_insn, tmp_insns,
873                                sizeof(*insn) * (insn - tmp_insns));
874                 new_insn += insn - tmp_insns;
875         }
876
877         if (!new_prog) {
878                 /* Only calculating new length. */
879                 *new_len = new_insn - first_insn;
880                 if (*seen_ld_abs)
881                         *new_len += 4; /* Prologue bits. */
882                 return 0;
883         }
884
885         pass++;
886         if (new_flen != new_insn - first_insn) {
887                 new_flen = new_insn - first_insn;
888                 if (pass > 2)
889                         goto err;
890                 goto do_pass;
891         }
892
893         kfree(addrs);
894         BUG_ON(*new_len != new_flen);
895         return 0;
896 err:
897         kfree(addrs);
898         return -EINVAL;
899 }
900
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911         int pc, ret = 0;
912
913         BUILD_BUG_ON(BPF_MEMWORDS > 16);
914
915         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916         if (!masks)
917                 return -ENOMEM;
918
919         memset(masks, 0xff, flen * sizeof(*masks));
920
921         for (pc = 0; pc < flen; pc++) {
922                 memvalid &= masks[pc];
923
924                 switch (filter[pc].code) {
925                 case BPF_ST:
926                 case BPF_STX:
927                         memvalid |= (1 << filter[pc].k);
928                         break;
929                 case BPF_LD | BPF_MEM:
930                 case BPF_LDX | BPF_MEM:
931                         if (!(memvalid & (1 << filter[pc].k))) {
932                                 ret = -EINVAL;
933                                 goto error;
934                         }
935                         break;
936                 case BPF_JMP | BPF_JA:
937                         /* A jump must set masks on target */
938                         masks[pc + 1 + filter[pc].k] &= memvalid;
939                         memvalid = ~0;
940                         break;
941                 case BPF_JMP | BPF_JEQ | BPF_K:
942                 case BPF_JMP | BPF_JEQ | BPF_X:
943                 case BPF_JMP | BPF_JGE | BPF_K:
944                 case BPF_JMP | BPF_JGE | BPF_X:
945                 case BPF_JMP | BPF_JGT | BPF_K:
946                 case BPF_JMP | BPF_JGT | BPF_X:
947                 case BPF_JMP | BPF_JSET | BPF_K:
948                 case BPF_JMP | BPF_JSET | BPF_X:
949                         /* A jump must set masks on targets */
950                         masks[pc + 1 + filter[pc].jt] &= memvalid;
951                         masks[pc + 1 + filter[pc].jf] &= memvalid;
952                         memvalid = ~0;
953                         break;
954                 }
955         }
956 error:
957         kfree(masks);
958         return ret;
959 }
960
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963         static const bool codes[] = {
964                 /* 32 bit ALU operations */
965                 [BPF_ALU | BPF_ADD | BPF_K] = true,
966                 [BPF_ALU | BPF_ADD | BPF_X] = true,
967                 [BPF_ALU | BPF_SUB | BPF_K] = true,
968                 [BPF_ALU | BPF_SUB | BPF_X] = true,
969                 [BPF_ALU | BPF_MUL | BPF_K] = true,
970                 [BPF_ALU | BPF_MUL | BPF_X] = true,
971                 [BPF_ALU | BPF_DIV | BPF_K] = true,
972                 [BPF_ALU | BPF_DIV | BPF_X] = true,
973                 [BPF_ALU | BPF_MOD | BPF_K] = true,
974                 [BPF_ALU | BPF_MOD | BPF_X] = true,
975                 [BPF_ALU | BPF_AND | BPF_K] = true,
976                 [BPF_ALU | BPF_AND | BPF_X] = true,
977                 [BPF_ALU | BPF_OR | BPF_K] = true,
978                 [BPF_ALU | BPF_OR | BPF_X] = true,
979                 [BPF_ALU | BPF_XOR | BPF_K] = true,
980                 [BPF_ALU | BPF_XOR | BPF_X] = true,
981                 [BPF_ALU | BPF_LSH | BPF_K] = true,
982                 [BPF_ALU | BPF_LSH | BPF_X] = true,
983                 [BPF_ALU | BPF_RSH | BPF_K] = true,
984                 [BPF_ALU | BPF_RSH | BPF_X] = true,
985                 [BPF_ALU | BPF_NEG] = true,
986                 /* Load instructions */
987                 [BPF_LD | BPF_W | BPF_ABS] = true,
988                 [BPF_LD | BPF_H | BPF_ABS] = true,
989                 [BPF_LD | BPF_B | BPF_ABS] = true,
990                 [BPF_LD | BPF_W | BPF_LEN] = true,
991                 [BPF_LD | BPF_W | BPF_IND] = true,
992                 [BPF_LD | BPF_H | BPF_IND] = true,
993                 [BPF_LD | BPF_B | BPF_IND] = true,
994                 [BPF_LD | BPF_IMM] = true,
995                 [BPF_LD | BPF_MEM] = true,
996                 [BPF_LDX | BPF_W | BPF_LEN] = true,
997                 [BPF_LDX | BPF_B | BPF_MSH] = true,
998                 [BPF_LDX | BPF_IMM] = true,
999                 [BPF_LDX | BPF_MEM] = true,
1000                 /* Store instructions */
1001                 [BPF_ST] = true,
1002                 [BPF_STX] = true,
1003                 /* Misc instructions */
1004                 [BPF_MISC | BPF_TAX] = true,
1005                 [BPF_MISC | BPF_TXA] = true,
1006                 /* Return instructions */
1007                 [BPF_RET | BPF_K] = true,
1008                 [BPF_RET | BPF_A] = true,
1009                 /* Jump instructions */
1010                 [BPF_JMP | BPF_JA] = true,
1011                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1013                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1015                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1017                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1019         };
1020
1021         if (code_to_probe >= ARRAY_SIZE(codes))
1022                 return false;
1023
1024         return codes[code_to_probe];
1025 }
1026
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028                                 unsigned int flen)
1029 {
1030         if (filter == NULL)
1031                 return false;
1032         if (flen == 0 || flen > BPF_MAXINSNS)
1033                 return false;
1034
1035         return true;
1036 }
1037
1038 /**
1039  *      bpf_check_classic - verify socket filter code
1040  *      @filter: filter to verify
1041  *      @flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053                              unsigned int flen)
1054 {
1055         bool anc_found;
1056         int pc;
1057
1058         /* Check the filter code now */
1059         for (pc = 0; pc < flen; pc++) {
1060                 const struct sock_filter *ftest = &filter[pc];
1061
1062                 /* May we actually operate on this code? */
1063                 if (!chk_code_allowed(ftest->code))
1064                         return -EINVAL;
1065
1066                 /* Some instructions need special checks */
1067                 switch (ftest->code) {
1068                 case BPF_ALU | BPF_DIV | BPF_K:
1069                 case BPF_ALU | BPF_MOD | BPF_K:
1070                         /* Check for division by zero */
1071                         if (ftest->k == 0)
1072                                 return -EINVAL;
1073                         break;
1074                 case BPF_ALU | BPF_LSH | BPF_K:
1075                 case BPF_ALU | BPF_RSH | BPF_K:
1076                         if (ftest->k >= 32)
1077                                 return -EINVAL;
1078                         break;
1079                 case BPF_LD | BPF_MEM:
1080                 case BPF_LDX | BPF_MEM:
1081                 case BPF_ST:
1082                 case BPF_STX:
1083                         /* Check for invalid memory addresses */
1084                         if (ftest->k >= BPF_MEMWORDS)
1085                                 return -EINVAL;
1086                         break;
1087                 case BPF_JMP | BPF_JA:
1088                         /* Note, the large ftest->k might cause loops.
1089                          * Compare this with conditional jumps below,
1090                          * where offsets are limited. --ANK (981016)
1091                          */
1092                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1093                                 return -EINVAL;
1094                         break;
1095                 case BPF_JMP | BPF_JEQ | BPF_K:
1096                 case BPF_JMP | BPF_JEQ | BPF_X:
1097                 case BPF_JMP | BPF_JGE | BPF_K:
1098                 case BPF_JMP | BPF_JGE | BPF_X:
1099                 case BPF_JMP | BPF_JGT | BPF_K:
1100                 case BPF_JMP | BPF_JGT | BPF_X:
1101                 case BPF_JMP | BPF_JSET | BPF_K:
1102                 case BPF_JMP | BPF_JSET | BPF_X:
1103                         /* Both conditionals must be safe */
1104                         if (pc + ftest->jt + 1 >= flen ||
1105                             pc + ftest->jf + 1 >= flen)
1106                                 return -EINVAL;
1107                         break;
1108                 case BPF_LD | BPF_W | BPF_ABS:
1109                 case BPF_LD | BPF_H | BPF_ABS:
1110                 case BPF_LD | BPF_B | BPF_ABS:
1111                         anc_found = false;
1112                         if (bpf_anc_helper(ftest) & BPF_ANC)
1113                                 anc_found = true;
1114                         /* Ancillary operation unknown or unsupported */
1115                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116                                 return -EINVAL;
1117                 }
1118         }
1119
1120         /* Last instruction must be a RET code */
1121         switch (filter[flen - 1].code) {
1122         case BPF_RET | BPF_K:
1123         case BPF_RET | BPF_A:
1124                 return check_load_and_stores(filter, flen);
1125         }
1126
1127         return -EINVAL;
1128 }
1129
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131                                       const struct sock_fprog *fprog)
1132 {
1133         unsigned int fsize = bpf_classic_proglen(fprog);
1134         struct sock_fprog_kern *fkprog;
1135
1136         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137         if (!fp->orig_prog)
1138                 return -ENOMEM;
1139
1140         fkprog = fp->orig_prog;
1141         fkprog->len = fprog->len;
1142
1143         fkprog->filter = kmemdup(fp->insns, fsize,
1144                                  GFP_KERNEL | __GFP_NOWARN);
1145         if (!fkprog->filter) {
1146                 kfree(fp->orig_prog);
1147                 return -ENOMEM;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155         struct sock_fprog_kern *fprog = fp->orig_prog;
1156
1157         if (fprog) {
1158                 kfree(fprog->filter);
1159                 kfree(fprog);
1160         }
1161 }
1162
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166                 bpf_prog_put(prog);
1167         } else {
1168                 bpf_release_orig_filter(prog);
1169                 bpf_prog_free(prog);
1170         }
1171 }
1172
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175         __bpf_prog_release(fp->prog);
1176         kfree(fp);
1177 }
1178
1179 /**
1180  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *      @rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186
1187         __sk_filter_release(fp);
1188 }
1189
1190 /**
1191  *      sk_filter_release - release a socket filter
1192  *      @fp: filter to remove
1193  *
1194  *      Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198         if (refcount_dec_and_test(&fp->refcnt))
1199                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204         u32 filter_size = bpf_prog_size(fp->prog->len);
1205
1206         atomic_sub(filter_size, &sk->sk_omem_alloc);
1207         sk_filter_release(fp);
1208 }
1209
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215         u32 filter_size = bpf_prog_size(fp->prog->len);
1216
1217         /* same check as in sock_kmalloc() */
1218         if (filter_size <= sysctl_optmem_max &&
1219             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1220                 atomic_add(filter_size, &sk->sk_omem_alloc);
1221                 return true;
1222         }
1223         return false;
1224 }
1225
1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228         if (!refcount_inc_not_zero(&fp->refcnt))
1229                 return false;
1230
1231         if (!__sk_filter_charge(sk, fp)) {
1232                 sk_filter_release(fp);
1233                 return false;
1234         }
1235         return true;
1236 }
1237
1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240         struct sock_filter *old_prog;
1241         struct bpf_prog *old_fp;
1242         int err, new_len, old_len = fp->len;
1243         bool seen_ld_abs = false;
1244
1245         /* We are free to overwrite insns et al right here as it
1246          * won't be used at this point in time anymore internally
1247          * after the migration to the internal BPF instruction
1248          * representation.
1249          */
1250         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251                      sizeof(struct bpf_insn));
1252
1253         /* Conversion cannot happen on overlapping memory areas,
1254          * so we need to keep the user BPF around until the 2nd
1255          * pass. At this time, the user BPF is stored in fp->insns.
1256          */
1257         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258                            GFP_KERNEL | __GFP_NOWARN);
1259         if (!old_prog) {
1260                 err = -ENOMEM;
1261                 goto out_err;
1262         }
1263
1264         /* 1st pass: calculate the new program length. */
1265         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 goto out_err_free;
1269
1270         /* Expand fp for appending the new filter representation. */
1271         old_fp = fp;
1272         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273         if (!fp) {
1274                 /* The old_fp is still around in case we couldn't
1275                  * allocate new memory, so uncharge on that one.
1276                  */
1277                 fp = old_fp;
1278                 err = -ENOMEM;
1279                 goto out_err_free;
1280         }
1281
1282         fp->len = new_len;
1283
1284         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286                                  &seen_ld_abs);
1287         if (err)
1288                 /* 2nd bpf_convert_filter() can fail only if it fails
1289                  * to allocate memory, remapping must succeed. Note,
1290                  * that at this time old_fp has already been released
1291                  * by krealloc().
1292                  */
1293                 goto out_err_free;
1294
1295         fp = bpf_prog_select_runtime(fp, &err);
1296         if (err)
1297                 goto out_err_free;
1298
1299         kfree(old_prog);
1300         return fp;
1301
1302 out_err_free:
1303         kfree(old_prog);
1304 out_err:
1305         __bpf_prog_release(fp);
1306         return ERR_PTR(err);
1307 }
1308
1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310                                            bpf_aux_classic_check_t trans)
1311 {
1312         int err;
1313
1314         fp->bpf_func = NULL;
1315         fp->jited = 0;
1316
1317         err = bpf_check_classic(fp->insns, fp->len);
1318         if (err) {
1319                 __bpf_prog_release(fp);
1320                 return ERR_PTR(err);
1321         }
1322
1323         /* There might be additional checks and transformations
1324          * needed on classic filters, f.e. in case of seccomp.
1325          */
1326         if (trans) {
1327                 err = trans(fp->insns, fp->len);
1328                 if (err) {
1329                         __bpf_prog_release(fp);
1330                         return ERR_PTR(err);
1331                 }
1332         }
1333
1334         /* Probe if we can JIT compile the filter and if so, do
1335          * the compilation of the filter.
1336          */
1337         bpf_jit_compile(fp);
1338
1339         /* JIT compiler couldn't process this filter, so do the
1340          * internal BPF translation for the optimized interpreter.
1341          */
1342         if (!fp->jited)
1343                 fp = bpf_migrate_filter(fp);
1344
1345         return fp;
1346 }
1347
1348 /**
1349  *      bpf_prog_create - create an unattached filter
1350  *      @pfp: the unattached filter that is created
1351  *      @fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360         unsigned int fsize = bpf_classic_proglen(fprog);
1361         struct bpf_prog *fp;
1362
1363         /* Make sure new filter is there and in the right amounts. */
1364         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365                 return -EINVAL;
1366
1367         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368         if (!fp)
1369                 return -ENOMEM;
1370
1371         memcpy(fp->insns, fprog->filter, fsize);
1372
1373         fp->len = fprog->len;
1374         /* Since unattached filters are not copied back to user
1375          * space through sk_get_filter(), we do not need to hold
1376          * a copy here, and can spare us the work.
1377          */
1378         fp->orig_prog = NULL;
1379
1380         /* bpf_prepare_filter() already takes care of freeing
1381          * memory in case something goes wrong.
1382          */
1383         fp = bpf_prepare_filter(fp, NULL);
1384         if (IS_ERR(fp))
1385                 return PTR_ERR(fp);
1386
1387         *pfp = fp;
1388         return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391
1392 /**
1393  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *      @pfp: the unattached filter that is created
1395  *      @fprog: the filter program
1396  *      @trans: post-classic verifier transformation handler
1397  *      @save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404                               bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406         unsigned int fsize = bpf_classic_proglen(fprog);
1407         struct bpf_prog *fp;
1408         int err;
1409
1410         /* Make sure new filter is there and in the right amounts. */
1411         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412                 return -EINVAL;
1413
1414         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415         if (!fp)
1416                 return -ENOMEM;
1417
1418         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419                 __bpf_prog_free(fp);
1420                 return -EFAULT;
1421         }
1422
1423         fp->len = fprog->len;
1424         fp->orig_prog = NULL;
1425
1426         if (save_orig) {
1427                 err = bpf_prog_store_orig_filter(fp, fprog);
1428                 if (err) {
1429                         __bpf_prog_free(fp);
1430                         return -ENOMEM;
1431                 }
1432         }
1433
1434         /* bpf_prepare_filter() already takes care of freeing
1435          * memory in case something goes wrong.
1436          */
1437         fp = bpf_prepare_filter(fp, trans);
1438         if (IS_ERR(fp))
1439                 return PTR_ERR(fp);
1440
1441         *pfp = fp;
1442         return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445
1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448         __bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451
1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454         struct sk_filter *fp, *old_fp;
1455
1456         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457         if (!fp)
1458                 return -ENOMEM;
1459
1460         fp->prog = prog;
1461
1462         if (!__sk_filter_charge(sk, fp)) {
1463                 kfree(fp);
1464                 return -ENOMEM;
1465         }
1466         refcount_set(&fp->refcnt, 1);
1467
1468         old_fp = rcu_dereference_protected(sk->sk_filter,
1469                                            lockdep_sock_is_held(sk));
1470         rcu_assign_pointer(sk->sk_filter, fp);
1471
1472         if (old_fp)
1473                 sk_filter_uncharge(sk, old_fp);
1474
1475         return 0;
1476 }
1477
1478 static
1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481         unsigned int fsize = bpf_classic_proglen(fprog);
1482         struct bpf_prog *prog;
1483         int err;
1484
1485         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486                 return ERR_PTR(-EPERM);
1487
1488         /* Make sure new filter is there and in the right amounts. */
1489         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490                 return ERR_PTR(-EINVAL);
1491
1492         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493         if (!prog)
1494                 return ERR_PTR(-ENOMEM);
1495
1496         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497                 __bpf_prog_free(prog);
1498                 return ERR_PTR(-EFAULT);
1499         }
1500
1501         prog->len = fprog->len;
1502
1503         err = bpf_prog_store_orig_filter(prog, fprog);
1504         if (err) {
1505                 __bpf_prog_free(prog);
1506                 return ERR_PTR(-ENOMEM);
1507         }
1508
1509         /* bpf_prepare_filter() already takes care of freeing
1510          * memory in case something goes wrong.
1511          */
1512         return bpf_prepare_filter(prog, NULL);
1513 }
1514
1515 /**
1516  *      sk_attach_filter - attach a socket filter
1517  *      @fprog: the filter program
1518  *      @sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527         struct bpf_prog *prog = __get_filter(fprog, sk);
1528         int err;
1529
1530         if (IS_ERR(prog))
1531                 return PTR_ERR(prog);
1532
1533         err = __sk_attach_prog(prog, sk);
1534         if (err < 0) {
1535                 __bpf_prog_release(prog);
1536                 return err;
1537         }
1538
1539         return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542
1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545         struct bpf_prog *prog = __get_filter(fprog, sk);
1546         int err;
1547
1548         if (IS_ERR(prog))
1549                 return PTR_ERR(prog);
1550
1551         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1552                 err = -ENOMEM;
1553         else
1554                 err = reuseport_attach_prog(sk, prog);
1555
1556         if (err)
1557                 __bpf_prog_release(prog);
1558
1559         return err;
1560 }
1561
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565                 return ERR_PTR(-EPERM);
1566
1567         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572         struct bpf_prog *prog = __get_bpf(ufd, sk);
1573         int err;
1574
1575         if (IS_ERR(prog))
1576                 return PTR_ERR(prog);
1577
1578         err = __sk_attach_prog(prog, sk);
1579         if (err < 0) {
1580                 bpf_prog_put(prog);
1581                 return err;
1582         }
1583
1584         return 0;
1585 }
1586
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589         struct bpf_prog *prog;
1590         int err;
1591
1592         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593                 return -EPERM;
1594
1595         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596         if (PTR_ERR(prog) == -EINVAL)
1597                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598         if (IS_ERR(prog))
1599                 return PTR_ERR(prog);
1600
1601         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603                  * bpf prog (e.g. sockmap).  It depends on the
1604                  * limitation imposed by bpf_prog_load().
1605                  * Hence, sysctl_optmem_max is not checked.
1606                  */
1607                 if ((sk->sk_type != SOCK_STREAM &&
1608                      sk->sk_type != SOCK_DGRAM) ||
1609                     (sk->sk_protocol != IPPROTO_UDP &&
1610                      sk->sk_protocol != IPPROTO_TCP) ||
1611                     (sk->sk_family != AF_INET &&
1612                      sk->sk_family != AF_INET6)) {
1613                         err = -ENOTSUPP;
1614                         goto err_prog_put;
1615                 }
1616         } else {
1617                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1618                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1619                         err = -ENOMEM;
1620                         goto err_prog_put;
1621                 }
1622         }
1623
1624         err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626         if (err)
1627                 bpf_prog_put(prog);
1628
1629         return err;
1630 }
1631
1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634         if (!prog)
1635                 return;
1636
1637         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638                 bpf_prog_put(prog);
1639         else
1640                 bpf_prog_destroy(prog);
1641 }
1642
1643 struct bpf_scratchpad {
1644         union {
1645                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646                 u8     buff[MAX_BPF_STACK];
1647         };
1648 };
1649
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651
1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653                                           unsigned int write_len)
1654 {
1655         return skb_ensure_writable(skb, write_len);
1656 }
1657
1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659                                         unsigned int write_len)
1660 {
1661         int err = __bpf_try_make_writable(skb, write_len);
1662
1663         bpf_compute_data_pointers(skb);
1664         return err;
1665 }
1666
1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669         return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671
1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674         if (skb_at_tc_ingress(skb))
1675                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677
1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680         if (skb_at_tc_ingress(skb))
1681                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683
1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685            const void *, from, u32, len, u64, flags)
1686 {
1687         void *ptr;
1688
1689         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690                 return -EINVAL;
1691         if (unlikely(offset > 0xffff))
1692                 return -EFAULT;
1693         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694                 return -EFAULT;
1695
1696         ptr = skb->data + offset;
1697         if (flags & BPF_F_RECOMPUTE_CSUM)
1698                 __skb_postpull_rcsum(skb, ptr, len, offset);
1699
1700         memcpy(ptr, from, len);
1701
1702         if (flags & BPF_F_RECOMPUTE_CSUM)
1703                 __skb_postpush_rcsum(skb, ptr, len, offset);
1704         if (flags & BPF_F_INVALIDATE_HASH)
1705                 skb_clear_hash(skb);
1706
1707         return 0;
1708 }
1709
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711         .func           = bpf_skb_store_bytes,
1712         .gpl_only       = false,
1713         .ret_type       = RET_INTEGER,
1714         .arg1_type      = ARG_PTR_TO_CTX,
1715         .arg2_type      = ARG_ANYTHING,
1716         .arg3_type      = ARG_PTR_TO_MEM,
1717         .arg4_type      = ARG_CONST_SIZE,
1718         .arg5_type      = ARG_ANYTHING,
1719 };
1720
1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722            void *, to, u32, len)
1723 {
1724         void *ptr;
1725
1726         if (unlikely(offset > 0xffff))
1727                 goto err_clear;
1728
1729         ptr = skb_header_pointer(skb, offset, len, to);
1730         if (unlikely(!ptr))
1731                 goto err_clear;
1732         if (ptr != to)
1733                 memcpy(to, ptr, len);
1734
1735         return 0;
1736 err_clear:
1737         memset(to, 0, len);
1738         return -EFAULT;
1739 }
1740
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742         .func           = bpf_skb_load_bytes,
1743         .gpl_only       = false,
1744         .ret_type       = RET_INTEGER,
1745         .arg1_type      = ARG_PTR_TO_CTX,
1746         .arg2_type      = ARG_ANYTHING,
1747         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1748         .arg4_type      = ARG_CONST_SIZE,
1749 };
1750
1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752            const struct bpf_flow_dissector *, ctx, u32, offset,
1753            void *, to, u32, len)
1754 {
1755         void *ptr;
1756
1757         if (unlikely(offset > 0xffff))
1758                 goto err_clear;
1759
1760         if (unlikely(!ctx->skb))
1761                 goto err_clear;
1762
1763         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764         if (unlikely(!ptr))
1765                 goto err_clear;
1766         if (ptr != to)
1767                 memcpy(to, ptr, len);
1768
1769         return 0;
1770 err_clear:
1771         memset(to, 0, len);
1772         return -EFAULT;
1773 }
1774
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776         .func           = bpf_flow_dissector_load_bytes,
1777         .gpl_only       = false,
1778         .ret_type       = RET_INTEGER,
1779         .arg1_type      = ARG_PTR_TO_CTX,
1780         .arg2_type      = ARG_ANYTHING,
1781         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1782         .arg4_type      = ARG_CONST_SIZE,
1783 };
1784
1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786            u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788         u8 *end = skb_tail_pointer(skb);
1789         u8 *start, *ptr;
1790
1791         if (unlikely(offset > 0xffff))
1792                 goto err_clear;
1793
1794         switch (start_header) {
1795         case BPF_HDR_START_MAC:
1796                 if (unlikely(!skb_mac_header_was_set(skb)))
1797                         goto err_clear;
1798                 start = skb_mac_header(skb);
1799                 break;
1800         case BPF_HDR_START_NET:
1801                 start = skb_network_header(skb);
1802                 break;
1803         default:
1804                 goto err_clear;
1805         }
1806
1807         ptr = start + offset;
1808
1809         if (likely(ptr + len <= end)) {
1810                 memcpy(to, ptr, len);
1811                 return 0;
1812         }
1813
1814 err_clear:
1815         memset(to, 0, len);
1816         return -EFAULT;
1817 }
1818
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820         .func           = bpf_skb_load_bytes_relative,
1821         .gpl_only       = false,
1822         .ret_type       = RET_INTEGER,
1823         .arg1_type      = ARG_PTR_TO_CTX,
1824         .arg2_type      = ARG_ANYTHING,
1825         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1826         .arg4_type      = ARG_CONST_SIZE,
1827         .arg5_type      = ARG_ANYTHING,
1828 };
1829
1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832         /* Idea is the following: should the needed direct read/write
1833          * test fail during runtime, we can pull in more data and redo
1834          * again, since implicitly, we invalidate previous checks here.
1835          *
1836          * Or, since we know how much we need to make read/writeable,
1837          * this can be done once at the program beginning for direct
1838          * access case. By this we overcome limitations of only current
1839          * headroom being accessible.
1840          */
1841         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845         .func           = bpf_skb_pull_data,
1846         .gpl_only       = false,
1847         .ret_type       = RET_INTEGER,
1848         .arg1_type      = ARG_PTR_TO_CTX,
1849         .arg2_type      = ARG_ANYTHING,
1850 };
1851
1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858         .func           = bpf_sk_fullsock,
1859         .gpl_only       = false,
1860         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1861         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1862 };
1863
1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865                                            unsigned int write_len)
1866 {
1867         return __bpf_try_make_writable(skb, write_len);
1868 }
1869
1870 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1871 {
1872         /* Idea is the following: should the needed direct read/write
1873          * test fail during runtime, we can pull in more data and redo
1874          * again, since implicitly, we invalidate previous checks here.
1875          *
1876          * Or, since we know how much we need to make read/writeable,
1877          * this can be done once at the program beginning for direct
1878          * access case. By this we overcome limitations of only current
1879          * headroom being accessible.
1880          */
1881         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1882 }
1883
1884 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1885         .func           = sk_skb_pull_data,
1886         .gpl_only       = false,
1887         .ret_type       = RET_INTEGER,
1888         .arg1_type      = ARG_PTR_TO_CTX,
1889         .arg2_type      = ARG_ANYTHING,
1890 };
1891
1892 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1893            u64, from, u64, to, u64, flags)
1894 {
1895         __sum16 *ptr;
1896
1897         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1898                 return -EINVAL;
1899         if (unlikely(offset > 0xffff || offset & 1))
1900                 return -EFAULT;
1901         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1902                 return -EFAULT;
1903
1904         ptr = (__sum16 *)(skb->data + offset);
1905         switch (flags & BPF_F_HDR_FIELD_MASK) {
1906         case 0:
1907                 if (unlikely(from != 0))
1908                         return -EINVAL;
1909
1910                 csum_replace_by_diff(ptr, to);
1911                 break;
1912         case 2:
1913                 csum_replace2(ptr, from, to);
1914                 break;
1915         case 4:
1916                 csum_replace4(ptr, from, to);
1917                 break;
1918         default:
1919                 return -EINVAL;
1920         }
1921
1922         return 0;
1923 }
1924
1925 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1926         .func           = bpf_l3_csum_replace,
1927         .gpl_only       = false,
1928         .ret_type       = RET_INTEGER,
1929         .arg1_type      = ARG_PTR_TO_CTX,
1930         .arg2_type      = ARG_ANYTHING,
1931         .arg3_type      = ARG_ANYTHING,
1932         .arg4_type      = ARG_ANYTHING,
1933         .arg5_type      = ARG_ANYTHING,
1934 };
1935
1936 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1937            u64, from, u64, to, u64, flags)
1938 {
1939         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1940         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1941         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1942         __sum16 *ptr;
1943
1944         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1945                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1946                 return -EINVAL;
1947         if (unlikely(offset > 0xffff || offset & 1))
1948                 return -EFAULT;
1949         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1950                 return -EFAULT;
1951
1952         ptr = (__sum16 *)(skb->data + offset);
1953         if (is_mmzero && !do_mforce && !*ptr)
1954                 return 0;
1955
1956         switch (flags & BPF_F_HDR_FIELD_MASK) {
1957         case 0:
1958                 if (unlikely(from != 0))
1959                         return -EINVAL;
1960
1961                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1962                 break;
1963         case 2:
1964                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1965                 break;
1966         case 4:
1967                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         default:
1970                 return -EINVAL;
1971         }
1972
1973         if (is_mmzero && !*ptr)
1974                 *ptr = CSUM_MANGLED_0;
1975         return 0;
1976 }
1977
1978 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1979         .func           = bpf_l4_csum_replace,
1980         .gpl_only       = false,
1981         .ret_type       = RET_INTEGER,
1982         .arg1_type      = ARG_PTR_TO_CTX,
1983         .arg2_type      = ARG_ANYTHING,
1984         .arg3_type      = ARG_ANYTHING,
1985         .arg4_type      = ARG_ANYTHING,
1986         .arg5_type      = ARG_ANYTHING,
1987 };
1988
1989 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1990            __be32 *, to, u32, to_size, __wsum, seed)
1991 {
1992         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1993         u32 diff_size = from_size + to_size;
1994         int i, j = 0;
1995
1996         /* This is quite flexible, some examples:
1997          *
1998          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1999          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2000          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2001          *
2002          * Even for diffing, from_size and to_size don't need to be equal.
2003          */
2004         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2005                      diff_size > sizeof(sp->diff)))
2006                 return -EINVAL;
2007
2008         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2009                 sp->diff[j] = ~from[i];
2010         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2011                 sp->diff[j] = to[i];
2012
2013         return csum_partial(sp->diff, diff_size, seed);
2014 }
2015
2016 static const struct bpf_func_proto bpf_csum_diff_proto = {
2017         .func           = bpf_csum_diff,
2018         .gpl_only       = false,
2019         .pkt_access     = true,
2020         .ret_type       = RET_INTEGER,
2021         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2022         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2023         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2024         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2025         .arg5_type      = ARG_ANYTHING,
2026 };
2027
2028 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2029 {
2030         /* The interface is to be used in combination with bpf_csum_diff()
2031          * for direct packet writes. csum rotation for alignment as well
2032          * as emulating csum_sub() can be done from the eBPF program.
2033          */
2034         if (skb->ip_summed == CHECKSUM_COMPLETE)
2035                 return (skb->csum = csum_add(skb->csum, csum));
2036
2037         return -ENOTSUPP;
2038 }
2039
2040 static const struct bpf_func_proto bpf_csum_update_proto = {
2041         .func           = bpf_csum_update,
2042         .gpl_only       = false,
2043         .ret_type       = RET_INTEGER,
2044         .arg1_type      = ARG_PTR_TO_CTX,
2045         .arg2_type      = ARG_ANYTHING,
2046 };
2047
2048 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2049 {
2050         /* The interface is to be used in combination with bpf_skb_adjust_room()
2051          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2052          * is passed as flags, for example.
2053          */
2054         switch (level) {
2055         case BPF_CSUM_LEVEL_INC:
2056                 __skb_incr_checksum_unnecessary(skb);
2057                 break;
2058         case BPF_CSUM_LEVEL_DEC:
2059                 __skb_decr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_RESET:
2062                 __skb_reset_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_QUERY:
2065                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2066                        skb->csum_level : -EACCES;
2067         default:
2068                 return -EINVAL;
2069         }
2070
2071         return 0;
2072 }
2073
2074 static const struct bpf_func_proto bpf_csum_level_proto = {
2075         .func           = bpf_csum_level,
2076         .gpl_only       = false,
2077         .ret_type       = RET_INTEGER,
2078         .arg1_type      = ARG_PTR_TO_CTX,
2079         .arg2_type      = ARG_ANYTHING,
2080 };
2081
2082 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2083 {
2084         return dev_forward_skb_nomtu(dev, skb);
2085 }
2086
2087 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2088                                       struct sk_buff *skb)
2089 {
2090         int ret = ____dev_forward_skb(dev, skb, false);
2091
2092         if (likely(!ret)) {
2093                 skb->dev = dev;
2094                 ret = netif_rx(skb);
2095         }
2096
2097         return ret;
2098 }
2099
2100 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102         int ret;
2103
2104         if (dev_xmit_recursion()) {
2105                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2106                 kfree_skb(skb);
2107                 return -ENETDOWN;
2108         }
2109
2110         skb->dev = dev;
2111         skb->tstamp = 0;
2112
2113         dev_xmit_recursion_inc();
2114         ret = dev_queue_xmit(skb);
2115         dev_xmit_recursion_dec();
2116
2117         return ret;
2118 }
2119
2120 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2121                                  u32 flags)
2122 {
2123         unsigned int mlen = skb_network_offset(skb);
2124
2125         if (mlen) {
2126                 __skb_pull(skb, mlen);
2127
2128                 /* At ingress, the mac header has already been pulled once.
2129                  * At egress, skb_pospull_rcsum has to be done in case that
2130                  * the skb is originated from ingress (i.e. a forwarded skb)
2131                  * to ensure that rcsum starts at net header.
2132                  */
2133                 if (!skb_at_tc_ingress(skb))
2134                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2135         }
2136         skb_pop_mac_header(skb);
2137         skb_reset_mac_len(skb);
2138         return flags & BPF_F_INGRESS ?
2139                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2140 }
2141
2142 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2143                                  u32 flags)
2144 {
2145         /* Verify that a link layer header is carried */
2146         if (unlikely(skb->mac_header >= skb->network_header)) {
2147                 kfree_skb(skb);
2148                 return -ERANGE;
2149         }
2150
2151         bpf_push_mac_rcsum(skb);
2152         return flags & BPF_F_INGRESS ?
