Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87         if (in_compat_syscall()) {
88                 struct compat_sock_fprog f32;
89
90                 if (len != sizeof(f32))
91                         return -EINVAL;
92                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
93                         return -EFAULT;
94                 memset(dst, 0, sizeof(*dst));
95                 dst->len = f32.len;
96                 dst->filter = compat_ptr(f32.filter);
97         } else {
98                 if (len != sizeof(*dst))
99                         return -EINVAL;
100                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
101                         return -EFAULT;
102         }
103
104         return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107
108 /**
109  *      sk_filter_trim_cap - run a packet through a socket filter
110  *      @sk: sock associated with &sk_buff
111  *      @skb: buffer to filter
112  *      @cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123         int err;
124         struct sk_filter *filter;
125
126         /*
127          * If the skb was allocated from pfmemalloc reserves, only
128          * allow SOCK_MEMALLOC sockets to use it as this socket is
129          * helping free memory
130          */
131         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133                 return -ENOMEM;
134         }
135         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136         if (err)
137                 return err;
138
139         err = security_sock_rcv_skb(sk, skb);
140         if (err)
141                 return err;
142
143         rcu_read_lock();
144         filter = rcu_dereference(sk->sk_filter);
145         if (filter) {
146                 struct sock *save_sk = skb->sk;
147                 unsigned int pkt_len;
148
149                 skb->sk = sk;
150                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151                 skb->sk = save_sk;
152                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153         }
154         rcu_read_unlock();
155
156         return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162         return skb_get_poff(skb);
163 }
164
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167         struct nlattr *nla;
168
169         if (skb_is_nonlinear(skb))
170                 return 0;
171
172         if (skb->len < sizeof(struct nlattr))
173                 return 0;
174
175         if (a > skb->len - sizeof(struct nlattr))
176                 return 0;
177
178         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179         if (nla)
180                 return (void *) nla - (void *) skb->data;
181
182         return 0;
183 }
184
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187         struct nlattr *nla;
188
189         if (skb_is_nonlinear(skb))
190                 return 0;
191
192         if (skb->len < sizeof(struct nlattr))
193                 return 0;
194
195         if (a > skb->len - sizeof(struct nlattr))
196                 return 0;
197
198         nla = (struct nlattr *) &skb->data[a];
199         if (nla->nla_len > skb->len - a)
200                 return 0;
201
202         nla = nla_find_nested(nla, x);
203         if (nla)
204                 return (void *) nla - (void *) skb->data;
205
206         return 0;
207 }
208
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210            data, int, headlen, int, offset)
211 {
212         u8 tmp, *ptr;
213         const int len = sizeof(tmp);
214
215         if (offset >= 0) {
216                 if (headlen - offset >= len)
217                         return *(u8 *)(data + offset);
218                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219                         return tmp;
220         } else {
221                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222                 if (likely(ptr))
223                         return *(u8 *)ptr;
224         }
225
226         return -EFAULT;
227 }
228
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230            int, offset)
231 {
232         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233                                          offset);
234 }
235
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237            data, int, headlen, int, offset)
238 {
239         u16 tmp, *ptr;
240         const int len = sizeof(tmp);
241
242         if (offset >= 0) {
243                 if (headlen - offset >= len)
244                         return get_unaligned_be16(data + offset);
245                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246                         return be16_to_cpu(tmp);
247         } else {
248                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249                 if (likely(ptr))
250                         return get_unaligned_be16(ptr);
251         }
252
253         return -EFAULT;
254 }
255
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257            int, offset)
258 {
259         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260                                           offset);
261 }
262
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264            data, int, headlen, int, offset)
265 {
266         u32 tmp, *ptr;
267         const int len = sizeof(tmp);
268
269         if (likely(offset >= 0)) {
270                 if (headlen - offset >= len)
271                         return get_unaligned_be32(data + offset);
272                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273                         return be32_to_cpu(tmp);
274         } else {
275                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276                 if (likely(ptr))
277                         return get_unaligned_be32(ptr);
278         }
279
280         return -EFAULT;
281 }
282
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284            int, offset)
285 {
286         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287                                           offset);
288 }
289
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291                               struct bpf_insn *insn_buf)
292 {
293         struct bpf_insn *insn = insn_buf;
294
295         switch (skb_field) {
296         case SKF_AD_MARK:
297                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298
299                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, mark));
301                 break;
302
303         case SKF_AD_PKTTYPE:
304                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
305                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309                 break;
310
311         case SKF_AD_QUEUE:
312                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313
314                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315                                       offsetof(struct sk_buff, queue_mapping));
316                 break;
317
318         case SKF_AD_VLAN_TAG:
319                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320
321                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323                                       offsetof(struct sk_buff, vlan_tci));
324                 break;
325         case SKF_AD_VLAN_TAG_PRESENT:
326                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
327                 if (PKT_VLAN_PRESENT_BIT)
328                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329                 if (PKT_VLAN_PRESENT_BIT < 7)
330                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331                 break;
332         }
333
334         return insn - insn_buf;
335 }
336
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338                                    struct bpf_insn **insnp)
339 {
340         struct bpf_insn *insn = *insnp;
341         u32 cnt;
342
343         switch (fp->k) {
344         case SKF_AD_OFF + SKF_AD_PROTOCOL:
345                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346
347                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
348                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349                                       offsetof(struct sk_buff, protocol));
350                 /* A = ntohs(A) [emitting a nop or swap16] */
351                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352                 break;
353
354         case SKF_AD_OFF + SKF_AD_PKTTYPE:
355                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356                 insn += cnt - 1;
357                 break;
358
359         case SKF_AD_OFF + SKF_AD_IFINDEX:
360         case SKF_AD_OFF + SKF_AD_HATYPE:
361                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363
364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365                                       BPF_REG_TMP, BPF_REG_CTX,
366                                       offsetof(struct sk_buff, dev));
367                 /* if (tmp != 0) goto pc + 1 */
368                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369                 *insn++ = BPF_EXIT_INSN();
370                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372                                             offsetof(struct net_device, ifindex));
373                 else
374                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, type));
376                 break;
377
378         case SKF_AD_OFF + SKF_AD_MARK:
379                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380                 insn += cnt - 1;
381                 break;
382
383         case SKF_AD_OFF + SKF_AD_RXHASH:
384                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385
386                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387                                     offsetof(struct sk_buff, hash));
388                 break;
389
390         case SKF_AD_OFF + SKF_AD_QUEUE:
391                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392                 insn += cnt - 1;
393                 break;
394
395         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397                                          BPF_REG_A, BPF_REG_CTX, insn);
398                 insn += cnt - 1;
399                 break;
400
401         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403                                          BPF_REG_A, BPF_REG_CTX, insn);
404                 insn += cnt - 1;
405                 break;
406
407         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409
410                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412                                       offsetof(struct sk_buff, vlan_proto));
413                 /* A = ntohs(A) [emitting a nop or swap16] */
414                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415                 break;
416
417         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418         case SKF_AD_OFF + SKF_AD_NLATTR:
419         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420         case SKF_AD_OFF + SKF_AD_CPU:
421         case SKF_AD_OFF + SKF_AD_RANDOM:
422                 /* arg1 = CTX */
423                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424                 /* arg2 = A */
425                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426                 /* arg3 = X */
427                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
429                 switch (fp->k) {
430                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432                         break;
433                 case SKF_AD_OFF + SKF_AD_NLATTR:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_CPU:
440                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_RANDOM:
443                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444                         bpf_user_rnd_init_once();
445                         break;
446                 }
447                 break;
448
449         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450                 /* A ^= X */
451                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452                 break;
453
454         default:
455                 /* This is just a dummy call to avoid letting the compiler
456                  * evict __bpf_call_base() as an optimization. Placed here
457                  * where no-one bothers.