2153                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2154 }
2155
2156 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2157                           u32 flags)
2158 {
2159         if (dev_is_mac_header_xmit(dev))
2160                 return __bpf_redirect_common(skb, dev, flags);
2161         else
2162                 return __bpf_redirect_no_mac(skb, dev, flags);
2163 }
2164
2165 #if IS_ENABLED(CONFIG_IPV6)
2166 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2167                             struct net_device *dev, struct bpf_nh_params *nh)
2168 {
2169         u32 hh_len = LL_RESERVED_SPACE(dev);
2170         const struct in6_addr *nexthop;
2171         struct dst_entry *dst = NULL;
2172         struct neighbour *neigh;
2173
2174         if (dev_xmit_recursion()) {
2175                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2176                 goto out_drop;
2177         }
2178
2179         skb->dev = dev;
2180         skb->tstamp = 0;
2181
2182         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2183                 struct sk_buff *skb2;
2184
2185                 skb2 = skb_realloc_headroom(skb, hh_len);
2186                 if (unlikely(!skb2)) {
2187                         kfree_skb(skb);
2188                         return -ENOMEM;
2189                 }
2190                 if (skb->sk)
2191                         skb_set_owner_w(skb2, skb->sk);
2192                 consume_skb(skb);
2193                 skb = skb2;
2194         }
2195
2196         rcu_read_lock_bh();
2197         if (!nh) {
2198                 dst = skb_dst(skb);
2199                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2200                                       &ipv6_hdr(skb)->daddr);
2201         } else {
2202                 nexthop = &nh->ipv6_nh;
2203         }
2204         neigh = ip_neigh_gw6(dev, nexthop);
2205         if (likely(!IS_ERR(neigh))) {
2206                 int ret;
2207
2208                 sock_confirm_neigh(skb, neigh);
2209                 dev_xmit_recursion_inc();
2210                 ret = neigh_output(neigh, skb, false);
2211                 dev_xmit_recursion_dec();
2212                 rcu_read_unlock_bh();
2213                 return ret;
2214         }
2215         rcu_read_unlock_bh();
2216         if (dst)
2217                 IP6_INC_STATS(dev_net(dst->dev),
2218                               ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2219 out_drop:
2220         kfree_skb(skb);
2221         return -ENETDOWN;
2222 }
2223
2224 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2225                                    struct bpf_nh_params *nh)
2226 {
2227         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2228         struct net *net = dev_net(dev);
2229         int err, ret = NET_XMIT_DROP;
2230
2231         if (!nh) {
2232                 struct dst_entry *dst;
2233                 struct flowi6 fl6 = {
2234                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2235                         .flowi6_mark  = skb->mark,
2236                         .flowlabel    = ip6_flowinfo(ip6h),
2237                         .flowi6_oif   = dev->ifindex,
2238                         .flowi6_proto = ip6h->nexthdr,
2239                         .daddr        = ip6h->daddr,
2240                         .saddr        = ip6h->saddr,
2241                 };
2242
2243                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2244                 if (IS_ERR(dst))
2245                         goto out_drop;
2246
2247                 skb_dst_set(skb, dst);
2248         } else if (nh->nh_family != AF_INET6) {
2249                 goto out_drop;
2250         }
2251
2252         err = bpf_out_neigh_v6(net, skb, dev, nh);
2253         if (unlikely(net_xmit_eval(err)))
2254                 dev->stats.tx_errors++;
2255         else
2256                 ret = NET_XMIT_SUCCESS;
2257         goto out_xmit;
2258 out_drop:
2259         dev->stats.tx_errors++;
2260         kfree_skb(skb);
2261 out_xmit:
2262         return ret;
2263 }
2264 #else
2265 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2266                                    struct bpf_nh_params *nh)
2267 {
2268         kfree_skb(skb);
2269         return NET_XMIT_DROP;
2270 }
2271 #endif /* CONFIG_IPV6 */
2272
2273 #if IS_ENABLED(CONFIG_INET)
2274 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2275                             struct net_device *dev, struct bpf_nh_params *nh)
2276 {
2277         u32 hh_len = LL_RESERVED_SPACE(dev);
2278         struct neighbour *neigh;
2279         bool is_v6gw = false;
2280
2281         if (dev_xmit_recursion()) {
2282                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2283                 goto out_drop;
2284         }
2285
2286         skb->dev = dev;
2287         skb->tstamp = 0;
2288
2289         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2290                 struct sk_buff *skb2;
2291
2292                 skb2 = skb_realloc_headroom(skb, hh_len);
2293                 if (unlikely(!skb2)) {
2294                         kfree_skb(skb);
2295                         return -ENOMEM;
2296                 }
2297                 if (skb->sk)
2298                         skb_set_owner_w(skb2, skb->sk);
2299                 consume_skb(skb);
2300                 skb = skb2;
2301         }
2302
2303         rcu_read_lock_bh();
2304         if (!nh) {
2305                 struct dst_entry *dst = skb_dst(skb);
2306                 struct rtable *rt = container_of(dst, struct rtable, dst);
2307
2308                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2309         } else if (nh->nh_family == AF_INET6) {
2310                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2311                 is_v6gw = true;
2312         } else if (nh->nh_family == AF_INET) {
2313                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2314         } else {
2315                 rcu_read_unlock_bh();
2316                 goto out_drop;
2317         }
2318
2319         if (likely(!IS_ERR(neigh))) {
2320                 int ret;
2321
2322                 sock_confirm_neigh(skb, neigh);
2323                 dev_xmit_recursion_inc();
2324                 ret = neigh_output(neigh, skb, is_v6gw);
2325                 dev_xmit_recursion_dec();
2326                 rcu_read_unlock_bh();
2327                 return ret;
2328         }
2329         rcu_read_unlock_bh();
2330 out_drop:
2331         kfree_skb(skb);
2332         return -ENETDOWN;
2333 }
2334
2335 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2336                                    struct bpf_nh_params *nh)
2337 {
2338         const struct iphdr *ip4h = ip_hdr(skb);
2339         struct net *net = dev_net(dev);
2340         int err, ret = NET_XMIT_DROP;
2341
2342         if (!nh) {
2343                 struct flowi4 fl4 = {
2344                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2345                         .flowi4_mark  = skb->mark,
2346                         .flowi4_tos   = RT_TOS(ip4h->tos),
2347                         .flowi4_oif   = dev->ifindex,
2348                         .flowi4_proto = ip4h->protocol,
2349                         .daddr        = ip4h->daddr,
2350                         .saddr        = ip4h->saddr,
2351                 };
2352                 struct rtable *rt;
2353
2354                 rt = ip_route_output_flow(net, &fl4, NULL);
2355                 if (IS_ERR(rt))
2356                         goto out_drop;
2357                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2358                         ip_rt_put(rt);
2359                         goto out_drop;
2360                 }
2361
2362                 skb_dst_set(skb, &rt->dst);
2363         }
2364
2365         err = bpf_out_neigh_v4(net, skb, dev, nh);
2366         if (unlikely(net_xmit_eval(err)))
2367                 dev->stats.tx_errors++;
2368         else
2369                 ret = NET_XMIT_SUCCESS;
2370         goto out_xmit;
2371 out_drop:
2372         dev->stats.tx_errors++;
2373         kfree_skb(skb);
2374 out_xmit:
2375         return ret;
2376 }
2377 #else
2378 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2379                                    struct bpf_nh_params *nh)
2380 {
2381         kfree_skb(skb);
2382         return NET_XMIT_DROP;
2383 }
2384 #endif /* CONFIG_INET */
2385
2386 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2387                                 struct bpf_nh_params *nh)
2388 {
2389         struct ethhdr *ethh = eth_hdr(skb);
2390
2391         if (unlikely(skb->mac_header >= skb->network_header))
2392                 goto out;
2393         bpf_push_mac_rcsum(skb);
2394         if (is_multicast_ether_addr(ethh->h_dest))
2395                 goto out;
2396
2397         skb_pull(skb, sizeof(*ethh));
2398         skb_unset_mac_header(skb);
2399         skb_reset_network_header(skb);
2400
2401         if (skb->protocol == htons(ETH_P_IP))
2402                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2403         else if (skb->protocol == htons(ETH_P_IPV6))
2404                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2405 out:
2406         kfree_skb(skb);
2407         return -ENOTSUPP;
2408 }
2409
2410 /* Internal, non-exposed redirect flags. */
2411 enum {
2412         BPF_F_NEIGH     = (1ULL << 1),
2413         BPF_F_PEER      = (1ULL << 2),
2414         BPF_F_NEXTHOP   = (1ULL << 3),
2415 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2416 };
2417
2418 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2419 {
2420         struct net_device *dev;
2421         struct sk_buff *clone;
2422         int ret;
2423
2424         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2425                 return -EINVAL;
2426
2427         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2428         if (unlikely(!dev))
2429                 return -EINVAL;
2430
2431         clone = skb_clone(skb, GFP_ATOMIC);
2432         if (unlikely(!clone))
2433                 return -ENOMEM;
2434
2435         /* For direct write, we need to keep the invariant that the skbs
2436          * we're dealing with need to be uncloned. Should uncloning fail
2437          * here, we need to free the just generated clone to unclone once
2438          * again.
2439          */
2440         ret = bpf_try_make_head_writable(skb);
2441         if (unlikely(ret)) {
2442                 kfree_skb(clone);
2443                 return -ENOMEM;
2444         }
2445
2446         return __bpf_redirect(clone, dev, flags);
2447 }
2448
2449 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2450         .func           = bpf_clone_redirect,
2451         .gpl_only       = false,
2452         .ret_type       = RET_INTEGER,
2453         .arg1_type      = ARG_PTR_TO_CTX,
2454         .arg2_type      = ARG_ANYTHING,
2455         .arg3_type      = ARG_ANYTHING,
2456 };
2457
2458 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2459 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2460
2461 int skb_do_redirect(struct sk_buff *skb)
2462 {
2463         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2464         struct net *net = dev_net(skb->dev);
2465         struct net_device *dev;
2466         u32 flags = ri->flags;
2467
2468         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2469         ri->tgt_index = 0;
2470         ri->flags = 0;
2471         if (unlikely(!dev))
2472                 goto out_drop;
2473         if (flags & BPF_F_PEER) {
2474                 const struct net_device_ops *ops = dev->netdev_ops;
2475
2476                 if (unlikely(!ops->ndo_get_peer_dev ||
2477                              !skb_at_tc_ingress(skb)))
2478                         goto out_drop;
2479                 dev = ops->ndo_get_peer_dev(dev);
2480                 if (unlikely(!dev ||
2481                              !(dev->flags & IFF_UP) ||
2482                              net_eq(net, dev_net(dev))))
2483                         goto out_drop;
2484                 skb->dev = dev;
2485                 return -EAGAIN;
2486         }
2487         return flags & BPF_F_NEIGH ?
2488                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2489                                     &ri->nh : NULL) :
2490                __bpf_redirect(skb, dev, flags);
2491 out_drop:
2492         kfree_skb(skb);
2493         return -EINVAL;
2494 }
2495
2496 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2497 {
2498         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2499
2500         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2501                 return TC_ACT_SHOT;
2502
2503         ri->flags = flags;
2504         ri->tgt_index = ifindex;
2505
2506         return TC_ACT_REDIRECT;
2507 }
2508
2509 static const struct bpf_func_proto bpf_redirect_proto = {
2510         .func           = bpf_redirect,
2511         .gpl_only       = false,
2512         .ret_type       = RET_INTEGER,
2513         .arg1_type      = ARG_ANYTHING,
2514         .arg2_type      = ARG_ANYTHING,
2515 };
2516
2517 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2518 {
2519         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2520
2521         if (unlikely(flags))
2522                 return TC_ACT_SHOT;
2523
2524         ri->flags = BPF_F_PEER;
2525         ri->tgt_index = ifindex;
2526
2527         return TC_ACT_REDIRECT;
2528 }
2529
2530 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2531         .func           = bpf_redirect_peer,
2532         .gpl_only       = false,
2533         .ret_type       = RET_INTEGER,
2534         .arg1_type      = ARG_ANYTHING,
2535         .arg2_type      = ARG_ANYTHING,
2536 };
2537
2538 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2539            int, plen, u64, flags)
2540 {
2541         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2542
2543         if (unlikely((plen && plen < sizeof(*params)) || flags))
2544                 return TC_ACT_SHOT;
2545
2546         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2547         ri->tgt_index = ifindex;
2548
2549         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2550         if (plen)
2551                 memcpy(&ri->nh, params, sizeof(ri->nh));
2552
2553         return TC_ACT_REDIRECT;
2554 }
2555
2556 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2557         .func           = bpf_redirect_neigh,
2558         .gpl_only       = false,
2559         .ret_type       = RET_INTEGER,
2560         .arg1_type      = ARG_ANYTHING,
2561         .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2562         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2563         .arg4_type      = ARG_ANYTHING,
2564 };
2565
2566 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2567 {
2568         msg->apply_bytes = bytes;
2569         return 0;
2570 }
2571
2572 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2573         .func           = bpf_msg_apply_bytes,
2574         .gpl_only       = false,
2575         .ret_type       = RET_INTEGER,
2576         .arg1_type      = ARG_PTR_TO_CTX,
2577         .arg2_type      = ARG_ANYTHING,
2578 };
2579
2580 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2581 {
2582         msg->cork_bytes = bytes;
2583         return 0;
2584 }
2585
2586 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2587         .func           = bpf_msg_cork_bytes,
2588         .gpl_only       = false,
2589         .ret_type       = RET_INTEGER,
2590         .arg1_type      = ARG_PTR_TO_CTX,
2591         .arg2_type      = ARG_ANYTHING,
2592 };
2593
2594 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2595            u32, end, u64, flags)
2596 {
2597         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2598         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2599         struct scatterlist *sge;
2600         u8 *raw, *to, *from;
2601         struct page *page;
2602
2603         if (unlikely(flags || end <= start))
2604                 return -EINVAL;
2605
2606         /* First find the starting scatterlist element */
2607         i = msg->sg.start;
2608         do {
2609                 offset += len;
2610                 len = sk_msg_elem(msg, i)->length;
2611                 if (start < offset + len)
2612                         break;
2613                 sk_msg_iter_var_next(i);
2614         } while (i != msg->sg.end);
2615
2616         if (unlikely(start >= offset + len))
2617                 return -EINVAL;
2618
2619         first_sge = i;
2620         /* The start may point into the sg element so we need to also
2621          * account for the headroom.
2622          */
2623         bytes_sg_total = start - offset + bytes;
2624         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2625                 goto out;
2626
2627         /* At this point we need to linearize multiple scatterlist
2628          * elements or a single shared page. Either way we need to
2629          * copy into a linear buffer exclusively owned by BPF. Then
2630          * place the buffer in the scatterlist and fixup the original
2631          * entries by removing the entries now in the linear buffer
2632          * and shifting the remaining entries. For now we do not try
2633          * to copy partial entries to avoid complexity of running out
2634          * of sg_entry slots. The downside is reading a single byte
2635          * will copy the entire sg entry.
2636          */
2637         do {
2638                 copy += sk_msg_elem(msg, i)->length;
2639                 sk_msg_iter_var_next(i);
2640                 if (bytes_sg_total <= copy)
2641                         break;
2642         } while (i != msg->sg.end);
2643         last_sge = i;
2644
2645         if (unlikely(bytes_sg_total > copy))
2646                 return -EINVAL;
2647
2648         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2649                            get_order(copy));
2650         if (unlikely(!page))
2651                 return -ENOMEM;
2652
2653         raw = page_address(page);
2654         i = first_sge;
2655         do {
2656                 sge = sk_msg_elem(msg, i);
2657                 from = sg_virt(sge);
2658                 len = sge->length;
2659                 to = raw + poffset;
2660
2661                 memcpy(to, from, len);
2662                 poffset += len;
2663                 sge->length = 0;
2664                 put_page(sg_page(sge));
2665
2666                 sk_msg_iter_var_next(i);
2667         } while (i != last_sge);
2668
2669         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2670
2671         /* To repair sg ring we need to shift entries. If we only
2672          * had a single entry though we can just replace it and
2673          * be done. Otherwise walk the ring and shift the entries.
2674          */
2675         WARN_ON_ONCE(last_sge == first_sge);
2676         shift = last_sge > first_sge ?
2677                 last_sge - first_sge - 1 :
2678                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2679         if (!shift)
2680                 goto out;
2681
2682         i = first_sge;
2683         sk_msg_iter_var_next(i);
2684         do {
2685                 u32 move_from;
2686
2687                 if (i + shift >= NR_MSG_FRAG_IDS)
2688                         move_from = i + shift - NR_MSG_FRAG_IDS;
2689                 else
2690                         move_from = i + shift;
2691                 if (move_from == msg->sg.end)
2692                         break;
2693
2694                 msg->sg.data[i] = msg->sg.data[move_from];
2695                 msg->sg.data[move_from].length = 0;
2696                 msg->sg.data[move_from].page_link = 0;
2697                 msg->sg.data[move_from].offset = 0;
2698                 sk_msg_iter_var_next(i);
2699         } while (1);
2700
2701         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2702                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2703                       msg->sg.end - shift;
2704 out:
2705         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2706         msg->data_end = msg->data + bytes;
2707         return 0;
2708 }
2709
2710 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2711         .func           = bpf_msg_pull_data,
2712         .gpl_only       = false,
2713         .ret_type       = RET_INTEGER,
2714         .arg1_type      = ARG_PTR_TO_CTX,
2715         .arg2_type      = ARG_ANYTHING,
2716         .arg3_type      = ARG_ANYTHING,
2717         .arg4_type      = ARG_ANYTHING,
2718 };
2719
2720 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2721            u32, len, u64, flags)
2722 {
2723         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2724         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2725         u8 *raw, *to, *from;
2726         struct page *page;
2727
2728         if (unlikely(flags))
2729                 return -EINVAL;
2730
2731         /* First find the starting scatterlist element */
2732         i = msg->sg.start;
2733         do {
2734                 offset += l;
2735                 l = sk_msg_elem(msg, i)->length;
2736
2737                 if (start < offset + l)
2738                         break;
2739                 sk_msg_iter_var_next(i);
2740         } while (i != msg->sg.end);
2741
2742         if (start >= offset + l)
2743                 return -EINVAL;
2744
2745         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2746
2747         /* If no space available will fallback to copy, we need at
2748          * least one scatterlist elem available to push data into
2749          * when start aligns to the beginning of an element or two
2750          * when it falls inside an element. We handle the start equals
2751          * offset case because its the common case for inserting a
2752          * header.
2753          */
2754         if (!space || (space == 1 && start != offset))
2755                 copy = msg->sg.data[i].length;
2756
2757         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2758                            get_order(copy + len));
2759         if (unlikely(!page))
2760                 return -ENOMEM;
2761
2762         if (copy) {
2763                 int front, back;
2764
2765                 raw = page_address(page);
2766
2767                 psge = sk_msg_elem(msg, i);
2768                 front = start - offset;
2769                 back = psge->length - front;
2770                 from = sg_virt(psge);
2771
2772                 if (front)
2773                         memcpy(raw, from, front);
2774
2775                 if (back) {
2776                         from += front;
2777                         to = raw + front + len;
2778
2779                         memcpy(to, from, back);
2780                 }
2781
2782                 put_page(sg_page(psge));
2783         } else if (start - offset) {
2784                 psge = sk_msg_elem(msg, i);
2785                 rsge = sk_msg_elem_cpy(msg, i);
2786
2787                 psge->length = start - offset;
2788                 rsge.length -= psge->length;
2789                 rsge.offset += start;
2790
2791                 sk_msg_iter_var_next(i);
2792                 sg_unmark_end(psge);
2793                 sg_unmark_end(&rsge);
2794                 sk_msg_iter_next(msg, end);
2795         }
2796
2797         /* Slot(s) to place newly allocated data */
2798         new = i;
2799
2800         /* Shift one or two slots as needed */
2801         if (!copy) {
2802                 sge = sk_msg_elem_cpy(msg, i);
2803
2804                 sk_msg_iter_var_next(i);
2805                 sg_unmark_end(&sge);
2806                 sk_msg_iter_next(msg, end);
2807
2808                 nsge = sk_msg_elem_cpy(msg, i);
2809                 if (rsge.length) {
2810                         sk_msg_iter_var_next(i);
2811                         nnsge = sk_msg_elem_cpy(msg, i);
2812                 }
2813
2814                 while (i != msg->sg.end) {
2815                         msg->sg.data[i] = sge;
2816                         sge = nsge;
2817                         sk_msg_iter_var_next(i);
2818                         if (rsge.length) {
2819                                 nsge = nnsge;
2820                                 nnsge = sk_msg_elem_cpy(msg, i);
2821                         } else {
2822                                 nsge = sk_msg_elem_cpy(msg, i);
2823                         }
2824                 }
2825         }
2826
2827         /* Place newly allocated data buffer */
2828         sk_mem_charge(msg->sk, len);
2829         msg->sg.size += len;
2830         __clear_bit(new, &msg->sg.copy);
2831         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2832         if (rsge.length) {
2833                 get_page(sg_page(&rsge));
2834                 sk_msg_iter_var_next(new);
2835                 msg->sg.data[new] = rsge;
2836         }
2837
2838         sk_msg_compute_data_pointers(msg);
2839         return 0;
2840 }
2841
2842 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2843         .func           = bpf_msg_push_data,
2844         .gpl_only       = false,
2845         .ret_type       = RET_INTEGER,
2846         .arg1_type      = ARG_PTR_TO_CTX,
2847         .arg2_type      = ARG_ANYTHING,
2848         .arg3_type      = ARG_ANYTHING,
2849         .arg4_type      = ARG_ANYTHING,
2850 };
2851
2852 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2853 {
2854         int prev;
2855
2856         do {
2857                 prev = i;
2858                 sk_msg_iter_var_next(i);
2859                 msg->sg.data[prev] = msg->sg.data[i];
2860         } while (i != msg->sg.end);
2861
2862         sk_msg_iter_prev(msg, end);
2863 }
2864
2865 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2866 {
2867         struct scatterlist tmp, sge;
2868
2869         sk_msg_iter_next(msg, end);
2870         sge = sk_msg_elem_cpy(msg, i);
2871         sk_msg_iter_var_next(i);
2872         tmp = sk_msg_elem_cpy(msg, i);
2873
2874         while (i != msg->sg.end) {
2875                 msg->sg.data[i] = sge;
2876                 sk_msg_iter_var_next(i);
2877                 sge = tmp;
2878                 tmp = sk_msg_elem_cpy(msg, i);
2879         }
2880 }
2881
2882 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2883            u32, len, u64, flags)
2884 {
2885         u32 i = 0, l = 0, space, offset = 0;
2886         u64 last = start + len;
2887         int pop;
2888
2889         if (unlikely(flags))
2890                 return -EINVAL;
2891
2892         /* First find the starting scatterlist element */
2893         i = msg->sg.start;
2894         do {
2895                 offset += l;
2896                 l = sk_msg_elem(msg, i)->length;
2897
2898                 if (start < offset + l)
2899                         break;
2900                 sk_msg_iter_var_next(i);
2901         } while (i != msg->sg.end);
2902
2903         /* Bounds checks: start and pop must be inside message */
2904         if (start >= offset + l || last >= msg->sg.size)
2905                 return -EINVAL;
2906
2907         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2908
2909         pop = len;
2910         /* --------------| offset
2911          * -| start      |-------- len -------|
2912          *
2913          *  |----- a ----|-------- pop -------|----- b ----|
2914          *  |______________________________________________| length
2915          *
2916          *
2917          * a:   region at front of scatter element to save
2918          * b:   region at back of scatter element to save when length > A + pop
2919          * pop: region to pop from element, same as input 'pop' here will be
2920          *      decremented below per iteration.
2921          *
2922          * Two top-level cases to handle when start != offset, first B is non
2923          * zero and second B is zero corresponding to when a pop includes more
2924          * than one element.
2925          *
2926          * Then if B is non-zero AND there is no space allocate space and
2927          * compact A, B regions into page. If there is space shift ring to
2928          * the rigth free'ing the next element in ring to place B, leaving
2929          * A untouched except to reduce length.
2930          */
2931         if (start != offset) {
2932                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2933                 int a = start;
2934                 int b = sge->length - pop - a;
2935
2936                 sk_msg_iter_var_next(i);
2937
2938                 if (pop < sge->length - a) {
2939                         if (space) {
2940                                 sge->length = a;
2941                                 sk_msg_shift_right(msg, i);
2942                                 nsge = sk_msg_elem(msg, i);
2943                                 get_page(sg_page(sge));
2944                                 sg_set_page(nsge,
2945                                             sg_page(sge),
2946                                             b, sge->offset + pop + a);
2947                         } else {
2948                                 struct page *page, *orig;
2949                                 u8 *to, *from;
2950
2951                                 page = alloc_pages(__GFP_NOWARN |
2952                                                    __GFP_COMP   | GFP_ATOMIC,
2953                                                    get_order(a + b));
2954                                 if (unlikely(!page))
2955                                         return -ENOMEM;
2956
2957                                 sge->length = a;
2958                                 orig = sg_page(sge);
2959                                 from = sg_virt(sge);
2960                                 to = page_address(page);
2961                                 memcpy(to, from, a);
2962                                 memcpy(to + a, from + a + pop, b);
2963                                 sg_set_page(sge, page, a + b, 0);
2964                                 put_page(orig);
2965                         }
2966                         pop = 0;
2967                 } else if (pop >= sge->length - a) {
2968                         pop -= (sge->length - a);
2969                         sge->length = a;
2970                 }
2971         }
2972
2973         /* From above the current layout _must_ be as follows,
2974          *
2975          * -| offset
2976          * -| start
2977          *
2978          *  |---- pop ---|---------------- b ------------|
2979          *  |____________________________________________| length
2980          *
2981          * Offset and start of the current msg elem are equal because in the
2982          * previous case we handled offset != start and either consumed the
2983          * entire element and advanced to the next element OR pop == 0.
2984          *
2985          * Two cases to handle here are first pop is less than the length
2986          * leaving some remainder b above. Simply adjust the element's layout
2987          * in this case. Or pop >= length of the element so that b = 0. In this
2988          * case advance to next element decrementing pop.
2989          */
2990         while (pop) {
2991                 struct scatterlist *sge = sk_msg_elem(msg, i);
2992
2993                 if (pop < sge->length) {
2994                         sge->length -= pop;
2995                         sge->offset += pop;
2996                         pop = 0;
2997                 } else {
2998                         pop -= sge->length;
2999                         sk_msg_shift_left(msg, i);
3000                 }
3001                 sk_msg_iter_var_next(i);
3002         }
3003
3004         sk_mem_uncharge(msg->sk, len - pop);
3005         msg->sg.size -= (len - pop);
3006         sk_msg_compute_data_pointers(msg);
3007         return 0;
3008 }
3009
3010 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3011         .func           = bpf_msg_pop_data,
3012         .gpl_only       = false,
3013         .ret_type       = RET_INTEGER,
3014         .arg1_type      = ARG_PTR_TO_CTX,
3015         .arg2_type      = ARG_ANYTHING,
3016         .arg3_type      = ARG_ANYTHING,
3017         .arg4_type      = ARG_ANYTHING,
3018 };
3019
3020 #ifdef CONFIG_CGROUP_NET_CLASSID
3021 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3022 {
3023         return __task_get_classid(current);
3024 }
3025
3026 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3027         .func           = bpf_get_cgroup_classid_curr,
3028         .gpl_only       = false,
3029         .ret_type       = RET_INTEGER,
3030 };
3031
3032 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3033 {
3034         struct sock *sk = skb_to_full_sk(skb);
3035
3036         if (!sk || !sk_fullsock(sk))
3037                 return 0;
3038
3039         return sock_cgroup_classid(&sk->sk_cgrp_data);
3040 }
3041
3042 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3043         .func           = bpf_skb_cgroup_classid,
3044         .gpl_only       = false,
3045         .ret_type       = RET_INTEGER,
3046         .arg1_type      = ARG_PTR_TO_CTX,
3047 };
3048 #endif
3049
3050 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3051 {
3052         return task_get_classid(skb);
3053 }
3054
3055 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3056         .func           = bpf_get_cgroup_classid,
3057         .gpl_only       = false,
3058         .ret_type       = RET_INTEGER,
3059         .arg1_type      = ARG_PTR_TO_CTX,
3060 };
3061
3062 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3063 {
3064         return dst_tclassid(skb);
3065 }
3066
3067 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3068         .func           = bpf_get_route_realm,
3069         .gpl_only       = false,
3070         .ret_type       = RET_INTEGER,
3071         .arg1_type      = ARG_PTR_TO_CTX,
3072 };
3073
3074 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3075 {
3076         /* If skb_clear_hash() was called due to mangling, we can
3077          * trigger SW recalculation here. Later access to hash
3078          * can then use the inline skb->hash via context directly
3079          * instead of calling this helper again.
3080          */
3081         return skb_get_hash(skb);
3082 }
3083
3084 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3085         .func           = bpf_get_hash_recalc,
3086         .gpl_only       = false,
3087         .ret_type       = RET_INTEGER,
3088         .arg1_type      = ARG_PTR_TO_CTX,
3089 };
3090
3091 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3092 {
3093         /* After all direct packet write, this can be used once for
3094          * triggering a lazy recalc on next skb_get_hash() invocation.
3095          */
3096         skb_clear_hash(skb);
3097         return 0;
3098 }
3099
3100 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3101         .func           = bpf_set_hash_invalid,
3102         .gpl_only       = false,
3103         .ret_type       = RET_INTEGER,
3104         .arg1_type      = ARG_PTR_TO_CTX,
3105 };
3106
3107 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3108 {
3109         /* Set user specified hash as L4(+), so that it gets returned
3110          * on skb_get_hash() call unless BPF prog later on triggers a
3111          * skb_clear_hash().
3112          */
3113         __skb_set_sw_hash(skb, hash, true);
3114         return 0;
3115 }
3116
3117 static const struct bpf_func_proto bpf_set_hash_proto = {
3118         .func           = bpf_set_hash,
3119         .gpl_only       = false,
3120         .ret_type       = RET_INTEGER,
3121         .arg1_type      = ARG_PTR_TO_CTX,
3122         .arg2_type      = ARG_ANYTHING,
3123 };
3124
3125 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3126            u16, vlan_tci)
3127 {
3128         int ret;
3129
3130         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3131                      vlan_proto != htons(ETH_P_8021AD)))
3132                 vlan_proto = htons(ETH_P_8021Q);
3133
3134         bpf_push_mac_rcsum(skb);
3135         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3136         bpf_pull_mac_rcsum(skb);
3137
3138         bpf_compute_data_pointers(skb);
3139         return ret;
3140 }
3141
3142 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3143         .func           = bpf_skb_vlan_push,
3144         .gpl_only       = false,
3145         .ret_type       = RET_INTEGER,
3146         .arg1_type      = ARG_PTR_TO_CTX,
3147         .arg2_type      = ARG_ANYTHING,
3148         .arg3_type      = ARG_ANYTHING,
3149 };
3150
3151 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3152 {
3153         int ret;
3154
3155         bpf_push_mac_rcsum(skb);
3156         ret = skb_vlan_pop(skb);
3157         bpf_pull_mac_rcsum(skb);
3158
3159         bpf_compute_data_pointers(skb);
3160         return ret;
3161 }
3162
3163 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3164         .func           = bpf_skb_vlan_pop,
3165         .gpl_only       = false,
3166         .ret_type       = RET_INTEGER,
3167         .arg1_type      = ARG_PTR_TO_CTX,
3168 };
3169
3170 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3171 {
3172         /* Caller already did skb_cow() with len as headroom,
3173          * so no need to do it here.
3174          */
3175         skb_push(skb, len);
3176         memmove(skb->data, skb->data + len, off);
3177         memset(skb->data + off, 0, len);
3178
3179         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3180          * needed here as it does not change the skb->csum
3181          * result for checksum complete when summing over
3182          * zeroed blocks.
3183          */
3184         return 0;
3185 }
3186
3187 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3188 {
3189         /* skb_ensure_writable() is not needed here, as we're
3190          * already working on an uncloned skb.
3191          */
3192         if (unlikely(!pskb_may_pull(skb, off + len)))
3193                 return -ENOMEM;
3194
3195         skb_postpull_rcsum(skb, skb->data + off, len);
3196         memmove(skb->data + len, skb->data, off);
3197         __skb_pull(skb, len);
3198
3199         return 0;
3200 }
3201
3202 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3203 {
3204         bool trans_same = skb->transport_header == skb->network_header;
3205         int ret;
3206
3207         /* There's no need for __skb_push()/__skb_pull() pair to
3208          * get to the start of the mac header as we're guaranteed
3209          * to always start from here under eBPF.
3210          */
3211         ret = bpf_skb_generic_push(skb, off, len);
3212         if (likely(!ret)) {
3213                 skb->mac_header -= len;
3214                 skb->network_header -= len;
3215                 if (trans_same)
3216                         skb->transport_header = skb->network_header;
3217         }
3218
3219         return ret;
3220 }
3221
3222 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3223 {
3224         bool trans_same = skb->transport_header == skb->network_header;
3225         int ret;
3226
3227         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3228         ret = bpf_skb_generic_pop(skb, off, len);
3229         if (likely(!ret)) {
3230                 skb->mac_header += len;
3231                 skb->network_header += len;
3232                 if (trans_same)
3233                         skb->transport_header = skb->network_header;
3234         }
3235
3236         return ret;
3237 }
3238
3239 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3240 {
3241         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3242         u32 off = skb_mac_header_len(skb);
3243         int ret;
3244
3245         ret = skb_cow(skb, len_diff);
3246         if (unlikely(ret < 0))
3247                 return ret;
3248
3249         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3250         if (unlikely(ret < 0))
3251                 return ret;
3252
3253         if (skb_is_gso(skb)) {
3254                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3255
3256                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3257                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3258                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3259                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3260                 }
3261         }
3262
3263         skb->protocol = htons(ETH_P_IPV6);
3264         skb_clear_hash(skb);
3265
3266         return 0;
3267 }
3268
3269 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3270 {
3271         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3272         u32 off = skb_mac_header_len(skb);
3273         int ret;
3274
3275         ret = skb_unclone(skb, GFP_ATOMIC);
3276         if (unlikely(ret < 0))
3277                 return ret;
3278
3279         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3280         if (unlikely(ret < 0))
3281                 return ret;
3282
3283         if (skb_is_gso(skb)) {
3284                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3285
3286                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3287                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3288                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3289                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3290                 }
3291         }
3292
3293         skb->protocol = htons(ETH_P_IP);
3294         skb_clear_hash(skb);
3295
3296         return 0;
3297 }
3298
3299 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3300 {
3301         __be16 from_proto = skb->protocol;
3302
3303         if (from_proto == htons(ETH_P_IP) &&
3304               to_proto == htons(ETH_P_IPV6))
3305                 return bpf_skb_proto_4_to_6(skb);
3306
3307         if (from_proto == htons(ETH_P_IPV6) &&
3308               to_proto == htons(ETH_P_IP))
3309                 return bpf_skb_proto_6_to_4(skb);
3310
3311         return -ENOTSUPP;
3312 }
3313
3314 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3315            u64, flags)
3316 {
3317         int ret;
3318
3319         if (unlikely(flags))
3320                 return -EINVAL;
3321
3322         /* General idea is that this helper does the basic groundwork
3323          * needed for changing the protocol, and eBPF program fills the
3324          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3325          * and other helpers, rather than passing a raw buffer here.
3326          *
3327          * The rationale is to keep this minimal and without a need to
3328          * deal with raw packet data. F.e. even if we would pass buffers
3329          * here, the program still needs to call the bpf_lX_csum_replace()
3330          * helpers anyway. Plus, this way we keep also separation of
3331          * concerns, since f.e. bpf_skb_store_bytes() should only take
3332          * care of stores.
3333          *
3334          * Currently, additional options and extension header space are
3335          * not supported, but flags register is reserved so we can adapt
3336          * that. For offloads, we mark packet as dodgy, so that headers
3337          * need to be verified first.
3338          */
3339         ret = bpf_skb_proto_xlat(skb, proto);
3340         bpf_compute_data_pointers(skb);
3341         return ret;
3342 }
3343
3344 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3345         .func           = bpf_skb_change_proto,
3346         .gpl_only       = false,
3347         .ret_type       = RET_INTEGER,
3348         .arg1_type      = ARG_PTR_TO_CTX,
3349         .arg2_type      = ARG_ANYTHING,
3350         .arg3_type      = ARG_ANYTHING,
3351 };
3352
3353 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3354 {
3355         /* We only allow a restricted subset to be changed for now. */
3356         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3357                      !skb_pkt_type_ok(pkt_type)))
3358                 return -EINVAL;
3359
3360         skb->pkt_type = pkt_type;
3361         return 0;
3362 }
3363
3364 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3365         .func           = bpf_skb_change_type,
3366         .gpl_only       = false,
3367         .ret_type       = RET_INTEGER,
3368         .arg1_type      = ARG_PTR_TO_CTX,
3369         .arg2_type      = ARG_ANYTHING,
3370 };
3371
3372 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3373 {
3374         switch (skb->protocol) {
3375         case htons(ETH_P_IP):
3376                 return sizeof(struct iphdr);
3377         case htons(ETH_P_IPV6):
3378                 return sizeof(struct ipv6hdr);
3379         default:
3380                 return ~0U;
3381         }
3382 }
3383
3384 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3385                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3386
3387 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3388                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3389                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3390                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3391                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3392                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3393                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3394
3395 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3396                             u64 flags)
3397 {
3398         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3399         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3400         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3401         unsigned int gso_type = SKB_GSO_DODGY;
3402         int ret;
3403
3404         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3405                 /* udp gso_size delineates datagrams, only allow if fixed */
3406                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3407                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3408                         return -ENOTSUPP;
3409         }
3410
3411         ret = skb_cow_head(skb, len_diff);
3412         if (unlikely(ret < 0))
3413                 return ret;
3414
3415         if (encap) {
3416                 if (skb->protocol != htons(ETH_P_IP) &&
3417                     skb->protocol != htons(ETH_P_IPV6))
3418                         return -ENOTSUPP;
3419
3420                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3421                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3422                         return -EINVAL;
3423
3424                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3425                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3426                         return -EINVAL;
3427
3428                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3429                     inner_mac_len < ETH_HLEN)
3430                         return -EINVAL;
3431
3432                 if (skb->encapsulation)
3433                         return -EALREADY;
3434
3435                 mac_len = skb->network_header - skb->mac_header;
3436                 inner_net = skb->network_header;
3437                 if (inner_mac_len > len_diff)
3438                         return -EINVAL;
3439                 inner_trans = skb->transport_header;
3440         }
3441
3442         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3443         if (unlikely(ret < 0))
3444                 return ret;
3445
3446         if (encap) {
3447                 skb->inner_mac_header = inner_net - inner_mac_len;
3448                 skb->inner_network_header = inner_net;
3449                 skb->inner_transport_header = inner_trans;
3450
3451                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3452                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3453                 else
3454                         skb_set_inner_protocol(skb, skb->protocol);
3455
3456                 skb->encapsulation = 1;
3457                 skb_set_network_header(skb, mac_len);
3458
3459                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3460                         gso_type |= SKB_GSO_UDP_TUNNEL;
3461                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3462                         gso_type |= SKB_GSO_GRE;
3463                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3464                         gso_type |= SKB_GSO_IPXIP6;
3465                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3466                         gso_type |= SKB_GSO_IPXIP4;
3467
3468                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3469                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3470                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3471                                         sizeof(struct ipv6hdr) :
3472                                         sizeof(struct iphdr);
3473
3474                         skb_set_transport_header(skb, mac_len + nh_len);
3475                 }
3476
3477                 /* Match skb->protocol to new outer l3 protocol */
3478                 if (skb->protocol == htons(ETH_P_IP) &&
3479                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3480                         skb->protocol = htons(ETH_P_IPV6);
3481                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3482                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3483                         skb->protocol = htons(ETH_P_IP);
3484         }
3485
3486         if (skb_is_gso(skb)) {
3487                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3488
3489                 /* Due to header grow, MSS needs to be downgraded. */
3490                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3491                         skb_decrease_gso_size(shinfo, len_diff);
3492
3493                 /* Header must be checked, and gso_segs recomputed. */
3494                 shinfo->gso_type |= gso_type;
3495                 shinfo->gso_segs = 0;
3496         }
3497
3498         return 0;
3499 }
3500
3501 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3502                               u64 flags)
3503 {
3504         int ret;
3505
3506         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3507                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3508                 return -EINVAL;
3509
3510         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3511                 /* udp gso_size delineates datagrams, only allow if fixed */
3512                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3513                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3514                         return -ENOTSUPP;
3515         }
3516
3517         ret = skb_unclone(skb, GFP_ATOMIC);
3518         if (unlikely(ret < 0))
3519                 return ret;
3520
3521         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3522         if (unlikely(ret < 0))
3523                 return ret;
3524
3525         if (skb_is_gso(skb)) {
3526                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3527
3528                 /* Due to header shrink, MSS can be upgraded. */
3529                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3530                         skb_increase_gso_size(shinfo, len_diff);
3531
3532                 /* Header must be checked, and gso_segs recomputed. */
3533                 shinfo->gso_type |= SKB_GSO_DODGY;
3534                 shinfo->gso_segs = 0;
3535         }
3536
3537         return 0;
3538 }
3539
3540 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3541
3542 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3543            u32, mode, u64, flags)
3544 {
3545         u32 len_diff_abs = abs(len_diff);
3546         bool shrink = len_diff < 0;
3547         int ret = 0;
3548
3549         if (unlikely(flags || mode))
3550                 return -EINVAL;
3551         if (unlikely(len_diff_abs > 0xfffU))
3552                 return -EFAULT;
3553
3554         if (!shrink) {
3555                 ret = skb_cow(skb, len_diff);
3556                 if (unlikely(ret < 0))
3557                         return ret;
3558                 __skb_push(skb, len_diff_abs);
3559                 memset(skb->data, 0, len_diff_abs);
3560         } else {
3561                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3562                         return -ENOMEM;
3563                 __skb_pull(skb, len_diff_abs);
3564         }
3565         if (tls_sw_has_ctx_rx(skb->sk)) {
3566                 struct strp_msg *rxm = strp_msg(skb);
3567
3568                 rxm->full_len += len_diff;
3569         }
3570         return ret;
3571 }
3572
3573 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3574         .func           = sk_skb_adjust_room,
3575         .gpl_only       = false,
3576         .ret_type       = RET_INTEGER,
3577         .arg1_type      = ARG_PTR_TO_CTX,
3578         .arg2_type      = ARG_ANYTHING,
3579         .arg3_type      = ARG_ANYTHING,
3580         .arg4_type      = ARG_ANYTHING,
3581 };
3582
3583 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3584            u32, mode, u64, flags)
3585 {
3586         u32 len_cur, len_diff_abs = abs(len_diff);
3587         u32 len_min = bpf_skb_net_base_len(skb);
3588         u32 len_max = BPF_SKB_MAX_LEN;
3589         __be16 proto = skb->protocol;
3590         bool shrink = len_diff < 0;
3591         u32 off;
3592         int ret;
3593
3594         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3595                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3596                 return -EINVAL;
3597         if (unlikely(len_diff_abs > 0xfffU))
3598                 return -EFAULT;
3599         if (unlikely(proto != htons(ETH_P_IP) &&
3600                      proto != htons(ETH_P_IPV6)))
3601                 return -ENOTSUPP;
3602
3603         off = skb_mac_header_len(skb);
3604         switch (mode) {
3605         case BPF_ADJ_ROOM_NET:
3606                 off += bpf_skb_net_base_len(skb);
3607                 break;
3608         case BPF_ADJ_ROOM_MAC:
3609                 break;
3610         default:
3611                 return -ENOTSUPP;
3612         }
3613
3614         len_cur = skb->len - skb_network_offset(skb);
3615         if ((shrink && (len_diff_abs >= len_cur ||
3616                         len_cur - len_diff_abs < len_min)) ||
3617             (!shrink && (skb->len + len_diff_abs > len_max &&
3618                          !skb_is_gso(skb))))
3619                 return -ENOTSUPP;
3620
3621         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3622                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3623         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3624                 __skb_reset_checksum_unnecessary(skb);
3625
3626         bpf_compute_data_pointers(skb);
3627         return ret;
3628 }
3629
3630 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3631         .func           = bpf_skb_adjust_room,
3632         .gpl_only       = false,
3633         .ret_type       = RET_INTEGER,
3634         .arg1_type      = ARG_PTR_TO_CTX,
3635         .arg2_type      = ARG_ANYTHING,
3636         .arg3_type      = ARG_ANYTHING,
3637         .arg4_type      = ARG_ANYTHING,
3638 };
3639
3640 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3641 {
3642         u32 min_len = skb_network_offset(skb);
3643
3644         if (skb_transport_header_was_set(skb))
3645                 min_len = skb_transport_offset(skb);
3646         if (skb->ip_summed == CHECKSUM_PARTIAL)
3647                 min_len = skb_checksum_start_offset(skb) +
3648                           skb->csum_offset + sizeof(__sum16);
3649         return min_len;
3650 }
3651
3652 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3653 {
3654         unsigned int old_len = skb->len;
3655         int ret;
3656
3657         ret = __skb_grow_rcsum(skb, new_len);
3658         if (!ret)
3659                 memset(skb->data + old_len, 0, new_len - old_len);
3660         return ret;
3661 }
3662
3663 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3664 {
3665         return __skb_trim_rcsum(skb, new_len);
3666 }
3667
3668 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3669                                         u64 flags)
3670 {
3671         u32 max_len = BPF_SKB_MAX_LEN;
3672         u32 min_len = __bpf_skb_min_len(skb);
3673         int ret;
3674
3675         if (unlikely(flags || new_len > max_len || new_len < min_len))
3676                 return -EINVAL;
3677         if (skb->encapsulation)
3678                 return -ENOTSUPP;
3679
3680         /* The basic idea of this helper is that it's performing the
3681          * needed work to either grow or trim an skb, and eBPF program
3682          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3683          * bpf_lX_csum_replace() and others rather than passing a raw
3684          * buffer here. This one is a slow path helper and intended
3685          * for replies with control messages.
3686          *
3687          * Like in bpf_skb_change_proto(), we want to keep this rather
3688          * minimal and without protocol specifics so that we are able
3689          * to separate concerns as in bpf_skb_store_bytes() should only
3690          * be the one responsible for writing buffers.
3691          *
3692          * It's really expected to be a slow path operation here for
3693          * control message replies, so we're implicitly linearizing,
3694          * uncloning and drop offloads from the skb by this.
3695          */
3696         ret = __bpf_try_make_writable(skb, skb->len);
3697         if (!ret) {
3698                 if (new_len > skb->len)
3699                         ret = bpf_skb_grow_rcsum(skb, new_len);
3700                 else if (new_len < skb->len)
3701                         ret = bpf_skb_trim_rcsum(skb, new_len);
3702                 if (!ret && skb_is_gso(skb))
3703                         skb_gso_reset(skb);
3704         }
3705         return ret;
3706 }
3707
3708 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3709            u64, flags)
3710 {
3711         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3712
3713         bpf_compute_data_pointers(skb);
3714         return ret;
3715 }
3716
3717 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3718         .func           = bpf_skb_change_tail,
3719         .gpl_only       = false,
3720         .ret_type       = RET_INTEGER,
3721         .arg1_type      = ARG_PTR_TO_CTX,
3722         .arg2_type      = ARG_ANYTHING,
3723         .arg3_type      = ARG_ANYTHING,
3724 };
3725
3726 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3727            u64, flags)
3728 {
3729         return __bpf_skb_change_tail(skb, new_len, flags);
3730 }
3731
3732 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3733         .func           = sk_skb_change_tail,
3734         .gpl_only       = false,
3735         .ret_type       = RET_INTEGER,
3736         .arg1_type      = ARG_PTR_TO_CTX,
3737         .arg2_type      = ARG_ANYTHING,
3738         .arg3_type      = ARG_ANYTHING,
3739 };
3740
3741 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3742                                         u64 flags)
3743 {
3744         u32 max_len = BPF_SKB_MAX_LEN;
3745         u32 new_len = skb->len + head_room;
3746         int ret;
3747
3748         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3749                      new_len < skb->len))
3750                 return -EINVAL;
3751
3752         ret = skb_cow(skb, head_room);
3753         if (likely(!ret)) {
3754                 /* Idea for this helper is that we currently only
3755                  * allow to expand on mac header. This means that
3756                  * skb->protocol network header, etc, stay as is.
3757                  * Compared to bpf_skb_change_tail(), we're more
3758                  * flexible due to not needing to linearize or
3759                  * reset GSO. Intention for this helper is to be
3760                  * used by an L3 skb that needs to push mac header
3761                  * for redirection into L2 device.
3762                  */
3763                 __skb_push(skb, head_room);
3764                 memset(skb->data, 0, head_room);
3765                 skb_reset_mac_header(skb);
3766                 skb_reset_mac_len(skb);
3767         }
3768
3769         return ret;
3770 }
3771
3772 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3773            u64, flags)
3774 {
3775         int ret = __bpf_skb_change_head(skb, head_room, flags);
3776
3777         bpf_compute_data_pointers(skb);
3778         return ret;
3779 }
3780
3781 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3782         .func           = bpf_skb_change_head,
3783         .gpl_only       = false,
3784         .ret_type       = RET_INTEGER,
3785         .arg1_type      = ARG_PTR_TO_CTX,
3786         .arg2_type      = ARG_ANYTHING,
3787         .arg3_type      = ARG_ANYTHING,
3788 };
3789
3790 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3791            u64, flags)
3792 {
3793         return __bpf_skb_change_head(skb, head_room, flags);
3794 }
3795
3796 static const struct bpf_func_proto sk_skb_change_head_proto = {
3797         .func           = sk_skb_change_head,
3798         .gpl_only       = false,
3799         .ret_type       = RET_INTEGER,
3800         .arg1_type      = ARG_PTR_TO_CTX,
3801         .arg2_type      = ARG_ANYTHING,
3802         .arg3_type      = ARG_ANYTHING,
3803 };
3804 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3805 {
3806         return xdp_data_meta_unsupported(xdp) ? 0 :
3807                xdp->data - xdp->data_meta;
3808 }
3809
3810 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3811 {
3812         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3813         unsigned long metalen = xdp_get_metalen(xdp);
3814         void *data_start = xdp_frame_end + metalen;
3815         void *data = xdp->data + offset;
3816
3817         if (unlikely(data < data_start ||
3818                      data > xdp->data_end - ETH_HLEN))
3819                 return -EINVAL;
3820
3821         if (metalen)
3822                 memmove(xdp->data_meta + offset,
3823                         xdp->data_meta, metalen);
3824         xdp->data_meta += offset;
3825         xdp->data = data;
3826
3827         return 0;
3828 }
3829
3830 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3831         .func           = bpf_xdp_adjust_head,
3832         .gpl_only       = false,
3833         .ret_type       = RET_INTEGER,
3834         .arg1_type      = ARG_PTR_TO_CTX,
3835         .arg2_type      = ARG_ANYTHING,
3836 };
3837
3838 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3839 {
3840         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3841         void *data_end = xdp->data_end + offset;
3842
3843         /* Notice that xdp_data_hard_end have reserved some tailroom */
3844         if (unlikely(data_end > data_hard_end))
3845                 return -EINVAL;
3846
3847         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3848         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3849                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3850                 return -EINVAL;
3851         }
3852
3853         if (unlikely(data_end < xdp->data + ETH_HLEN))
3854                 return -EINVAL;
3855
3856         /* Clear memory area on grow, can contain uninit kernel memory */
3857         if (offset > 0)
3858                 memset(xdp->data_end, 0, offset);
3859
3860         xdp->data_end = data_end;
3861
3862         return 0;
3863 }
3864
3865 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3866         .func           = bpf_xdp_adjust_tail,
3867         .gpl_only       = false,
3868         .ret_type       = RET_INTEGER,
3869         .arg1_type      = ARG_PTR_TO_CTX,
3870         .arg2_type      = ARG_ANYTHING,
3871 };
3872
3873 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3874 {
3875         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3876         void *meta = xdp->data_meta + offset;
3877         unsigned long metalen = xdp->data - meta;
3878
3879         if (xdp_data_meta_unsupported(xdp))
3880                 return -ENOTSUPP;
3881         if (unlikely(meta < xdp_frame_end ||
3882                      meta > xdp->data))
3883                 return -EINVAL;
3884         if (unlikely(xdp_metalen_invalid(metalen)))
3885                 return -EACCES;
3886
3887         xdp->data_meta = meta;
3888
3889         return 0;
3890 }
3891
3892 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3893         .func           = bpf_xdp_adjust_meta,
3894         .gpl_only       = false,
3895         .ret_type       = RET_INTEGER,
3896         .arg1_type      = ARG_PTR_TO_CTX,
3897         .arg2_type      = ARG_ANYTHING,
3898 };
3899
3900 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3901  * below:
3902  *
3903  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3904  *    of the redirect and store it (along with some other metadata) in a per-CPU
3905  *    struct bpf_redirect_info.
3906  *
3907  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3908  *    call xdp_do_redirect() which will use the information in struct
3909  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3910  *    bulk queue structure.
3911  *
3912  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3913  *    which will flush all the different bulk queues, thus completing the
3914  *    redirect.
3915  *
3916  * Pointers to the map entries will be kept around for this whole sequence of
3917  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3918  * the core code; instead, the RCU protection relies on everything happening
3919  * inside a single NAPI poll sequence, which means it's between a pair of calls
3920  * to local_bh_disable()/local_bh_enable().
3921  *
3922  * The map entries are marked as __rcu and the map code makes sure to
3923  * dereference those pointers with rcu_dereference_check() in a way that works
3924  * for both sections that to hold an rcu_read_lock() and sections that are
3925  * called from NAPI without a separate rcu_read_lock(). The code below does not
3926  * use RCU annotations, but relies on those in the map code.
3927  */
3928 void xdp_do_flush(void)
3929 {
3930         __dev_flush();
3931         __cpu_map_flush();
3932         __xsk_map_flush();
3933 }
3934 EXPORT_SYMBOL_GPL(xdp_do_flush);
3935
3936 void bpf_clear_redirect_map(struct bpf_map *map)
3937 {
3938         struct bpf_redirect_info *ri;
3939         int cpu;
3940
3941         for_each_possible_cpu(cpu) {
3942                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3943                 /* Avoid polluting remote cacheline due to writes if
3944                  * not needed. Once we pass this test, we need the
3945                  * cmpxchg() to make sure it hasn't been changed in
3946                  * the meantime by remote CPU.
3947                  */
3948                 if (unlikely(READ_ONCE(ri->map) == map))
3949                         cmpxchg(&ri->map, map, NULL);
3950         }
3951 }
3952
3953 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3954                     struct bpf_prog *xdp_prog)
3955 {
3956         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3957         enum bpf_map_type map_type = ri->map_type;
3958         void *fwd = ri->tgt_value;
3959         u32 map_id = ri->map_id;
3960         struct bpf_map *map;
3961         int err;
3962
3963         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3964         ri->map_type = BPF_MAP_TYPE_UNSPEC;
3965
3966         switch (map_type) {
3967         case BPF_MAP_TYPE_DEVMAP:
3968                 fallthrough;
3969         case BPF_MAP_TYPE_DEVMAP_HASH:
3970                 map = READ_ONCE(ri->map);
3971                 if (unlikely(map)) {
3972                         WRITE_ONCE(ri->map, NULL);
3973                         err = dev_map_enqueue_multi(xdp, dev, map,
3974                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
3975                 } else {
3976                         err = dev_map_enqueue(fwd, xdp, dev);
3977                 }
3978                 break;
3979         case BPF_MAP_TYPE_CPUMAP:
3980                 err = cpu_map_enqueue(fwd, xdp, dev);
3981                 break;
3982         case BPF_MAP_TYPE_XSKMAP:
3983                 err = __xsk_map_redirect(fwd, xdp);
3984                 break;
3985         case BPF_MAP_TYPE_UNSPEC:
3986                 if (map_id == INT_MAX) {
3987                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
3988                         if (unlikely(!fwd)) {
3989                                 err = -EINVAL;
3990                                 break;
3991                         }
3992                         err = dev_xdp_enqueue(fwd, xdp, dev);
3993                         break;
3994                 }
3995                 fallthrough;
3996         default:
3997                 err = -EBADRQC;
3998         }
3999
4000         if (unlikely(err))
4001                 goto err;
4002
4003         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4004         return 0;
4005 err:
4006         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4007         return err;
4008 }
4009 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4010
4011 static int xdp_do_generic_redirect_map(struct net_device *dev,
4012                                        struct sk_buff *skb,
4013                                        struct xdp_buff *xdp,
4014                                        struct bpf_prog *xdp_prog,
4015                                        void *fwd,
4016                                        enum bpf_map_type map_type, u32 map_id)
4017 {
4018         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4019         struct bpf_map *map;
4020         int err;
4021
4022         switch (map_type) {
4023         case BPF_MAP_TYPE_DEVMAP:
4024                 fallthrough;
4025         case BPF_MAP_TYPE_DEVMAP_HASH:
4026                 map = READ_ONCE(ri->map);
4027                 if (unlikely(map)) {
4028                         WRITE_ONCE(ri->map, NULL);
4029                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4030                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4031                 } else {
4032                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4033                 }
4034                 if (unlikely(err))
4035                         goto err;
4036                 break;
4037         case BPF_MAP_TYPE_XSKMAP:
4038                 err = xsk_generic_rcv(fwd, xdp);
4039                 if (err)
4040                         goto err;
4041                 consume_skb(skb);
4042                 break;
4043         case BPF_MAP_TYPE_CPUMAP:
4044                 err = cpu_map_generic_redirect(fwd, skb);
4045                 if (unlikely(err))
4046                         goto err;
4047                 break;
4048         default:
4049                 err = -EBADRQC;
4050                 goto err;
4051         }
4052
4053         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4054         return 0;
4055 err:
4056         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4057         return err;
4058 }
4059
4060 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4061                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4062 {
4063         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4064         enum bpf_map_type map_type = ri->map_type;
4065         void *fwd = ri->tgt_value;
4066         u32 map_id = ri->map_id;
4067         int err;
4068
4069         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4070         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4071
4072         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4073                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4074                 if (unlikely(!fwd)) {
4075                         err = -EINVAL;
4076                         goto err;
4077                 }
4078
4079                 err = xdp_ok_fwd_dev(fwd, skb->len);
4080                 if (unlikely(err))
4081                         goto err;
4082
4083                 skb->dev = fwd;
4084                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4085                 generic_xdp_tx(skb, xdp_prog);
4086                 return 0;
4087         }
4088
4089         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4090 err:
4091         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4092         return err;
4093 }
4094
4095 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4096 {
4097         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4098
4099         if (unlikely(flags))
4100                 return XDP_ABORTED;
4101
4102         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4103          * by map_idr) is used for ifindex based XDP redirect.
4104          */
4105         ri->tgt_index = ifindex;
4106         ri->map_id = INT_MAX;
4107         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4108
4109         return XDP_REDIRECT;
4110 }
4111
4112 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4113         .func           = bpf_xdp_redirect,
4114         .gpl_only       = false,
4115         .ret_type       = RET_INTEGER,
4116         .arg1_type      = ARG_ANYTHING,
4117         .arg2_type      = ARG_ANYTHING,
4118 };
4119
4120 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4121            u64, flags)
4122 {
4123         return map->ops->map_redirect(map, ifindex, flags);
4124 }
4125
4126 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4127         .func           = bpf_xdp_redirect_map,
4128         .gpl_only       = false,
4129         .ret_type       = RET_INTEGER,
4130         .arg1_type      = ARG_CONST_MAP_PTR,
4131         .arg2_type      = ARG_ANYTHING,
4132         .arg3_type      = ARG_ANYTHING,
4133 };
4134
4135 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4136                                   unsigned long off, unsigned long len)
4137 {
4138         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4139
4140         if (unlikely(!ptr))
4141                 return len;
4142         if (ptr != dst_buff)
4143                 memcpy(dst_buff, ptr, len);
4144
4145         return 0;
4146 }
4147
4148 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4149            u64, flags, void *, meta, u64, meta_size)
4150 {
4151         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4152
4153         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4154                 return -EINVAL;
4155         if (unlikely(!skb || skb_size > skb->len))
4156                 return -EFAULT;
4157
4158         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4159                                 bpf_skb_copy);
4160 }
4161
4162 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4163         .func           = bpf_skb_event_output,
4164         .gpl_only       = true,
4165         .ret_type       = RET_INTEGER,
4166         .arg1_type      = ARG_PTR_TO_CTX,
4167         .arg2_type      = ARG_CONST_MAP_PTR,
4168         .arg3_type      = ARG_ANYTHING,
4169         .arg4_type      = ARG_PTR_TO_MEM,
4170         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4171 };
4172
4173 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4174
4175 const struct bpf_func_proto bpf_skb_output_proto = {
4176         .func           = bpf_skb_event_output,
4177         .gpl_only       = true,
4178         .ret_type       = RET_INTEGER,
4179         .arg1_type      = ARG_PTR_TO_BTF_ID,
4180         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4181         .arg2_type      = ARG_CONST_MAP_PTR,
4182         .arg3_type      = ARG_ANYTHING,
4183         .arg4_type      = ARG_PTR_TO_MEM,
4184         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4185 };
4186
4187 static unsigned short bpf_tunnel_key_af(u64 flags)
4188 {
4189         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4190 }
4191
4192 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4193            u32, size, u64, flags)
4194 {
4195         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4196         u8 compat[sizeof(struct bpf_tunnel_key)];
4197         void *to_orig = to;
4198         int err;
4199
4200         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4201                 err = -EINVAL;
4202                 goto err_clear;
4203         }
4204         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4205                 err = -EPROTO;
4206                 goto err_clear;
4207         }
4208         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4209                 err = -EINVAL;
4210                 switch (size) {
4211                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4212                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4213                         goto set_compat;
4214                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4215                         /* Fixup deprecated structure layouts here, so we have
4216                          * a common path later on.
4217                          */
4218                         if (ip_tunnel_info_af(info) != AF_INET)
4219                                 goto err_clear;
4220 set_compat:
4221                         to = (struct bpf_tunnel_key *)compat;
4222                         break;
4223                 default:
4224                         goto err_clear;
4225                 }
4226         }
4227
4228         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4229         to->tunnel_tos = info->key.tos;
4230         to->tunnel_ttl = info->key.ttl;
4231         to->tunnel_ext = 0;
4232
4233         if (flags & BPF_F_TUNINFO_IPV6) {
4234                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4235                        sizeof(to->remote_ipv6));
4236                 to->tunnel_label = be32_to_cpu(info->key.label);
4237         } else {
4238                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4239                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4240                 to->tunnel_label = 0;
4241         }
4242
4243         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4244                 memcpy(to_orig, to, size);
4245
4246         return 0;
4247 err_clear:
4248         memset(to_orig, 0, size);
4249         return err;
4250 }
4251
4252 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4253         .func           = bpf_skb_get_tunnel_key,
4254         .gpl_only       = false,
4255         .ret_type       = RET_INTEGER,
4256         .arg1_type      = ARG_PTR_TO_CTX,
4257         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4258         .arg3_type      = ARG_CONST_SIZE,
4259         .arg4_type      = ARG_ANYTHING,
4260 };
4261
4262 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4263 {
4264         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4265         int err;
4266
4267         if (unlikely(!info ||
4268                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4269                 err = -ENOENT;
4270                 goto err_clear;
4271         }
4272         if (unlikely(size < info->options_len)) {
4273                 err = -ENOMEM;
4274                 goto err_clear;
4275         }
4276
4277         ip_tunnel_info_opts_get(to, info);
4278         if (size > info->options_len)
4279                 memset(to + info->options_len, 0, size - info->options_len);
4280
4281         return info->options_len;
4282 err_clear:
4283         memset(to, 0, size);
4284         return err;
4285 }
4286
4287 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4288         .func           = bpf_skb_get_tunnel_opt,
4289         .gpl_only       = false,
4290         .ret_type       = RET_INTEGER,
4291         .arg1_type      = ARG_PTR_TO_CTX,
4292         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4293         .arg3_type      = ARG_CONST_SIZE,
4294 };
4295
4296 static struct metadata_dst __percpu *md_dst;
4297
4298 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4299            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4300 {
4301         struct metadata_dst *md = this_cpu_ptr(md_dst);
4302         u8 compat[sizeof(struct bpf_tunnel_key)];
4303         struct ip_tunnel_info *info;
4304
4305         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4306                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4307                 return -EINVAL;
4308         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4309                 switch (size) {
4310                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4311                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4312                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4313                         /* Fixup deprecated structure layouts here, so we have
4314                          * a common path later on.
4315                          */
4316                         memcpy(compat, from, size);
4317                         memset(compat + size, 0, sizeof(compat) - size);
4318                         from = (const struct bpf_tunnel_key *) compat;
4319                         break;
4320                 default:
4321                         return -EINVAL;
4322                 }
4323         }
4324         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4325                      from->tunnel_ext))
4326                 return -EINVAL;
4327
4328         skb_dst_drop(skb);
4329         dst_hold((struct dst_entry *) md);
4330         skb_dst_set(skb, (struct dst_entry *) md);
4331
4332         info = &md->u.tun_info;
4333         memset(info, 0, sizeof(*info));
4334         info->mode = IP_TUNNEL_INFO_TX;
4335
4336         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4337         if (flags & BPF_F_DONT_FRAGMENT)
4338                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4339         if (flags & BPF_F_ZERO_CSUM_TX)
4340                 info->key.tun_flags &= ~TUNNEL_CSUM;
4341         if (flags & BPF_F_SEQ_NUMBER)
4342                 info->key.tun_flags |= TUNNEL_SEQ;
4343
4344         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4345         info->key.tos = from->tunnel_tos;
4346         info->key.ttl = from->tunnel_ttl;
4347
4348         if (flags & BPF_F_TUNINFO_IPV6) {
4349                 info->mode |= IP_TUNNEL_INFO_IPV6;
4350                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4351                        sizeof(from->remote_ipv6));
4352                 info->key.label = cpu_to_be32(from->tunnel_label) &
4353                                   IPV6_FLOWLABEL_MASK;
4354         } else {
4355                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4356         }
4357
4358         return 0;
4359 }
4360
4361 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4362         .func           = bpf_skb_set_tunnel_key,
4363         .gpl_only       = false,
4364         .ret_type       = RET_INTEGER,
4365         .arg1_type      = ARG_PTR_TO_CTX,
4366         .arg2_type      = ARG_PTR_TO_MEM,
4367         .arg3_type      = ARG_CONST_SIZE,
4368         .arg4_type      = ARG_ANYTHING,
4369 };
4370
4371 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4372            const u8 *, from, u32, size)
4373 {
4374         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4375         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4376
4377         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4378                 return -EINVAL;
4379         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4380                 return -ENOMEM;
4381
4382         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4383
4384         return 0;
4385 }
4386
4387 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4388         .func           = bpf_skb_set_tunnel_opt,
4389         .gpl_only       = false,
4390         .ret_type       = RET_INTEGER,
4391         .arg1_type      = ARG_PTR_TO_CTX,
4392         .arg2_type      = ARG_PTR_TO_MEM,
4393         .arg3_type      = ARG_CONST_SIZE,
4394 };
4395
4396 static const struct bpf_func_proto *
4397 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4398 {
4399         if (!md_dst) {
4400                 struct metadata_dst __percpu *tmp;
4401
4402                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4403                                                 METADATA_IP_TUNNEL,
4404                                                 GFP_KERNEL);
4405                 if (!tmp)
4406                         return NULL;
4407                 if (cmpxchg(&md_dst, NULL, tmp))
4408                         metadata_dst_free_percpu(tmp);
4409         }
4410
4411         switch (which) {
4412         case BPF_FUNC_skb_set_tunnel_key:
4413                 return &bpf_skb_set_tunnel_key_proto;
4414         case BPF_FUNC_skb_set_tunnel_opt:
4415                 return &bpf_skb_set_tunnel_opt_proto;
4416         default:
4417                 return NULL;
4418         }
4419 }
4420
4421 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4422            u32, idx)
4423 {
4424         struct bpf_array *array = container_of(map, struct bpf_array, map);
4425         struct cgroup *cgrp;
4426         struct sock *sk;
4427
4428         sk = skb_to_full_sk(skb);
4429         if (!sk || !sk_fullsock(sk))
4430                 return -ENOENT;
4431         if (unlikely(idx >= array->map.max_entries))
4432                 return -E2BIG;
4433
4434         cgrp = READ_ONCE(array->ptrs[idx]);
4435         if (unlikely(!cgrp))
4436                 return -EAGAIN;
4437
4438         return sk_under_cgroup_hierarchy(sk, cgrp);
4439 }
4440
4441 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4442         .func           = bpf_skb_under_cgroup,
4443         .gpl_only       = false,
4444         .ret_type       = RET_INTEGER,
4445         .arg1_type      = ARG_PTR_TO_CTX,
4446         .arg2_type      = ARG_CONST_MAP_PTR,
4447         .arg3_type      = ARG_ANYTHING,
4448 };
4449
4450 #ifdef CONFIG_SOCK_CGROUP_DATA
4451 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4452 {
4453         struct cgroup *cgrp;
4454
4455         sk = sk_to_full_sk(sk);
4456         if (!sk || !sk_fullsock(sk))
4457                 return 0;
4458
4459         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4460         return cgroup_id(cgrp);
4461 }
4462
4463 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4464 {
4465         return __bpf_sk_cgroup_id(skb->sk);
4466 }
4467
4468 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4469         .func           = bpf_skb_cgroup_id,
4470         .gpl_only       = false,
4471         .ret_type       = RET_INTEGER,
4472         .arg1_type      = ARG_PTR_TO_CTX,
4473 };
4474
4475 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4476                                               int ancestor_level)
4477 {
4478         struct cgroup *ancestor;
4479         struct cgroup *cgrp;
4480
4481         sk = sk_to_full_sk(sk);
4482         if (!sk || !sk_fullsock(sk))
4483                 return 0;
4484
4485         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4486         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4487         if (!ancestor)
4488                 return 0;
4489
4490         return cgroup_id(ancestor);
4491 }
4492
4493 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4494            ancestor_level)
4495 {
4496         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4497 }
4498
4499 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4500         .func           = bpf_skb_ancestor_cgroup_id,
4501         .gpl_only       = false,
4502         .ret_type       = RET_INTEGER,
4503         .arg1_type      = ARG_PTR_TO_CTX,
4504         .arg2_type      = ARG_ANYTHING,
4505 };
4506
4507 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4508 {
4509         return __bpf_sk_cgroup_id(sk);
4510 }
4511
4512 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4513         .func           = bpf_sk_cgroup_id,
4514         .gpl_only       = false,
4515         .ret_type       = RET_INTEGER,
4516         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4517 };
4518
4519 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4520 {
4521         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4522 }
4523
4524 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4525         .func           = bpf_sk_ancestor_cgroup_id,
4526         .gpl_only       = false,
4527         .ret_type       = RET_INTEGER,
4528         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4529         .arg2_type      = ARG_ANYTHING,
4530 };
4531 #endif
4532
4533 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4534                                   unsigned long off, unsigned long len)
4535 {
4536         memcpy(dst_buff, src_buff + off, len);
4537         return 0;
4538 }
4539
4540 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4541            u64, flags, void *, meta, u64, meta_size)
4542 {
4543         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4544
4545         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4546                 return -EINVAL;
4547         if (unlikely(!xdp ||
4548                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4549                 return -EFAULT;
4550
4551         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4552                                 xdp_size, bpf_xdp_copy);
4553 }
4554
4555 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4556         .func           = bpf_xdp_event_output,
4557         .gpl_only       = true,
4558         .ret_type       = RET_INTEGER,
4559         .arg1_type      = ARG_PTR_TO_CTX,
4560         .arg2_type      = ARG_CONST_MAP_PTR,
4561         .arg3_type      = ARG_ANYTHING,
4562         .arg4_type      = ARG_PTR_TO_MEM,
4563         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4564 };
4565
4566 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4567
4568 const struct bpf_func_proto bpf_xdp_output_proto = {
4569         .func           = bpf_xdp_event_output,
4570         .gpl_only       = true,
4571         .ret_type       = RET_INTEGER,
4572         .arg1_type      = ARG_PTR_TO_BTF_ID,
4573         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4574         .arg2_type      = ARG_CONST_MAP_PTR,
4575         .arg3_type      = ARG_ANYTHING,
4576         .arg4_type      = ARG_PTR_TO_MEM,
4577         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4578 };
4579
4580 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4581 {
4582         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4583 }
4584
4585 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4586         .func           = bpf_get_socket_cookie,
4587         .gpl_only       = false,
4588         .ret_type       = RET_INTEGER,
4589         .arg1_type      = ARG_PTR_TO_CTX,
4590 };
4591
4592 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4593 {
4594         return __sock_gen_cookie(ctx->sk);
4595 }
4596
4597 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4598         .func           = bpf_get_socket_cookie_sock_addr,
4599         .gpl_only       = false,
4600         .ret_type       = RET_INTEGER,
4601         .arg1_type      = ARG_PTR_TO_CTX,
4602 };
4603
4604 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4605 {
4606         return __sock_gen_cookie(ctx);
4607 }
4608
4609 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4610         .func           = bpf_get_socket_cookie_sock,
4611         .gpl_only       = false,
4612         .ret_type       = RET_INTEGER,
4613         .arg1_type      = ARG_PTR_TO_CTX,
4614 };
4615
4616 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4617 {
4618         return sk ? sock_gen_cookie(sk) : 0;
4619 }
4620
4621 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4622         .func           = bpf_get_socket_ptr_cookie,
4623         .gpl_only       = false,
4624         .ret_type       = RET_INTEGER,
4625         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4626 };
4627
4628 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4629 {
4630         return __sock_gen_cookie(ctx->sk);
4631 }
4632
4633 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4634         .func           = bpf_get_socket_cookie_sock_ops,
4635         .gpl_only       = false,
4636         .ret_type       = RET_INTEGER,
4637         .arg1_type      = ARG_PTR_TO_CTX,
4638 };
4639
4640 static u64 __bpf_get_netns_cookie(struct sock *sk)
4641 {
4642         const struct net *net = sk ? sock_net(sk) : &init_net;
4643
4644         return net->net_cookie;
4645 }
4646
4647 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4648 {
4649         return __bpf_get_netns_cookie(ctx);
4650 }
4651
4652 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4653         .func           = bpf_get_netns_cookie_sock,
4654         .gpl_only       = false,
4655         .ret_type       = RET_INTEGER,
4656         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4657 };
4658
4659 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4660 {
4661         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4662 }
4663
4664 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4665         .func           = bpf_get_netns_cookie_sock_addr,
4666         .gpl_only       = false,
4667         .ret_type       = RET_INTEGER,
4668         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4669 };
4670
4671 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4672 {
4673         struct sock *sk = sk_to_full_sk(skb->sk);
4674         kuid_t kuid;
4675
4676         if (!sk || !sk_fullsock(sk))
4677                 return overflowuid;
4678         kuid = sock_net_uid(sock_net(sk), sk);
4679         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4680 }
4681
4682 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4683         .func           = bpf_get_socket_uid,
4684         .gpl_only       = false,
4685         .ret_type       = RET_INTEGER,
4686         .arg1_type      = ARG_PTR_TO_CTX,
4687 };
4688
4689 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4690                            char *optval, int optlen)
4691 {
4692         char devname[IFNAMSIZ];
4693         int val, valbool;
4694         struct net *net;
4695         int ifindex;
4696         int ret = 0;
4697
4698         if (!sk_fullsock(sk))
4699                 return -EINVAL;
4700
4701         sock_owned_by_me(sk);
4702
4703         if (level == SOL_SOCKET) {
4704                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4705                         return -EINVAL;
4706                 val = *((int *)optval);
4707                 valbool = val ? 1 : 0;
4708
4709                 /* Only some socketops are supported */
4710                 switch (optname) {
4711                 case SO_RCVBUF:
4712                         val = min_t(u32, val, sysctl_rmem_max);
4713                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4714                         WRITE_ONCE(sk->sk_rcvbuf,
4715                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4716                         break;
4717                 case SO_SNDBUF:
4718                         val = min_t(u32, val, sysctl_wmem_max);
4719                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4720                         WRITE_ONCE(sk->sk_sndbuf,
4721                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4722                         break;
4723                 case SO_MAX_PACING_RATE: /* 32bit version */
4724                         if (val != ~0U)
4725                                 cmpxchg(&sk->sk_pacing_status,
4726                                         SK_PACING_NONE,
4727                                         SK_PACING_NEEDED);
4728                         sk->sk_max_pacing_rate = (val == ~0U) ?