458                  */
459                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460                 return false;
461         }
462
463         *insnp = insn;
464         return true;
465 }
466
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471         bool endian = BPF_SIZE(fp->code) == BPF_H ||
472                       BPF_SIZE(fp->code) == BPF_W;
473         bool indirect = BPF_MODE(fp->code) == BPF_IND;
474         const int ip_align = NET_IP_ALIGN;
475         struct bpf_insn *insn = *insnp;
476         int offset = fp->k;
477
478         if (!indirect &&
479             ((unaligned_ok && offset >= 0) ||
480              (!unaligned_ok && offset >= 0 &&
481               offset + ip_align >= 0 &&
482               offset + ip_align % size == 0))) {
483                 bool ldx_off_ok = offset <= S16_MAX;
484
485                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486                 if (offset)
487                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489                                       size, 2 + endian + (!ldx_off_ok * 2));
490                 if (ldx_off_ok) {
491                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492                                               BPF_REG_D, offset);
493                 } else {
494                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497                                               BPF_REG_TMP, 0);
498                 }
499                 if (endian)
500                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501                 *insn++ = BPF_JMP_A(8);
502         }
503
504         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507         if (!indirect) {
508                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509         } else {
510                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511                 if (fp->k)
512                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513         }
514
515         switch (BPF_SIZE(fp->code)) {
516         case BPF_B:
517                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518                 break;
519         case BPF_H:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521                 break;
522         case BPF_W:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524                 break;
525         default:
526                 return false;
527         }
528
529         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531         *insn   = BPF_EXIT_INSN();
532
533         *insnp = insn;
534         return true;
535 }
536
537 /**
538  *      bpf_convert_filter - convert filter program
539  *      @prog: the user passed filter program
540  *      @len: the length of the user passed filter program
541  *      @new_prog: allocated 'struct bpf_prog' or NULL
542  *      @new_len: pointer to store length of converted program
543  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557                               struct bpf_prog *new_prog, int *new_len,
558                               bool *seen_ld_abs)
559 {
560         int new_flen = 0, pass = 0, target, i, stack_off;
561         struct bpf_insn *new_insn, *first_insn = NULL;
562         struct sock_filter *fp;
563         int *addrs = NULL;
564         u8 bpf_src;
565
566         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568
569         if (len <= 0 || len > BPF_MAXINSNS)
570                 return -EINVAL;
571
572         if (new_prog) {
573                 first_insn = new_prog->insnsi;
574                 addrs = kcalloc(len, sizeof(*addrs),
575                                 GFP_KERNEL | __GFP_NOWARN);
576                 if (!addrs)
577                         return -ENOMEM;
578         }
579
580 do_pass:
581         new_insn = first_insn;
582         fp = prog;
583
584         /* Classic BPF related prologue emission. */
585         if (new_prog) {
586                 /* Classic BPF expects A and X to be reset first. These need
587                  * to be guaranteed to be the first two instructions.
588                  */
589                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591
592                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
593                  * In eBPF case it's done by the compiler, here we need to
594                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595                  */
596                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597                 if (*seen_ld_abs) {
598                         /* For packet access in classic BPF, cache skb->data
599                          * in callee-saved BPF R8 and skb->len - skb->data_len
600                          * (headlen) in BPF R9. Since classic BPF is read-only
601                          * on CTX, we only need to cache it once.
602                          */
603                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604                                                   BPF_REG_D, BPF_REG_CTX,
605                                                   offsetof(struct sk_buff, data));
606                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607                                                   offsetof(struct sk_buff, len));
608                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609                                                   offsetof(struct sk_buff, data_len));
610                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611                 }
612         } else {
613                 new_insn += 3;
614         }
615
616         for (i = 0; i < len; fp++, i++) {
617                 struct bpf_insn tmp_insns[32] = { };
618                 struct bpf_insn *insn = tmp_insns;
619
620                 if (addrs)
621                         addrs[i] = new_insn - first_insn;
622
623                 switch (fp->code) {
624                 /* All arithmetic insns and skb loads map as-is. */
625                 case BPF_ALU | BPF_ADD | BPF_X:
626                 case BPF_ALU | BPF_ADD | BPF_K:
627                 case BPF_ALU | BPF_SUB | BPF_X:
628                 case BPF_ALU | BPF_SUB | BPF_K:
629                 case BPF_ALU | BPF_AND | BPF_X:
630                 case BPF_ALU | BPF_AND | BPF_K:
631                 case BPF_ALU | BPF_OR | BPF_X:
632                 case BPF_ALU | BPF_OR | BPF_K:
633                 case BPF_ALU | BPF_LSH | BPF_X:
634                 case BPF_ALU | BPF_LSH | BPF_K:
635                 case BPF_ALU | BPF_RSH | BPF_X:
636                 case BPF_ALU | BPF_RSH | BPF_K:
637                 case BPF_ALU | BPF_XOR | BPF_X:
638                 case BPF_ALU | BPF_XOR | BPF_K:
639                 case BPF_ALU | BPF_MUL | BPF_X:
640                 case BPF_ALU | BPF_MUL | BPF_K:
641                 case BPF_ALU | BPF_DIV | BPF_X:
642                 case BPF_ALU | BPF_DIV | BPF_K:
643                 case BPF_ALU | BPF_MOD | BPF_X:
644                 case BPF_ALU | BPF_MOD | BPF_K:
645                 case BPF_ALU | BPF_NEG:
646                 case BPF_LD | BPF_ABS | BPF_W:
647                 case BPF_LD | BPF_ABS | BPF_H:
648                 case BPF_LD | BPF_ABS | BPF_B:
649                 case BPF_LD | BPF_IND | BPF_W:
650                 case BPF_LD | BPF_IND | BPF_H:
651                 case BPF_LD | BPF_IND | BPF_B:
652                         /* Check for overloaded BPF extension and
653                          * directly convert it if found, otherwise
654                          * just move on with mapping.
655                          */
656                         if (BPF_CLASS(fp->code) == BPF_LD &&
657                             BPF_MODE(fp->code) == BPF_ABS &&
658                             convert_bpf_extensions(fp, &insn))
659                                 break;
660                         if (BPF_CLASS(fp->code) == BPF_LD &&
661                             convert_bpf_ld_abs(fp, &insn)) {
662                                 *seen_ld_abs = true;
663                                 break;
664                         }
665
666                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669                                 /* Error with exception code on div/mod by 0.
670                                  * For cBPF programs, this was always return 0.
671                                  */
672                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674                                 *insn++ = BPF_EXIT_INSN();
675                         }
676
677                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678                         break;
679
680                 /* Jump transformation cannot use BPF block macros
681                  * everywhere as offset calculation and target updates
682                  * require a bit more work than the rest, i.e. jump
683                  * opcodes map as-is, but offsets need adjustment.
684                  */
685
686 #define BPF_EMIT_JMP                                                    \
687         do {                                                            \
688                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
689                 s32 off;                                                \
690                                                                         \
691                 if (target >= len || target < 0)                        \
692                         goto err;                                       \
693                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
694                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
695                 off -= insn - tmp_insns;                                \
696                 /* Reject anything not fitting into insn->off. */       \
697                 if (off < off_min || off > off_max)                     \
698                         goto err;                                       \
699                 insn->off = off;                                        \
700         } while (0)
701
702                 case BPF_JMP | BPF_JA:
703                         target = i + fp->k + 1;
704                         insn->code = fp->code;
705                         BPF_EMIT_JMP;
706                         break;
707
708                 case BPF_JMP | BPF_JEQ | BPF_K:
709                 case BPF_JMP | BPF_JEQ | BPF_X:
710                 case BPF_JMP | BPF_JSET | BPF_K:
711                 case BPF_JMP | BPF_JSET | BPF_X:
712                 case BPF_JMP | BPF_JGT | BPF_K:
713                 case BPF_JMP | BPF_JGT | BPF_X:
714                 case BPF_JMP | BPF_JGE | BPF_K:
715                 case BPF_JMP | BPF_JGE | BPF_X:
716                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717                                 /* BPF immediates are signed, zero extend
718                                  * immediate into tmp register and use it
719                                  * in compare insn.