4729                                                  ~0UL : (unsigned int)val;
4730                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4731                                                  sk->sk_max_pacing_rate);
4732                         break;
4733                 case SO_PRIORITY:
4734                         sk->sk_priority = val;
4735                         break;
4736                 case SO_RCVLOWAT:
4737                         if (val < 0)
4738                                 val = INT_MAX;
4739                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4740                         break;
4741                 case SO_MARK:
4742                         if (sk->sk_mark != val) {
4743                                 sk->sk_mark = val;
4744                                 sk_dst_reset(sk);
4745                         }
4746                         break;
4747                 case SO_BINDTODEVICE:
4748                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4749                         strncpy(devname, optval, optlen);
4750                         devname[optlen] = 0;
4751
4752                         ifindex = 0;
4753                         if (devname[0] != '\0') {
4754                                 struct net_device *dev;
4755
4756                                 ret = -ENODEV;
4757
4758                                 net = sock_net(sk);
4759                                 dev = dev_get_by_name(net, devname);
4760                                 if (!dev)
4761                                         break;
4762                                 ifindex = dev->ifindex;
4763                                 dev_put(dev);
4764                         }
4765                         fallthrough;
4766                 case SO_BINDTOIFINDEX:
4767                         if (optname == SO_BINDTOIFINDEX)
4768                                 ifindex = val;
4769                         ret = sock_bindtoindex(sk, ifindex, false);
4770                         break;
4771                 case SO_KEEPALIVE:
4772                         if (sk->sk_prot->keepalive)
4773                                 sk->sk_prot->keepalive(sk, valbool);
4774                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4775                         break;
4776                 case SO_REUSEPORT:
4777                         sk->sk_reuseport = valbool;
4778                         break;
4779                 default:
4780                         ret = -EINVAL;
4781                 }
4782 #ifdef CONFIG_INET
4783         } else if (level == SOL_IP) {
4784                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4785                         return -EINVAL;
4786
4787                 val = *((int *)optval);
4788                 /* Only some options are supported */
4789                 switch (optname) {
4790                 case IP_TOS:
4791                         if (val < -1 || val > 0xff) {
4792                                 ret = -EINVAL;
4793                         } else {
4794                                 struct inet_sock *inet = inet_sk(sk);
4795
4796                                 if (val == -1)
4797                                         val = 0;
4798                                 inet->tos = val;
4799                         }
4800                         break;
4801                 default:
4802                         ret = -EINVAL;
4803                 }
4804 #if IS_ENABLED(CONFIG_IPV6)
4805         } else if (level == SOL_IPV6) {
4806                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4807                         return -EINVAL;
4808
4809                 val = *((int *)optval);
4810                 /* Only some options are supported */
4811                 switch (optname) {
4812                 case IPV6_TCLASS:
4813                         if (val < -1 || val > 0xff) {
4814                                 ret = -EINVAL;
4815                         } else {
4816                                 struct ipv6_pinfo *np = inet6_sk(sk);
4817
4818                                 if (val == -1)
4819                                         val = 0;
4820                                 np->tclass = val;
4821                         }
4822                         break;
4823                 default:
4824                         ret = -EINVAL;
4825                 }
4826 #endif
4827         } else if (level == SOL_TCP &&
4828                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4829                 if (optname == TCP_CONGESTION) {
4830                         char name[TCP_CA_NAME_MAX];
4831
4832                         strncpy(name, optval, min_t(long, optlen,
4833                                                     TCP_CA_NAME_MAX-1));
4834                         name[TCP_CA_NAME_MAX-1] = 0;
4835                         ret = tcp_set_congestion_control(sk, name, false, true);
4836                 } else {
4837                         struct inet_connection_sock *icsk = inet_csk(sk);
4838                         struct tcp_sock *tp = tcp_sk(sk);
4839                         unsigned long timeout;
4840
4841                         if (optlen != sizeof(int))
4842                                 return -EINVAL;
4843
4844                         val = *((int *)optval);
4845                         /* Only some options are supported */
4846                         switch (optname) {
4847                         case TCP_BPF_IW:
4848                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4849                                         ret = -EINVAL;
4850                                 else
4851                                         tp->snd_cwnd = val;
4852                                 break;
4853                         case TCP_BPF_SNDCWND_CLAMP:
4854                                 if (val <= 0) {
4855                                         ret = -EINVAL;
4856                                 } else {
4857                                         tp->snd_cwnd_clamp = val;
4858                                         tp->snd_ssthresh = val;
4859                                 }
4860                                 break;
4861                         case TCP_BPF_DELACK_MAX:
4862                                 timeout = usecs_to_jiffies(val);
4863                                 if (timeout > TCP_DELACK_MAX ||
4864                                     timeout < TCP_TIMEOUT_MIN)
4865                                         return -EINVAL;
4866                                 inet_csk(sk)->icsk_delack_max = timeout;
4867                                 break;
4868                         case TCP_BPF_RTO_MIN:
4869                                 timeout = usecs_to_jiffies(val);
4870                                 if (timeout > TCP_RTO_MIN ||
4871                                     timeout < TCP_TIMEOUT_MIN)
4872                                         return -EINVAL;
4873                                 inet_csk(sk)->icsk_rto_min = timeout;
4874                                 break;
4875                         case TCP_SAVE_SYN:
4876                                 if (val < 0 || val > 1)
4877                                         ret = -EINVAL;
4878                                 else
4879                                         tp->save_syn = val;
4880                                 break;
4881                         case TCP_KEEPIDLE:
4882                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4883                                 break;
4884                         case TCP_KEEPINTVL:
4885                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4886                                         ret = -EINVAL;
4887                                 else
4888                                         tp->keepalive_intvl = val * HZ;
4889                                 break;
4890                         case TCP_KEEPCNT:
4891                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4892                                         ret = -EINVAL;
4893                                 else
4894                                         tp->keepalive_probes = val;
4895                                 break;
4896                         case TCP_SYNCNT:
4897                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4898                                         ret = -EINVAL;
4899                                 else
4900                                         icsk->icsk_syn_retries = val;
4901                                 break;
4902                         case TCP_USER_TIMEOUT:
4903                                 if (val < 0)
4904                                         ret = -EINVAL;
4905                                 else
4906                                         icsk->icsk_user_timeout = val;
4907                                 break;
4908                         case TCP_NOTSENT_LOWAT:
4909                                 tp->notsent_lowat = val;
4910                                 sk->sk_write_space(sk);
4911                                 break;
4912                         case TCP_WINDOW_CLAMP:
4913                                 ret = tcp_set_window_clamp(sk, val);
4914                                 break;
4915                         default:
4916                                 ret = -EINVAL;
4917                         }
4918                 }
4919 #endif
4920         } else {
4921                 ret = -EINVAL;
4922         }
4923         return ret;
4924 }
4925
4926 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4927                            char *optval, int optlen)
4928 {
4929         if (!sk_fullsock(sk))
4930                 goto err_clear;
4931
4932         sock_owned_by_me(sk);
4933
4934         if (level == SOL_SOCKET) {
4935                 if (optlen != sizeof(int))
4936                         goto err_clear;
4937
4938                 switch (optname) {
4939                 case SO_MARK:
4940                         *((int *)optval) = sk->sk_mark;
4941                         break;
4942                 case SO_PRIORITY:
4943                         *((int *)optval) = sk->sk_priority;
4944                         break;
4945                 case SO_BINDTOIFINDEX:
4946                         *((int *)optval) = sk->sk_bound_dev_if;
4947                         break;
4948                 case SO_REUSEPORT:
4949                         *((int *)optval) = sk->sk_reuseport;
4950                         break;
4951                 default:
4952                         goto err_clear;
4953                 }
4954 #ifdef CONFIG_INET
4955         } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4956                 struct inet_connection_sock *icsk;
4957                 struct tcp_sock *tp;
4958
4959                 switch (optname) {
4960                 case TCP_CONGESTION:
4961                         icsk = inet_csk(sk);
4962
4963                         if (!icsk->icsk_ca_ops || optlen <= 1)
4964                                 goto err_clear;
4965                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4966                         optval[optlen - 1] = 0;
4967                         break;
4968                 case TCP_SAVED_SYN:
4969                         tp = tcp_sk(sk);
4970
4971                         if (optlen <= 0 || !tp->saved_syn ||
4972                             optlen > tcp_saved_syn_len(tp->saved_syn))
4973                                 goto err_clear;
4974                         memcpy(optval, tp->saved_syn->data, optlen);
4975                         break;
4976                 default:
4977                         goto err_clear;
4978                 }
4979         } else if (level == SOL_IP) {
4980                 struct inet_sock *inet = inet_sk(sk);
4981
4982                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4983                         goto err_clear;
4984
4985                 /* Only some options are supported */
4986                 switch (optname) {
4987                 case IP_TOS:
4988                         *((int *)optval) = (int)inet->tos;
4989                         break;
4990                 default:
4991                         goto err_clear;
4992                 }
4993 #if IS_ENABLED(CONFIG_IPV6)
4994         } else if (level == SOL_IPV6) {
4995                 struct ipv6_pinfo *np = inet6_sk(sk);
4996
4997                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4998                         goto err_clear;
4999
5000                 /* Only some options are supported */
5001                 switch (optname) {
5002                 case IPV6_TCLASS:
5003                         *((int *)optval) = (int)np->tclass;
5004                         break;
5005                 default:
5006                         goto err_clear;
5007                 }
5008 #endif
5009 #endif
5010         } else {
5011                 goto err_clear;
5012         }
5013         return 0;
5014 err_clear:
5015         memset(optval, 0, optlen);
5016         return -EINVAL;
5017 }
5018
5019 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5020            int, level, int, optname, char *, optval, int, optlen)
5021 {
5022         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5023 }
5024
5025 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5026         .func           = bpf_sock_addr_setsockopt,
5027         .gpl_only       = false,
5028         .ret_type       = RET_INTEGER,
5029         .arg1_type      = ARG_PTR_TO_CTX,
5030         .arg2_type      = ARG_ANYTHING,
5031         .arg3_type      = ARG_ANYTHING,
5032         .arg4_type      = ARG_PTR_TO_MEM,
5033         .arg5_type      = ARG_CONST_SIZE,
5034 };
5035
5036 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5037            int, level, int, optname, char *, optval, int, optlen)
5038 {
5039         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5040 }
5041
5042 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5043         .func           = bpf_sock_addr_getsockopt,
5044         .gpl_only       = false,
5045         .ret_type       = RET_INTEGER,
5046         .arg1_type      = ARG_PTR_TO_CTX,
5047         .arg2_type      = ARG_ANYTHING,
5048         .arg3_type      = ARG_ANYTHING,
5049         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5050         .arg5_type      = ARG_CONST_SIZE,
5051 };
5052
5053 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5054            int, level, int, optname, char *, optval, int, optlen)
5055 {
5056         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5057 }
5058
5059 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5060         .func           = bpf_sock_ops_setsockopt,
5061         .gpl_only       = false,
5062         .ret_type       = RET_INTEGER,
5063         .arg1_type      = ARG_PTR_TO_CTX,
5064         .arg2_type      = ARG_ANYTHING,
5065         .arg3_type      = ARG_ANYTHING,
5066         .arg4_type      = ARG_PTR_TO_MEM,
5067         .arg5_type      = ARG_CONST_SIZE,
5068 };
5069
5070 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5071                                 int optname, const u8 **start)
5072 {
5073         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5074         const u8 *hdr_start;
5075         int ret;
5076
5077         if (syn_skb) {
5078                 /* sk is a request_sock here */
5079
5080                 if (optname == TCP_BPF_SYN) {
5081                         hdr_start = syn_skb->data;
5082                         ret = tcp_hdrlen(syn_skb);
5083                 } else if (optname == TCP_BPF_SYN_IP) {
5084                         hdr_start = skb_network_header(syn_skb);
5085                         ret = skb_network_header_len(syn_skb) +
5086                                 tcp_hdrlen(syn_skb);
5087                 } else {
5088                         /* optname == TCP_BPF_SYN_MAC */
5089                         hdr_start = skb_mac_header(syn_skb);
5090                         ret = skb_mac_header_len(syn_skb) +
5091                                 skb_network_header_len(syn_skb) +
5092                                 tcp_hdrlen(syn_skb);
5093                 }
5094         } else {
5095                 struct sock *sk = bpf_sock->sk;
5096                 struct saved_syn *saved_syn;
5097
5098                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5099                         /* synack retransmit. bpf_sock->syn_skb will
5100                          * not be available.  It has to resort to
5101                          * saved_syn (if it is saved).
5102                          */
5103                         saved_syn = inet_reqsk(sk)->saved_syn;
5104                 else
5105                         saved_syn = tcp_sk(sk)->saved_syn;
5106
5107                 if (!saved_syn)
5108                         return -ENOENT;
5109
5110                 if (optname == TCP_BPF_SYN) {
5111                         hdr_start = saved_syn->data +
5112                                 saved_syn->mac_hdrlen +
5113                                 saved_syn->network_hdrlen;
5114                         ret = saved_syn->tcp_hdrlen;
5115                 } else if (optname == TCP_BPF_SYN_IP) {
5116                         hdr_start = saved_syn->data +
5117                                 saved_syn->mac_hdrlen;
5118                         ret = saved_syn->network_hdrlen +
5119                                 saved_syn->tcp_hdrlen;
5120                 } else {
5121                         /* optname == TCP_BPF_SYN_MAC */
5122
5123                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5124                         if (!saved_syn->mac_hdrlen)
5125                                 return -ENOENT;
5126
5127                         hdr_start = saved_syn->data;
5128                         ret = saved_syn->mac_hdrlen +
5129                                 saved_syn->network_hdrlen +
5130                                 saved_syn->tcp_hdrlen;
5131                 }
5132         }
5133
5134         *start = hdr_start;
5135         return ret;
5136 }
5137
5138 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5139            int, level, int, optname, char *, optval, int, optlen)
5140 {
5141         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5142             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5143                 int ret, copy_len = 0;
5144                 const u8 *start;
5145
5146                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5147                 if (ret > 0) {
5148                         copy_len = ret;
5149                         if (optlen < copy_len) {
5150                                 copy_len = optlen;
5151                                 ret = -ENOSPC;
5152                         }
5153
5154                         memcpy(optval, start, copy_len);
5155                 }
5156
5157                 /* Zero out unused buffer at the end */
5158                 memset(optval + copy_len, 0, optlen - copy_len);
5159
5160                 return ret;
5161         }
5162
5163         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5164 }
5165
5166 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5167         .func           = bpf_sock_ops_getsockopt,
5168         .gpl_only       = false,
5169         .ret_type       = RET_INTEGER,
5170         .arg1_type      = ARG_PTR_TO_CTX,
5171         .arg2_type      = ARG_ANYTHING,
5172         .arg3_type      = ARG_ANYTHING,
5173         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5174         .arg5_type      = ARG_CONST_SIZE,
5175 };
5176
5177 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5178            int, argval)
5179 {
5180         struct sock *sk = bpf_sock->sk;
5181         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5182
5183         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5184                 return -EINVAL;
5185
5186         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5187
5188         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5189 }
5190
5191 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5192         .func           = bpf_sock_ops_cb_flags_set,
5193         .gpl_only       = false,
5194         .ret_type       = RET_INTEGER,
5195         .arg1_type      = ARG_PTR_TO_CTX,
5196         .arg2_type      = ARG_ANYTHING,
5197 };
5198
5199 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5200 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5201
5202 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5203            int, addr_len)
5204 {
5205 #ifdef CONFIG_INET
5206         struct sock *sk = ctx->sk;
5207         u32 flags = BIND_FROM_BPF;
5208         int err;
5209
5210         err = -EINVAL;
5211         if (addr_len < offsetofend(struct sockaddr, sa_family))
5212                 return err;
5213         if (addr->sa_family == AF_INET) {
5214                 if (addr_len < sizeof(struct sockaddr_in))
5215                         return err;
5216                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5217                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5218                 return __inet_bind(sk, addr, addr_len, flags);
5219 #if IS_ENABLED(CONFIG_IPV6)
5220         } else if (addr->sa_family == AF_INET6) {
5221                 if (addr_len < SIN6_LEN_RFC2133)
5222                         return err;
5223                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5224                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5225                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5226                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5227                  */
5228                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5229 #endif /* CONFIG_IPV6 */
5230         }
5231 #endif /* CONFIG_INET */
5232
5233         return -EAFNOSUPPORT;
5234 }
5235
5236 static const struct bpf_func_proto bpf_bind_proto = {
5237         .func           = bpf_bind,
5238         .gpl_only       = false,
5239         .ret_type       = RET_INTEGER,
5240         .arg1_type      = ARG_PTR_TO_CTX,
5241         .arg2_type      = ARG_PTR_TO_MEM,
5242         .arg3_type      = ARG_CONST_SIZE,
5243 };
5244
5245 #ifdef CONFIG_XFRM
5246 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5247            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5248 {
5249         const struct sec_path *sp = skb_sec_path(skb);
5250         const struct xfrm_state *x;
5251
5252         if (!sp || unlikely(index >= sp->len || flags))
5253                 goto err_clear;
5254
5255         x = sp->xvec[index];
5256
5257         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5258                 goto err_clear;
5259
5260         to->reqid = x->props.reqid;
5261         to->spi = x->id.spi;
5262         to->family = x->props.family;
5263         to->ext = 0;
5264
5265         if (to->family == AF_INET6) {
5266                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5267                        sizeof(to->remote_ipv6));
5268         } else {
5269                 to->remote_ipv4 = x->props.saddr.a4;
5270                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5271         }
5272
5273         return 0;
5274 err_clear:
5275         memset(to, 0, size);
5276         return -EINVAL;
5277 }
5278
5279 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5280         .func           = bpf_skb_get_xfrm_state,
5281         .gpl_only       = false,
5282         .ret_type       = RET_INTEGER,
5283         .arg1_type      = ARG_PTR_TO_CTX,
5284         .arg2_type      = ARG_ANYTHING,
5285         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5286         .arg4_type      = ARG_CONST_SIZE,
5287         .arg5_type      = ARG_ANYTHING,
5288 };
5289 #endif
5290
5291 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5292 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5293                                   const struct neighbour *neigh,
5294                                   const struct net_device *dev, u32 mtu)
5295 {
5296         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5297         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5298         params->h_vlan_TCI = 0;
5299         params->h_vlan_proto = 0;
5300         if (mtu)
5301                 params->mtu_result = mtu; /* union with tot_len */
5302
5303         return 0;
5304 }
5305 #endif
5306
5307 #if IS_ENABLED(CONFIG_INET)
5308 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5309                                u32 flags, bool check_mtu)
5310 {
5311         struct fib_nh_common *nhc;
5312         struct in_device *in_dev;
5313         struct neighbour *neigh;
5314         struct net_device *dev;
5315         struct fib_result res;
5316         struct flowi4 fl4;
5317         u32 mtu = 0;
5318         int err;
5319
5320         dev = dev_get_by_index_rcu(net, params->ifindex);
5321         if (unlikely(!dev))
5322                 return -ENODEV;
5323
5324         /* verify forwarding is enabled on this interface */
5325         in_dev = __in_dev_get_rcu(dev);
5326         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5327                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5328
5329         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5330                 fl4.flowi4_iif = 1;
5331                 fl4.flowi4_oif = params->ifindex;
5332         } else {
5333                 fl4.flowi4_iif = params->ifindex;
5334                 fl4.flowi4_oif = 0;
5335         }
5336         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5337         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5338         fl4.flowi4_flags = 0;
5339
5340         fl4.flowi4_proto = params->l4_protocol;
5341         fl4.daddr = params->ipv4_dst;
5342         fl4.saddr = params->ipv4_src;
5343         fl4.fl4_sport = params->sport;
5344         fl4.fl4_dport = params->dport;
5345         fl4.flowi4_multipath_hash = 0;
5346
5347         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5348                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5349                 struct fib_table *tb;
5350
5351                 tb = fib_get_table(net, tbid);
5352                 if (unlikely(!tb))
5353                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5354
5355                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5356         } else {
5357                 fl4.flowi4_mark = 0;
5358                 fl4.flowi4_secid = 0;
5359                 fl4.flowi4_tun_key.tun_id = 0;
5360                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5361
5362                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5363         }
5364
5365         if (err) {
5366                 /* map fib lookup errors to RTN_ type */
5367                 if (err == -EINVAL)
5368                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5369                 if (err == -EHOSTUNREACH)
5370                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5371                 if (err == -EACCES)
5372                         return BPF_FIB_LKUP_RET_PROHIBIT;
5373
5374                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5375         }
5376
5377         if (res.type != RTN_UNICAST)
5378                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5379
5380         if (fib_info_num_path(res.fi) > 1)
5381                 fib_select_path(net, &res, &fl4, NULL);
5382
5383         if (check_mtu) {
5384                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5385                 if (params->tot_len > mtu) {
5386                         params->mtu_result = mtu; /* union with tot_len */
5387                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5388                 }
5389         }
5390
5391         nhc = res.nhc;
5392
5393         /* do not handle lwt encaps right now */
5394         if (nhc->nhc_lwtstate)
5395                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5396
5397         dev = nhc->nhc_dev;
5398
5399         params->rt_metric = res.fi->fib_priority;
5400         params->ifindex = dev->ifindex;
5401
5402         /* xdp and cls_bpf programs are run in RCU-bh so
5403          * rcu_read_lock_bh is not needed here
5404          */
5405         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5406                 if (nhc->nhc_gw_family)
5407                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5408
5409                 neigh = __ipv4_neigh_lookup_noref(dev,
5410                                                  (__force u32)params->ipv4_dst);
5411         } else {
5412                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5413
5414                 params->family = AF_INET6;
5415                 *dst = nhc->nhc_gw.ipv6;
5416                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5417         }
5418
5419         if (!neigh)
5420                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5421
5422         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5423 }
5424 #endif
5425
5426 #if IS_ENABLED(CONFIG_IPV6)
5427 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5428                                u32 flags, bool check_mtu)
5429 {
5430         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5431         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5432         struct fib6_result res = {};
5433         struct neighbour *neigh;
5434         struct net_device *dev;
5435         struct inet6_dev *idev;
5436         struct flowi6 fl6;
5437         int strict = 0;
5438         int oif, err;
5439         u32 mtu = 0;
5440
5441         /* link local addresses are never forwarded */
5442         if (rt6_need_strict(dst) || rt6_need_strict(src))
5443                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5444
5445         dev = dev_get_by_index_rcu(net, params->ifindex);
5446         if (unlikely(!dev))
5447                 return -ENODEV;
5448
5449         idev = __in6_dev_get_safely(dev);
5450         if (unlikely(!idev || !idev->cnf.forwarding))
5451                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5452
5453         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5454                 fl6.flowi6_iif = 1;
5455                 oif = fl6.flowi6_oif = params->ifindex;
5456         } else {
5457                 oif = fl6.flowi6_iif = params->ifindex;
5458                 fl6.flowi6_oif = 0;
5459                 strict = RT6_LOOKUP_F_HAS_SADDR;
5460         }
5461         fl6.flowlabel = params->flowinfo;
5462         fl6.flowi6_scope = 0;
5463         fl6.flowi6_flags = 0;
5464         fl6.mp_hash = 0;
5465
5466         fl6.flowi6_proto = params->l4_protocol;
5467         fl6.daddr = *dst;
5468         fl6.saddr = *src;
5469         fl6.fl6_sport = params->sport;
5470         fl6.fl6_dport = params->dport;
5471
5472         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5473                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5474                 struct fib6_table *tb;
5475
5476                 tb = ipv6_stub->fib6_get_table(net, tbid);
5477                 if (unlikely(!tb))
5478                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5479
5480                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5481                                                    strict);
5482         } else {
5483                 fl6.flowi6_mark = 0;
5484                 fl6.flowi6_secid = 0;
5485                 fl6.flowi6_tun_key.tun_id = 0;
5486                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5487
5488                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5489         }
5490
5491         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5492                      res.f6i == net->ipv6.fib6_null_entry))
5493                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5494
5495         switch (res.fib6_type) {
5496         /* only unicast is forwarded */
5497         case RTN_UNICAST:
5498                 break;
5499         case RTN_BLACKHOLE:
5500                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5501         case RTN_UNREACHABLE:
5502                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5503         case RTN_PROHIBIT:
5504                 return BPF_FIB_LKUP_RET_PROHIBIT;
5505         default:
5506                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5507         }
5508
5509         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5510                                     fl6.flowi6_oif != 0, NULL, strict);
5511
5512         if (check_mtu) {
5513                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5514                 if (params->tot_len > mtu) {
5515                         params->mtu_result = mtu; /* union with tot_len */
5516                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5517                 }
5518         }
5519
5520         if (res.nh->fib_nh_lws)
5521                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5522
5523         if (res.nh->fib_nh_gw_family)
5524                 *dst = res.nh->fib_nh_gw6;
5525
5526         dev = res.nh->fib_nh_dev;
5527         params->rt_metric = res.f6i->fib6_metric;
5528         params->ifindex = dev->ifindex;
5529
5530         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5531          * not needed here.
5532          */
5533         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5534         if (!neigh)
5535                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5536
5537         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5538 }
5539 #endif
5540
5541 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5542            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5543 {
5544         if (plen < sizeof(*params))
5545                 return -EINVAL;
5546
5547         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5548                 return -EINVAL;
5549
5550         switch (params->family) {
5551 #if IS_ENABLED(CONFIG_INET)
5552         case AF_INET:
5553                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5554                                            flags, true);
5555 #endif
5556 #if IS_ENABLED(CONFIG_IPV6)
5557         case AF_INET6:
5558                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5559                                            flags, true);
5560 #endif
5561         }
5562         return -EAFNOSUPPORT;
5563 }
5564
5565 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5566         .func           = bpf_xdp_fib_lookup,
5567         .gpl_only       = true,
5568         .ret_type       = RET_INTEGER,
5569         .arg1_type      = ARG_PTR_TO_CTX,
5570         .arg2_type      = ARG_PTR_TO_MEM,
5571         .arg3_type      = ARG_CONST_SIZE,
5572         .arg4_type      = ARG_ANYTHING,
5573 };
5574
5575 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5576            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5577 {
5578         struct net *net = dev_net(skb->dev);
5579         int rc = -EAFNOSUPPORT;
5580         bool check_mtu = false;
5581
5582         if (plen < sizeof(*params))
5583                 return -EINVAL;
5584
5585         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5586                 return -EINVAL;
5587
5588         if (params->tot_len)
5589                 check_mtu = true;
5590
5591         switch (params->family) {
5592 #if IS_ENABLED(CONFIG_INET)
5593         case AF_INET:
5594                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5595                 break;
5596 #endif
5597 #if IS_ENABLED(CONFIG_IPV6)
5598         case AF_INET6:
5599                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5600                 break;
5601 #endif
5602         }
5603
5604         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5605                 struct net_device *dev;
5606
5607                 /* When tot_len isn't provided by user, check skb
5608                  * against MTU of FIB lookup resulting net_device
5609                  */
5610                 dev = dev_get_by_index_rcu(net, params->ifindex);
5611                 if (!is_skb_forwardable(dev, skb))
5612                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5613
5614                 params->mtu_result = dev->mtu; /* union with tot_len */
5615         }
5616
5617         return rc;
5618 }
5619
5620 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5621         .func           = bpf_skb_fib_lookup,
5622         .gpl_only       = true,
5623         .ret_type       = RET_INTEGER,
5624         .arg1_type      = ARG_PTR_TO_CTX,
5625         .arg2_type      = ARG_PTR_TO_MEM,
5626         .arg3_type      = ARG_CONST_SIZE,
5627         .arg4_type      = ARG_ANYTHING,
5628 };
5629
5630 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5631                                             u32 ifindex)
5632 {
5633         struct net *netns = dev_net(dev_curr);
5634
5635         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5636         if (ifindex == 0)
5637                 return dev_curr;
5638
5639         return dev_get_by_index_rcu(netns, ifindex);
5640 }
5641
5642 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5643            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5644 {
5645         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5646         struct net_device *dev = skb->dev;
5647         int skb_len, dev_len;
5648         int mtu;
5649
5650         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5651                 return -EINVAL;
5652
5653         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5654                 return -EINVAL;
5655
5656         dev = __dev_via_ifindex(dev, ifindex);
5657         if (unlikely(!dev))
5658                 return -ENODEV;
5659
5660         mtu = READ_ONCE(dev->mtu);
5661
5662         dev_len = mtu + dev->hard_header_len;
5663
5664         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5665         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5666
5667         skb_len += len_diff; /* minus result pass check */
5668         if (skb_len <= dev_len) {
5669                 ret = BPF_MTU_CHK_RET_SUCCESS;
5670                 goto out;
5671         }
5672         /* At this point, skb->len exceed MTU, but as it include length of all
5673          * segments, it can still be below MTU.  The SKB can possibly get
5674          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5675          * must choose if segs are to be MTU checked.
5676          */
5677         if (skb_is_gso(skb)) {
5678                 ret = BPF_MTU_CHK_RET_SUCCESS;
5679
5680                 if (flags & BPF_MTU_CHK_SEGS &&
5681                     !skb_gso_validate_network_len(skb, mtu))
5682                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5683         }
5684 out:
5685         /* BPF verifier guarantees valid pointer */
5686         *mtu_len = mtu;
5687
5688         return ret;
5689 }
5690
5691 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5692            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5693 {
5694         struct net_device *dev = xdp->rxq->dev;
5695         int xdp_len = xdp->data_end - xdp->data;
5696         int ret = BPF_MTU_CHK_RET_SUCCESS;
5697         int mtu, dev_len;
5698
5699         /* XDP variant doesn't support multi-buffer segment check (yet) */
5700         if (unlikely(flags))
5701                 return -EINVAL;
5702
5703         dev = __dev_via_ifindex(dev, ifindex);
5704         if (unlikely(!dev))
5705                 return -ENODEV;
5706
5707         mtu = READ_ONCE(dev->mtu);
5708
5709         /* Add L2-header as dev MTU is L3 size */
5710         dev_len = mtu + dev->hard_header_len;
5711
5712         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5713         if (*mtu_len)
5714                 xdp_len = *mtu_len + dev->hard_header_len;
5715
5716         xdp_len += len_diff; /* minus result pass check */
5717         if (xdp_len > dev_len)
5718                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5719
5720         /* BPF verifier guarantees valid pointer */
5721         *mtu_len = mtu;
5722
5723         return ret;
5724 }
5725
5726 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5727         .func           = bpf_skb_check_mtu,
5728         .gpl_only       = true,
5729         .ret_type       = RET_INTEGER,
5730         .arg1_type      = ARG_PTR_TO_CTX,
5731         .arg2_type      = ARG_ANYTHING,
5732         .arg3_type      = ARG_PTR_TO_INT,
5733         .arg4_type      = ARG_ANYTHING,
5734         .arg5_type      = ARG_ANYTHING,
5735 };
5736
5737 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5738         .func           = bpf_xdp_check_mtu,
5739         .gpl_only       = true,
5740         .ret_type       = RET_INTEGER,
5741         .arg1_type      = ARG_PTR_TO_CTX,
5742         .arg2_type      = ARG_ANYTHING,
5743         .arg3_type      = ARG_PTR_TO_INT,
5744         .arg4_type      = ARG_ANYTHING,
5745         .arg5_type      = ARG_ANYTHING,
5746 };
5747
5748 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5749 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5750 {
5751         int err;
5752         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5753
5754         if (!seg6_validate_srh(srh, len, false))
5755                 return -EINVAL;
5756
5757         switch (type) {
5758         case BPF_LWT_ENCAP_SEG6_INLINE:
5759                 if (skb->protocol != htons(ETH_P_IPV6))
5760                         return -EBADMSG;
5761
5762                 err = seg6_do_srh_inline(skb, srh);
5763                 break;
5764         case BPF_LWT_ENCAP_SEG6:
5765                 skb_reset_inner_headers(skb);
5766                 skb->encapsulation = 1;
5767                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5768                 break;
5769         default:
5770                 return -EINVAL;
5771         }
5772
5773         bpf_compute_data_pointers(skb);
5774         if (err)
5775                 return err;
5776
5777         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5778         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5779
5780         return seg6_lookup_nexthop(skb, NULL, 0);
5781 }
5782 #endif /* CONFIG_IPV6_SEG6_BPF */
5783
5784 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5785 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5786                              bool ingress)
5787 {
5788         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5789 }
5790 #endif
5791
5792 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5793            u32, len)
5794 {
5795         switch (type) {
5796 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5797         case BPF_LWT_ENCAP_SEG6:
5798         case BPF_LWT_ENCAP_SEG6_INLINE:
5799                 return bpf_push_seg6_encap(skb, type, hdr, len);
5800 #endif
5801 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5802         case BPF_LWT_ENCAP_IP:
5803                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5804 #endif
5805         default:
5806                 return -EINVAL;
5807         }
5808 }
5809
5810 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5811            void *, hdr, u32, len)
5812 {
5813         switch (type) {
5814 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5815         case BPF_LWT_ENCAP_IP:
5816                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5817 #endif
5818         default:
5819                 return -EINVAL;
5820         }
5821 }
5822
5823 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5824         .func           = bpf_lwt_in_push_encap,
5825         .gpl_only       = false,
5826         .ret_type       = RET_INTEGER,
5827         .arg1_type      = ARG_PTR_TO_CTX,
5828         .arg2_type      = ARG_ANYTHING,
5829         .arg3_type      = ARG_PTR_TO_MEM,
5830         .arg4_type      = ARG_CONST_SIZE
5831 };
5832
5833 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5834         .func           = bpf_lwt_xmit_push_encap,
5835         .gpl_only       = false,
5836         .ret_type       = RET_INTEGER,
5837         .arg1_type      = ARG_PTR_TO_CTX,
5838         .arg2_type      = ARG_ANYTHING,
5839         .arg3_type      = ARG_PTR_TO_MEM,
5840         .arg4_type      = ARG_CONST_SIZE
5841 };
5842
5843 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5844 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5845            const void *, from, u32, len)
5846 {
5847         struct seg6_bpf_srh_state *srh_state =
5848                 this_cpu_ptr(&seg6_bpf_srh_states);
5849         struct ipv6_sr_hdr *srh = srh_state->srh;
5850         void *srh_tlvs, *srh_end, *ptr;
5851         int srhoff = 0;
5852
5853         if (srh == NULL)
5854                 return -EINVAL;
5855
5856         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5857         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5858
5859         ptr = skb->data + offset;
5860         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5861                 srh_state->valid = false;
5862         else if (ptr < (void *)&srh->flags ||
5863                  ptr + len > (void *)&srh->segments)
5864                 return -EFAULT;
5865
5866         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5867                 return -EFAULT;
5868         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5869                 return -EINVAL;
5870         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5871
5872         memcpy(skb->data + offset, from, len);
5873         return 0;
5874 }
5875
5876 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5877         .func           = bpf_lwt_seg6_store_bytes,
5878         .gpl_only       = false,
5879         .ret_type       = RET_INTEGER,
5880         .arg1_type      = ARG_PTR_TO_CTX,
5881         .arg2_type      = ARG_ANYTHING,
5882         .arg3_type      = ARG_PTR_TO_MEM,
5883         .arg4_type      = ARG_CONST_SIZE
5884 };
5885
5886 static void bpf_update_srh_state(struct sk_buff *skb)
5887 {
5888         struct seg6_bpf_srh_state *srh_state =
5889                 this_cpu_ptr(&seg6_bpf_srh_states);
5890         int srhoff = 0;
5891
5892         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5893                 srh_state->srh = NULL;
5894         } else {
5895                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5896                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5897                 srh_state->valid = true;
5898         }
5899 }
5900
5901 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5902            u32, action, void *, param, u32, param_len)
5903 {
5904         struct seg6_bpf_srh_state *srh_state =
5905                 this_cpu_ptr(&seg6_bpf_srh_states);
5906         int hdroff = 0;
5907         int err;
5908
5909         switch (action) {
5910         case SEG6_LOCAL_ACTION_END_X:
5911                 if (!seg6_bpf_has_valid_srh(skb))
5912                         return -EBADMSG;
5913                 if (param_len != sizeof(struct in6_addr))
5914                         return -EINVAL;
5915                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5916         case SEG6_LOCAL_ACTION_END_T:
5917                 if (!seg6_bpf_has_valid_srh(skb))
5918                         return -EBADMSG;
5919                 if (param_len != sizeof(int))
5920                         return -EINVAL;
5921                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5922         case SEG6_LOCAL_ACTION_END_DT6:
5923                 if (!seg6_bpf_has_valid_srh(skb))
5924                         return -EBADMSG;
5925                 if (param_len != sizeof(int))
5926                         return -EINVAL;
5927
5928                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5929                         return -EBADMSG;
5930                 if (!pskb_pull(skb, hdroff))
5931                         return -EBADMSG;
5932
5933                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5934                 skb_reset_network_header(skb);
5935                 skb_reset_transport_header(skb);
5936                 skb->encapsulation = 0;
5937
5938                 bpf_compute_data_pointers(skb);
5939                 bpf_update_srh_state(skb);
5940                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5941         case SEG6_LOCAL_ACTION_END_B6:
5942                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5943                         return -EBADMSG;
5944                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5945                                           param, param_len);
5946                 if (!err)
5947                         bpf_update_srh_state(skb);
5948
5949                 return err;
5950         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5951                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5952                         return -EBADMSG;
5953                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5954                                           param, param_len);
5955                 if (!err)
5956                         bpf_update_srh_state(skb);
5957
5958                 return err;
5959         default:
5960                 return -EINVAL;
5961         }
5962 }
5963
5964 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5965         .func           = bpf_lwt_seg6_action,
5966         .gpl_only       = false,
5967         .ret_type       = RET_INTEGER,
5968         .arg1_type      = ARG_PTR_TO_CTX,
5969         .arg2_type      = ARG_ANYTHING,
5970         .arg3_type      = ARG_PTR_TO_MEM,
5971         .arg4_type      = ARG_CONST_SIZE
5972 };
5973
5974 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5975            s32, len)
5976 {
5977         struct seg6_bpf_srh_state *srh_state =
5978                 this_cpu_ptr(&seg6_bpf_srh_states);
5979         struct ipv6_sr_hdr *srh = srh_state->srh;
5980         void *srh_end, *srh_tlvs, *ptr;
5981         struct ipv6hdr *hdr;
5982         int srhoff = 0;
5983         int ret;
5984
5985         if (unlikely(srh == NULL))
5986                 return -EINVAL;
5987
5988         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5989                         ((srh->first_segment + 1) << 4));
5990         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5991                         srh_state->hdrlen);
5992         ptr = skb->data + offset;
5993
5994         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5995                 return -EFAULT;
5996         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5997                 return -EFAULT;
5998
5999         if (len > 0) {
6000                 ret = skb_cow_head(skb, len);
6001                 if (unlikely(ret < 0))
6002                         return ret;
6003
6004                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6005         } else {
6006                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6007         }
6008
6009         bpf_compute_data_pointers(skb);
6010         if (unlikely(ret < 0))
6011                 return ret;
6012
6013         hdr = (struct ipv6hdr *)skb->data;
6014         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6015
6016         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6017                 return -EINVAL;
6018         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6019         srh_state->hdrlen += len;
6020         srh_state->valid = false;
6021         return 0;
6022 }
6023
6024 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6025         .func           = bpf_lwt_seg6_adjust_srh,
6026         .gpl_only       = false,
6027         .ret_type       = RET_INTEGER,
6028         .arg1_type      = ARG_PTR_TO_CTX,
6029         .arg2_type      = ARG_ANYTHING,
6030         .arg3_type      = ARG_ANYTHING,
6031 };
6032 #endif /* CONFIG_IPV6_SEG6_BPF */
6033
6034 #ifdef CONFIG_INET
6035 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6036                               int dif, int sdif, u8 family, u8 proto)
6037 {
6038         bool refcounted = false;
6039         struct sock *sk = NULL;
6040
6041         if (family == AF_INET) {
6042                 __be32 src4 = tuple->ipv4.saddr;
6043                 __be32 dst4 = tuple->ipv4.daddr;
6044
6045                 if (proto == IPPROTO_TCP)
6046                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6047                                            src4, tuple->ipv4.sport,
6048                                            dst4, tuple->ipv4.dport,
6049                                            dif, sdif, &refcounted);
6050                 else
6051                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6052                                                dst4, tuple->ipv4.dport,
6053                                                dif, sdif, &udp_table, NULL);
6054 #if IS_ENABLED(CONFIG_IPV6)
6055         } else {
6056                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6057                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6058
6059                 if (proto == IPPROTO_TCP)
6060                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6061                                             src6, tuple->ipv6.sport,
6062                                             dst6, ntohs(tuple->ipv6.dport),
6063                                             dif, sdif, &refcounted);
6064                 else if (likely(ipv6_bpf_stub))
6065                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6066                                                             src6, tuple->ipv6.sport,
6067                                                             dst6, tuple->ipv6.dport,
6068                                                             dif, sdif,
6069                                                             &udp_table, NULL);
6070 #endif
6071         }
6072
6073         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6074                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6075                 sk = NULL;
6076         }
6077         return sk;
6078 }
6079
6080 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6081  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6082  * Returns the socket as an 'unsigned long' to simplify the casting in the
6083  * callers to satisfy BPF_CALL declarations.