720                                  */
721                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722
723                                 insn->dst_reg = BPF_REG_A;
724                                 insn->src_reg = BPF_REG_TMP;
725                                 bpf_src = BPF_X;
726                         } else {
727                                 insn->dst_reg = BPF_REG_A;
728                                 insn->imm = fp->k;
729                                 bpf_src = BPF_SRC(fp->code);
730                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731                         }
732
733                         /* Common case where 'jump_false' is next insn. */
734                         if (fp->jf == 0) {
735                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736                                 target = i + fp->jt + 1;
737                                 BPF_EMIT_JMP;
738                                 break;
739                         }
740
741                         /* Convert some jumps when 'jump_true' is next insn. */
742                         if (fp->jt == 0) {
743                                 switch (BPF_OP(fp->code)) {
744                                 case BPF_JEQ:
745                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
746                                         break;
747                                 case BPF_JGT:
748                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
749                                         break;
750                                 case BPF_JGE:
751                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
752                                         break;
753                                 default:
754                                         goto jmp_rest;
755                                 }
756
757                                 target = i + fp->jf + 1;
758                                 BPF_EMIT_JMP;
759                                 break;
760                         }
761 jmp_rest:
762                         /* Other jumps are mapped into two insns: Jxx and JA. */
763                         target = i + fp->jt + 1;
764                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765                         BPF_EMIT_JMP;
766                         insn++;
767
768                         insn->code = BPF_JMP | BPF_JA;
769                         target = i + fp->jf + 1;
770                         BPF_EMIT_JMP;
771                         break;
772
773                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774                 case BPF_LDX | BPF_MSH | BPF_B: {
775                         struct sock_filter tmp = {
776                                 .code   = BPF_LD | BPF_ABS | BPF_B,
777                                 .k      = fp->k,
778                         };
779
780                         *seen_ld_abs = true;
781
782                         /* X = A */
783                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
785                         convert_bpf_ld_abs(&tmp, &insn);
786                         insn++;
787                         /* A &= 0xf */
788                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789                         /* A <<= 2 */
790                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791                         /* tmp = X */
792                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793                         /* X = A */
794                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795                         /* A = tmp */
796                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797                         break;
798                 }
799                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
800                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801                  */
802                 case BPF_RET | BPF_A:
803                 case BPF_RET | BPF_K:
804                         if (BPF_RVAL(fp->code) == BPF_K)
805                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806                                                         0, fp->k);
807                         *insn = BPF_EXIT_INSN();
808                         break;
809
810                 /* Store to stack. */
811                 case BPF_ST:
812                 case BPF_STX:
813                         stack_off = fp->k * 4  + 4;
814                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
816                                             -stack_off);
817                         /* check_load_and_stores() verifies that classic BPF can
818                          * load from stack only after write, so tracking
819                          * stack_depth for ST|STX insns is enough
820                          */
821                         if (new_prog && new_prog->aux->stack_depth < stack_off)
822                                 new_prog->aux->stack_depth = stack_off;
823                         break;
824
825                 /* Load from stack. */
826                 case BPF_LD | BPF_MEM:
827                 case BPF_LDX | BPF_MEM:
828                         stack_off = fp->k * 4  + 4;
829                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831                                             -stack_off);
832                         break;
833
834                 /* A = K or X = K */
835                 case BPF_LD | BPF_IMM:
836                 case BPF_LDX | BPF_IMM:
837                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838                                               BPF_REG_A : BPF_REG_X, fp->k);
839                         break;
840
841                 /* X = A */
842                 case BPF_MISC | BPF_TAX:
843                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844                         break;
845
846                 /* A = X */
847                 case BPF_MISC | BPF_TXA:
848                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849                         break;
850
851                 /* A = skb->len or X = skb->len */
852                 case BPF_LD | BPF_W | BPF_LEN:
853                 case BPF_LDX | BPF_W | BPF_LEN:
854                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856                                             offsetof(struct sk_buff, len));
857                         break;
858
859                 /* Access seccomp_data fields. */
860                 case BPF_LDX | BPF_ABS | BPF_W:
861                         /* A = *(u32 *) (ctx + K) */
862                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863                         break;
864
865                 /* Unknown instruction. */
866                 default:
867                         goto err;
868                 }
869
870                 insn++;
871                 if (new_prog)
872                         memcpy(new_insn, tmp_insns,
873                                sizeof(*insn) * (insn - tmp_insns));
874                 new_insn += insn - tmp_insns;
875         }
876
877         if (!new_prog) {
878                 /* Only calculating new length. */
879                 *new_len = new_insn - first_insn;
880                 if (*seen_ld_abs)
881                         *new_len += 4; /* Prologue bits. */
882                 return 0;
883         }
884
885         pass++;
886         if (new_flen != new_insn - first_insn) {
887                 new_flen = new_insn - first_insn;
888                 if (pass > 2)
889                         goto err;
890                 goto do_pass;
891         }
892
893         kfree(addrs);
894         BUG_ON(*new_len != new_flen);
895         return 0;
896 err:
897         kfree(addrs);
898         return -EINVAL;
899 }
900
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911         int pc, ret = 0;
912
913         BUILD_BUG_ON(BPF_MEMWORDS > 16);
914
915         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916         if (!masks)
917                 return -ENOMEM;
918
919         memset(masks, 0xff, flen * sizeof(*masks));
920
921         for (pc = 0; pc < flen; pc++) {
922                 memvalid &= masks[pc];
923
924                 switch (filter[pc].code) {
925                 case BPF_ST:
926                 case BPF_STX:
927                         memvalid |= (1 << filter[pc].k);
928                         break;
929                 case BPF_LD | BPF_MEM:
930                 case BPF_LDX | BPF_MEM:
931                         if (!(memvalid & (1 << filter[pc].k))) {
932                                 ret = -EINVAL;
933                                 goto error;
934                         }
935                         break;
936                 case BPF_JMP | BPF_JA:
937                         /* A jump must set masks on target */
938                         masks[pc + 1 + filter[pc].k] &= memvalid;
939                         memvalid = ~0;
940                         break;
941                 case BPF_JMP | BPF_JEQ | BPF_K:
942                 case BPF_JMP | BPF_JEQ | BPF_X:
943                 case BPF_JMP | BPF_JGE | BPF_K:
944                 case BPF_JMP | BPF_JGE | BPF_X:
945                 case BPF_JMP | BPF_JGT | BPF_K:
946                 case BPF_JMP | BPF_JGT | BPF_X:
947                 case BPF_JMP | BPF_JSET | BPF_K:
948                 case BPF_JMP | BPF_JSET | BPF_X:
949                         /* A jump must set masks on targets */
950                         masks[pc + 1 + filter[pc].jt] &= memvalid;
951                         masks[pc + 1 + filter[pc].jf] &= memvalid;
952                         memvalid = ~0;
953                         break;
954                 }
955         }
956 error:
957         kfree(masks);
958         return ret;
959 }
960
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963         static const bool codes[] = {
964                 /* 32 bit ALU operations */
965                 [BPF_ALU | BPF_ADD | BPF_K] = true,
966                 [BPF_ALU | BPF_ADD | BPF_X] = true,
967                 [BPF_ALU | BPF_SUB | BPF_K] = true,
968                 [BPF_ALU | BPF_SUB | BPF_X] = true,
969                 [BPF_ALU | BPF_MUL | BPF_K] = true,
970                 [BPF_ALU | BPF_MUL | BPF_X] = true,
971                 [BPF_ALU | BPF_DIV | BPF_K] = true,
972                 [BPF_ALU | BPF_DIV | BPF_X] = true,
973                 [BPF_ALU | BPF_MOD | BPF_K] = true,
974                 [BPF_ALU | BPF_MOD | BPF_X] = true,
975                 [BPF_ALU | BPF_AND | BPF_K] = true,
976                 [BPF_ALU | BPF_AND | BPF_X] = true,
977                 [BPF_ALU | BPF_OR | BPF_K] = true,
978                 [BPF_ALU | BPF_OR | BPF_X] = true,
979                 [BPF_ALU | BPF_XOR | BPF_K] = true,
980                 [BPF_ALU | BPF_XOR | BPF_X] = true,
981                 [BPF_ALU | BPF_LSH | BPF_K] = true,
982                 [BPF_ALU | BPF_LSH | BPF_X] = true,
983                 [BPF_ALU | BPF_RSH | BPF_K] = true,
984                 [BPF_ALU | BPF_RSH | BPF_X] = true,
985                 [BPF_ALU | BPF_NEG] = true,
986                 /* Load instructions */
987                 [BPF_LD | BPF_W | BPF_ABS] = true,
988                 [BPF_LD | BPF_H | BPF_ABS] = true,
989                 [BPF_LD | BPF_B | BPF_ABS] = true,
990                 [BPF_LD | BPF_W | BPF_LEN] = true,
991                 [BPF_LD | BPF_W | BPF_IND] = true,
992                 [BPF_LD | BPF_H | BPF_IND] = true,
993                 [BPF_LD | BPF_B | BPF_IND] = true,
994                 [BPF_LD | BPF_IMM] = true,
995                 [BPF_LD | BPF_MEM] = true,
996                 [BPF_LDX | BPF_W | BPF_LEN] = true,
997                 [BPF_LDX | BPF_B | BPF_MSH] = true,
998                 [BPF_LDX | BPF_IMM] = true,
999                 [BPF_LDX | BPF_MEM] = true,
1000                 /* Store instructions */
1001                 [BPF_ST] = true,
1002                 [BPF_STX] = true,
1003                 /* Misc instructions */
1004                 [BPF_MISC | BPF_TAX] = true,
1005                 [BPF_MISC | BPF_TXA] = true,
1006                 /* Return instructions */
1007                 [BPF_RET | BPF_K] = true,
1008                 [BPF_RET | BPF_A] = true,
1009                 /* Jump instructions */
1010                 [BPF_JMP | BPF_JA] = true,
1011                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1013                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1015                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1017                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1019         };
1020
1021         if (code_to_probe >= ARRAY_SIZE(codes))
1022                 return false;
1023
1024         return codes[code_to_probe];
1025 }
1026
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028                                 unsigned int flen)
1029 {
1030         if (filter == NULL)
1031                 return false;
1032         if (flen == 0 || flen > BPF_MAXINSNS)
1033                 return false;
1034
1035         return true;
1036 }
1037
1038 /**
1039  *      bpf_check_classic - verify socket filter code
1040  *      @filter: filter to verify
1041  *      @flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053                              unsigned int flen)
1054 {
1055         bool anc_found;
1056         int pc;
1057
1058         /* Check the filter code now */
1059         for (pc = 0; pc < flen; pc++) {
1060                 const struct sock_filter *ftest = &filter[pc];
1061
1062                 /* May we actually operate on this code? */
1063                 if (!chk_code_allowed(ftest->code))
1064                         return -EINVAL;
1065
1066                 /* Some instructions need special checks */
1067                 switch (ftest->code) {
1068                 case BPF_ALU | BPF_DIV | BPF_K:
1069                 case BPF_ALU | BPF_MOD | BPF_K:
1070                         /* Check for division by zero */
1071                         if (ftest->k == 0)
1072                                 return -EINVAL;
1073                         break;
1074                 case BPF_ALU | BPF_LSH | BPF_K:
1075                 case BPF_ALU | BPF_RSH | BPF_K:
1076                         if (ftest->k >= 32)
1077                                 return -EINVAL;
1078                         break;
1079                 case BPF_LD | BPF_MEM:
1080                 case BPF_LDX | BPF_MEM:
1081                 case BPF_ST:
1082                 case BPF_STX:
1083                         /* Check for invalid memory addresses */
1084                         if (ftest->k >= BPF_MEMWORDS)
1085                                 return -EINVAL;
1086                         break;
1087                 case BPF_JMP | BPF_JA:
1088                         /* Note, the large ftest->k might cause loops.
1089                          * Compare this with conditional jumps below,
1090                          * where offsets are limited. --ANK (981016)
1091                          */
1092                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1093                                 return -EINVAL;
1094                         break;
1095                 case BPF_JMP | BPF_JEQ | BPF_K:
1096                 case BPF_JMP | BPF_JEQ | BPF_X:
1097                 case BPF_JMP | BPF_JGE | BPF_K:
1098                 case BPF_JMP | BPF_JGE | BPF_X:
1099                 case BPF_JMP | BPF_JGT | BPF_K:
1100                 case BPF_JMP | BPF_JGT | BPF_X:
1101                 case BPF_JMP | BPF_JSET | BPF_K:
1102                 case BPF_JMP | BPF_JSET | BPF_X:
1103                         /* Both conditionals must be safe */
1104                         if (pc + ftest->jt + 1 >= flen ||
1105                             pc + ftest->jf + 1 >= flen)
1106                                 return -EINVAL;
1107                         break;
1108                 case BPF_LD | BPF_W | BPF_ABS:
1109                 case BPF_LD | BPF_H | BPF_ABS:
1110                 case BPF_LD | BPF_B | BPF_ABS:
1111                         anc_found = false;
1112                         if (bpf_anc_helper(ftest) & BPF_ANC)
1113                                 anc_found = true;
1114                         /* Ancillary operation unknown or unsupported */
1115                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116                                 return -EINVAL;
1117                 }
1118         }
1119
1120         /* Last instruction must be a RET code */
1121         switch (filter[flen - 1].code) {
1122         case BPF_RET | BPF_K:
1123         case BPF_RET | BPF_A:
1124                 return check_load_and_stores(filter, flen);
1125         }
1126
1127         return -EINVAL;
1128 }
1129
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131                                       const struct sock_fprog *fprog)
1132 {
1133         unsigned int fsize = bpf_classic_proglen(fprog);
1134         struct sock_fprog_kern *fkprog;
1135
1136         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137         if (!fp->orig_prog)
1138                 return -ENOMEM;
1139
1140         fkprog = fp->orig_prog;
1141         fkprog->len = fprog->len;
1142
1143         fkprog->filter = kmemdup(fp->insns, fsize,
1144                                  GFP_KERNEL | __GFP_NOWARN);
1145         if (!fkprog->filter) {
1146                 kfree(fp->orig_prog);
1147                 return -ENOMEM;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155         struct sock_fprog_kern *fprog = fp->orig_prog;
1156
1157         if (fprog) {
1158                 kfree(fprog->filter);
1159                 kfree(fprog);
1160         }
1161 }
1162
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166                 bpf_prog_put(prog);
1167         } else {
1168                 bpf_release_orig_filter(prog);
1169                 bpf_prog_free(prog);
1170         }
1171 }
1172
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175         __bpf_prog_release(fp->prog);
1176         kfree(fp);
1177 }
1178
1179 /**
1180  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *      @rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186
1187         __sk_filter_release(fp);
1188 }
1189
1190 /**
1191  *      sk_filter_release - release a socket filter
1192  *      @fp: filter to remove
1193  *
1194  *      Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198         if (refcount_dec_and_test(&fp->refcnt))
1199                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204         u32 filter_size = bpf_prog_size(fp->prog->len);
1205
1206         atomic_sub(filter_size, &sk->sk_omem_alloc);
1207         sk_filter_release(fp);
1208 }
1209
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215         u32 filter_size = bpf_prog_size(fp->prog->len);
1216
1217         /* same check as in sock_kmalloc() */
1218         if (filter_size <= sysctl_optmem_max &&
1219             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1220                 atomic_add(filter_size, &sk->sk_omem_alloc);
1221                 return true;
1222         }
1223         return false;
1224 }
1225
1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228         if (!refcount_inc_not_zero(&fp->refcnt))
1229                 return false;
1230
1231         if (!__sk_filter_charge(sk, fp)) {
1232                 sk_filter_release(fp);
1233                 return false;
1234         }
1235         return true;
1236 }
1237
1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240         struct sock_filter *old_prog;
1241         struct bpf_prog *old_fp;
1242         int err, new_len, old_len = fp->len;
1243         bool seen_ld_abs = false;
1244
1245         /* We are free to overwrite insns et al right here as it
1246          * won't be used at this point in time anymore internally
1247          * after the migration to the internal BPF instruction
1248          * representation.