6084  */
6085 static struct sock *
6086 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6087                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6088                  u64 flags)
6089 {
6090         struct sock *sk = NULL;
6091         u8 family = AF_UNSPEC;
6092         struct net *net;
6093         int sdif;
6094
6095         if (len == sizeof(tuple->ipv4))
6096                 family = AF_INET;
6097         else if (len == sizeof(tuple->ipv6))
6098                 family = AF_INET6;
6099         else
6100                 return NULL;
6101
6102         if (unlikely(family == AF_UNSPEC || flags ||
6103                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6104                 goto out;
6105
6106         if (family == AF_INET)
6107                 sdif = inet_sdif(skb);
6108         else
6109                 sdif = inet6_sdif(skb);
6110
6111         if ((s32)netns_id < 0) {
6112                 net = caller_net;
6113                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6114         } else {
6115                 net = get_net_ns_by_id(caller_net, netns_id);
6116                 if (unlikely(!net))
6117                         goto out;
6118                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6119                 put_net(net);
6120         }
6121
6122 out:
6123         return sk;
6124 }
6125
6126 static struct sock *
6127 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6128                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6129                 u64 flags)
6130 {
6131         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6132                                            ifindex, proto, netns_id, flags);
6133
6134         if (sk) {
6135                 sk = sk_to_full_sk(sk);
6136                 if (!sk_fullsock(sk)) {
6137                         sock_gen_put(sk);
6138                         return NULL;
6139                 }
6140         }
6141
6142         return sk;
6143 }
6144
6145 static struct sock *
6146 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6147                u8 proto, u64 netns_id, u64 flags)
6148 {
6149         struct net *caller_net;
6150         int ifindex;
6151
6152         if (skb->dev) {
6153                 caller_net = dev_net(skb->dev);
6154                 ifindex = skb->dev->ifindex;
6155         } else {
6156                 caller_net = sock_net(skb->sk);
6157                 ifindex = 0;
6158         }
6159
6160         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6161                                 netns_id, flags);
6162 }
6163
6164 static struct sock *
6165 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6166               u8 proto, u64 netns_id, u64 flags)
6167 {
6168         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6169                                          flags);
6170
6171         if (sk) {
6172                 sk = sk_to_full_sk(sk);
6173                 if (!sk_fullsock(sk)) {
6174                         sock_gen_put(sk);
6175                         return NULL;
6176                 }
6177         }
6178
6179         return sk;
6180 }
6181
6182 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6183            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6184 {
6185         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6186                                              netns_id, flags);
6187 }
6188
6189 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6190         .func           = bpf_skc_lookup_tcp,
6191         .gpl_only       = false,
6192         .pkt_access     = true,
6193         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6194         .arg1_type      = ARG_PTR_TO_CTX,
6195         .arg2_type      = ARG_PTR_TO_MEM,
6196         .arg3_type      = ARG_CONST_SIZE,
6197         .arg4_type      = ARG_ANYTHING,
6198         .arg5_type      = ARG_ANYTHING,
6199 };
6200
6201 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6202            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6203 {
6204         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6205                                             netns_id, flags);
6206 }
6207
6208 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6209         .func           = bpf_sk_lookup_tcp,
6210         .gpl_only       = false,
6211         .pkt_access     = true,
6212         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6213         .arg1_type      = ARG_PTR_TO_CTX,
6214         .arg2_type      = ARG_PTR_TO_MEM,
6215         .arg3_type      = ARG_CONST_SIZE,
6216         .arg4_type      = ARG_ANYTHING,
6217         .arg5_type      = ARG_ANYTHING,
6218 };
6219
6220 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6221            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6222 {
6223         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6224                                             netns_id, flags);
6225 }
6226
6227 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6228         .func           = bpf_sk_lookup_udp,
6229         .gpl_only       = false,
6230         .pkt_access     = true,
6231         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6232         .arg1_type      = ARG_PTR_TO_CTX,
6233         .arg2_type      = ARG_PTR_TO_MEM,
6234         .arg3_type      = ARG_CONST_SIZE,
6235         .arg4_type      = ARG_ANYTHING,
6236         .arg5_type      = ARG_ANYTHING,
6237 };
6238
6239 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6240 {
6241         if (sk && sk_is_refcounted(sk))
6242                 sock_gen_put(sk);
6243         return 0;
6244 }
6245
6246 static const struct bpf_func_proto bpf_sk_release_proto = {
6247         .func           = bpf_sk_release,
6248         .gpl_only       = false,
6249         .ret_type       = RET_INTEGER,
6250         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6251 };
6252
6253 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6254            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6255 {
6256         struct net *caller_net = dev_net(ctx->rxq->dev);
6257         int ifindex = ctx->rxq->dev->ifindex;
6258
6259         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6260                                               ifindex, IPPROTO_UDP, netns_id,
6261                                               flags);
6262 }
6263
6264 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6265         .func           = bpf_xdp_sk_lookup_udp,
6266         .gpl_only       = false,
6267         .pkt_access     = true,
6268         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6269         .arg1_type      = ARG_PTR_TO_CTX,
6270         .arg2_type      = ARG_PTR_TO_MEM,
6271         .arg3_type      = ARG_CONST_SIZE,
6272         .arg4_type      = ARG_ANYTHING,
6273         .arg5_type      = ARG_ANYTHING,
6274 };
6275
6276 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6277            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6278 {
6279         struct net *caller_net = dev_net(ctx->rxq->dev);
6280         int ifindex = ctx->rxq->dev->ifindex;
6281
6282         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6283                                                ifindex, IPPROTO_TCP, netns_id,
6284                                                flags);
6285 }
6286
6287 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6288         .func           = bpf_xdp_skc_lookup_tcp,
6289         .gpl_only       = false,
6290         .pkt_access     = true,
6291         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6292         .arg1_type      = ARG_PTR_TO_CTX,
6293         .arg2_type      = ARG_PTR_TO_MEM,
6294         .arg3_type      = ARG_CONST_SIZE,
6295         .arg4_type      = ARG_ANYTHING,
6296         .arg5_type      = ARG_ANYTHING,
6297 };
6298
6299 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6300            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6301 {
6302         struct net *caller_net = dev_net(ctx->rxq->dev);
6303         int ifindex = ctx->rxq->dev->ifindex;
6304
6305         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6306                                               ifindex, IPPROTO_TCP, netns_id,
6307                                               flags);
6308 }
6309
6310 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6311         .func           = bpf_xdp_sk_lookup_tcp,
6312         .gpl_only       = false,
6313         .pkt_access     = true,
6314         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6315         .arg1_type      = ARG_PTR_TO_CTX,
6316         .arg2_type      = ARG_PTR_TO_MEM,
6317         .arg3_type      = ARG_CONST_SIZE,
6318         .arg4_type      = ARG_ANYTHING,
6319         .arg5_type      = ARG_ANYTHING,
6320 };
6321
6322 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6323            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6324 {
6325         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6326                                                sock_net(ctx->sk), 0,
6327                                                IPPROTO_TCP, netns_id, flags);
6328 }
6329
6330 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6331         .func           = bpf_sock_addr_skc_lookup_tcp,
6332         .gpl_only       = false,
6333         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6334         .arg1_type      = ARG_PTR_TO_CTX,
6335         .arg2_type      = ARG_PTR_TO_MEM,
6336         .arg3_type      = ARG_CONST_SIZE,
6337         .arg4_type      = ARG_ANYTHING,
6338         .arg5_type      = ARG_ANYTHING,
6339 };
6340
6341 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6342            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6343 {
6344         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6345                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6346                                               netns_id, flags);
6347 }
6348
6349 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6350         .func           = bpf_sock_addr_sk_lookup_tcp,
6351         .gpl_only       = false,
6352         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6353         .arg1_type      = ARG_PTR_TO_CTX,
6354         .arg2_type      = ARG_PTR_TO_MEM,
6355         .arg3_type      = ARG_CONST_SIZE,
6356         .arg4_type      = ARG_ANYTHING,
6357         .arg5_type      = ARG_ANYTHING,
6358 };
6359
6360 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6361            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6362 {
6363         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6364                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6365                                               netns_id, flags);
6366 }
6367
6368 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6369         .func           = bpf_sock_addr_sk_lookup_udp,
6370         .gpl_only       = false,
6371         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6372         .arg1_type      = ARG_PTR_TO_CTX,
6373         .arg2_type      = ARG_PTR_TO_MEM,
6374         .arg3_type      = ARG_CONST_SIZE,
6375         .arg4_type      = ARG_ANYTHING,
6376         .arg5_type      = ARG_ANYTHING,
6377 };
6378
6379 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6380                                   struct bpf_insn_access_aux *info)
6381 {
6382         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6383                                           icsk_retransmits))
6384                 return false;
6385
6386         if (off % size != 0)
6387                 return false;
6388
6389         switch (off) {
6390         case offsetof(struct bpf_tcp_sock, bytes_received):
6391         case offsetof(struct bpf_tcp_sock, bytes_acked):
6392                 return size == sizeof(__u64);
6393         default:
6394                 return size == sizeof(__u32);
6395         }
6396 }
6397
6398 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6399                                     const struct bpf_insn *si,
6400                                     struct bpf_insn *insn_buf,
6401                                     struct bpf_prog *prog, u32 *target_size)
6402 {
6403         struct bpf_insn *insn = insn_buf;
6404
6405 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6406         do {                                                            \
6407                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6408                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6409                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6410                                       si->dst_reg, si->src_reg,         \
6411                                       offsetof(struct tcp_sock, FIELD)); \
6412         } while (0)
6413
6414 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6415         do {                                                            \
6416                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6417                                           FIELD) >                      \
6418                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6419                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6420                                         struct inet_connection_sock,    \
6421                                         FIELD),                         \
6422                                       si->dst_reg, si->src_reg,         \
6423                                       offsetof(                         \
6424                                         struct inet_connection_sock,    \
6425                                         FIELD));                        \
6426         } while (0)
6427
6428         if (insn > insn_buf)
6429                 return insn - insn_buf;
6430
6431         switch (si->off) {
6432         case offsetof(struct bpf_tcp_sock, rtt_min):
6433                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6434                              sizeof(struct minmax));
6435                 BUILD_BUG_ON(sizeof(struct minmax) <
6436                              sizeof(struct minmax_sample));
6437
6438                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6439                                       offsetof(struct tcp_sock, rtt_min) +
6440                                       offsetof(struct minmax_sample, v));
6441                 break;
6442         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6443                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6444                 break;
6445         case offsetof(struct bpf_tcp_sock, srtt_us):
6446                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6447                 break;
6448         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6449                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6450                 break;
6451         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6452                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6453                 break;
6454         case offsetof(struct bpf_tcp_sock, snd_nxt):
6455                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6456                 break;
6457         case offsetof(struct bpf_tcp_sock, snd_una):
6458                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6459                 break;
6460         case offsetof(struct bpf_tcp_sock, mss_cache):
6461                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6462                 break;
6463         case offsetof(struct bpf_tcp_sock, ecn_flags):
6464                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6465                 break;
6466         case offsetof(struct bpf_tcp_sock, rate_delivered):
6467                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6468                 break;
6469         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6470                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6471                 break;
6472         case offsetof(struct bpf_tcp_sock, packets_out):
6473                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6474                 break;
6475         case offsetof(struct bpf_tcp_sock, retrans_out):
6476                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6477                 break;
6478         case offsetof(struct bpf_tcp_sock, total_retrans):
6479                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6480                 break;
6481         case offsetof(struct bpf_tcp_sock, segs_in):
6482                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6483                 break;
6484         case offsetof(struct bpf_tcp_sock, data_segs_in):
6485                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6486                 break;
6487         case offsetof(struct bpf_tcp_sock, segs_out):
6488                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6489                 break;
6490         case offsetof(struct bpf_tcp_sock, data_segs_out):
6491                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6492                 break;
6493         case offsetof(struct bpf_tcp_sock, lost_out):
6494                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6495                 break;
6496         case offsetof(struct bpf_tcp_sock, sacked_out):
6497                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6498                 break;
6499         case offsetof(struct bpf_tcp_sock, bytes_received):
6500                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6501                 break;
6502         case offsetof(struct bpf_tcp_sock, bytes_acked):
6503                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6504                 break;
6505         case offsetof(struct bpf_tcp_sock, dsack_dups):
6506                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6507                 break;
6508         case offsetof(struct bpf_tcp_sock, delivered):
6509                 BPF_TCP_SOCK_GET_COMMON(delivered);
6510                 break;
6511         case offsetof(struct bpf_tcp_sock, delivered_ce):
6512                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6513                 break;
6514         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6515                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6516                 break;
6517         }
6518
6519         return insn - insn_buf;
6520 }
6521
6522 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6523 {
6524         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6525                 return (unsigned long)sk;
6526
6527         return (unsigned long)NULL;
6528 }
6529
6530 const struct bpf_func_proto bpf_tcp_sock_proto = {
6531         .func           = bpf_tcp_sock,
6532         .gpl_only       = false,
6533         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6534         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6535 };
6536
6537 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6538 {
6539         sk = sk_to_full_sk(sk);
6540
6541         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6542                 return (unsigned long)sk;
6543
6544         return (unsigned long)NULL;
6545 }
6546
6547 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6548         .func           = bpf_get_listener_sock,
6549         .gpl_only       = false,
6550         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6551         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6552 };
6553
6554 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6555 {
6556         unsigned int iphdr_len;
6557
6558         switch (skb_protocol(skb, true)) {
6559         case cpu_to_be16(ETH_P_IP):
6560                 iphdr_len = sizeof(struct iphdr);
6561                 break;
6562         case cpu_to_be16(ETH_P_IPV6):
6563                 iphdr_len = sizeof(struct ipv6hdr);
6564                 break;
6565         default:
6566                 return 0;
6567         }
6568
6569         if (skb_headlen(skb) < iphdr_len)
6570                 return 0;
6571
6572         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6573                 return 0;
6574
6575         return INET_ECN_set_ce(skb);
6576 }
6577
6578 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6579                                   struct bpf_insn_access_aux *info)
6580 {
6581         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6582                 return false;
6583
6584         if (off % size != 0)
6585                 return false;
6586
6587         switch (off) {
6588         default:
6589                 return size == sizeof(__u32);
6590         }
6591 }
6592
6593 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6594                                     const struct bpf_insn *si,
6595                                     struct bpf_insn *insn_buf,
6596                                     struct bpf_prog *prog, u32 *target_size)
6597 {
6598         struct bpf_insn *insn = insn_buf;
6599
6600 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6601         do {                                                            \
6602                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6603                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6604                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6605                                       si->dst_reg, si->src_reg,         \
6606                                       offsetof(struct xdp_sock, FIELD)); \
6607         } while (0)
6608
6609         switch (si->off) {
6610         case offsetof(struct bpf_xdp_sock, queue_id):
6611                 BPF_XDP_SOCK_GET(queue_id);
6612                 break;
6613         }
6614
6615         return insn - insn_buf;
6616 }
6617
6618 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6619         .func           = bpf_skb_ecn_set_ce,
6620         .gpl_only       = false,
6621         .ret_type       = RET_INTEGER,
6622         .arg1_type      = ARG_PTR_TO_CTX,
6623 };
6624
6625 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6626            struct tcphdr *, th, u32, th_len)
6627 {
6628 #ifdef CONFIG_SYN_COOKIES
6629         u32 cookie;
6630         int ret;
6631
6632         if (unlikely(!sk || th_len < sizeof(*th)))
6633                 return -EINVAL;
6634
6635         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6636         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6637                 return -EINVAL;
6638
6639         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6640                 return -EINVAL;
6641
6642         if (!th->ack || th->rst || th->syn)
6643                 return -ENOENT;
6644
6645         if (tcp_synq_no_recent_overflow(sk))
6646                 return -ENOENT;
6647
6648         cookie = ntohl(th->ack_seq) - 1;
6649
6650         switch (sk->sk_family) {
6651         case AF_INET:
6652                 if (unlikely(iph_len < sizeof(struct iphdr)))
6653                         return -EINVAL;
6654
6655                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6656                 break;
6657
6658 #if IS_BUILTIN(CONFIG_IPV6)
6659         case AF_INET6:
6660                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6661                         return -EINVAL;
6662
6663                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6664                 break;
6665 #endif /* CONFIG_IPV6 */
6666
6667         default:
6668                 return -EPROTONOSUPPORT;
6669         }
6670
6671         if (ret > 0)
6672                 return 0;
6673
6674         return -ENOENT;
6675 #else
6676         return -ENOTSUPP;
6677 #endif
6678 }
6679
6680 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6681         .func           = bpf_tcp_check_syncookie,
6682         .gpl_only       = true,
6683         .pkt_access     = true,
6684         .ret_type       = RET_INTEGER,
6685         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6686         .arg2_type      = ARG_PTR_TO_MEM,
6687         .arg3_type      = ARG_CONST_SIZE,
6688         .arg4_type      = ARG_PTR_TO_MEM,
6689         .arg5_type      = ARG_CONST_SIZE,
6690 };
6691
6692 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6693            struct tcphdr *, th, u32, th_len)
6694 {
6695 #ifdef CONFIG_SYN_COOKIES
6696         u32 cookie;
6697         u16 mss;
6698
6699         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6700                 return -EINVAL;
6701
6702         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6703                 return -EINVAL;
6704
6705         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6706                 return -ENOENT;
6707
6708         if (!th->syn || th->ack || th->fin || th->rst)
6709                 return -EINVAL;
6710
6711         if (unlikely(iph_len < sizeof(struct iphdr)))
6712                 return -EINVAL;
6713
6714         /* Both struct iphdr and struct ipv6hdr have the version field at the
6715          * same offset so we can cast to the shorter header (struct iphdr).
6716          */
6717         switch (((struct iphdr *)iph)->version) {
6718         case 4:
6719                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6720                         return -EINVAL;
6721
6722                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6723                 break;
6724
6725 #if IS_BUILTIN(CONFIG_IPV6)
6726         case 6:
6727                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6728                         return -EINVAL;
6729
6730                 if (sk->sk_family != AF_INET6)
6731                         return -EINVAL;
6732
6733                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6734                 break;
6735 #endif /* CONFIG_IPV6 */
6736
6737         default:
6738                 return -EPROTONOSUPPORT;
6739         }
6740         if (mss == 0)
6741                 return -ENOENT;
6742
6743         return cookie | ((u64)mss << 32);
6744 #else
6745         return -EOPNOTSUPP;
6746 #endif /* CONFIG_SYN_COOKIES */
6747 }
6748
6749 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6750         .func           = bpf_tcp_gen_syncookie,
6751         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6752         .pkt_access     = true,
6753         .ret_type       = RET_INTEGER,
6754         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6755         .arg2_type      = ARG_PTR_TO_MEM,
6756         .arg3_type      = ARG_CONST_SIZE,
6757         .arg4_type      = ARG_PTR_TO_MEM,
6758         .arg5_type      = ARG_CONST_SIZE,
6759 };
6760
6761 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6762 {
6763         if (!sk || flags != 0)
6764                 return -EINVAL;
6765         if (!skb_at_tc_ingress(skb))
6766                 return -EOPNOTSUPP;
6767         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6768                 return -ENETUNREACH;
6769         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6770                 return -ESOCKTNOSUPPORT;
6771         if (sk_is_refcounted(sk) &&
6772             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6773                 return -ENOENT;
6774
6775         skb_orphan(skb);
6776         skb->sk = sk;
6777         skb->destructor = sock_pfree;
6778
6779         return 0;
6780 }
6781
6782 static const struct bpf_func_proto bpf_sk_assign_proto = {
6783         .func           = bpf_sk_assign,
6784         .gpl_only       = false,
6785         .ret_type       = RET_INTEGER,
6786         .arg1_type      = ARG_PTR_TO_CTX,
6787         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6788         .arg3_type      = ARG_ANYTHING,
6789 };
6790
6791 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6792                                     u8 search_kind, const u8 *magic,
6793                                     u8 magic_len, bool *eol)
6794 {
6795         u8 kind, kind_len;
6796
6797         *eol = false;
6798
6799         while (op < opend) {
6800                 kind = op[0];
6801
6802                 if (kind == TCPOPT_EOL) {
6803                         *eol = true;
6804                         return ERR_PTR(-ENOMSG);
6805                 } else if (kind == TCPOPT_NOP) {
6806                         op++;
6807                         continue;
6808                 }
6809
6810                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6811                         /* Something is wrong in the received header.
6812                          * Follow the TCP stack's tcp_parse_options()
6813                          * and just bail here.
6814                          */
6815                         return ERR_PTR(-EFAULT);
6816
6817                 kind_len = op[1];
6818                 if (search_kind == kind) {
6819                         if (!magic_len)
6820                                 return op;
6821
6822                         if (magic_len > kind_len - 2)
6823                                 return ERR_PTR(-ENOMSG);
6824
6825                         if (!memcmp(&op[2], magic, magic_len))
6826                                 return op;
6827                 }
6828
6829                 op += kind_len;
6830         }
6831
6832         return ERR_PTR(-ENOMSG);
6833 }
6834
6835 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6836            void *, search_res, u32, len, u64, flags)
6837 {
6838         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6839         const u8 *op, *opend, *magic, *search = search_res;
6840         u8 search_kind, search_len, copy_len, magic_len;
6841         int ret;
6842
6843         /* 2 byte is the minimal option len except TCPOPT_NOP and
6844          * TCPOPT_EOL which are useless for the bpf prog to learn
6845          * and this helper disallow loading them also.
6846          */
6847         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6848                 return -EINVAL;
6849
6850         search_kind = search[0];
6851         search_len = search[1];
6852
6853         if (search_len > len || search_kind == TCPOPT_NOP ||
6854             search_kind == TCPOPT_EOL)
6855                 return -EINVAL;
6856
6857         if (search_kind == TCPOPT_EXP || search_kind == 253) {
6858                 /* 16 or 32 bit magic.  +2 for kind and kind length */
6859                 if (search_len != 4 && search_len != 6)
6860                         return -EINVAL;
6861                 magic = &search[2];
6862                 magic_len = search_len - 2;
6863         } else {
6864                 if (search_len)
6865                         return -EINVAL;
6866                 magic = NULL;
6867                 magic_len = 0;
6868         }
6869
6870         if (load_syn) {
6871                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6872                 if (ret < 0)
6873                         return ret;
6874
6875                 opend = op + ret;
6876                 op += sizeof(struct tcphdr);
6877         } else {
6878                 if (!bpf_sock->skb ||
6879                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6880                         /* This bpf_sock->op cannot call this helper */
6881                         return -EPERM;
6882
6883                 opend = bpf_sock->skb_data_end;
6884                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6885         }
6886
6887         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6888                                 &eol);
6889         if (IS_ERR(op))
6890                 return PTR_ERR(op);
6891
6892         copy_len = op[1];
6893         ret = copy_len;
6894         if (copy_len > len) {
6895                 ret = -ENOSPC;
6896                 copy_len = len;
6897         }
6898
6899         memcpy(search_res, op, copy_len);
6900         return ret;
6901 }
6902
6903 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6904         .func           = bpf_sock_ops_load_hdr_opt,
6905         .gpl_only       = false,
6906         .ret_type       = RET_INTEGER,
6907         .arg1_type      = ARG_PTR_TO_CTX,
6908         .arg2_type      = ARG_PTR_TO_MEM,
6909         .arg3_type      = ARG_CONST_SIZE,
6910         .arg4_type      = ARG_ANYTHING,
6911 };
6912
6913 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6914            const void *, from, u32, len, u64, flags)
6915 {
6916         u8 new_kind, new_kind_len, magic_len = 0, *opend;
6917         const u8 *op, *new_op, *magic = NULL;
6918         struct sk_buff *skb;
6919         bool eol;
6920
6921         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6922                 return -EPERM;
6923
6924         if (len < 2 || flags)
6925                 return -EINVAL;
6926
6927         new_op = from;
6928         new_kind = new_op[0];
6929         new_kind_len = new_op[1];
6930
6931         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6932             new_kind == TCPOPT_EOL)
6933                 return -EINVAL;
6934
6935         if (new_kind_len > bpf_sock->remaining_opt_len)
6936                 return -ENOSPC;
6937
6938         /* 253 is another experimental kind */
6939         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6940                 if (new_kind_len < 4)
6941                         return -EINVAL;
6942                 /* Match for the 2 byte magic also.
6943                  * RFC 6994: the magic could be 2 or 4 bytes.
6944                  * Hence, matching by 2 byte only is on the
6945                  * conservative side but it is the right
6946                  * thing to do for the 'search-for-duplication'
6947                  * purpose.
6948                  */
6949                 magic = &new_op[2];
6950                 magic_len = 2;
6951         }
6952
6953         /* Check for duplication */
6954         skb = bpf_sock->skb;
6955         op = skb->data + sizeof(struct tcphdr);
6956         opend = bpf_sock->skb_data_end;
6957
6958         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6959                                 &eol);
6960         if (!IS_ERR(op))
6961                 return -EEXIST;
6962
6963         if (PTR_ERR(op) != -ENOMSG)
6964                 return PTR_ERR(op);
6965
6966         if (eol)
6967                 /* The option has been ended.  Treat it as no more
6968                  * header option can be written.