1249          */
1250         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251                      sizeof(struct bpf_insn));
1252
1253         /* Conversion cannot happen on overlapping memory areas,
1254          * so we need to keep the user BPF around until the 2nd
1255          * pass. At this time, the user BPF is stored in fp->insns.
1256          */
1257         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258                            GFP_KERNEL | __GFP_NOWARN);
1259         if (!old_prog) {
1260                 err = -ENOMEM;
1261                 goto out_err;
1262         }
1263
1264         /* 1st pass: calculate the new program length. */
1265         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 goto out_err_free;
1269
1270         /* Expand fp for appending the new filter representation. */
1271         old_fp = fp;
1272         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273         if (!fp) {
1274                 /* The old_fp is still around in case we couldn't
1275                  * allocate new memory, so uncharge on that one.
1276                  */
1277                 fp = old_fp;
1278                 err = -ENOMEM;
1279                 goto out_err_free;
1280         }
1281
1282         fp->len = new_len;
1283
1284         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286                                  &seen_ld_abs);
1287         if (err)
1288                 /* 2nd bpf_convert_filter() can fail only if it fails
1289                  * to allocate memory, remapping must succeed. Note,
1290                  * that at this time old_fp has already been released
1291                  * by krealloc().
1292                  */
1293                 goto out_err_free;
1294
1295         fp = bpf_prog_select_runtime(fp, &err);
1296         if (err)
1297                 goto out_err_free;
1298
1299         kfree(old_prog);
1300         return fp;
1301
1302 out_err_free:
1303         kfree(old_prog);
1304 out_err:
1305         __bpf_prog_release(fp);
1306         return ERR_PTR(err);
1307 }
1308
1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310                                            bpf_aux_classic_check_t trans)
1311 {
1312         int err;
1313
1314         fp->bpf_func = NULL;
1315         fp->jited = 0;
1316
1317         err = bpf_check_classic(fp->insns, fp->len);
1318         if (err) {
1319                 __bpf_prog_release(fp);
1320                 return ERR_PTR(err);
1321         }
1322
1323         /* There might be additional checks and transformations
1324          * needed on classic filters, f.e. in case of seccomp.
1325          */
1326         if (trans) {
1327                 err = trans(fp->insns, fp->len);
1328                 if (err) {
1329                         __bpf_prog_release(fp);
1330                         return ERR_PTR(err);
1331                 }
1332         }
1333
1334         /* Probe if we can JIT compile the filter and if so, do
1335          * the compilation of the filter.
1336          */
1337         bpf_jit_compile(fp);
1338
1339         /* JIT compiler couldn't process this filter, so do the
1340          * internal BPF translation for the optimized interpreter.
1341          */
1342         if (!fp->jited)
1343                 fp = bpf_migrate_filter(fp);
1344
1345         return fp;
1346 }
1347
1348 /**
1349  *      bpf_prog_create - create an unattached filter
1350  *      @pfp: the unattached filter that is created
1351  *      @fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360         unsigned int fsize = bpf_classic_proglen(fprog);
1361         struct bpf_prog *fp;
1362
1363         /* Make sure new filter is there and in the right amounts. */
1364         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365                 return -EINVAL;
1366
1367         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368         if (!fp)
1369                 return -ENOMEM;
1370
1371         memcpy(fp->insns, fprog->filter, fsize);
1372
1373         fp->len = fprog->len;
1374         /* Since unattached filters are not copied back to user
1375          * space through sk_get_filter(), we do not need to hold
1376          * a copy here, and can spare us the work.
1377          */
1378         fp->orig_prog = NULL;
1379
1380         /* bpf_prepare_filter() already takes care of freeing
1381          * memory in case something goes wrong.
1382          */
1383         fp = bpf_prepare_filter(fp, NULL);
1384         if (IS_ERR(fp))
1385                 return PTR_ERR(fp);
1386
1387         *pfp = fp;
1388         return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391
1392 /**
1393  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *      @pfp: the unattached filter that is created
1395  *      @fprog: the filter program
1396  *      @trans: post-classic verifier transformation handler
1397  *      @save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404                               bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406         unsigned int fsize = bpf_classic_proglen(fprog);
1407         struct bpf_prog *fp;
1408         int err;
1409
1410         /* Make sure new filter is there and in the right amounts. */
1411         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412                 return -EINVAL;
1413
1414         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415         if (!fp)
1416                 return -ENOMEM;
1417
1418         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419                 __bpf_prog_free(fp);
1420                 return -EFAULT;
1421         }
1422
1423         fp->len = fprog->len;
1424         fp->orig_prog = NULL;
1425
1426         if (save_orig) {
1427                 err = bpf_prog_store_orig_filter(fp, fprog);
1428                 if (err) {
1429                         __bpf_prog_free(fp);
1430                         return -ENOMEM;
1431                 }
1432         }
1433
1434         /* bpf_prepare_filter() already takes care of freeing
1435          * memory in case something goes wrong.
1436          */
1437         fp = bpf_prepare_filter(fp, trans);
1438         if (IS_ERR(fp))
1439                 return PTR_ERR(fp);
1440
1441         *pfp = fp;
1442         return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445
1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448         __bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451
1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454         struct sk_filter *fp, *old_fp;
1455
1456         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457         if (!fp)
1458                 return -ENOMEM;
1459
1460         fp->prog = prog;
1461
1462         if (!__sk_filter_charge(sk, fp)) {
1463                 kfree(fp);
1464                 return -ENOMEM;
1465         }
1466         refcount_set(&fp->refcnt, 1);
1467
1468         old_fp = rcu_dereference_protected(sk->sk_filter,
1469                                            lockdep_sock_is_held(sk));
1470         rcu_assign_pointer(sk->sk_filter, fp);
1471
1472         if (old_fp)
1473                 sk_filter_uncharge(sk, old_fp);
1474
1475         return 0;
1476 }
1477
1478 static
1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481         unsigned int fsize = bpf_classic_proglen(fprog);
1482         struct bpf_prog *prog;
1483         int err;
1484
1485         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486                 return ERR_PTR(-EPERM);
1487
1488         /* Make sure new filter is there and in the right amounts. */
1489         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490                 return ERR_PTR(-EINVAL);
1491
1492         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493         if (!prog)
1494                 return ERR_PTR(-ENOMEM);
1495
1496         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497                 __bpf_prog_free(prog);
1498                 return ERR_PTR(-EFAULT);
1499         }
1500
1501         prog->len = fprog->len;
1502
1503         err = bpf_prog_store_orig_filter(prog, fprog);
1504         if (err) {
1505                 __bpf_prog_free(prog);
1506                 return ERR_PTR(-ENOMEM);
1507         }
1508
1509         /* bpf_prepare_filter() already takes care of freeing
1510          * memory in case something goes wrong.