6969                  */
6970                 return -ENOSPC;
6971
6972         /* No duplication found.  Store the header option. */
6973         memcpy(opend, from, new_kind_len);
6974
6975         bpf_sock->remaining_opt_len -= new_kind_len;
6976         bpf_sock->skb_data_end += new_kind_len;
6977
6978         return 0;
6979 }
6980
6981 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6982         .func           = bpf_sock_ops_store_hdr_opt,
6983         .gpl_only       = false,
6984         .ret_type       = RET_INTEGER,
6985         .arg1_type      = ARG_PTR_TO_CTX,
6986         .arg2_type      = ARG_PTR_TO_MEM,
6987         .arg3_type      = ARG_CONST_SIZE,
6988         .arg4_type      = ARG_ANYTHING,
6989 };
6990
6991 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6992            u32, len, u64, flags)
6993 {
6994         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6995                 return -EPERM;
6996
6997         if (flags || len < 2)
6998                 return -EINVAL;
6999
7000         if (len > bpf_sock->remaining_opt_len)
7001                 return -ENOSPC;
7002
7003         bpf_sock->remaining_opt_len -= len;
7004
7005         return 0;
7006 }
7007
7008 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7009         .func           = bpf_sock_ops_reserve_hdr_opt,
7010         .gpl_only       = false,
7011         .ret_type       = RET_INTEGER,
7012         .arg1_type      = ARG_PTR_TO_CTX,
7013         .arg2_type      = ARG_ANYTHING,
7014         .arg3_type      = ARG_ANYTHING,
7015 };
7016
7017 #endif /* CONFIG_INET */
7018
7019 bool bpf_helper_changes_pkt_data(void *func)
7020 {
7021         if (func == bpf_skb_vlan_push ||
7022             func == bpf_skb_vlan_pop ||
7023             func == bpf_skb_store_bytes ||
7024             func == bpf_skb_change_proto ||
7025             func == bpf_skb_change_head ||
7026             func == sk_skb_change_head ||
7027             func == bpf_skb_change_tail ||
7028             func == sk_skb_change_tail ||
7029             func == bpf_skb_adjust_room ||
7030             func == sk_skb_adjust_room ||
7031             func == bpf_skb_pull_data ||
7032             func == sk_skb_pull_data ||
7033             func == bpf_clone_redirect ||
7034             func == bpf_l3_csum_replace ||
7035             func == bpf_l4_csum_replace ||
7036             func == bpf_xdp_adjust_head ||
7037             func == bpf_xdp_adjust_meta ||
7038             func == bpf_msg_pull_data ||
7039             func == bpf_msg_push_data ||
7040             func == bpf_msg_pop_data ||
7041             func == bpf_xdp_adjust_tail ||
7042 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7043             func == bpf_lwt_seg6_store_bytes ||
7044             func == bpf_lwt_seg6_adjust_srh ||
7045             func == bpf_lwt_seg6_action ||
7046 #endif
7047 #ifdef CONFIG_INET
7048             func == bpf_sock_ops_store_hdr_opt ||
7049 #endif
7050             func == bpf_lwt_in_push_encap ||
7051             func == bpf_lwt_xmit_push_encap)
7052                 return true;
7053
7054         return false;
7055 }
7056
7057 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7058 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7059
7060 static const struct bpf_func_proto *
7061 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7062 {
7063         switch (func_id) {
7064         /* inet and inet6 sockets are created in a process
7065          * context so there is always a valid uid/gid
7066          */
7067         case BPF_FUNC_get_current_uid_gid:
7068                 return &bpf_get_current_uid_gid_proto;
7069         case BPF_FUNC_get_local_storage:
7070                 return &bpf_get_local_storage_proto;
7071         case BPF_FUNC_get_socket_cookie:
7072                 return &bpf_get_socket_cookie_sock_proto;
7073         case BPF_FUNC_get_netns_cookie:
7074                 return &bpf_get_netns_cookie_sock_proto;
7075         case BPF_FUNC_perf_event_output:
7076                 return &bpf_event_output_data_proto;
7077         case BPF_FUNC_get_current_pid_tgid:
7078                 return &bpf_get_current_pid_tgid_proto;
7079         case BPF_FUNC_get_current_comm:
7080                 return &bpf_get_current_comm_proto;
7081 #ifdef CONFIG_CGROUPS
7082         case BPF_FUNC_get_current_cgroup_id:
7083                 return &bpf_get_current_cgroup_id_proto;
7084         case BPF_FUNC_get_current_ancestor_cgroup_id:
7085                 return &bpf_get_current_ancestor_cgroup_id_proto;
7086 #endif
7087 #ifdef CONFIG_CGROUP_NET_CLASSID
7088         case BPF_FUNC_get_cgroup_classid:
7089                 return &bpf_get_cgroup_classid_curr_proto;
7090 #endif
7091         case BPF_FUNC_sk_storage_get:
7092                 return &bpf_sk_storage_get_cg_sock_proto;
7093         default:
7094                 return bpf_base_func_proto(func_id);
7095         }
7096 }
7097
7098 static const struct bpf_func_proto *
7099 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7100 {
7101         switch (func_id) {
7102         /* inet and inet6 sockets are created in a process
7103          * context so there is always a valid uid/gid
7104          */
7105         case BPF_FUNC_get_current_uid_gid:
7106                 return &bpf_get_current_uid_gid_proto;
7107         case BPF_FUNC_bind:
7108                 switch (prog->expected_attach_type) {
7109                 case BPF_CGROUP_INET4_CONNECT:
7110                 case BPF_CGROUP_INET6_CONNECT:
7111                         return &bpf_bind_proto;
7112                 default:
7113                         return NULL;
7114                 }
7115         case BPF_FUNC_get_socket_cookie:
7116                 return &bpf_get_socket_cookie_sock_addr_proto;
7117         case BPF_FUNC_get_netns_cookie:
7118                 return &bpf_get_netns_cookie_sock_addr_proto;
7119         case BPF_FUNC_get_local_storage:
7120                 return &bpf_get_local_storage_proto;
7121         case BPF_FUNC_perf_event_output:
7122                 return &bpf_event_output_data_proto;
7123         case BPF_FUNC_get_current_pid_tgid:
7124                 return &bpf_get_current_pid_tgid_proto;
7125         case BPF_FUNC_get_current_comm:
7126                 return &bpf_get_current_comm_proto;
7127 #ifdef CONFIG_CGROUPS
7128         case BPF_FUNC_get_current_cgroup_id:
7129                 return &bpf_get_current_cgroup_id_proto;
7130         case BPF_FUNC_get_current_ancestor_cgroup_id:
7131                 return &bpf_get_current_ancestor_cgroup_id_proto;
7132 #endif
7133 #ifdef CONFIG_CGROUP_NET_CLASSID
7134         case BPF_FUNC_get_cgroup_classid:
7135                 return &bpf_get_cgroup_classid_curr_proto;
7136 #endif
7137 #ifdef CONFIG_INET
7138         case BPF_FUNC_sk_lookup_tcp:
7139                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7140         case BPF_FUNC_sk_lookup_udp:
7141                 return &bpf_sock_addr_sk_lookup_udp_proto;
7142         case BPF_FUNC_sk_release:
7143                 return &bpf_sk_release_proto;
7144         case BPF_FUNC_skc_lookup_tcp:
7145                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7146 #endif /* CONFIG_INET */
7147         case BPF_FUNC_sk_storage_get:
7148                 return &bpf_sk_storage_get_proto;
7149         case BPF_FUNC_sk_storage_delete:
7150                 return &bpf_sk_storage_delete_proto;
7151         case BPF_FUNC_setsockopt:
7152                 switch (prog->expected_attach_type) {
7153                 case BPF_CGROUP_INET4_BIND:
7154                 case BPF_CGROUP_INET6_BIND:
7155                 case BPF_CGROUP_INET4_CONNECT:
7156                 case BPF_CGROUP_INET6_CONNECT:
7157                 case BPF_CGROUP_UDP4_RECVMSG:
7158                 case BPF_CGROUP_UDP6_RECVMSG:
7159                 case BPF_CGROUP_UDP4_SENDMSG:
7160                 case BPF_CGROUP_UDP6_SENDMSG:
7161                 case BPF_CGROUP_INET4_GETPEERNAME:
7162                 case BPF_CGROUP_INET6_GETPEERNAME:
7163                 case BPF_CGROUP_INET4_GETSOCKNAME:
7164                 case BPF_CGROUP_INET6_GETSOCKNAME:
7165                         return &bpf_sock_addr_setsockopt_proto;
7166                 default:
7167                         return NULL;
7168                 }
7169         case BPF_FUNC_getsockopt:
7170                 switch (prog->expected_attach_type) {
7171                 case BPF_CGROUP_INET4_BIND:
7172                 case BPF_CGROUP_INET6_BIND:
7173                 case BPF_CGROUP_INET4_CONNECT:
7174                 case BPF_CGROUP_INET6_CONNECT:
7175                 case BPF_CGROUP_UDP4_RECVMSG:
7176                 case BPF_CGROUP_UDP6_RECVMSG:
7177                 case BPF_CGROUP_UDP4_SENDMSG:
7178                 case BPF_CGROUP_UDP6_SENDMSG:
7179                 case BPF_CGROUP_INET4_GETPEERNAME:
7180                 case BPF_CGROUP_INET6_GETPEERNAME:
7181                 case BPF_CGROUP_INET4_GETSOCKNAME:
7182                 case BPF_CGROUP_INET6_GETSOCKNAME:
7183                         return &bpf_sock_addr_getsockopt_proto;
7184                 default:
7185                         return NULL;
7186                 }
7187         default:
7188                 return bpf_sk_base_func_proto(func_id);
7189         }
7190 }
7191
7192 static const struct bpf_func_proto *
7193 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7194 {
7195         switch (func_id) {
7196         case BPF_FUNC_skb_load_bytes:
7197                 return &bpf_skb_load_bytes_proto;
7198         case BPF_FUNC_skb_load_bytes_relative:
7199                 return &bpf_skb_load_bytes_relative_proto;
7200         case BPF_FUNC_get_socket_cookie:
7201                 return &bpf_get_socket_cookie_proto;
7202         case BPF_FUNC_get_socket_uid:
7203                 return &bpf_get_socket_uid_proto;
7204         case BPF_FUNC_perf_event_output:
7205                 return &bpf_skb_event_output_proto;
7206         default:
7207                 return bpf_sk_base_func_proto(func_id);
7208         }
7209 }
7210
7211 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7212 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7213
7214 static const struct bpf_func_proto *
7215 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7216 {
7217         switch (func_id) {
7218         case BPF_FUNC_get_local_storage:
7219                 return &bpf_get_local_storage_proto;
7220         case BPF_FUNC_sk_fullsock:
7221                 return &bpf_sk_fullsock_proto;
7222         case BPF_FUNC_sk_storage_get:
7223                 return &bpf_sk_storage_get_proto;
7224         case BPF_FUNC_sk_storage_delete:
7225                 return &bpf_sk_storage_delete_proto;
7226         case BPF_FUNC_perf_event_output:
7227                 return &bpf_skb_event_output_proto;
7228 #ifdef CONFIG_SOCK_CGROUP_DATA
7229         case BPF_FUNC_skb_cgroup_id:
7230                 return &bpf_skb_cgroup_id_proto;
7231         case BPF_FUNC_skb_ancestor_cgroup_id:
7232                 return &bpf_skb_ancestor_cgroup_id_proto;
7233         case BPF_FUNC_sk_cgroup_id:
7234                 return &bpf_sk_cgroup_id_proto;
7235         case BPF_FUNC_sk_ancestor_cgroup_id:
7236                 return &bpf_sk_ancestor_cgroup_id_proto;
7237 #endif
7238 #ifdef CONFIG_INET
7239         case BPF_FUNC_sk_lookup_tcp:
7240                 return &bpf_sk_lookup_tcp_proto;
7241         case BPF_FUNC_sk_lookup_udp:
7242                 return &bpf_sk_lookup_udp_proto;
7243         case BPF_FUNC_sk_release:
7244                 return &bpf_sk_release_proto;
7245         case BPF_FUNC_skc_lookup_tcp:
7246                 return &bpf_skc_lookup_tcp_proto;
7247         case BPF_FUNC_tcp_sock:
7248                 return &bpf_tcp_sock_proto;
7249         case BPF_FUNC_get_listener_sock:
7250                 return &bpf_get_listener_sock_proto;
7251         case BPF_FUNC_skb_ecn_set_ce:
7252                 return &bpf_skb_ecn_set_ce_proto;
7253 #endif
7254         default:
7255                 return sk_filter_func_proto(func_id, prog);
7256         }
7257 }
7258
7259 static const struct bpf_func_proto *
7260 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7261 {
7262         switch (func_id) {
7263         case BPF_FUNC_skb_store_bytes:
7264                 return &bpf_skb_store_bytes_proto;
7265         case BPF_FUNC_skb_load_bytes:
7266                 return &bpf_skb_load_bytes_proto;
7267         case BPF_FUNC_skb_load_bytes_relative:
7268                 return &bpf_skb_load_bytes_relative_proto;
7269         case BPF_FUNC_skb_pull_data:
7270                 return &bpf_skb_pull_data_proto;
7271         case BPF_FUNC_csum_diff:
7272                 return &bpf_csum_diff_proto;
7273         case BPF_FUNC_csum_update:
7274                 return &bpf_csum_update_proto;
7275         case BPF_FUNC_csum_level:
7276                 return &bpf_csum_level_proto;
7277         case BPF_FUNC_l3_csum_replace:
7278                 return &bpf_l3_csum_replace_proto;
7279         case BPF_FUNC_l4_csum_replace:
7280                 return &bpf_l4_csum_replace_proto;
7281         case BPF_FUNC_clone_redirect:
7282                 return &bpf_clone_redirect_proto;
7283         case BPF_FUNC_get_cgroup_classid:
7284                 return &bpf_get_cgroup_classid_proto;
7285         case BPF_FUNC_skb_vlan_push:
7286                 return &bpf_skb_vlan_push_proto;
7287         case BPF_FUNC_skb_vlan_pop:
7288                 return &bpf_skb_vlan_pop_proto;
7289         case BPF_FUNC_skb_change_proto:
7290                 return &bpf_skb_change_proto_proto;
7291         case BPF_FUNC_skb_change_type:
7292                 return &bpf_skb_change_type_proto;
7293         case BPF_FUNC_skb_adjust_room:
7294                 return &bpf_skb_adjust_room_proto;
7295         case BPF_FUNC_skb_change_tail:
7296                 return &bpf_skb_change_tail_proto;
7297         case BPF_FUNC_skb_change_head:
7298                 return &bpf_skb_change_head_proto;
7299         case BPF_FUNC_skb_get_tunnel_key:
7300                 return &bpf_skb_get_tunnel_key_proto;
7301         case BPF_FUNC_skb_set_tunnel_key:
7302                 return bpf_get_skb_set_tunnel_proto(func_id);
7303         case BPF_FUNC_skb_get_tunnel_opt:
7304                 return &bpf_skb_get_tunnel_opt_proto;
7305         case BPF_FUNC_skb_set_tunnel_opt:
7306                 return bpf_get_skb_set_tunnel_proto(func_id);
7307         case BPF_FUNC_redirect:
7308                 return &bpf_redirect_proto;
7309         case BPF_FUNC_redirect_neigh:
7310                 return &bpf_redirect_neigh_proto;
7311         case BPF_FUNC_redirect_peer:
7312                 return &bpf_redirect_peer_proto;
7313         case BPF_FUNC_get_route_realm:
7314                 return &bpf_get_route_realm_proto;
7315         case BPF_FUNC_get_hash_recalc:
7316                 return &bpf_get_hash_recalc_proto;
7317         case BPF_FUNC_set_hash_invalid:
7318                 return &bpf_set_hash_invalid_proto;
7319         case BPF_FUNC_set_hash:
7320                 return &bpf_set_hash_proto;
7321         case BPF_FUNC_perf_event_output:
7322                 return &bpf_skb_event_output_proto;
7323         case BPF_FUNC_get_smp_processor_id:
7324                 return &bpf_get_smp_processor_id_proto;
7325         case BPF_FUNC_skb_under_cgroup:
7326                 return &bpf_skb_under_cgroup_proto;
7327         case BPF_FUNC_get_socket_cookie:
7328                 return &bpf_get_socket_cookie_proto;
7329         case BPF_FUNC_get_socket_uid:
7330                 return &bpf_get_socket_uid_proto;
7331         case BPF_FUNC_fib_lookup:
7332                 return &bpf_skb_fib_lookup_proto;
7333         case BPF_FUNC_check_mtu:
7334                 return &bpf_skb_check_mtu_proto;
7335         case BPF_FUNC_sk_fullsock:
7336                 return &bpf_sk_fullsock_proto;
7337         case BPF_FUNC_sk_storage_get:
7338                 return &bpf_sk_storage_get_proto;
7339         case BPF_FUNC_sk_storage_delete:
7340                 return &bpf_sk_storage_delete_proto;
7341 #ifdef CONFIG_XFRM
7342         case BPF_FUNC_skb_get_xfrm_state:
7343                 return &bpf_skb_get_xfrm_state_proto;
7344 #endif
7345 #ifdef CONFIG_CGROUP_NET_CLASSID
7346         case BPF_FUNC_skb_cgroup_classid:
7347                 return &bpf_skb_cgroup_classid_proto;
7348 #endif
7349 #ifdef CONFIG_SOCK_CGROUP_DATA
7350         case BPF_FUNC_skb_cgroup_id:
7351                 return &bpf_skb_cgroup_id_proto;
7352         case BPF_FUNC_skb_ancestor_cgroup_id:
7353                 return &bpf_skb_ancestor_cgroup_id_proto;
7354 #endif
7355 #ifdef CONFIG_INET
7356         case BPF_FUNC_sk_lookup_tcp:
7357                 return &bpf_sk_lookup_tcp_proto;
7358         case BPF_FUNC_sk_lookup_udp:
7359                 return &bpf_sk_lookup_udp_proto;
7360         case BPF_FUNC_sk_release:
7361                 return &bpf_sk_release_proto;
7362         case BPF_FUNC_tcp_sock:
7363                 return &bpf_tcp_sock_proto;
7364         case BPF_FUNC_get_listener_sock:
7365                 return &bpf_get_listener_sock_proto;
7366         case BPF_FUNC_skc_lookup_tcp:
7367                 return &bpf_skc_lookup_tcp_proto;
7368         case BPF_FUNC_tcp_check_syncookie:
7369                 return &bpf_tcp_check_syncookie_proto;
7370         case BPF_FUNC_skb_ecn_set_ce:
7371                 return &bpf_skb_ecn_set_ce_proto;
7372         case BPF_FUNC_tcp_gen_syncookie:
7373                 return &bpf_tcp_gen_syncookie_proto;
7374         case BPF_FUNC_sk_assign:
7375                 return &bpf_sk_assign_proto;
7376 #endif
7377         default:
7378                 return bpf_sk_base_func_proto(func_id);
7379         }
7380 }
7381
7382 static const struct bpf_func_proto *
7383 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7384 {
7385         switch (func_id) {
7386         case BPF_FUNC_perf_event_output:
7387                 return &bpf_xdp_event_output_proto;
7388         case BPF_FUNC_get_smp_processor_id:
7389                 return &bpf_get_smp_processor_id_proto;
7390         case BPF_FUNC_csum_diff:
7391                 return &bpf_csum_diff_proto;
7392         case BPF_FUNC_xdp_adjust_head:
7393                 return &bpf_xdp_adjust_head_proto;
7394         case BPF_FUNC_xdp_adjust_meta:
7395                 return &bpf_xdp_adjust_meta_proto;
7396         case BPF_FUNC_redirect:
7397                 return &bpf_xdp_redirect_proto;
7398         case BPF_FUNC_redirect_map:
7399                 return &bpf_xdp_redirect_map_proto;
7400         case BPF_FUNC_xdp_adjust_tail:
7401                 return &bpf_xdp_adjust_tail_proto;
7402         case BPF_FUNC_fib_lookup:
7403                 return &bpf_xdp_fib_lookup_proto;
7404         case BPF_FUNC_check_mtu:
7405                 return &bpf_xdp_check_mtu_proto;
7406 #ifdef CONFIG_INET
7407         case BPF_FUNC_sk_lookup_udp:
7408                 return &bpf_xdp_sk_lookup_udp_proto;
7409         case BPF_FUNC_sk_lookup_tcp:
7410                 return &bpf_xdp_sk_lookup_tcp_proto;
7411         case BPF_FUNC_sk_release:
7412                 return &bpf_sk_release_proto;
7413         case BPF_FUNC_skc_lookup_tcp:
7414                 return &bpf_xdp_skc_lookup_tcp_proto;
7415         case BPF_FUNC_tcp_check_syncookie:
7416                 return &bpf_tcp_check_syncookie_proto;
7417         case BPF_FUNC_tcp_gen_syncookie:
7418                 return &bpf_tcp_gen_syncookie_proto;
7419 #endif
7420         default:
7421                 return bpf_sk_base_func_proto(func_id);
7422         }
7423 }
7424
7425 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7426 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7427
7428 static const struct bpf_func_proto *
7429 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7430 {
7431         switch (func_id) {
7432         case BPF_FUNC_setsockopt:
7433                 return &bpf_sock_ops_setsockopt_proto;
7434         case BPF_FUNC_getsockopt:
7435                 return &bpf_sock_ops_getsockopt_proto;
7436         case BPF_FUNC_sock_ops_cb_flags_set:
7437                 return &bpf_sock_ops_cb_flags_set_proto;
7438         case BPF_FUNC_sock_map_update:
7439                 return &bpf_sock_map_update_proto;
7440         case BPF_FUNC_sock_hash_update:
7441                 return &bpf_sock_hash_update_proto;
7442         case BPF_FUNC_get_socket_cookie:
7443                 return &bpf_get_socket_cookie_sock_ops_proto;
7444         case BPF_FUNC_get_local_storage:
7445                 return &bpf_get_local_storage_proto;
7446         case BPF_FUNC_perf_event_output:
7447                 return &bpf_event_output_data_proto;
7448         case BPF_FUNC_sk_storage_get:
7449                 return &bpf_sk_storage_get_proto;
7450         case BPF_FUNC_sk_storage_delete:
7451                 return &bpf_sk_storage_delete_proto;
7452 #ifdef CONFIG_INET
7453         case BPF_FUNC_load_hdr_opt:
7454                 return &bpf_sock_ops_load_hdr_opt_proto;
7455         case BPF_FUNC_store_hdr_opt:
7456                 return &bpf_sock_ops_store_hdr_opt_proto;
7457         case BPF_FUNC_reserve_hdr_opt:
7458                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7459         case BPF_FUNC_tcp_sock:
7460                 return &bpf_tcp_sock_proto;
7461 #endif /* CONFIG_INET */
7462         default:
7463                 return bpf_sk_base_func_proto(func_id);
7464         }
7465 }
7466
7467 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7468 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7469
7470 static const struct bpf_func_proto *
7471 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7472 {
7473         switch (func_id) {
7474         case BPF_FUNC_msg_redirect_map:
7475                 return &bpf_msg_redirect_map_proto;
7476         case BPF_FUNC_msg_redirect_hash:
7477                 return &bpf_msg_redirect_hash_proto;
7478         case BPF_FUNC_msg_apply_bytes:
7479                 return &bpf_msg_apply_bytes_proto;
7480         case BPF_FUNC_msg_cork_bytes:
7481                 return &bpf_msg_cork_bytes_proto;
7482         case BPF_FUNC_msg_pull_data:
7483                 return &bpf_msg_pull_data_proto;
7484         case BPF_FUNC_msg_push_data:
7485                 return &bpf_msg_push_data_proto;
7486         case BPF_FUNC_msg_pop_data:
7487                 return &bpf_msg_pop_data_proto;
7488         case BPF_FUNC_perf_event_output:
7489                 return &bpf_event_output_data_proto;
7490         case BPF_FUNC_get_current_uid_gid:
7491                 return &bpf_get_current_uid_gid_proto;
7492         case BPF_FUNC_get_current_pid_tgid:
7493                 return &bpf_get_current_pid_tgid_proto;
7494         case BPF_FUNC_sk_storage_get:
7495                 return &bpf_sk_storage_get_proto;
7496         case BPF_FUNC_sk_storage_delete:
7497                 return &bpf_sk_storage_delete_proto;
7498 #ifdef CONFIG_CGROUPS
7499         case BPF_FUNC_get_current_cgroup_id:
7500                 return &bpf_get_current_cgroup_id_proto;
7501         case BPF_FUNC_get_current_ancestor_cgroup_id:
7502                 return &bpf_get_current_ancestor_cgroup_id_proto;
7503 #endif
7504 #ifdef CONFIG_CGROUP_NET_CLASSID
7505         case BPF_FUNC_get_cgroup_classid:
7506                 return &bpf_get_cgroup_classid_curr_proto;
7507 #endif
7508         default:
7509                 return bpf_sk_base_func_proto(func_id);
7510         }
7511 }
7512
7513 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7514 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7515
7516 static const struct bpf_func_proto *
7517 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7518 {
7519         switch (func_id) {
7520         case BPF_FUNC_skb_store_bytes:
7521                 return &bpf_skb_store_bytes_proto;
7522         case BPF_FUNC_skb_load_bytes:
7523                 return &bpf_skb_load_bytes_proto;
7524         case BPF_FUNC_skb_pull_data:
7525                 return &sk_skb_pull_data_proto;
7526         case BPF_FUNC_skb_change_tail:
7527                 return &sk_skb_change_tail_proto;
7528         case BPF_FUNC_skb_change_head:
7529                 return &sk_skb_change_head_proto;
7530         case BPF_FUNC_skb_adjust_room:
7531                 return &sk_skb_adjust_room_proto;
7532         case BPF_FUNC_get_socket_cookie:
7533                 return &bpf_get_socket_cookie_proto;
7534         case BPF_FUNC_get_socket_uid:
7535                 return &bpf_get_socket_uid_proto;
7536         case BPF_FUNC_sk_redirect_map:
7537                 return &bpf_sk_redirect_map_proto;
7538         case BPF_FUNC_sk_redirect_hash:
7539                 return &bpf_sk_redirect_hash_proto;
7540         case BPF_FUNC_perf_event_output:
7541                 return &bpf_skb_event_output_proto;
7542 #ifdef CONFIG_INET
7543         case BPF_FUNC_sk_lookup_tcp:
7544                 return &bpf_sk_lookup_tcp_proto;
7545         case BPF_FUNC_sk_lookup_udp:
7546                 return &bpf_sk_lookup_udp_proto;
7547         case BPF_FUNC_sk_release:
7548                 return &bpf_sk_release_proto;
7549         case BPF_FUNC_skc_lookup_tcp:
7550                 return &bpf_skc_lookup_tcp_proto;
7551 #endif
7552         default:
7553                 return bpf_sk_base_func_proto(func_id);
7554         }
7555 }
7556
7557 static const struct bpf_func_proto *
7558 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7559 {
7560         switch (func_id) {
7561         case BPF_FUNC_skb_load_bytes:
7562                 return &bpf_flow_dissector_load_bytes_proto;
7563         default:
7564                 return bpf_sk_base_func_proto(func_id);
7565         }
7566 }
7567
7568 static const struct bpf_func_proto *
7569 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7570 {
7571         switch (func_id) {
7572         case BPF_FUNC_skb_load_bytes:
7573                 return &bpf_skb_load_bytes_proto;
7574         case BPF_FUNC_skb_pull_data:
7575                 return &bpf_skb_pull_data_proto;
7576         case BPF_FUNC_csum_diff:
7577                 return &bpf_csum_diff_proto;
7578         case BPF_FUNC_get_cgroup_classid:
7579                 return &bpf_get_cgroup_classid_proto;
7580         case BPF_FUNC_get_route_realm:
7581                 return &bpf_get_route_realm_proto;
7582         case BPF_FUNC_get_hash_recalc:
7583                 return &bpf_get_hash_recalc_proto;
7584         case BPF_FUNC_perf_event_output:
7585                 return &bpf_skb_event_output_proto;
7586         case BPF_FUNC_get_smp_processor_id:
7587                 return &bpf_get_smp_processor_id_proto;
7588         case BPF_FUNC_skb_under_cgroup:
7589                 return &bpf_skb_under_cgroup_proto;
7590         default:
7591                 return bpf_sk_base_func_proto(func_id);
7592         }
7593 }
7594
7595 static const struct bpf_func_proto *
7596 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7597 {
7598         switch (func_id) {
7599         case BPF_FUNC_lwt_push_encap:
7600                 return &bpf_lwt_in_push_encap_proto;
7601         default:
7602                 return lwt_out_func_proto(func_id, prog);
7603         }
7604 }
7605
7606 static const struct bpf_func_proto *
7607 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7608 {
7609         switch (func_id) {
7610         case BPF_FUNC_skb_get_tunnel_key:
7611                 return &bpf_skb_get_tunnel_key_proto;
7612         case BPF_FUNC_skb_set_tunnel_key:
7613                 return bpf_get_skb_set_tunnel_proto(func_id);
7614         case BPF_FUNC_skb_get_tunnel_opt:
7615                 return &bpf_skb_get_tunnel_opt_proto;
7616         case BPF_FUNC_skb_set_tunnel_opt:
7617                 return bpf_get_skb_set_tunnel_proto(func_id);
7618         case BPF_FUNC_redirect:
7619                 return &bpf_redirect_proto;
7620         case BPF_FUNC_clone_redirect:
7621                 return &bpf_clone_redirect_proto;
7622         case BPF_FUNC_skb_change_tail:
7623                 return &bpf_skb_change_tail_proto;
7624         case BPF_FUNC_skb_change_head:
7625                 return &bpf_skb_change_head_proto;
7626         case BPF_FUNC_skb_store_bytes:
7627                 return &bpf_skb_store_bytes_proto;
7628         case BPF_FUNC_csum_update:
7629                 return &bpf_csum_update_proto;
7630         case BPF_FUNC_csum_level:
7631                 return &bpf_csum_level_proto;
7632         case BPF_FUNC_l3_csum_replace:
7633                 return &bpf_l3_csum_replace_proto;
7634         case BPF_FUNC_l4_csum_replace:
7635                 return &bpf_l4_csum_replace_proto;
7636         case BPF_FUNC_set_hash_invalid:
7637                 return &bpf_set_hash_invalid_proto;
7638         case BPF_FUNC_lwt_push_encap:
7639                 return &bpf_lwt_xmit_push_encap_proto;
7640         default:
7641                 return lwt_out_func_proto(func_id, prog);
7642         }
7643 }
7644
7645 static const struct bpf_func_proto *
7646 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7647 {
7648         switch (func_id) {
7649 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7650         case BPF_FUNC_lwt_seg6_store_bytes:
7651                 return &bpf_lwt_seg6_store_bytes_proto;
7652         case BPF_FUNC_lwt_seg6_action:
7653                 return &bpf_lwt_seg6_action_proto;
7654         case BPF_FUNC_lwt_seg6_adjust_srh:
7655                 return &bpf_lwt_seg6_adjust_srh_proto;
7656 #endif
7657         default:
7658                 return lwt_out_func_proto(func_id, prog);
7659         }
7660 }
7661
7662 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7663                                     const struct bpf_prog *prog,
7664                                     struct bpf_insn_access_aux *info)
7665 {
7666         const int size_default = sizeof(__u32);
7667
7668         if (off < 0 || off >= sizeof(struct __sk_buff))
7669                 return false;
7670
7671         /* The verifier guarantees that size > 0. */
7672         if (off % size != 0)
7673                 return false;
7674
7675         switch (off) {
7676         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7677                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7678                         return false;
7679                 break;
7680         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7681         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7682         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7683         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7684         case bpf_ctx_range(struct __sk_buff, data):
7685         case bpf_ctx_range(struct __sk_buff, data_meta):
7686         case bpf_ctx_range(struct __sk_buff, data_end):
7687                 if (size != size_default)
7688                         return false;
7689                 break;
7690         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7691                 return false;
7692         case bpf_ctx_range(struct __sk_buff, tstamp):
7693                 if (size != sizeof(__u64))
7694                         return false;
7695                 break;
7696         case offsetof(struct __sk_buff, sk):
7697                 if (type == BPF_WRITE || size != sizeof(__u64))
7698                         return false;
7699                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7700                 break;
7701         default:
7702                 /* Only narrow read access allowed for now. */
7703                 if (type == BPF_WRITE) {
7704                         if (size != size_default)
7705                                 return false;
7706                 } else {
7707                         bpf_ctx_record_field_size(info, size_default);
7708                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7709                                 return false;
7710                 }
7711         }
7712
7713         return true;
7714 }
7715
7716 static bool sk_filter_is_valid_access(int off, int size,
7717                                       enum bpf_access_type type,
7718                                       const struct bpf_prog *prog,
7719                                       struct bpf_insn_access_aux *info)
7720 {
7721         switch (off) {
7722         case bpf_ctx_range(struct __sk_buff, tc_classid):
7723         case bpf_ctx_range(struct __sk_buff, data):
7724         case bpf_ctx_range(struct __sk_buff, data_meta):
7725         case bpf_ctx_range(struct __sk_buff, data_end):
7726         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7727         case bpf_ctx_range(struct __sk_buff, tstamp):
7728         case bpf_ctx_range(struct __sk_buff, wire_len):
7729                 return false;
7730         }
7731
7732         if (type == BPF_WRITE) {
7733                 switch (off) {
7734                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7735                         break;
7736                 default:
7737                         return false;
7738                 }
7739         }
7740
7741         return bpf_skb_is_valid_access(off, size, type, prog, info);
7742 }
7743
7744 static bool cg_skb_is_valid_access(int off, int size,
7745                                    enum bpf_access_type type,
7746                                    const struct bpf_prog *prog,
7747                                    struct bpf_insn_access_aux *info)
7748 {
7749         switch (off) {
7750         case bpf_ctx_range(struct __sk_buff, tc_classid):
7751         case bpf_ctx_range(struct __sk_buff, data_meta):
7752         case bpf_ctx_range(struct __sk_buff, wire_len):
7753                 return false;
7754         case bpf_ctx_range(struct __sk_buff, data):
7755         case bpf_ctx_range(struct __sk_buff, data_end):
7756                 if (!bpf_capable())
7757                         return false;
7758                 break;
7759         }
7760
7761         if (type == BPF_WRITE) {
7762                 switch (off) {
7763                 case bpf_ctx_range(struct __sk_buff, mark):
7764                 case bpf_ctx_range(struct __sk_buff, priority):
7765                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7766                         break;
7767                 case bpf_ctx_range(struct __sk_buff, tstamp):
7768                         if (!bpf_capable())
7769                                 return false;
7770                         break;
7771                 default:
7772                         return false;
7773                 }
7774         }
7775
7776         switch (off) {
7777         case bpf_ctx_range(struct __sk_buff, data):
7778                 info->reg_type = PTR_TO_PACKET;
7779                 break;
7780         case bpf_ctx_range(struct __sk_buff, data_end):
7781                 info->reg_type = PTR_TO_PACKET_END;
7782                 break;
7783         }
7784
7785         return bpf_skb_is_valid_access(off, size, type, prog, info);
7786 }
7787
7788 static bool lwt_is_valid_access(int off, int size,
7789                                 enum bpf_access_type type,
7790                                 const struct bpf_prog *prog,
7791                                 struct bpf_insn_access_aux *info)
7792 {
7793         switch (off) {
7794         case bpf_ctx_range(struct __sk_buff, tc_classid):
7795         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7796         case bpf_ctx_range(struct __sk_buff, data_meta):
7797         case bpf_ctx_range(struct __sk_buff, tstamp):
7798         case bpf_ctx_range(struct __sk_buff, wire_len):
7799                 return false;
7800         }
7801
7802         if (type == BPF_WRITE) {
7803                 switch (off) {
7804                 case bpf_ctx_range(struct __sk_buff, mark):
7805                 case bpf_ctx_range(struct __sk_buff, priority):
7806                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7807                         break;
7808                 default:
7809                         return false;
7810                 }
7811         }
7812
7813         switch (off) {
7814         case bpf_ctx_range(struct __sk_buff, data):
7815                 info->reg_type = PTR_TO_PACKET;
7816                 break;
7817         case bpf_ctx_range(struct __sk_buff, data_end):
7818                 info->reg_type = PTR_TO_PACKET_END;
7819                 break;
7820         }
7821
7822         return bpf_skb_is_valid_access(off, size, type, prog, info);
7823 }
7824
7825 /* Attach type specific accesses */
7826 static bool __sock_filter_check_attach_type(int off,
7827                                             enum bpf_access_type access_type,
7828                                             enum bpf_attach_type attach_type)
7829 {
7830         switch (off) {
7831         case offsetof(struct bpf_sock, bound_dev_if):
7832         case offsetof(struct bpf_sock, mark):
7833         case offsetof(struct bpf_sock, priority):
7834                 switch (attach_type) {
7835                 case BPF_CGROUP_INET_SOCK_CREATE:
7836                 case BPF_CGROUP_INET_SOCK_RELEASE:
7837                         goto full_access;
7838                 default:
7839                         return false;
7840                 }
7841         case bpf_ctx_range(struct bpf_sock, src_ip4):
7842                 switch (attach_type) {
7843                 case BPF_CGROUP_INET4_POST_BIND:
7844                         goto read_only;
7845                 default:
7846                         return false;
7847                 }
7848         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7849                 switch (attach_type) {
7850                 case BPF_CGROUP_INET6_POST_BIND:
7851                         goto read_only;
7852                 default:
7853                         return false;
7854                 }
7855         case bpf_ctx_range(struct bpf_sock, src_port):
7856                 switch (attach_type) {
7857                 case BPF_CGROUP_INET4_POST_BIND:
7858                 case BPF_CGROUP_INET6_POST_BIND:
7859                         goto read_only;
7860                 default:
7861                         return false;
7862                 }
7863         }
7864 read_only:
7865         return access_type == BPF_READ;
7866 full_access:
7867         return true;
7868 }
7869
7870 bool bpf_sock_common_is_valid_access(int off, int size,
7871                                      enum bpf_access_type type,
7872                                      struct bpf_insn_access_aux *info)
7873 {
7874         switch (off) {
7875         case bpf_ctx_range_till(struct bpf_sock, type, priority):
7876                 return false;
7877         default:
7878                 return bpf_sock_is_valid_access(off, size, type, info);
7879         }
7880 }
7881
7882 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7883                               struct bpf_insn_access_aux *info)
7884 {
7885         const int size_default = sizeof(__u32);
7886
7887         if (off < 0 || off >= sizeof(struct bpf_sock))
7888                 return false;
7889         if (off % size != 0)
7890                 return false;
7891
7892         switch (off) {
7893         case offsetof(struct bpf_sock, state):
7894         case offsetof(struct bpf_sock, family):
7895         case offsetof(struct bpf_sock, type):
7896         case offsetof(struct bpf_sock, protocol):
7897         case offsetof(struct bpf_sock, dst_port):
7898         case offsetof(struct bpf_sock, src_port):
7899         case offsetof(struct bpf_sock, rx_queue_mapping):
7900         case bpf_ctx_range(struct bpf_sock, src_ip4):
7901         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7902         case bpf_ctx_range(struct bpf_sock, dst_ip4):
7903         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7904                 bpf_ctx_record_field_size(info, size_default);
7905                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7906         }
7907
7908         return size == size_default;
7909 }
7910
7911 static bool sock_filter_is_valid_access(int off, int size,
7912                                         enum bpf_access_type type,
7913                                         const struct bpf_prog *prog,
7914                                         struct bpf_insn_access_aux *info)
7915 {
7916         if (!bpf_sock_is_valid_access(off, size, type, info))
7917                 return false;
7918         return __sock_filter_check_attach_type(off, type,
7919                                                prog->expected_attach_type);
7920 }
7921
7922 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7923                              const struct bpf_prog *prog)
7924 {
7925         /* Neither direct read nor direct write requires any preliminary
7926          * action.
7927          */
7928         return 0;
7929 }
7930
7931 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7932                                 const struct bpf_prog *prog, int drop_verdict)
7933 {
7934         struct bpf_insn *insn = insn_buf;
7935
7936         if (!direct_write)
7937                 return 0;
7938
7939         /* if (!skb->cloned)
7940          *       goto start;
7941          *
7942          * (Fast-path, otherwise approximation that we might be
7943          *  a clone, do the rest in helper.)
7944          */
7945         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7946         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7947         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7948
7949         /* ret = bpf_skb_pull_data(skb, 0); */
7950         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7951         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7952         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7953                                BPF_FUNC_skb_pull_data);
7954         /* if (!ret)
7955          *      goto restore;
7956          * return TC_ACT_SHOT;
7957          */
7958         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7959         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7960         *insn++ = BPF_EXIT_INSN();
7961
7962         /* restore: */
7963         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7964         /* start: */
7965         *insn++ = prog->insnsi[0];
7966
7967         return insn - insn_buf;
7968 }
7969
7970 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7971                           struct bpf_insn *insn_buf)
7972 {
7973         bool indirect = BPF_MODE(orig->code) == BPF_IND;
7974         struct bpf_insn *insn = insn_buf;
7975
7976         if (!indirect) {
7977                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7978         } else {
7979                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7980                 if (orig->imm)
7981                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7982         }
7983         /* We're guaranteed here that CTX is in R6. */
7984         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7985
7986         switch (BPF_SIZE(orig->code)) {
7987         case BPF_B:
7988                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7989                 break;
7990         case BPF_H:
7991                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7992                 break;
7993         case BPF_W:
7994                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7995                 break;
7996         }
7997
7998         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7999         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8000         *insn++ = BPF_EXIT_INSN();
8001
8002         return insn - insn_buf;
8003 }
8004
8005 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8006                                const struct bpf_prog *prog)
8007 {
8008         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8009 }
8010
8011 static bool tc_cls_act_is_valid_access(int off, int size,
8012                                        enum bpf_access_type type,
8013                                        const struct bpf_prog *prog,
8014                                        struct bpf_insn_access_aux *info)
8015 {
8016         if (type == BPF_WRITE) {
8017                 switch (off) {
8018                 case bpf_ctx_range(struct __sk_buff, mark):
8019                 case bpf_ctx_range(struct __sk_buff, tc_index):
8020                 case bpf_ctx_range(struct __sk_buff, priority):
8021                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8022                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8023                 case bpf_ctx_range(struct __sk_buff, tstamp):
8024                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8025                         break;
8026                 default:
8027                         return false;
8028                 }
8029         }
8030
8031         switch (off) {
8032         case bpf_ctx_range(struct __sk_buff, data):
8033                 info->reg_type = PTR_TO_PACKET;
8034                 break;
8035         case bpf_ctx_range(struct __sk_buff, data_meta):
8036                 info->reg_type = PTR_TO_PACKET_META;
8037                 break;
8038         case bpf_ctx_range(struct __sk_buff, data_end):
8039                 info->reg_type = PTR_TO_PACKET_END;
8040                 break;
8041         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8042                 return false;
8043         }
8044
8045         return bpf_skb_is_valid_access(off, size, type, prog, info);
8046 }
8047
8048 static bool __is_valid_xdp_access(int off, int size)
8049 {
8050         if (off < 0 || off >= sizeof(struct xdp_md))
8051                 return false;
8052         if (off % size != 0)
8053                 return false;
8054         if (size != sizeof(__u32))
8055                 return false;
8056
8057         return true;
8058 }
8059
8060 static bool xdp_is_valid_access(int off, int size,
8061                                 enum bpf_access_type type,
8062                                 const struct bpf_prog *prog,
8063                                 struct bpf_insn_access_aux *info)
8064 {
8065         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8066                 switch (off) {
8067                 case offsetof(struct xdp_md, egress_ifindex):
8068                         return false;
8069                 }
8070         }
8071
8072         if (type == BPF_WRITE) {
8073                 if (bpf_prog_is_dev_bound(prog->aux)) {
8074                         switch (off) {
8075                         case offsetof(struct xdp_md, rx_queue_index):
8076                                 return __is_valid_xdp_access(off, size);
8077                         }
8078                 }
8079                 return false;
8080         }
8081
8082         switch (off) {
8083         case offsetof(struct xdp_md, data):
8084                 info->reg_type = PTR_TO_PACKET;
8085                 break;
8086         case offsetof(struct xdp_md, data_meta):
8087                 info->reg_type = PTR_TO_PACKET_META;
8088                 break;
8089         case offsetof(struct xdp_md, data_end):
8090                 info->reg_type = PTR_TO_PACKET_END;
8091                 break;
8092         }
8093
8094         return __is_valid_xdp_access(off, size);
8095 }
8096
8097 void bpf_warn_invalid_xdp_action(u32 act)
8098 {
8099         const u32 act_max = XDP_REDIRECT;
8100
8101         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
8102                   act > act_max ? "Illegal" : "Driver unsupported",
8103                   act);
8104 }
8105 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8106
8107 static bool sock_addr_is_valid_access(int off, int size,
8108                                       enum bpf_access_type type,
8109                                       const struct bpf_prog *prog,
8110                                       struct bpf_insn_access_aux *info)
8111 {
8112         const int size_default = sizeof(__u32);
8113
8114         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8115                 return false;
8116         if (off % size != 0)
8117                 return false;
8118
8119         /* Disallow access to IPv6 fields from IPv4 contex and vise
8120          * versa.