1511          */
1512         return bpf_prepare_filter(prog, NULL);
1513 }
1514
1515 /**
1516  *      sk_attach_filter - attach a socket filter
1517  *      @fprog: the filter program
1518  *      @sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527         struct bpf_prog *prog = __get_filter(fprog, sk);
1528         int err;
1529
1530         if (IS_ERR(prog))
1531                 return PTR_ERR(prog);
1532
1533         err = __sk_attach_prog(prog, sk);
1534         if (err < 0) {
1535                 __bpf_prog_release(prog);
1536                 return err;
1537         }
1538
1539         return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542
1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545         struct bpf_prog *prog = __get_filter(fprog, sk);
1546         int err;
1547
1548         if (IS_ERR(prog))
1549                 return PTR_ERR(prog);
1550
1551         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1552                 err = -ENOMEM;
1553         else
1554                 err = reuseport_attach_prog(sk, prog);
1555
1556         if (err)
1557                 __bpf_prog_release(prog);
1558
1559         return err;
1560 }
1561
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565                 return ERR_PTR(-EPERM);
1566
1567         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572         struct bpf_prog *prog = __get_bpf(ufd, sk);
1573         int err;
1574
1575         if (IS_ERR(prog))
1576                 return PTR_ERR(prog);
1577
1578         err = __sk_attach_prog(prog, sk);
1579         if (err < 0) {
1580                 bpf_prog_put(prog);
1581                 return err;
1582         }
1583
1584         return 0;
1585 }
1586
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589         struct bpf_prog *prog;
1590         int err;
1591
1592         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593                 return -EPERM;
1594
1595         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596         if (PTR_ERR(prog) == -EINVAL)
1597                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598         if (IS_ERR(prog))
1599                 return PTR_ERR(prog);
1600
1601         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603                  * bpf prog (e.g. sockmap).  It depends on the
1604                  * limitation imposed by bpf_prog_load().
1605                  * Hence, sysctl_optmem_max is not checked.
1606                  */
1607                 if ((sk->sk_type != SOCK_STREAM &&
1608                      sk->sk_type != SOCK_DGRAM) ||
1609                     (sk->sk_protocol != IPPROTO_UDP &&
1610                      sk->sk_protocol != IPPROTO_TCP) ||
1611                     (sk->sk_family != AF_INET &&
1612                      sk->sk_family != AF_INET6)) {
1613                         err = -ENOTSUPP;
1614                         goto err_prog_put;
1615                 }
1616         } else {
1617                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1618                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1619                         err = -ENOMEM;
1620                         goto err_prog_put;
1621                 }
1622         }
1623
1624         err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626         if (err)
1627                 bpf_prog_put(prog);
1628
1629         return err;
1630 }
1631
1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634         if (!prog)
1635                 return;
1636
1637         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638                 bpf_prog_put(prog);
1639         else
1640                 bpf_prog_destroy(prog);
1641 }
1642
1643 struct bpf_scratchpad {
1644         union {
1645                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646                 u8     buff[MAX_BPF_STACK];
1647         };
1648 };
1649
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651
1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653                                           unsigned int write_len)
1654 {
1655         return skb_ensure_writable(skb, write_len);
1656 }
1657
1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659                                         unsigned int write_len)
1660 {
1661         int err = __bpf_try_make_writable(skb, write_len);
1662
1663         bpf_compute_data_pointers(skb);
1664         return err;
1665 }
1666
1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669         return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671
1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674         if (skb_at_tc_ingress(skb))
1675                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677
1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680         if (skb_at_tc_ingress(skb))
1681                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683
1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685            const void *, from, u32, len, u64, flags)
1686 {
1687         void *ptr;
1688
1689         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690                 return -EINVAL;
1691         if (unlikely(offset > 0xffff))
1692                 return -EFAULT;
1693         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694                 return -EFAULT;
1695
1696         ptr = skb->data + offset;
1697         if (flags & BPF_F_RECOMPUTE_CSUM)
1698                 __skb_postpull_rcsum(skb, ptr, len, offset);
1699
1700         memcpy(ptr, from, len);
1701
1702         if (flags & BPF_F_RECOMPUTE_CSUM)
1703                 __skb_postpush_rcsum(skb, ptr, len, offset);
1704         if (flags & BPF_F_INVALIDATE_HASH)
1705                 skb_clear_hash(skb);
1706
1707         return 0;
1708 }
1709
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711         .func           = bpf_skb_store_bytes,
1712         .gpl_only       = false,
1713         .ret_type       = RET_INTEGER,
1714         .arg1_type      = ARG_PTR_TO_CTX,
1715         .arg2_type      = ARG_ANYTHING,
1716         .arg3_type      = ARG_PTR_TO_MEM,
1717         .arg4_type      = ARG_CONST_SIZE,
1718         .arg5_type      = ARG_ANYTHING,
1719 };
1720
1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722            void *, to, u32, len)
1723 {
1724         void *ptr;
1725
1726         if (unlikely(offset > 0xffff))
1727                 goto err_clear;
1728
1729         ptr = skb_header_pointer(skb, offset, len, to);
1730         if (unlikely(!ptr))
1731                 goto err_clear;
1732         if (ptr != to)
1733                 memcpy(to, ptr, len);
1734
1735         return 0;
1736 err_clear:
1737         memset(to, 0, len);
1738         return -EFAULT;
1739 }
1740
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742         .func           = bpf_skb_load_bytes,
1743         .gpl_only       = false,
1744         .ret_type       = RET_INTEGER,
1745         .arg1_type      = ARG_PTR_TO_CTX,
1746         .arg2_type      = ARG_ANYTHING,
1747         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1748         .arg4_type      = ARG_CONST_SIZE,
1749 };
1750
1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752            const struct bpf_flow_dissector *, ctx, u32, offset,
1753            void *, to, u32, len)
1754 {
1755         void *ptr;
1756
1757         if (unlikely(offset > 0xffff))
1758                 goto err_clear;
1759
1760         if (unlikely(!ctx->skb))
1761                 goto err_clear;
1762
1763         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764         if (unlikely(!ptr))
1765                 goto err_clear;
1766         if (ptr != to)
1767                 memcpy(to, ptr, len);
1768
1769         return 0;
1770 err_clear:
1771         memset(to, 0, len);
1772         return -EFAULT;
1773 }
1774
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776         .func           = bpf_flow_dissector_load_bytes,
1777         .gpl_only       = false,
1778         .ret_type       = RET_INTEGER,
1779         .arg1_type      = ARG_PTR_TO_CTX,
1780         .arg2_type      = ARG_ANYTHING,
1781         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1782         .arg4_type      = ARG_CONST_SIZE,
1783 };
1784
1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786            u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788         u8 *end = skb_tail_pointer(skb);
1789         u8 *start, *ptr;
1790
1791         if (unlikely(offset > 0xffff))
1792                 goto err_clear;
1793
1794         switch (start_header) {
1795         case BPF_HDR_START_MAC:
1796                 if (unlikely(!skb_mac_header_was_set(skb)))
1797                         goto err_clear;
1798                 start = skb_mac_header(skb);
1799                 break;
1800         case BPF_HDR_START_NET:
1801                 start = skb_network_header(skb);
1802                 break;
1803         default:
1804                 goto err_clear;
1805         }
1806
1807         ptr = start + offset;
1808
1809         if (likely(ptr + len <= end)) {
1810                 memcpy(to, ptr, len);
1811                 return 0;
1812         }
1813
1814 err_clear:
1815         memset(to, 0, len);
1816         return -EFAULT;
1817 }
1818
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820         .func           = bpf_skb_load_bytes_relative,
1821         .gpl_only       = false,
1822         .ret_type       = RET_INTEGER,
1823         .arg1_type      = ARG_PTR_TO_CTX,
1824         .arg2_type      = ARG_ANYTHING,
1825         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1826         .arg4_type      = ARG_CONST_SIZE,
1827         .arg5_type      = ARG_ANYTHING,
1828 };
1829
1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832         /* Idea is the following: should the needed direct read/write
1833          * test fail during runtime, we can pull in more data and redo
1834          * again, since implicitly, we invalidate previous checks here.
1835          *
1836          * Or, since we know how much we need to make read/writeable,
1837          * this can be done once at the program beginning for direct
1838          * access case. By this we overcome limitations of only current
1839          * headroom being accessible.
1840          */
1841         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845         .func           = bpf_skb_pull_data,
1846         .gpl_only       = false,
1847         .ret_type       = RET_INTEGER,
1848         .arg1_type      = ARG_PTR_TO_CTX,
1849         .arg2_type      = ARG_ANYTHING,
1850 };
1851
1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858         .func           = bpf_sk_fullsock,
1859         .gpl_only       = false,
1860         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1861         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1862 };
1863
1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865                                            unsigned int write_len)
1866 {
1867         return __bpf_try_make_writable(skb, write_len);
1868 }
1869
1870 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1871 {
1872         /* Idea is the following: should the needed direct read/write
1873          * test fail during runtime, we can pull in more data and redo
1874          * again, since implicitly, we invalidate previous checks here.