8121          */
8122         switch (off) {
8123         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8124                 switch (prog->expected_attach_type) {
8125                 case BPF_CGROUP_INET4_BIND:
8126                 case BPF_CGROUP_INET4_CONNECT:
8127                 case BPF_CGROUP_INET4_GETPEERNAME:
8128                 case BPF_CGROUP_INET4_GETSOCKNAME:
8129                 case BPF_CGROUP_UDP4_SENDMSG:
8130                 case BPF_CGROUP_UDP4_RECVMSG:
8131                         break;
8132                 default:
8133                         return false;
8134                 }
8135                 break;
8136         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8137                 switch (prog->expected_attach_type) {
8138                 case BPF_CGROUP_INET6_BIND:
8139                 case BPF_CGROUP_INET6_CONNECT:
8140                 case BPF_CGROUP_INET6_GETPEERNAME:
8141                 case BPF_CGROUP_INET6_GETSOCKNAME:
8142                 case BPF_CGROUP_UDP6_SENDMSG:
8143                 case BPF_CGROUP_UDP6_RECVMSG:
8144                         break;
8145                 default:
8146                         return false;
8147                 }
8148                 break;
8149         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8150                 switch (prog->expected_attach_type) {
8151                 case BPF_CGROUP_UDP4_SENDMSG:
8152                         break;
8153                 default:
8154                         return false;
8155                 }
8156                 break;
8157         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8158                                 msg_src_ip6[3]):
8159                 switch (prog->expected_attach_type) {
8160                 case BPF_CGROUP_UDP6_SENDMSG:
8161                         break;
8162                 default:
8163                         return false;
8164                 }
8165                 break;
8166         }
8167
8168         switch (off) {
8169         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8170         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8171         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8172         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8173                                 msg_src_ip6[3]):
8174         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8175                 if (type == BPF_READ) {
8176                         bpf_ctx_record_field_size(info, size_default);
8177
8178                         if (bpf_ctx_wide_access_ok(off, size,
8179                                                    struct bpf_sock_addr,
8180                                                    user_ip6))
8181                                 return true;
8182
8183                         if (bpf_ctx_wide_access_ok(off, size,
8184                                                    struct bpf_sock_addr,
8185                                                    msg_src_ip6))
8186                                 return true;
8187
8188                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8189                                 return false;
8190                 } else {
8191                         if (bpf_ctx_wide_access_ok(off, size,
8192                                                    struct bpf_sock_addr,
8193                                                    user_ip6))
8194                                 return true;
8195
8196                         if (bpf_ctx_wide_access_ok(off, size,
8197                                                    struct bpf_sock_addr,
8198                                                    msg_src_ip6))
8199                                 return true;
8200
8201                         if (size != size_default)
8202                                 return false;
8203                 }
8204                 break;
8205         case offsetof(struct bpf_sock_addr, sk):
8206                 if (type != BPF_READ)
8207                         return false;
8208                 if (size != sizeof(__u64))
8209                         return false;
8210                 info->reg_type = PTR_TO_SOCKET;
8211                 break;
8212         default:
8213                 if (type == BPF_READ) {
8214                         if (size != size_default)
8215                                 return false;
8216                 } else {
8217                         return false;
8218                 }
8219         }
8220
8221         return true;
8222 }
8223
8224 static bool sock_ops_is_valid_access(int off, int size,
8225                                      enum bpf_access_type type,
8226                                      const struct bpf_prog *prog,
8227                                      struct bpf_insn_access_aux *info)
8228 {
8229         const int size_default = sizeof(__u32);
8230
8231         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8232                 return false;
8233
8234         /* The verifier guarantees that size > 0. */
8235         if (off % size != 0)
8236                 return false;
8237
8238         if (type == BPF_WRITE) {
8239                 switch (off) {
8240                 case offsetof(struct bpf_sock_ops, reply):
8241                 case offsetof(struct bpf_sock_ops, sk_txhash):
8242                         if (size != size_default)
8243                                 return false;
8244                         break;
8245                 default:
8246                         return false;
8247                 }
8248         } else {
8249                 switch (off) {
8250                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8251                                         bytes_acked):
8252                         if (size != sizeof(__u64))
8253                                 return false;
8254                         break;
8255                 case offsetof(struct bpf_sock_ops, sk):
8256                         if (size != sizeof(__u64))
8257                                 return false;
8258                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8259                         break;
8260                 case offsetof(struct bpf_sock_ops, skb_data):
8261                         if (size != sizeof(__u64))
8262                                 return false;
8263                         info->reg_type = PTR_TO_PACKET;
8264                         break;
8265                 case offsetof(struct bpf_sock_ops, skb_data_end):
8266                         if (size != sizeof(__u64))
8267                                 return false;
8268                         info->reg_type = PTR_TO_PACKET_END;
8269                         break;
8270                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8271                         bpf_ctx_record_field_size(info, size_default);
8272                         return bpf_ctx_narrow_access_ok(off, size,
8273                                                         size_default);
8274                 default:
8275                         if (size != size_default)
8276                                 return false;
8277                         break;
8278                 }
8279         }
8280
8281         return true;
8282 }
8283
8284 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8285                            const struct bpf_prog *prog)
8286 {
8287         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8288 }
8289
8290 static bool sk_skb_is_valid_access(int off, int size,
8291                                    enum bpf_access_type type,
8292                                    const struct bpf_prog *prog,
8293                                    struct bpf_insn_access_aux *info)
8294 {
8295         switch (off) {
8296         case bpf_ctx_range(struct __sk_buff, tc_classid):
8297         case bpf_ctx_range(struct __sk_buff, data_meta):
8298         case bpf_ctx_range(struct __sk_buff, tstamp):
8299         case bpf_ctx_range(struct __sk_buff, wire_len):
8300                 return false;
8301         }
8302
8303         if (type == BPF_WRITE) {
8304                 switch (off) {
8305                 case bpf_ctx_range(struct __sk_buff, tc_index):
8306                 case bpf_ctx_range(struct __sk_buff, priority):
8307                         break;
8308                 default:
8309                         return false;
8310                 }
8311         }
8312
8313         switch (off) {
8314         case bpf_ctx_range(struct __sk_buff, mark):
8315                 return false;
8316         case bpf_ctx_range(struct __sk_buff, data):
8317                 info->reg_type = PTR_TO_PACKET;
8318                 break;
8319         case bpf_ctx_range(struct __sk_buff, data_end):
8320                 info->reg_type = PTR_TO_PACKET_END;
8321                 break;
8322         }
8323
8324         return bpf_skb_is_valid_access(off, size, type, prog, info);
8325 }
8326
8327 static bool sk_msg_is_valid_access(int off, int size,
8328                                    enum bpf_access_type type,
8329                                    const struct bpf_prog *prog,
8330                                    struct bpf_insn_access_aux *info)
8331 {
8332         if (type == BPF_WRITE)
8333                 return false;
8334
8335         if (off % size != 0)
8336                 return false;
8337
8338         switch (off) {
8339         case offsetof(struct sk_msg_md, data):
8340                 info->reg_type = PTR_TO_PACKET;
8341                 if (size != sizeof(__u64))
8342                         return false;
8343                 break;
8344         case offsetof(struct sk_msg_md, data_end):
8345                 info->reg_type = PTR_TO_PACKET_END;
8346                 if (size != sizeof(__u64))
8347                         return false;
8348                 break;
8349         case offsetof(struct sk_msg_md, sk):
8350                 if (size != sizeof(__u64))
8351                         return false;
8352                 info->reg_type = PTR_TO_SOCKET;
8353                 break;
8354         case bpf_ctx_range(struct sk_msg_md, family):
8355         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8356         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8357         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8358         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8359         case bpf_ctx_range(struct sk_msg_md, remote_port):
8360         case bpf_ctx_range(struct sk_msg_md, local_port):
8361         case bpf_ctx_range(struct sk_msg_md, size):
8362                 if (size != sizeof(__u32))
8363                         return false;
8364                 break;
8365         default:
8366                 return false;
8367         }
8368         return true;
8369 }
8370
8371 static bool flow_dissector_is_valid_access(int off, int size,
8372                                            enum bpf_access_type type,
8373                                            const struct bpf_prog *prog,
8374                                            struct bpf_insn_access_aux *info)
8375 {
8376         const int size_default = sizeof(__u32);
8377
8378         if (off < 0 || off >= sizeof(struct __sk_buff))
8379                 return false;
8380
8381         if (type == BPF_WRITE)
8382                 return false;
8383
8384         switch (off) {
8385         case bpf_ctx_range(struct __sk_buff, data):
8386                 if (size != size_default)
8387                         return false;
8388                 info->reg_type = PTR_TO_PACKET;
8389                 return true;
8390         case bpf_ctx_range(struct __sk_buff, data_end):
8391                 if (size != size_default)
8392                         return false;
8393                 info->reg_type = PTR_TO_PACKET_END;
8394                 return true;
8395         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8396                 if (size != sizeof(__u64))
8397                         return false;
8398                 info->reg_type = PTR_TO_FLOW_KEYS;
8399                 return true;
8400         default:
8401                 return false;
8402         }
8403 }
8404
8405 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8406                                              const struct bpf_insn *si,
8407                                              struct bpf_insn *insn_buf,
8408                                              struct bpf_prog *prog,
8409                                              u32 *target_size)
8410
8411 {
8412         struct bpf_insn *insn = insn_buf;
8413
8414         switch (si->off) {
8415         case offsetof(struct __sk_buff, data):
8416                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8417                                       si->dst_reg, si->src_reg,
8418                                       offsetof(struct bpf_flow_dissector, data));
8419                 break;
8420
8421         case offsetof(struct __sk_buff, data_end):
8422                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8423                                       si->dst_reg, si->src_reg,
8424                                       offsetof(struct bpf_flow_dissector, data_end));
8425                 break;
8426
8427         case offsetof(struct __sk_buff, flow_keys):
8428                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8429                                       si->dst_reg, si->src_reg,
8430                                       offsetof(struct bpf_flow_dissector, flow_keys));
8431                 break;
8432         }
8433
8434         return insn - insn_buf;
8435 }
8436
8437 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8438                                                   struct bpf_insn *insn)
8439 {
8440         /* si->dst_reg = skb_shinfo(SKB); */
8441 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8442         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8443                               BPF_REG_AX, si->src_reg,
8444                               offsetof(struct sk_buff, end));
8445         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8446                               si->dst_reg, si->src_reg,
8447                               offsetof(struct sk_buff, head));
8448         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8449 #else
8450         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8451                               si->dst_reg, si->src_reg,
8452                               offsetof(struct sk_buff, end));
8453 #endif
8454
8455         return insn;
8456 }
8457
8458 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8459                                   const struct bpf_insn *si,
8460                                   struct bpf_insn *insn_buf,
8461                                   struct bpf_prog *prog, u32 *target_size)
8462 {
8463         struct bpf_insn *insn = insn_buf;
8464         int off;
8465
8466         switch (si->off) {
8467         case offsetof(struct __sk_buff, len):
8468                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8469                                       bpf_target_off(struct sk_buff, len, 4,
8470                                                      target_size));
8471                 break;
8472
8473         case offsetof(struct __sk_buff, protocol):
8474                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8475                                       bpf_target_off(struct sk_buff, protocol, 2,
8476                                                      target_size));
8477                 break;
8478
8479         case offsetof(struct __sk_buff, vlan_proto):
8480                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8481                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
8482                                                      target_size));
8483                 break;
8484
8485         case offsetof(struct __sk_buff, priority):
8486                 if (type == BPF_WRITE)
8487                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8488                                               bpf_target_off(struct sk_buff, priority, 4,
8489                                                              target_size));
8490                 else
8491                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8492                                               bpf_target_off(struct sk_buff, priority, 4,
8493                                                              target_size));
8494                 break;
8495
8496         case offsetof(struct __sk_buff, ingress_ifindex):
8497                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8498                                       bpf_target_off(struct sk_buff, skb_iif, 4,
8499                                                      target_size));
8500                 break;
8501
8502         case offsetof(struct __sk_buff, ifindex):
8503                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8504                                       si->dst_reg, si->src_reg,
8505                                       offsetof(struct sk_buff, dev));
8506                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8507                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8508                                       bpf_target_off(struct net_device, ifindex, 4,
8509                                                      target_size));
8510                 break;
8511
8512         case offsetof(struct __sk_buff, hash):
8513                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8514                                       bpf_target_off(struct sk_buff, hash, 4,
8515                                                      target_size));
8516                 break;
8517
8518         case offsetof(struct __sk_buff, mark):
8519                 if (type == BPF_WRITE)
8520                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8521                                               bpf_target_off(struct sk_buff, mark, 4,
8522                                                              target_size));
8523                 else
8524                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8525                                               bpf_target_off(struct sk_buff, mark, 4,
8526                                                              target_size));
8527                 break;
8528
8529         case offsetof(struct __sk_buff, pkt_type):
8530                 *target_size = 1;
8531                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8532                                       PKT_TYPE_OFFSET());
8533                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8534 #ifdef __BIG_ENDIAN_BITFIELD
8535                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8536 #endif
8537                 break;
8538
8539         case offsetof(struct __sk_buff, queue_mapping):
8540                 if (type == BPF_WRITE) {
8541                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8542                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8543                                               bpf_target_off(struct sk_buff,
8544                                                              queue_mapping,
8545                                                              2, target_size));
8546                 } else {
8547                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8548                                               bpf_target_off(struct sk_buff,
8549                                                              queue_mapping,
8550                                                              2, target_size));
8551                 }
8552                 break;
8553
8554         case offsetof(struct __sk_buff, vlan_present):
8555                 *target_size = 1;
8556                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8557                                       PKT_VLAN_PRESENT_OFFSET());
8558                 if (PKT_VLAN_PRESENT_BIT)
8559                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8560                 if (PKT_VLAN_PRESENT_BIT < 7)
8561                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8562                 break;
8563
8564         case offsetof(struct __sk_buff, vlan_tci):
8565                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8566                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
8567                                                      target_size));
8568                 break;
8569
8570         case offsetof(struct __sk_buff, cb[0]) ...
8571              offsetofend(struct __sk_buff, cb[4]) - 1:
8572                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8573                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8574                               offsetof(struct qdisc_skb_cb, data)) %
8575                              sizeof(__u64));
8576
8577                 prog->cb_access = 1;
8578                 off  = si->off;
8579                 off -= offsetof(struct __sk_buff, cb[0]);
8580                 off += offsetof(struct sk_buff, cb);
8581                 off += offsetof(struct qdisc_skb_cb, data);
8582                 if (type == BPF_WRITE)
8583                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8584                                               si->src_reg, off);
8585                 else
8586                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8587                                               si->src_reg, off);
8588                 break;
8589
8590         case offsetof(struct __sk_buff, tc_classid):
8591                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8592
8593                 off  = si->off;
8594                 off -= offsetof(struct __sk_buff, tc_classid);
8595                 off += offsetof(struct sk_buff, cb);
8596                 off += offsetof(struct qdisc_skb_cb, tc_classid);
8597                 *target_size = 2;
8598                 if (type == BPF_WRITE)
8599                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8600                                               si->src_reg, off);
8601                 else
8602                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8603                                               si->src_reg, off);
8604                 break;
8605
8606         case offsetof(struct __sk_buff, data):
8607                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8608                                       si->dst_reg, si->src_reg,
8609                                       offsetof(struct sk_buff, data));
8610                 break;
8611
8612         case offsetof(struct __sk_buff, data_meta):
8613                 off  = si->off;
8614                 off -= offsetof(struct __sk_buff, data_meta);
8615                 off += offsetof(struct sk_buff, cb);
8616                 off += offsetof(struct bpf_skb_data_end, data_meta);
8617                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8618                                       si->src_reg, off);
8619                 break;
8620
8621         case offsetof(struct __sk_buff, data_end):
8622                 off  = si->off;
8623                 off -= offsetof(struct __sk_buff, data_end);
8624                 off += offsetof(struct sk_buff, cb);
8625                 off += offsetof(struct bpf_skb_data_end, data_end);
8626                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8627                                       si->src_reg, off);
8628                 break;
8629
8630         case offsetof(struct __sk_buff, tc_index):
8631 #ifdef CONFIG_NET_SCHED
8632                 if (type == BPF_WRITE)
8633                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8634                                               bpf_target_off(struct sk_buff, tc_index, 2,
8635                                                              target_size));
8636                 else
8637                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8638                                               bpf_target_off(struct sk_buff, tc_index, 2,
8639                                                              target_size));
8640 #else
8641                 *target_size = 2;
8642                 if (type == BPF_WRITE)
8643                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8644                 else
8645                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8646 #endif
8647                 break;
8648
8649         case offsetof(struct __sk_buff, napi_id):
8650 #if defined(CONFIG_NET_RX_BUSY_POLL)
8651                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8652                                       bpf_target_off(struct sk_buff, napi_id, 4,
8653                                                      target_size));
8654                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8655                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8656 #else
8657                 *target_size = 4;
8658                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8659 #endif
8660                 break;
8661         case offsetof(struct __sk_buff, family):
8662                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8663
8664                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8665                                       si->dst_reg, si->src_reg,
8666                                       offsetof(struct sk_buff, sk));
8667                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8668                                       bpf_target_off(struct sock_common,
8669                                                      skc_family,
8670                                                      2, target_size));
8671                 break;
8672         case offsetof(struct __sk_buff, remote_ip4):
8673                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8674
8675                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8676                                       si->dst_reg, si->src_reg,
8677                                       offsetof(struct sk_buff, sk));
8678                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8679                                       bpf_target_off(struct sock_common,
8680                                                      skc_daddr,
8681                                                      4, target_size));
8682                 break;
8683         case offsetof(struct __sk_buff, local_ip4):
8684                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8685                                           skc_rcv_saddr) != 4);
8686
8687                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8688                                       si->dst_reg, si->src_reg,
8689                                       offsetof(struct sk_buff, sk));
8690                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8691                                       bpf_target_off(struct sock_common,
8692                                                      skc_rcv_saddr,
8693                                                      4, target_size));
8694                 break;
8695         case offsetof(struct __sk_buff, remote_ip6[0]) ...
8696              offsetof(struct __sk_buff, remote_ip6[3]):
8697 #if IS_ENABLED(CONFIG_IPV6)
8698                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8699                                           skc_v6_daddr.s6_addr32[0]) != 4);
8700
8701                 off = si->off;
8702                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8703
8704                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8705                                       si->dst_reg, si->src_reg,
8706                                       offsetof(struct sk_buff, sk));
8707                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8708                                       offsetof(struct sock_common,
8709                                                skc_v6_daddr.s6_addr32[0]) +
8710                                       off);
8711 #else
8712                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8713 #endif
8714                 break;
8715         case offsetof(struct __sk_buff, local_ip6[0]) ...
8716              offsetof(struct __sk_buff, local_ip6[3]):
8717 #if IS_ENABLED(CONFIG_IPV6)
8718                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8719                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8720
8721                 off = si->off;
8722                 off -= offsetof(struct __sk_buff, local_ip6[0]);
8723
8724                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8725                                       si->dst_reg, si->src_reg,
8726                                       offsetof(struct sk_buff, sk));
8727                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8728                                       offsetof(struct sock_common,
8729                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8730                                       off);
8731 #else
8732                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8733 #endif
8734                 break;
8735
8736         case offsetof(struct __sk_buff, remote_port):
8737                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8738
8739                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8740                                       si->dst_reg, si->src_reg,
8741                                       offsetof(struct sk_buff, sk));
8742                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8743                                       bpf_target_off(struct sock_common,
8744                                                      skc_dport,
8745                                                      2, target_size));
8746 #ifndef __BIG_ENDIAN_BITFIELD
8747                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8748 #endif
8749                 break;
8750
8751         case offsetof(struct __sk_buff, local_port):
8752                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8753
8754                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8755                                       si->dst_reg, si->src_reg,
8756                                       offsetof(struct sk_buff, sk));
8757                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8758                                       bpf_target_off(struct sock_common,
8759                                                      skc_num, 2, target_size));
8760                 break;
8761
8762         case offsetof(struct __sk_buff, tstamp):
8763                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8764
8765                 if (type == BPF_WRITE)
8766                         *insn++ = BPF_STX_MEM(BPF_DW,
8767                                               si->dst_reg, si->src_reg,
8768                                               bpf_target_off(struct sk_buff,
8769                                                              tstamp, 8,
8770                                                              target_size));
8771                 else
8772                         *insn++ = BPF_LDX_MEM(BPF_DW,
8773                                               si->dst_reg, si->src_reg,
8774                                               bpf_target_off(struct sk_buff,
8775                                                              tstamp, 8,
8776                                                              target_size));
8777                 break;
8778
8779         case offsetof(struct __sk_buff, gso_segs):
8780                 insn = bpf_convert_shinfo_access(si, insn);
8781                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8782                                       si->dst_reg, si->dst_reg,
8783                                       bpf_target_off(struct skb_shared_info,
8784                                                      gso_segs, 2,
8785                                                      target_size));
8786                 break;
8787         case offsetof(struct __sk_buff, gso_size):
8788                 insn = bpf_convert_shinfo_access(si, insn);
8789                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8790                                       si->dst_reg, si->dst_reg,
8791                                       bpf_target_off(struct skb_shared_info,
8792                                                      gso_size, 2,
8793                                                      target_size));
8794                 break;
8795         case offsetof(struct __sk_buff, wire_len):
8796                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8797
8798                 off = si->off;
8799                 off -= offsetof(struct __sk_buff, wire_len);
8800                 off += offsetof(struct sk_buff, cb);
8801                 off += offsetof(struct qdisc_skb_cb, pkt_len);
8802                 *target_size = 4;
8803                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8804                 break;
8805
8806         case offsetof(struct __sk_buff, sk):
8807                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8808                                       si->dst_reg, si->src_reg,
8809                                       offsetof(struct sk_buff, sk));
8810                 break;
8811         }
8812
8813         return insn - insn_buf;
8814 }
8815
8816 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8817                                 const struct bpf_insn *si,
8818                                 struct bpf_insn *insn_buf,
8819                                 struct bpf_prog *prog, u32 *target_size)
8820 {
8821         struct bpf_insn *insn = insn_buf;
8822         int off;
8823
8824         switch (si->off) {
8825         case offsetof(struct bpf_sock, bound_dev_if):
8826                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8827
8828                 if (type == BPF_WRITE)
8829                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8830                                         offsetof(struct sock, sk_bound_dev_if));
8831                 else
8832                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8833                                       offsetof(struct sock, sk_bound_dev_if));
8834                 break;
8835
8836         case offsetof(struct bpf_sock, mark):
8837                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8838
8839                 if (type == BPF_WRITE)
8840                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8841                                         offsetof(struct sock, sk_mark));
8842                 else
8843                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8844                                       offsetof(struct sock, sk_mark));
8845                 break;
8846
8847         case offsetof(struct bpf_sock, priority):
8848                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8849
8850                 if (type == BPF_WRITE)
8851                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8852                                         offsetof(struct sock, sk_priority));
8853                 else
8854                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8855                                       offsetof(struct sock, sk_priority));
8856                 break;
8857
8858         case offsetof(struct bpf_sock, family):
8859                 *insn++ = BPF_LDX_MEM(
8860                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8861                         si->dst_reg, si->src_reg,
8862                         bpf_target_off(struct sock_common,
8863                                        skc_family,
8864                                        sizeof_field(struct sock_common,
8865                                                     skc_family),
8866                                        target_size));
8867                 break;
8868
8869         case offsetof(struct bpf_sock, type):
8870                 *insn++ = BPF_LDX_MEM(
8871                         BPF_FIELD_SIZEOF(struct sock, sk_type),
8872                         si->dst_reg, si->src_reg,
8873                         bpf_target_off(struct sock, sk_type,
8874                                        sizeof_field(struct sock, sk_type),
8875                                        target_size));
8876                 break;
8877
8878         case offsetof(struct bpf_sock, protocol):
8879                 *insn++ = BPF_LDX_MEM(
8880                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8881                         si->dst_reg, si->src_reg,
8882                         bpf_target_off(struct sock, sk_protocol,
8883                                        sizeof_field(struct sock, sk_protocol),
8884                                        target_size));
8885                 break;
8886
8887         case offsetof(struct bpf_sock, src_ip4):
8888                 *insn++ = BPF_LDX_MEM(
8889                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8890                         bpf_target_off(struct sock_common, skc_rcv_saddr,
8891                                        sizeof_field(struct sock_common,
8892                                                     skc_rcv_saddr),
8893                                        target_size));
8894                 break;
8895
8896         case offsetof(struct bpf_sock, dst_ip4):
8897                 *insn++ = BPF_LDX_MEM(
8898                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8899                         bpf_target_off(struct sock_common, skc_daddr,
8900                                        sizeof_field(struct sock_common,
8901                                                     skc_daddr),
8902                                        target_size));
8903                 break;
8904
8905         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8906 #if IS_ENABLED(CONFIG_IPV6)
8907                 off = si->off;
8908                 off -= offsetof(struct bpf_sock, src_ip6[0]);
8909                 *insn++ = BPF_LDX_MEM(
8910                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8911                         bpf_target_off(
8912                                 struct sock_common,
8913                                 skc_v6_rcv_saddr.s6_addr32[0],
8914                                 sizeof_field(struct sock_common,
8915                                              skc_v6_rcv_saddr.s6_addr32[0]),
8916                                 target_size) + off);
8917 #else
8918                 (void)off;
8919                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8920 #endif
8921                 break;
8922
8923         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8924 #if IS_ENABLED(CONFIG_IPV6)
8925                 off = si->off;
8926                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
8927                 *insn++ = BPF_LDX_MEM(
8928                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8929                         bpf_target_off(struct sock_common,
8930                                        skc_v6_daddr.s6_addr32[0],
8931                                        sizeof_field(struct sock_common,
8932                                                     skc_v6_daddr.s6_addr32[0]),
8933                                        target_size) + off);
8934 #else
8935                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8936                 *target_size = 4;
8937 #endif
8938                 break;
8939
8940         case offsetof(struct bpf_sock, src_port):
8941                 *insn++ = BPF_LDX_MEM(
8942                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8943                         si->dst_reg, si->src_reg,
8944                         bpf_target_off(struct sock_common, skc_num,
8945                                        sizeof_field(struct sock_common,
8946                                                     skc_num),
8947                                        target_size));
8948                 break;
8949
8950         case offsetof(struct bpf_sock, dst_port):
8951                 *insn++ = BPF_LDX_MEM(
8952                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8953                         si->dst_reg, si->src_reg,
8954                         bpf_target_off(struct sock_common, skc_dport,
8955                                        sizeof_field(struct sock_common,
8956                                                     skc_dport),
8957                                        target_size));
8958                 break;
8959
8960         case offsetof(struct bpf_sock, state):
8961                 *insn++ = BPF_LDX_MEM(
8962                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8963                         si->dst_reg, si->src_reg,
8964                         bpf_target_off(struct sock_common, skc_state,
8965                                        sizeof_field(struct sock_common,
8966                                                     skc_state),
8967                                        target_size));
8968                 break;
8969         case offsetof(struct bpf_sock, rx_queue_mapping):
8970 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
8971                 *insn++ = BPF_LDX_MEM(
8972                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8973                         si->dst_reg, si->src_reg,
8974                         bpf_target_off(struct sock, sk_rx_queue_mapping,
8975                                        sizeof_field(struct sock,
8976                                                     sk_rx_queue_mapping),
8977                                        target_size));
8978                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8979                                       1);
8980                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8981 #else
8982                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8983                 *target_size = 2;
8984 #endif
8985                 break;
8986         }
8987
8988         return insn - insn_buf;
8989 }
8990
8991 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8992                                          const struct bpf_insn *si,
8993                                          struct bpf_insn *insn_buf,
8994                                          struct bpf_prog *prog, u32 *target_size)
8995 {
8996         struct bpf_insn *insn = insn_buf;
8997
8998         switch (si->off) {
8999         case offsetof(struct __sk_buff, ifindex):
9000                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9001                                       si->dst_reg, si->src_reg,
9002                                       offsetof(struct sk_buff, dev));
9003                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9004                                       bpf_target_off(struct net_device, ifindex, 4,
9005                                                      target_size));
9006                 break;
9007         default:
9008                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9009                                               target_size);
9010         }
9011
9012         return insn - insn_buf;
9013 }
9014
9015 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9016                                   const struct bpf_insn *si,
9017                                   struct bpf_insn *insn_buf,
9018                                   struct bpf_prog *prog, u32 *target_size)
9019 {
9020         struct bpf_insn *insn = insn_buf;
9021
9022         switch (si->off) {
9023         case offsetof(struct xdp_md, data):
9024                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9025                                       si->dst_reg, si->src_reg,
9026                                       offsetof(struct xdp_buff, data));
9027                 break;
9028         case offsetof(struct xdp_md, data_meta):
9029                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9030                                       si->dst_reg, si->src_reg,
9031                                       offsetof(struct xdp_buff, data_meta));
9032                 break;
9033         case offsetof(struct xdp_md, data_end):
9034                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9035                                       si->dst_reg, si->src_reg,
9036                                       offsetof(struct xdp_buff, data_end));
9037                 break;
9038         case offsetof(struct xdp_md, ingress_ifindex):
9039                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9040                                       si->dst_reg, si->src_reg,
9041                                       offsetof(struct xdp_buff, rxq));
9042                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9043                                       si->dst_reg, si->dst_reg,
9044                                       offsetof(struct xdp_rxq_info, dev));
9045                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9046                                       offsetof(struct net_device, ifindex));
9047                 break;
9048         case offsetof(struct xdp_md, rx_queue_index):
9049                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9050                                       si->dst_reg, si->src_reg,
9051                                       offsetof(struct xdp_buff, rxq));
9052                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9053                                       offsetof(struct xdp_rxq_info,
9054                                                queue_index));
9055                 break;
9056         case offsetof(struct xdp_md, egress_ifindex):
9057                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9058                                       si->dst_reg, si->src_reg,
9059                                       offsetof(struct xdp_buff, txq));
9060                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9061                                       si->dst_reg, si->dst_reg,
9062                                       offsetof(struct xdp_txq_info, dev));
9063                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9064                                       offsetof(struct net_device, ifindex));
9065                 break;
9066         }
9067
9068         return insn - insn_buf;
9069 }
9070
9071 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9072  * context Structure, F is Field in context structure that contains a pointer
9073  * to Nested Structure of type NS that has the field NF.
9074  *
9075  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9076  * sure that SIZE is not greater than actual size of S.F.NF.
9077  *
9078  * If offset OFF is provided, the load happens from that offset relative to
9079  * offset of NF.
9080  */
9081 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9082         do {                                                                   \
9083                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9084                                       si->src_reg, offsetof(S, F));            \
9085                 *insn++ = BPF_LDX_MEM(                                         \
9086                         SIZE, si->dst_reg, si->dst_reg,                        \
9087                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9088                                        target_size)                            \
9089                                 + OFF);                                        \
9090         } while (0)
9091
9092 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9093         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9094                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9095
9096 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9097  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9098  *
9099  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9100  * "register" since two registers available in convert_ctx_access are not
9101  * enough: we can't override neither SRC, since it contains value to store, nor
9102  * DST since it contains pointer to context that may be used by later
9103  * instructions. But we need a temporary place to save pointer to nested
9104  * structure whose field we want to store to.
9105  */
9106 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9107         do {                                                                   \
9108                 int tmp_reg = BPF_REG_9;                                       \
9109                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9110                         --tmp_reg;                                             \
9111                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9112                         --tmp_reg;                                             \
9113                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9114                                       offsetof(S, TF));                        \
9115                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9116                                       si->dst_reg, offsetof(S, F));            \
9117                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9118                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9119                                        target_size)                            \
9120                                 + OFF);                                        \
9121                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9122                                       offsetof(S, TF));                        \
9123         } while (0)
9124
9125 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9126                                                       TF)                      \
9127         do {                                                                   \
9128                 if (type == BPF_WRITE) {                                       \
9129                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9130                                                          OFF, TF);             \
9131                 } else {                                                       \
9132                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9133                                 S, NS, F, NF, SIZE, OFF);  \
9134                 }                                                              \
9135         } while (0)
9136
9137 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9138         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9139                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9140
9141 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9142                                         const struct bpf_insn *si,
9143                                         struct bpf_insn *insn_buf,
9144                                         struct bpf_prog *prog, u32 *target_size)
9145 {
9146         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9147         struct bpf_insn *insn = insn_buf;
9148
9149         switch (si->off) {
9150         case offsetof(struct bpf_sock_addr, user_family):
9151                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9152                                             struct sockaddr, uaddr, sa_family);
9153                 break;
9154
9155         case offsetof(struct bpf_sock_addr, user_ip4):
9156                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9157                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9158                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9159                 break;
9160
9161         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9162                 off = si->off;
9163                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9164                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9165                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9166                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9167                         tmp_reg);
9168                 break;
9169
9170         case offsetof(struct bpf_sock_addr, user_port):
9171                 /* To get port we need to know sa_family first and then treat
9172                  * sockaddr as either sockaddr_in or sockaddr_in6.
9173                  * Though we can simplify since port field has same offset and
9174                  * size in both structures.
9175                  * Here we check this invariant and use just one of the
9176                  * structures if it's true.
9177                  */
9178                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9179                              offsetof(struct sockaddr_in6, sin6_port));
9180                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9181                              sizeof_field(struct sockaddr_in6, sin6_port));
9182                 /* Account for sin6_port being smaller than user_port. */
9183                 port_size = min(port_size, BPF_LDST_BYTES(si));
9184                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9185                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9186                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9187                 break;
9188
9189         case offsetof(struct bpf_sock_addr, family):
9190                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9191                                             struct sock, sk, sk_family);
9192                 break;
9193
9194         case offsetof(struct bpf_sock_addr, type):
9195                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9196                                             struct sock, sk, sk_type);
9197                 break;
9198
9199         case offsetof(struct bpf_sock_addr, protocol):
9200                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9201                                             struct sock, sk, sk_protocol);
9202                 break;
9203
9204         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9205                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9206                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9207                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9208                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9209                 break;
9210
9211         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9212                                 msg_src_ip6[3]):
9213                 off = si->off;
9214                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9215                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9216                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9217                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9218                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9219                 break;
9220         case offsetof(struct bpf_sock_addr, sk):
9221                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9222                                       si->dst_reg, si->src_reg,
9223                                       offsetof(struct bpf_sock_addr_kern, sk));
9224                 break;
9225         }
9226
9227         return insn - insn_buf;
9228 }
9229
9230 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9231                                        const struct bpf_insn *si,
9232                                        struct bpf_insn *insn_buf,
9233                                        struct bpf_prog *prog,
9234                                        u32 *target_size)
9235 {
9236         struct bpf_insn *insn = insn_buf;
9237         int off;
9238
9239 /* Helper macro for adding read access to tcp_sock or sock fields. */
9240 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9241         do {                                                                  \
9242                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9243                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9244                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9245                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9246                         reg--;                                                \
9247                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9248                         reg--;                                                \
9249                 if (si->dst_reg == si->src_reg) {                             \
9250                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9251                                           offsetof(struct bpf_sock_ops_kern,  \
9252                                           temp));                             \
9253                         fullsock_reg = reg;                                   \
9254                         jmp += 2;                                             \
9255                 }                                                             \
9256                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9257                                                 struct bpf_sock_ops_kern,     \
9258                                                 is_fullsock),                 \
9259                                       fullsock_reg, si->src_reg,              \
9260                                       offsetof(struct bpf_sock_ops_kern,      \
9261                                                is_fullsock));                 \
9262                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9263                 if (si->dst_reg == si->src_reg)                               \
9264                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9265                                       offsetof(struct bpf_sock_ops_kern,      \
9266                                       temp));                                 \
9267                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9268                                                 struct bpf_sock_ops_kern, sk),\
9269                                       si->dst_reg, si->src_reg,               \
9270                                       offsetof(struct bpf_sock_ops_kern, sk));\
9271                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9272                                                        OBJ_FIELD),            \
9273                                       si->dst_reg, si->dst_reg,               \
9274                                       offsetof(OBJ, OBJ_FIELD));              \
9275                 if (si->dst_reg == si->src_reg) {                             \
9276                         *insn++ = BPF_JMP_A(1);                               \
9277                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9278                                       offsetof(struct bpf_sock_ops_kern,      \
9279                                       temp));                                 \
9280                 }                                                             \
9281         } while (0)
9282
9283 #define SOCK_OPS_GET_SK()                                                             \
9284         do {                                                                  \
9285                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9286                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9287                         reg--;                                                \
9288                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9289                         reg--;                                                \
9290                 if (si->dst_reg == si->src_reg) {                             \
9291                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9292                                           offsetof(struct bpf_sock_ops_kern,  \
9293                                           temp));                             \
9294                         fullsock_reg = reg;                                   \
9295                         jmp += 2;                                             \
9296                 }                                                             \
9297                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9298                                                 struct bpf_sock_ops_kern,     \
9299                                                 is_fullsock),                 \
9300                                       fullsock_reg, si->src_reg,              \
9301                                       offsetof(struct bpf_sock_ops_kern,      \
9302                                                is_fullsock));                 \
9303                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9304                 if (si->dst_reg == si->src_reg)                               \
9305                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9306                                       offsetof(struct bpf_sock_ops_kern,      \
9307                                       temp));                                 \
9308                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9309                                                 struct bpf_sock_ops_kern, sk),\
9310                                       si->dst_reg, si->src_reg,               \
9311                                       offsetof(struct bpf_sock_ops_kern, sk));\
9312                 if (si->dst_reg == si->src_reg) {                             \
9313                         *insn++ = BPF_JMP_A(1);                               \
9314                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9315                                       offsetof(struct bpf_sock_ops_kern,      \
9316                                       temp));                                 \
9317                 }                                                             \
9318         } while (0)
9319
9320 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9321                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9322
9323 /* Helper macro for adding write access to tcp_sock or sock fields.
9324  * The macro is called with two registers, dst_reg which contains a pointer
9325  * to ctx (context) and src_reg which contains the value that should be
9326  * stored. However, we need an additional register since we cannot overwrite
9327  * dst_reg because it may be used later in the program.
9328  * Instead we "borrow" one of the other register. We first save its value
9329  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9330  * it at the end of the macro.
9331  */
9332 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9333         do {                                                                  \
9334                 int reg = BPF_REG_9;                                          \
9335                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9336                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9337                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9338                         reg--;                                                \
9339                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9340                         reg--;                                                \
9341                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9342                                       offsetof(struct bpf_sock_ops_kern,      \
9343                                                temp));                        \
9344                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9345                                                 struct bpf_sock_ops_kern,     \
9346                                                 is_fullsock),                 \
9347                                       reg, si->dst_reg,                       \
9348                                       offsetof(struct bpf_sock_ops_kern,      \
9349                                                is_fullsock));                 \
9350                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9351                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9352                                                 struct bpf_sock_ops_kern, sk),\
9353                                       reg, si->dst_reg,                       \
9354                                       offsetof(struct bpf_sock_ops_kern, sk));\
9355                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9356                                       reg, si->src_reg,                       \
9357                                       offsetof(OBJ, OBJ_FIELD));              \
9358                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9359                                       offsetof(struct bpf_sock_ops_kern,      \
9360                                                temp));                        \
9361         } while (0)
9362
9363 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9364         do {                                                                  \
9365                 if (TYPE == BPF_WRITE)                                        \
9366                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9367                 else                                                          \
9368                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9369         } while (0)
9370
9371         if (insn > insn_buf)
9372                 return insn - insn_buf;
9373
9374         switch (si->off) {
9375         case offsetof(struct bpf_sock_ops, op):
9376                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9377                                                        op),
9378                                       si->dst_reg, si->src_reg,
9379                                       offsetof(struct bpf_sock_ops_kern, op));
9380                 break;
9381
9382         case offsetof(struct bpf_sock_ops, replylong[0]) ...