1875          *
1876          * Or, since we know how much we need to make read/writeable,
1877          * this can be done once at the program beginning for direct
1878          * access case. By this we overcome limitations of only current
1879          * headroom being accessible.
1880          */
1881         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1882 }
1883
1884 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1885         .func           = sk_skb_pull_data,
1886         .gpl_only       = false,
1887         .ret_type       = RET_INTEGER,
1888         .arg1_type      = ARG_PTR_TO_CTX,
1889         .arg2_type      = ARG_ANYTHING,
1890 };
1891
1892 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1893            u64, from, u64, to, u64, flags)
1894 {
1895         __sum16 *ptr;
1896
1897         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1898                 return -EINVAL;
1899         if (unlikely(offset > 0xffff || offset & 1))
1900                 return -EFAULT;
1901         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1902                 return -EFAULT;
1903
1904         ptr = (__sum16 *)(skb->data + offset);
1905         switch (flags & BPF_F_HDR_FIELD_MASK) {
1906         case 0:
1907                 if (unlikely(from != 0))
1908                         return -EINVAL;
1909
1910                 csum_replace_by_diff(ptr, to);
1911                 break;
1912         case 2:
1913                 csum_replace2(ptr, from, to);
1914                 break;
1915         case 4:
1916                 csum_replace4(ptr, from, to);
1917                 break;
1918         default:
1919                 return -EINVAL;
1920         }
1921
1922         return 0;
1923 }
1924
1925 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1926         .func           = bpf_l3_csum_replace,
1927         .gpl_only       = false,
1928         .ret_type       = RET_INTEGER,
1929         .arg1_type      = ARG_PTR_TO_CTX,
1930         .arg2_type      = ARG_ANYTHING,
1931         .arg3_type      = ARG_ANYTHING,
1932         .arg4_type      = ARG_ANYTHING,
1933         .arg5_type      = ARG_ANYTHING,
1934 };
1935
1936 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1937            u64, from, u64, to, u64, flags)
1938 {
1939         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1940         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1941         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1942         __sum16 *ptr;
1943
1944         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1945                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1946                 return -EINVAL;
1947         if (unlikely(offset > 0xffff || offset & 1))
1948                 return -EFAULT;
1949         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1950                 return -EFAULT;
1951
1952         ptr = (__sum16 *)(skb->data + offset);
1953         if (is_mmzero && !do_mforce && !*ptr)
1954                 return 0;
1955
1956         switch (flags & BPF_F_HDR_FIELD_MASK) {
1957         case 0:
1958                 if (unlikely(from != 0))
1959                         return -EINVAL;
1960
1961                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1962                 break;
1963         case 2:
1964                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1965                 break;
1966         case 4:
1967                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         default:
1970                 return -EINVAL;
1971         }
1972
1973         if (is_mmzero && !*ptr)
1974                 *ptr = CSUM_MANGLED_0;
1975         return 0;
1976 }
1977
1978 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1979         .func           = bpf_l4_csum_replace,
1980         .gpl_only       = false,
1981         .ret_type       = RET_INTEGER,
1982         .arg1_type      = ARG_PTR_TO_CTX,
1983         .arg2_type      = ARG_ANYTHING,
1984         .arg3_type      = ARG_ANYTHING,
1985         .arg4_type      = ARG_ANYTHING,
1986         .arg5_type      = ARG_ANYTHING,
1987 };
1988
1989 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1990            __be32 *, to, u32, to_size, __wsum, seed)
1991 {
1992         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1993         u32 diff_size = from_size + to_size;
1994         int i, j = 0;
1995
1996         /* This is quite flexible, some examples:
1997          *
1998          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1999          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2000          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2001          *
2002          * Even for diffing, from_size and to_size don't need to be equal.
2003          */
2004         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2005                      diff_size > sizeof(sp->diff)))
2006                 return -EINVAL;
2007
2008         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2009                 sp->diff[j] = ~from[i];
2010         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2011                 sp->diff[j] = to[i];
2012
2013         return csum_partial(sp->diff, diff_size, seed);
2014 }
2015
2016 static const struct bpf_func_proto bpf_csum_diff_proto = {
2017         .func           = bpf_csum_diff,
2018         .gpl_only       = false,
2019         .pkt_access     = true,
2020         .ret_type       = RET_INTEGER,
2021         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2022         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2023         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2024         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2025         .arg5_type      = ARG_ANYTHING,
2026 };
2027
2028 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2029 {
2030         /* The interface is to be used in combination with bpf_csum_diff()
2031          * for direct packet writes. csum rotation for alignment as well
2032          * as emulating csum_sub() can be done from the eBPF program.
2033          */
2034         if (skb->ip_summed == CHECKSUM_COMPLETE)
2035                 return (skb->csum = csum_add(skb->csum, csum));
2036
2037         return -ENOTSUPP;
2038 }
2039
2040 static const struct bpf_func_proto bpf_csum_update_proto = {
2041         .func           = bpf_csum_update,
2042         .gpl_only       = false,
2043         .ret_type       = RET_INTEGER,
2044         .arg1_type      = ARG_PTR_TO_CTX,
2045         .arg2_type      = ARG_ANYTHING,
2046 };
2047
2048 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2049 {
2050         /* The interface is to be used in combination with bpf_skb_adjust_room()
2051          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2052          * is passed as flags, for example.
2053          */
2054         switch (level) {
2055         case BPF_CSUM_LEVEL_INC:
2056                 __skb_incr_checksum_unnecessary(skb);
2057                 break;
2058         case BPF_CSUM_LEVEL_DEC:
2059                 __skb_decr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_RESET:
2062                 __skb_reset_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_QUERY:
2065                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2066                        skb->csum_level : -EACCES;
2067         default:
2068                 return -EINVAL;
2069         }
2070
2071         return 0;
2072 }
2073
2074 static const struct bpf_func_proto bpf_csum_level_proto = {
2075         .func           = bpf_csum_level,
2076         .gpl_only       = false,
2077         .ret_type       = RET_INTEGER,
2078         .arg1_type      = ARG_PTR_TO_CTX,
2079         .arg2_type      = ARG_ANYTHING,
2080 };
2081
2082 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2083 {
2084         return dev_forward_skb_nomtu(dev, skb);
2085 }
2086
2087 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2088                                       struct sk_buff *skb)
2089 {
2090         int ret = ____dev_forward_skb(dev, skb, false);
2091
2092         if (likely(!ret)) {
2093                 skb->dev = dev;
2094                 ret = netif_rx(skb);
2095         }
2096
2097         return ret;
2098 }
2099
2100 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102         int ret;
2103
2104         if (dev_xmit_recursion()) {
2105                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2106                 kfree_skb(skb);
2107                 return -ENETDOWN;
2108         }
2109
2110         skb->dev = dev;
2111         skb->tstamp = 0;
2112
2113         dev_xmit_recursion_inc();
2114         ret = dev_queue_xmit(skb);
2115         dev_xmit_recursion_dec();
2116
2117         return ret;
2118 }
2119
2120 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2121                                  u32 flags)
2122 {
2123         unsigned int mlen = skb_network_offset(skb);
2124
2125         if (mlen) {
2126                 __skb_pull(skb, mlen);
2127
2128                 /* At ingress, the mac header has already been pulled once.
2129                  * At egress, skb_pospull_rcsum has to be done in case that
2130                  * the skb is originated from ingress (i.e. a forwarded skb)
2131                  * to ensure that rcsum starts at net header.
2132                  */
2133                 if (!skb_at_tc_ingress(skb))
2134                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2135         }
2136         skb_pop_mac_header(skb);
2137         skb_reset_mac_len(skb);
2138         return flags & BPF_F_INGRESS ?