9383              offsetof(struct bpf_sock_ops, replylong[3]):
9384                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9385                              sizeof_field(struct bpf_sock_ops_kern, reply));
9386                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9387                              sizeof_field(struct bpf_sock_ops_kern, replylong));
9388                 off = si->off;
9389                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9390                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9391                 if (type == BPF_WRITE)
9392                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9393                                               off);
9394                 else
9395                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9396                                               off);
9397                 break;
9398
9399         case offsetof(struct bpf_sock_ops, family):
9400                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9401
9402                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9403                                               struct bpf_sock_ops_kern, sk),
9404                                       si->dst_reg, si->src_reg,
9405                                       offsetof(struct bpf_sock_ops_kern, sk));
9406                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9407                                       offsetof(struct sock_common, skc_family));
9408                 break;
9409
9410         case offsetof(struct bpf_sock_ops, remote_ip4):
9411                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9412
9413                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9414                                                 struct bpf_sock_ops_kern, sk),
9415                                       si->dst_reg, si->src_reg,
9416                                       offsetof(struct bpf_sock_ops_kern, sk));
9417                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9418                                       offsetof(struct sock_common, skc_daddr));
9419                 break;
9420
9421         case offsetof(struct bpf_sock_ops, local_ip4):
9422                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9423                                           skc_rcv_saddr) != 4);
9424
9425                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9426                                               struct bpf_sock_ops_kern, sk),
9427                                       si->dst_reg, si->src_reg,
9428                                       offsetof(struct bpf_sock_ops_kern, sk));
9429                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9430                                       offsetof(struct sock_common,
9431                                                skc_rcv_saddr));
9432                 break;
9433
9434         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9435              offsetof(struct bpf_sock_ops, remote_ip6[3]):
9436 #if IS_ENABLED(CONFIG_IPV6)
9437                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9438                                           skc_v6_daddr.s6_addr32[0]) != 4);
9439
9440                 off = si->off;
9441                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9442                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9443                                                 struct bpf_sock_ops_kern, sk),
9444                                       si->dst_reg, si->src_reg,
9445                                       offsetof(struct bpf_sock_ops_kern, sk));
9446                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9447                                       offsetof(struct sock_common,
9448                                                skc_v6_daddr.s6_addr32[0]) +
9449                                       off);
9450 #else
9451                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9452 #endif
9453                 break;
9454
9455         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9456              offsetof(struct bpf_sock_ops, local_ip6[3]):
9457 #if IS_ENABLED(CONFIG_IPV6)
9458                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9459                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9460
9461                 off = si->off;
9462                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9463                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9464                                                 struct bpf_sock_ops_kern, sk),
9465                                       si->dst_reg, si->src_reg,
9466                                       offsetof(struct bpf_sock_ops_kern, sk));
9467                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9468                                       offsetof(struct sock_common,
9469                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9470                                       off);
9471 #else
9472                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9473 #endif
9474                 break;
9475
9476         case offsetof(struct bpf_sock_ops, remote_port):
9477                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9478
9479                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9480                                                 struct bpf_sock_ops_kern, sk),
9481                                       si->dst_reg, si->src_reg,
9482                                       offsetof(struct bpf_sock_ops_kern, sk));
9483                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9484                                       offsetof(struct sock_common, skc_dport));
9485 #ifndef __BIG_ENDIAN_BITFIELD
9486                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9487 #endif
9488                 break;
9489
9490         case offsetof(struct bpf_sock_ops, local_port):
9491                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9492
9493                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9494                                                 struct bpf_sock_ops_kern, sk),
9495                                       si->dst_reg, si->src_reg,
9496                                       offsetof(struct bpf_sock_ops_kern, sk));
9497                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9498                                       offsetof(struct sock_common, skc_num));
9499                 break;
9500
9501         case offsetof(struct bpf_sock_ops, is_fullsock):
9502                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9503                                                 struct bpf_sock_ops_kern,
9504                                                 is_fullsock),
9505                                       si->dst_reg, si->src_reg,
9506                                       offsetof(struct bpf_sock_ops_kern,
9507                                                is_fullsock));
9508                 break;
9509
9510         case offsetof(struct bpf_sock_ops, state):
9511                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9512
9513                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9514                                                 struct bpf_sock_ops_kern, sk),
9515                                       si->dst_reg, si->src_reg,
9516                                       offsetof(struct bpf_sock_ops_kern, sk));
9517                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9518                                       offsetof(struct sock_common, skc_state));
9519                 break;
9520
9521         case offsetof(struct bpf_sock_ops, rtt_min):
9522                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9523                              sizeof(struct minmax));
9524                 BUILD_BUG_ON(sizeof(struct minmax) <
9525                              sizeof(struct minmax_sample));
9526
9527                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9528                                                 struct bpf_sock_ops_kern, sk),
9529                                       si->dst_reg, si->src_reg,
9530                                       offsetof(struct bpf_sock_ops_kern, sk));
9531                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9532                                       offsetof(struct tcp_sock, rtt_min) +
9533                                       sizeof_field(struct minmax_sample, t));
9534                 break;
9535
9536         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9537                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9538                                    struct tcp_sock);
9539                 break;
9540
9541         case offsetof(struct bpf_sock_ops, sk_txhash):
9542                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9543                                           struct sock, type);
9544                 break;
9545         case offsetof(struct bpf_sock_ops, snd_cwnd):
9546                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9547                 break;
9548         case offsetof(struct bpf_sock_ops, srtt_us):
9549                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9550                 break;
9551         case offsetof(struct bpf_sock_ops, snd_ssthresh):
9552                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9553                 break;
9554         case offsetof(struct bpf_sock_ops, rcv_nxt):
9555                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9556                 break;
9557         case offsetof(struct bpf_sock_ops, snd_nxt):
9558                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9559                 break;
9560         case offsetof(struct bpf_sock_ops, snd_una):
9561                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9562                 break;
9563         case offsetof(struct bpf_sock_ops, mss_cache):
9564                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9565                 break;
9566         case offsetof(struct bpf_sock_ops, ecn_flags):
9567                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9568                 break;
9569         case offsetof(struct bpf_sock_ops, rate_delivered):
9570                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9571                 break;
9572         case offsetof(struct bpf_sock_ops, rate_interval_us):
9573                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9574                 break;
9575         case offsetof(struct bpf_sock_ops, packets_out):
9576                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9577                 break;
9578         case offsetof(struct bpf_sock_ops, retrans_out):
9579                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9580                 break;
9581         case offsetof(struct bpf_sock_ops, total_retrans):
9582                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9583                 break;
9584         case offsetof(struct bpf_sock_ops, segs_in):
9585                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9586                 break;
9587         case offsetof(struct bpf_sock_ops, data_segs_in):
9588                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9589                 break;
9590         case offsetof(struct bpf_sock_ops, segs_out):
9591                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9592                 break;
9593         case offsetof(struct bpf_sock_ops, data_segs_out):
9594                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9595                 break;
9596         case offsetof(struct bpf_sock_ops, lost_out):
9597                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9598                 break;
9599         case offsetof(struct bpf_sock_ops, sacked_out):
9600                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9601                 break;
9602         case offsetof(struct bpf_sock_ops, bytes_received):
9603                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9604                 break;
9605         case offsetof(struct bpf_sock_ops, bytes_acked):
9606                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9607                 break;
9608         case offsetof(struct bpf_sock_ops, sk):
9609                 SOCK_OPS_GET_SK();
9610                 break;
9611         case offsetof(struct bpf_sock_ops, skb_data_end):
9612                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9613                                                        skb_data_end),
9614                                       si->dst_reg, si->src_reg,
9615                                       offsetof(struct bpf_sock_ops_kern,
9616                                                skb_data_end));
9617                 break;
9618         case offsetof(struct bpf_sock_ops, skb_data):
9619                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9620                                                        skb),
9621                                       si->dst_reg, si->src_reg,
9622                                       offsetof(struct bpf_sock_ops_kern,
9623                                                skb));
9624                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9625                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9626                                       si->dst_reg, si->dst_reg,
9627                                       offsetof(struct sk_buff, data));
9628                 break;
9629         case offsetof(struct bpf_sock_ops, skb_len):
9630                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9631                                                        skb),
9632                                       si->dst_reg, si->src_reg,
9633                                       offsetof(struct bpf_sock_ops_kern,
9634                                                skb));
9635                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9636                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9637                                       si->dst_reg, si->dst_reg,
9638                                       offsetof(struct sk_buff, len));
9639                 break;
9640         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9641                 off = offsetof(struct sk_buff, cb);
9642                 off += offsetof(struct tcp_skb_cb, tcp_flags);
9643                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9644                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9645                                                        skb),
9646                                       si->dst_reg, si->src_reg,
9647                                       offsetof(struct bpf_sock_ops_kern,
9648                                                skb));
9649                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9650                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9651                                                        tcp_flags),
9652                                       si->dst_reg, si->dst_reg, off);
9653                 break;
9654         }
9655         return insn - insn_buf;
9656 }
9657
9658 /* data_end = skb->data + skb_headlen() */
9659 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9660                                                     struct bpf_insn *insn)
9661 {
9662         /* si->dst_reg = skb->data */
9663         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9664                               si->dst_reg, si->src_reg,
9665                               offsetof(struct sk_buff, data));
9666         /* AX = skb->len */
9667         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9668                               BPF_REG_AX, si->src_reg,
9669                               offsetof(struct sk_buff, len));
9670         /* si->dst_reg = skb->data + skb->len */
9671         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9672         /* AX = skb->data_len */
9673         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9674                               BPF_REG_AX, si->src_reg,
9675                               offsetof(struct sk_buff, data_len));
9676         /* si->dst_reg = skb->data + skb->len - skb->data_len */
9677         *insn++ = BPF_ALU64_REG(BPF_SUB, si->dst_reg, BPF_REG_AX);
9678
9679         return insn;
9680 }
9681
9682 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9683                                      const struct bpf_insn *si,
9684                                      struct bpf_insn *insn_buf,
9685                                      struct bpf_prog *prog, u32 *target_size)
9686 {
9687         struct bpf_insn *insn = insn_buf;
9688
9689         switch (si->off) {
9690         case offsetof(struct __sk_buff, data_end):
9691                 insn = bpf_convert_data_end_access(si, insn);
9692                 break;
9693         default:
9694                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9695                                               target_size);
9696         }
9697
9698         return insn - insn_buf;
9699 }
9700
9701 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9702                                      const struct bpf_insn *si,
9703                                      struct bpf_insn *insn_buf,
9704                                      struct bpf_prog *prog, u32 *target_size)
9705 {
9706         struct bpf_insn *insn = insn_buf;
9707 #if IS_ENABLED(CONFIG_IPV6)
9708         int off;
9709 #endif
9710
9711         /* convert ctx uses the fact sg element is first in struct */
9712         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9713
9714         switch (si->off) {
9715         case offsetof(struct sk_msg_md, data):
9716                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9717                                       si->dst_reg, si->src_reg,
9718                                       offsetof(struct sk_msg, data));
9719                 break;
9720         case offsetof(struct sk_msg_md, data_end):
9721                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9722                                       si->dst_reg, si->src_reg,
9723                                       offsetof(struct sk_msg, data_end));
9724                 break;
9725         case offsetof(struct sk_msg_md, family):
9726                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9727
9728                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9729                                               struct sk_msg, sk),
9730                                       si->dst_reg, si->src_reg,
9731                                       offsetof(struct sk_msg, sk));
9732                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9733                                       offsetof(struct sock_common, skc_family));
9734                 break;
9735
9736         case offsetof(struct sk_msg_md, remote_ip4):
9737                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9738
9739                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9740                                                 struct sk_msg, sk),
9741                                       si->dst_reg, si->src_reg,
9742                                       offsetof(struct sk_msg, sk));
9743                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9744                                       offsetof(struct sock_common, skc_daddr));
9745                 break;
9746
9747         case offsetof(struct sk_msg_md, local_ip4):
9748                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9749                                           skc_rcv_saddr) != 4);
9750
9751                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9752                                               struct sk_msg, sk),
9753                                       si->dst_reg, si->src_reg,
9754                                       offsetof(struct sk_msg, sk));
9755                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9756                                       offsetof(struct sock_common,
9757                                                skc_rcv_saddr));
9758                 break;
9759
9760         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9761              offsetof(struct sk_msg_md, remote_ip6[3]):
9762 #if IS_ENABLED(CONFIG_IPV6)
9763                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9764                                           skc_v6_daddr.s6_addr32[0]) != 4);
9765
9766                 off = si->off;
9767                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9768                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9769                                                 struct sk_msg, sk),
9770                                       si->dst_reg, si->src_reg,
9771                                       offsetof(struct sk_msg, sk));
9772                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9773                                       offsetof(struct sock_common,
9774                                                skc_v6_daddr.s6_addr32[0]) +
9775                                       off);
9776 #else
9777                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9778 #endif
9779                 break;
9780
9781         case offsetof(struct sk_msg_md, local_ip6[0]) ...
9782              offsetof(struct sk_msg_md, local_ip6[3]):
9783 #if IS_ENABLED(CONFIG_IPV6)
9784                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9785                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9786
9787                 off = si->off;
9788                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9789                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9790                                                 struct sk_msg, sk),
9791                                       si->dst_reg, si->src_reg,
9792                                       offsetof(struct sk_msg, sk));
9793                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9794                                       offsetof(struct sock_common,
9795                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9796                                       off);
9797 #else
9798                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9799 #endif
9800                 break;
9801
9802         case offsetof(struct sk_msg_md, remote_port):
9803                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9804
9805                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9806                                                 struct sk_msg, sk),
9807                                       si->dst_reg, si->src_reg,
9808                                       offsetof(struct sk_msg, sk));
9809                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9810                                       offsetof(struct sock_common, skc_dport));
9811 #ifndef __BIG_ENDIAN_BITFIELD
9812                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9813 #endif
9814                 break;
9815
9816         case offsetof(struct sk_msg_md, local_port):
9817                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9818
9819                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9820                                                 struct sk_msg, sk),
9821                                       si->dst_reg, si->src_reg,
9822                                       offsetof(struct sk_msg, sk));
9823                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9824                                       offsetof(struct sock_common, skc_num));
9825                 break;
9826
9827         case offsetof(struct sk_msg_md, size):
9828                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9829                                       si->dst_reg, si->src_reg,
9830                                       offsetof(struct sk_msg_sg, size));
9831                 break;
9832
9833         case offsetof(struct sk_msg_md, sk):
9834                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9835                                       si->dst_reg, si->src_reg,
9836                                       offsetof(struct sk_msg, sk));
9837                 break;
9838         }
9839
9840         return insn - insn_buf;
9841 }
9842
9843 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9844         .get_func_proto         = sk_filter_func_proto,
9845         .is_valid_access        = sk_filter_is_valid_access,
9846         .convert_ctx_access     = bpf_convert_ctx_access,
9847         .gen_ld_abs             = bpf_gen_ld_abs,
9848 };
9849
9850 const struct bpf_prog_ops sk_filter_prog_ops = {
9851         .test_run               = bpf_prog_test_run_skb,
9852 };
9853
9854 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9855         .get_func_proto         = tc_cls_act_func_proto,
9856         .is_valid_access        = tc_cls_act_is_valid_access,
9857         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
9858         .gen_prologue           = tc_cls_act_prologue,
9859         .gen_ld_abs             = bpf_gen_ld_abs,
9860         .check_kfunc_call       = bpf_prog_test_check_kfunc_call,
9861 };
9862
9863 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9864         .test_run               = bpf_prog_test_run_skb,
9865 };
9866
9867 const struct bpf_verifier_ops xdp_verifier_ops = {
9868         .get_func_proto         = xdp_func_proto,
9869         .is_valid_access        = xdp_is_valid_access,
9870         .convert_ctx_access     = xdp_convert_ctx_access,
9871         .gen_prologue           = bpf_noop_prologue,
9872 };
9873
9874 const struct bpf_prog_ops xdp_prog_ops = {
9875         .test_run               = bpf_prog_test_run_xdp,
9876 };
9877
9878 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9879         .get_func_proto         = cg_skb_func_proto,
9880         .is_valid_access        = cg_skb_is_valid_access,
9881         .convert_ctx_access     = bpf_convert_ctx_access,
9882 };
9883
9884 const struct bpf_prog_ops cg_skb_prog_ops = {
9885         .test_run               = bpf_prog_test_run_skb,
9886 };
9887
9888 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9889         .get_func_proto         = lwt_in_func_proto,
9890         .is_valid_access        = lwt_is_valid_access,
9891         .convert_ctx_access     = bpf_convert_ctx_access,
9892 };
9893
9894 const struct bpf_prog_ops lwt_in_prog_ops = {
9895         .test_run               = bpf_prog_test_run_skb,
9896 };
9897
9898 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9899         .get_func_proto         = lwt_out_func_proto,
9900         .is_valid_access        = lwt_is_valid_access,
9901         .convert_ctx_access     = bpf_convert_ctx_access,
9902 };
9903
9904 const struct bpf_prog_ops lwt_out_prog_ops = {
9905         .test_run               = bpf_prog_test_run_skb,
9906 };
9907
9908 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9909         .get_func_proto         = lwt_xmit_func_proto,
9910         .is_valid_access        = lwt_is_valid_access,
9911         .convert_ctx_access     = bpf_convert_ctx_access,
9912         .gen_prologue           = tc_cls_act_prologue,
9913 };
9914
9915 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9916         .test_run               = bpf_prog_test_run_skb,
9917 };
9918
9919 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9920         .get_func_proto         = lwt_seg6local_func_proto,
9921         .is_valid_access        = lwt_is_valid_access,
9922         .convert_ctx_access     = bpf_convert_ctx_access,
9923 };
9924
9925 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9926         .test_run               = bpf_prog_test_run_skb,
9927 };
9928
9929 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9930         .get_func_proto         = sock_filter_func_proto,
9931         .is_valid_access        = sock_filter_is_valid_access,
9932         .convert_ctx_access     = bpf_sock_convert_ctx_access,
9933 };
9934
9935 const struct bpf_prog_ops cg_sock_prog_ops = {
9936 };
9937
9938 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9939         .get_func_proto         = sock_addr_func_proto,
9940         .is_valid_access        = sock_addr_is_valid_access,
9941         .convert_ctx_access     = sock_addr_convert_ctx_access,
9942 };
9943
9944 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9945 };
9946
9947 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9948         .get_func_proto         = sock_ops_func_proto,
9949         .is_valid_access        = sock_ops_is_valid_access,
9950         .convert_ctx_access     = sock_ops_convert_ctx_access,
9951 };
9952
9953 const struct bpf_prog_ops sock_ops_prog_ops = {
9954 };
9955
9956 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9957         .get_func_proto         = sk_skb_func_proto,
9958         .is_valid_access        = sk_skb_is_valid_access,
9959         .convert_ctx_access     = sk_skb_convert_ctx_access,
9960         .gen_prologue           = sk_skb_prologue,
9961 };
9962
9963 const struct bpf_prog_ops sk_skb_prog_ops = {
9964 };
9965
9966 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9967         .get_func_proto         = sk_msg_func_proto,
9968         .is_valid_access        = sk_msg_is_valid_access,
9969         .convert_ctx_access     = sk_msg_convert_ctx_access,
9970         .gen_prologue           = bpf_noop_prologue,
9971 };
9972
9973 const struct bpf_prog_ops sk_msg_prog_ops = {
9974 };
9975
9976 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9977         .get_func_proto         = flow_dissector_func_proto,
9978         .is_valid_access        = flow_dissector_is_valid_access,
9979         .convert_ctx_access     = flow_dissector_convert_ctx_access,
9980 };
9981
9982 const struct bpf_prog_ops flow_dissector_prog_ops = {
9983         .test_run               = bpf_prog_test_run_flow_dissector,
9984 };
9985
9986 int sk_detach_filter(struct sock *sk)
9987 {
9988         int ret = -ENOENT;
9989         struct sk_filter *filter;
9990
9991         if (sock_flag(sk, SOCK_FILTER_LOCKED))
9992                 return -EPERM;
9993
9994         filter = rcu_dereference_protected(sk->sk_filter,
9995                                            lockdep_sock_is_held(sk));
9996         if (filter) {
9997                 RCU_INIT_POINTER(sk->sk_filter, NULL);
9998                 sk_filter_uncharge(sk, filter);
9999                 ret = 0;
10000         }
10001
10002         return ret;
10003 }
10004 EXPORT_SYMBOL_GPL(sk_detach_filter);
10005
10006 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10007                   unsigned int len)
10008 {
10009         struct sock_fprog_kern *fprog;
10010         struct sk_filter *filter;
10011         int ret = 0;
10012
10013         lock_sock(sk);
10014         filter = rcu_dereference_protected(sk->sk_filter,
10015                                            lockdep_sock_is_held(sk));
10016         if (!filter)
10017                 goto out;
10018
10019         /* We're copying the filter that has been originally attached,
10020          * so no conversion/decode needed anymore. eBPF programs that
10021          * have no original program cannot be dumped through this.
10022          */
10023         ret = -EACCES;
10024         fprog = filter->prog->orig_prog;
10025         if (!fprog)
10026                 goto out;
10027
10028         ret = fprog->len;
10029         if (!len)
10030                 /* User space only enquires number of filter blocks. */
10031                 goto out;
10032
10033         ret = -EINVAL;
10034         if (len < fprog->len)
10035                 goto out;
10036
10037         ret = -EFAULT;
10038         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10039                 goto out;
10040
10041         /* Instead of bytes, the API requests to return the number
10042          * of filter blocks.
10043          */
10044         ret = fprog->len;
10045 out:
10046         release_sock(sk);
10047         return ret;
10048 }
10049
10050 #ifdef CONFIG_INET
10051 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10052                                     struct sock_reuseport *reuse,
10053                                     struct sock *sk, struct sk_buff *skb,
10054                                     struct sock *migrating_sk,
10055                                     u32 hash)
10056 {
10057         reuse_kern->skb = skb;
10058         reuse_kern->sk = sk;
10059         reuse_kern->selected_sk = NULL;
10060         reuse_kern->migrating_sk = migrating_sk;
10061         reuse_kern->data_end = skb->data + skb_headlen(skb);
10062         reuse_kern->hash = hash;
10063         reuse_kern->reuseport_id = reuse->reuseport_id;
10064         reuse_kern->bind_inany = reuse->bind_inany;
10065 }
10066
10067 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10068                                   struct bpf_prog *prog, struct sk_buff *skb,
10069                                   struct sock *migrating_sk,
10070                                   u32 hash)
10071 {
10072         struct sk_reuseport_kern reuse_kern;
10073         enum sk_action action;
10074
10075         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10076         action = BPF_PROG_RUN(prog, &reuse_kern);
10077
10078         if (action == SK_PASS)
10079                 return reuse_kern.selected_sk;
10080         else
10081                 return ERR_PTR(-ECONNREFUSED);
10082 }
10083
10084 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10085            struct bpf_map *, map, void *, key, u32, flags)
10086 {
10087         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10088         struct sock_reuseport *reuse;
10089         struct sock *selected_sk;
10090
10091         selected_sk = map->ops->map_lookup_elem(map, key);
10092         if (!selected_sk)
10093                 return -ENOENT;
10094
10095         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10096         if (!reuse) {
10097                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10098                 if (sk_is_refcounted(selected_sk))
10099                         sock_put(selected_sk);
10100
10101                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10102                  * The only (!reuse) case here is - the sk has already been
10103                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10104                  *
10105                  * Other maps (e.g. sock_map) do not provide this guarantee and
10106                  * the sk may never be in the reuseport group to begin with.
10107                  */
10108                 return is_sockarray ? -ENOENT : -EINVAL;
10109         }
10110
10111         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10112                 struct sock *sk = reuse_kern->sk;
10113
10114                 if (sk->sk_protocol != selected_sk->sk_protocol)
10115                         return -EPROTOTYPE;
10116                 else if (sk->sk_family != selected_sk->sk_family)
10117                         return -EAFNOSUPPORT;
10118
10119                 /* Catch all. Likely bound to a different sockaddr. */
10120                 return -EBADFD;
10121         }
10122
10123         reuse_kern->selected_sk = selected_sk;
10124
10125         return 0;
10126 }
10127
10128 static const struct bpf_func_proto sk_select_reuseport_proto = {
10129         .func           = sk_select_reuseport,
10130         .gpl_only       = false,
10131         .ret_type       = RET_INTEGER,
10132         .arg1_type      = ARG_PTR_TO_CTX,
10133         .arg2_type      = ARG_CONST_MAP_PTR,
10134         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10135         .arg4_type      = ARG_ANYTHING,
10136 };
10137
10138 BPF_CALL_4(sk_reuseport_load_bytes,
10139            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10140            void *, to, u32, len)
10141 {
10142         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10143 }
10144
10145 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10146         .func           = sk_reuseport_load_bytes,
10147         .gpl_only       = false,
10148         .ret_type       = RET_INTEGER,
10149         .arg1_type      = ARG_PTR_TO_CTX,
10150         .arg2_type      = ARG_ANYTHING,
10151         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10152         .arg4_type      = ARG_CONST_SIZE,
10153 };
10154
10155 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10156            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10157            void *, to, u32, len, u32, start_header)
10158 {
10159         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10160                                                len, start_header);
10161 }
10162
10163 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10164         .func           = sk_reuseport_load_bytes_relative,
10165         .gpl_only       = false,
10166         .ret_type       = RET_INTEGER,
10167         .arg1_type      = ARG_PTR_TO_CTX,
10168         .arg2_type      = ARG_ANYTHING,
10169         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10170         .arg4_type      = ARG_CONST_SIZE,
10171         .arg5_type      = ARG_ANYTHING,
10172 };
10173
10174 static const struct bpf_func_proto *
10175 sk_reuseport_func_proto(enum bpf_func_id func_id,
10176                         const struct bpf_prog *prog)
10177 {
10178         switch (func_id) {
10179         case BPF_FUNC_sk_select_reuseport:
10180                 return &sk_select_reuseport_proto;
10181         case BPF_FUNC_skb_load_bytes:
10182                 return &sk_reuseport_load_bytes_proto;
10183         case BPF_FUNC_skb_load_bytes_relative:
10184                 return &sk_reuseport_load_bytes_relative_proto;
10185         case BPF_FUNC_get_socket_cookie:
10186                 return &bpf_get_socket_ptr_cookie_proto;
10187         default:
10188                 return bpf_base_func_proto(func_id);
10189         }
10190 }
10191
10192 static bool
10193 sk_reuseport_is_valid_access(int off, int size,
10194                              enum bpf_access_type type,
10195                              const struct bpf_prog *prog,
10196                              struct bpf_insn_access_aux *info)
10197 {
10198         const u32 size_default = sizeof(__u32);
10199
10200         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10201             off % size || type != BPF_READ)
10202                 return false;
10203
10204         switch (off) {
10205         case offsetof(struct sk_reuseport_md, data):
10206                 info->reg_type = PTR_TO_PACKET;
10207                 return size == sizeof(__u64);
10208
10209         case offsetof(struct sk_reuseport_md, data_end):
10210                 info->reg_type = PTR_TO_PACKET_END;
10211                 return size == sizeof(__u64);
10212
10213         case offsetof(struct sk_reuseport_md, hash):
10214                 return size == size_default;
10215
10216         case offsetof(struct sk_reuseport_md, sk):
10217                 info->reg_type = PTR_TO_SOCKET;
10218                 return size == sizeof(__u64);
10219
10220         case offsetof(struct sk_reuseport_md, migrating_sk):
10221                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10222                 return size == sizeof(__u64);
10223
10224         /* Fields that allow narrowing */
10225         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10226                 if (size < sizeof_field(struct sk_buff, protocol))
10227                         return false;
10228                 fallthrough;
10229         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10230         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10231         case bpf_ctx_range(struct sk_reuseport_md, len):
10232                 bpf_ctx_record_field_size(info, size_default);
10233                 return bpf_ctx_narrow_access_ok(off, size, size_default);
10234
10235         default:
10236                 return false;
10237         }
10238 }
10239
10240 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10241         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10242                               si->dst_reg, si->src_reg,                 \
10243                               bpf_target_off(struct sk_reuseport_kern, F, \
10244                                              sizeof_field(struct sk_reuseport_kern, F), \
10245                                              target_size));             \
10246         })
10247
10248 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10249         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10250                                     struct sk_buff,                     \
10251                                     skb,                                \
10252                                     SKB_FIELD)
10253
10254 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10255         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10256                                     struct sock,                        \
10257                                     sk,                                 \
10258                                     SK_FIELD)
10259
10260 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10261                                            const struct bpf_insn *si,
10262                                            struct bpf_insn *insn_buf,
10263                                            struct bpf_prog *prog,
10264                                            u32 *target_size)
10265 {
10266         struct bpf_insn *insn = insn_buf;
10267
10268         switch (si->off) {
10269         case offsetof(struct sk_reuseport_md, data):
10270                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10271                 break;
10272
10273         case offsetof(struct sk_reuseport_md, len):
10274                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10275                 break;
10276
10277         case offsetof(struct sk_reuseport_md, eth_protocol):
10278                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10279                 break;
10280
10281         case offsetof(struct sk_reuseport_md, ip_protocol):
10282                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10283                 break;
10284
10285         case offsetof(struct sk_reuseport_md, data_end):
10286                 SK_REUSEPORT_LOAD_FIELD(data_end);
10287                 break;
10288
10289         case offsetof(struct sk_reuseport_md, hash):
10290                 SK_REUSEPORT_LOAD_FIELD(hash);
10291                 break;
10292
10293         case offsetof(struct sk_reuseport_md, bind_inany):
10294                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10295                 break;
10296
10297         case offsetof(struct sk_reuseport_md, sk):
10298                 SK_REUSEPORT_LOAD_FIELD(sk);
10299                 break;
10300
10301         case offsetof(struct sk_reuseport_md, migrating_sk):
10302                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10303                 break;
10304         }
10305
10306         return insn - insn_buf;
10307 }
10308
10309 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10310         .get_func_proto         = sk_reuseport_func_proto,
10311         .is_valid_access        = sk_reuseport_is_valid_access,
10312         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10313 };
10314
10315 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10316 };
10317
10318 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10319 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10320
10321 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10322            struct sock *, sk, u64, flags)
10323 {
10324         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10325                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10326                 return -EINVAL;
10327         if (unlikely(sk && sk_is_refcounted(sk)))
10328                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10329         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10330                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
10331
10332         /* Check if socket is suitable for packet L3/L4 protocol */
10333         if (sk && sk->sk_protocol != ctx->protocol)
10334                 return -EPROTOTYPE;
10335         if (sk && sk->sk_family != ctx->family &&
10336             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10337                 return -EAFNOSUPPORT;
10338
10339         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10340                 return -EEXIST;
10341
10342         /* Select socket as lookup result */
10343         ctx->selected_sk = sk;
10344         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10345         return 0;
10346 }
10347
10348 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10349         .func           = bpf_sk_lookup_assign,
10350         .gpl_only       = false,
10351         .ret_type       = RET_INTEGER,
10352         .arg1_type      = ARG_PTR_TO_CTX,
10353         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10354         .arg3_type      = ARG_ANYTHING,
10355 };
10356
10357 static const struct bpf_func_proto *
10358 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10359 {
10360         switch (func_id) {
10361         case BPF_FUNC_perf_event_output:
10362                 return &bpf_event_output_data_proto;
10363         case BPF_FUNC_sk_assign:
10364                 return &bpf_sk_lookup_assign_proto;
10365         case BPF_FUNC_sk_release:
10366                 return &bpf_sk_release_proto;
10367         default:
10368                 return bpf_sk_base_func_proto(func_id);
10369         }
10370 }
10371
10372 static bool sk_lookup_is_valid_access(int off, int size,
10373                                       enum bpf_access_type type,
10374                                       const struct bpf_prog *prog,
10375                                       struct bpf_insn_access_aux *info)
10376 {
10377         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10378                 return false;
10379         if (off % size != 0)
10380                 return false;
10381         if (type != BPF_READ)
10382                 return false;
10383
10384         switch (off) {
10385         case offsetof(struct bpf_sk_lookup, sk):
10386                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10387                 return size == sizeof(__u64);
10388
10389         case bpf_ctx_range(struct bpf_sk_lookup, family):
10390         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10391         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10392         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10393         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10394         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10395         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10396         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10397                 bpf_ctx_record_field_size(info, sizeof(__u32));
10398                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10399
10400         default:
10401                 return false;
10402         }
10403 }
10404
10405 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10406                                         const struct bpf_insn *si,
10407                                         struct bpf_insn *insn_buf,
10408                                         struct bpf_prog *prog,
10409                                         u32 *target_size)
10410 {
10411         struct bpf_insn *insn = insn_buf;
10412
10413         switch (si->off) {
10414         case offsetof(struct bpf_sk_lookup, sk):
10415                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10416                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
10417                 break;
10418
10419         case offsetof(struct bpf_sk_lookup, family):
10420                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10421                                       bpf_target_off(struct bpf_sk_lookup_kern,
10422                                                      family, 2, target_size));
10423                 break;
10424
10425         case offsetof(struct bpf_sk_lookup, protocol):
10426                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10427                                       bpf_target_off(struct bpf_sk_lookup_kern,
10428                                                      protocol, 2, target_size));
10429                 break;
10430
10431         case offsetof(struct bpf_sk_lookup, remote_ip4):
10432                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10433                                       bpf_target_off(struct bpf_sk_lookup_kern,
10434                                                      v4.saddr, 4, target_size));
10435                 break;
10436
10437         case offsetof(struct bpf_sk_lookup, local_ip4):
10438                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10439                                       bpf_target_off(struct bpf_sk_lookup_kern,
10440                                                      v4.daddr, 4, target_size));
10441                 break;
10442
10443         case bpf_ctx_range_till(struct bpf_sk_lookup,
10444                                 remote_ip6[0], remote_ip6[3]): {
10445 #if IS_ENABLED(CONFIG_IPV6)
10446                 int off = si->off;
10447
10448                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10449                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10450                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10451                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10452                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10453                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10454 #else
10455                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10456 #endif
10457                 break;
10458         }
10459         case bpf_ctx_range_till(struct bpf_sk_lookup,
10460                                 local_ip6[0], local_ip6[3]): {
10461 #if IS_ENABLED(CONFIG_IPV6)
10462                 int off = si->off;
10463
10464                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10465                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10466                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10467                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10468                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10469                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10470 #else
10471                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10472 #endif
10473                 break;
10474         }
10475         case offsetof(struct bpf_sk_lookup, remote_port):
10476                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10477                                       bpf_target_off(struct bpf_sk_lookup_kern,
10478                                                      sport, 2, target_size));
10479                 break;
10480
10481         case offsetof(struct bpf_sk_lookup, local_port):
10482                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10483                                       bpf_target_off(struct bpf_sk_lookup_kern,
10484                                                      dport, 2, target_size));
10485                 break;
10486         }
10487
10488         return insn - insn_buf;
10489 }
10490
10491 const struct bpf_prog_ops sk_lookup_prog_ops = {
10492         .test_run = bpf_prog_test_run_sk_lookup,
10493 };
10494
10495 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10496         .get_func_proto         = sk_lookup_func_proto,
10497         .is_valid_access        = sk_lookup_is_valid_access,
10498         .convert_ctx_access     = sk_lookup_convert_ctx_access,
10499 };
10500
10501 #endif /* CONFIG_INET */
10502
10503 DEFINE_BPF_DISPATCHER(xdp)
10504
10505 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10506 {
10507         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10508 }
10509
10510 #ifdef CONFIG_DEBUG_INFO_BTF
10511 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10512 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10513 BTF_SOCK_TYPE_xxx
10514 #undef BTF_SOCK_TYPE
10515 #else
10516 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10517 #endif
10518
10519 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10520 {
10521         /* tcp6_sock type is not generated in dwarf and hence btf,
10522          * trigger an explicit type generation here.
10523          */
10524         BTF_TYPE_EMIT(struct tcp6_sock);
10525         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10526             sk->sk_family == AF_INET6)
10527                 return (unsigned long)sk;
10528
10529         return (unsigned long)NULL;
10530 }
10531
10532 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10533         .func                   = bpf_skc_to_tcp6_sock,
10534         .gpl_only               = false,
10535         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10536         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10537         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10538 };
10539
10540 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10541 {
10542         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10543                 return (unsigned long)sk;
10544
10545         return (unsigned long)NULL;
10546 }
10547
10548 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10549         .func                   = bpf_skc_to_tcp_sock,
10550         .gpl_only               = false,
10551         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10552         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10553         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10554 };
10555
10556 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10557 {
10558         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10559          * generated if CONFIG_INET=n. Trigger an explicit generation here.
10560          */
10561         BTF_TYPE_EMIT(struct inet_timewait_sock);
10562         BTF_TYPE_EMIT(struct tcp_timewait_sock);
10563
10564 #ifdef CONFIG_INET
10565         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10566                 return (unsigned long)sk;
10567 #endif
10568
10569 #if IS_BUILTIN(CONFIG_IPV6)
10570         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10571                 return (unsigned long)sk;
10572 #endif
10573
10574         return (unsigned long)NULL;
10575 }
10576
10577 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10578         .func                   = bpf_skc_to_tcp_timewait_sock,
10579         .gpl_only               = false,
10580         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10581         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10582         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10583 };
10584
10585 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10586 {
10587 #ifdef CONFIG_INET
10588         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10589                 return (unsigned long)sk;
10590 #endif
10591
10592 #if IS_BUILTIN(CONFIG_IPV6)
10593         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10594                 return (unsigned long)sk;
10595 #endif
10596
10597         return (unsigned long)NULL;
10598 }
10599
10600 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10601         .func                   = bpf_skc_to_tcp_request_sock,
10602         .gpl_only               = false,
10603         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10604         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10605         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10606 };
10607
10608 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10609 {
10610         /* udp6_sock type is not generated in dwarf and hence btf,
10611          * trigger an explicit type generation here.
10612          */
10613         BTF_TYPE_EMIT(struct udp6_sock);
10614         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10615             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10616                 return (unsigned long)sk;
10617
10618         return (unsigned long)NULL;
10619 }
10620
10621 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10622         .func                   = bpf_skc_to_udp6_sock,
10623         .gpl_only               = false,
10624         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10625         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10626         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10627 };
10628
10629 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10630 {
10631         return (unsigned long)sock_from_file(file);
10632 }
10633
10634 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10635 BTF_ID(struct, socket)
10636 BTF_ID(struct, file)
10637
10638 const struct bpf_func_proto bpf_sock_from_file_proto = {
10639         .func           = bpf_sock_from_file,
10640         .gpl_only       = false,
10641         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
10642         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
10643         .arg1_type      = ARG_PTR_TO_BTF_ID,
10644         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
10645 };
10646
10647 static const struct bpf_func_proto *
10648 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10649 {
10650         const struct bpf_func_proto *func;
10651
10652         switch (func_id) {
10653         case BPF_FUNC_skc_to_tcp6_sock:
10654                 func = &bpf_skc_to_tcp6_sock_proto;
10655                 break;
10656         case BPF_FUNC_skc_to_tcp_sock:
10657                 func = &bpf_skc_to_tcp_sock_proto;
10658                 break;
10659         case BPF_FUNC_skc_to_tcp_timewait_sock:
10660                 func = &bpf_skc_to_tcp_timewait_sock_proto;
10661                 break;
10662         case BPF_FUNC_skc_to_tcp_request_sock:
10663                 func = &bpf_skc_to_tcp_request_sock_proto;
10664                 break;
10665         case BPF_FUNC_skc_to_udp6_sock:
10666                 func = &bpf_skc_to_udp6_sock_proto;
10667                 break;
10668         default:
10669                 return bpf_base_func_proto(func_id);
10670         }
10671
10672         if (!perfmon_capable())
10673                 return NULL;
10674
10675         return func;
10676 }