2139                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2140 }
2141
2142 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2143                                  u32 flags)
2144 {
2145         /* Verify that a link layer header is carried */
2146         if (unlikely(skb->mac_header >= skb->network_header)) {
2147                 kfree_skb(skb);
2148                 return -ERANGE;
2149         }
2150
2151         bpf_push_mac_rcsum(skb);
2152         return flags & BPF_F_INGRESS ?
2153                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2154 }
2155
2156 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2157                           u32 flags)
2158 {
2159         if (dev_is_mac_header_xmit(dev))
2160                 return __bpf_redirect_common(skb, dev, flags);
2161         else
2162                 return __bpf_redirect_no_mac(skb, dev, flags);
2163 }
2164
2165 #if IS_ENABLED(CONFIG_IPV6)
2166 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2167                             struct net_device *dev, struct bpf_nh_params *nh)
2168 {
2169         u32 hh_len = LL_RESERVED_SPACE(dev);
2170         const struct in6_addr *nexthop;
2171         struct dst_entry *dst = NULL;
2172         struct neighbour *neigh;
2173
2174         if (dev_xmit_recursion()) {
2175                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2176                 goto out_drop;
2177         }
2178
2179         skb->dev = dev;
2180         skb->tstamp = 0;
2181
2182         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2183                 skb = skb_expand_head(skb, hh_len);
2184                 if (!skb)
2185                         return -ENOMEM;
2186         }
2187
2188         rcu_read_lock_bh();
2189         if (!nh) {
2190                 dst = skb_dst(skb);
2191                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2192                                       &ipv6_hdr(skb)->daddr);
2193         } else {
2194                 nexthop = &nh->ipv6_nh;
2195         }
2196         neigh = ip_neigh_gw6(dev, nexthop);
2197         if (likely(!IS_ERR(neigh))) {
2198                 int ret;
2199
2200                 sock_confirm_neigh(skb, neigh);
2201                 dev_xmit_recursion_inc();
2202                 ret = neigh_output(neigh, skb, false);
2203                 dev_xmit_recursion_dec();
2204                 rcu_read_unlock_bh();
2205                 return ret;
2206         }
2207         rcu_read_unlock_bh();
2208         if (dst)
2209                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2210 out_drop:
2211         kfree_skb(skb);
2212         return -ENETDOWN;
2213 }
2214
2215 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2216                                    struct bpf_nh_params *nh)
2217 {
2218         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2219         struct net *net = dev_net(dev);
2220         int err, ret = NET_XMIT_DROP;
2221
2222         if (!nh) {
2223                 struct dst_entry *dst;
2224                 struct flowi6 fl6 = {
2225                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2226                         .flowi6_mark  = skb->mark,
2227                         .flowlabel    = ip6_flowinfo(ip6h),
2228                         .flowi6_oif   = dev->ifindex,
2229                         .flowi6_proto = ip6h->nexthdr,
2230                         .daddr        = ip6h->daddr,
2231                         .saddr        = ip6h->saddr,
2232                 };
2233
2234                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2235                 if (IS_ERR(dst))
2236                         goto out_drop;
2237
2238                 skb_dst_set(skb, dst);
2239         } else if (nh->nh_family != AF_INET6) {
2240                 goto out_drop;
2241         }
2242
2243         err = bpf_out_neigh_v6(net, skb, dev, nh);
2244         if (unlikely(net_xmit_eval(err)))
2245                 dev->stats.tx_errors++;
2246         else
2247                 ret = NET_XMIT_SUCCESS;
2248         goto out_xmit;
2249 out_drop:
2250         dev->stats.tx_errors++;
2251         kfree_skb(skb);
2252 out_xmit:
2253         return ret;
2254 }
2255 #else
2256 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2257                                    struct bpf_nh_params *nh)
2258 {
2259         kfree_skb(skb);
2260         return NET_XMIT_DROP;
2261 }
2262 #endif /* CONFIG_IPV6 */
2263
2264 #if IS_ENABLED(CONFIG_INET)
2265 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2266                             struct net_device *dev, struct bpf_nh_params *nh)
2267 {
2268         u32 hh_len = LL_RESERVED_SPACE(dev);
2269         struct neighbour *neigh;
2270         bool is_v6gw = false;
2271
2272         if (dev_xmit_recursion()) {
2273                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274                 goto out_drop;
2275         }
2276
2277         skb->dev = dev;
2278         skb->tstamp = 0;
2279
2280         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281                 skb = skb_expand_head(skb, hh_len);
2282                 if (!skb)
2283                         return -ENOMEM;
2284         }
2285
2286         rcu_read_lock_bh();
2287         if (!nh) {
2288                 struct dst_entry *dst = skb_dst(skb);
2289                 struct rtable *rt = container_of(dst, struct rtable, dst);
2290
2291                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2292         } else if (nh->nh_family == AF_INET6) {
2293                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2294                 is_v6gw = true;
2295         } else if (nh->nh_family == AF_INET) {
2296                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2297         } else {
2298                 rcu_read_unlock_bh();
2299                 goto out_drop;
2300         }
2301
2302         if (likely(!IS_ERR(neigh))) {
2303                 int ret;
2304
2305                 sock_confirm_neigh(skb, neigh);
2306                 dev_xmit_recursion_inc();
2307                 ret = neigh_output(neigh, skb, is_v6gw);
2308                 dev_xmit_recursion_dec();
2309                 rcu_read_unlock_bh();
2310                 return ret;
2311         }
2312         rcu_read_unlock_bh();
2313 out_drop:
2314         kfree_skb(skb);
2315         return -ENETDOWN;
2316 }
2317
2318 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2319                                    struct bpf_nh_params *nh)
2320 {
2321         const struct iphdr *ip4h = ip_hdr(skb);
2322         struct net *net = dev_net(dev);
2323         int err, ret = NET_XMIT_DROP;
2324
2325         if (!nh) {
2326                 struct flowi4 fl4 = {
2327                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2328                         .flowi4_mark  = skb->mark,
2329                         .flowi4_tos   = RT_TOS(ip4h->tos),
2330                         .flowi4_oif   = dev->ifindex,
2331                         .flowi4_proto = ip4h->protocol,
2332                         .daddr        = ip4h->daddr,
2333                         .saddr        = ip4h->saddr,
2334                 };
2335                 struct rtable *rt;
2336
2337                 rt = ip_route_output_flow(net, &fl4, NULL);
2338                 if (IS_ERR(rt))
2339                         goto out_drop;
2340                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2341                         ip_rt_put(rt);
2342                         goto out_drop;
2343                 }
2344
2345                 skb_dst_set(skb, &rt->dst);
2346         }
2347
2348         err = bpf_out_neigh_v4(net, skb, dev, nh);
2349         if (unlikely(net_xmit_eval(err)))
2350                 dev->stats.tx_errors++;
2351         else
2352                 ret = NET_XMIT_SUCCESS;
2353         goto out_xmit;
2354 out_drop:
2355         dev->stats.tx_errors++;
2356         kfree_skb(skb);
2357 out_xmit:
2358         return ret;
2359 }
2360 #else
2361 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2362                                    struct bpf_nh_params *nh)
2363 {
2364         kfree_skb(skb);
2365         return NET_XMIT_DROP;
2366 }
2367 #endif /* CONFIG_INET */
2368
2369 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2370                                 struct bpf_nh_params *nh)
2371 {
2372         struct ethhdr *ethh = eth_hdr(skb);
2373
2374         if (unlikely(skb->mac_header >= skb->network_header))
2375                 goto out;
2376         bpf_push_mac_rcsum(skb);
2377         if (is_multicast_ether_addr(ethh->h_dest))
2378                 goto out;
2379
2380         skb_pull(skb, sizeof(*ethh));
2381         skb_unset_mac_header(skb);
2382         skb_reset_network_header(skb);
2383
2384         if (skb->protocol == htons(ETH_P_IP))
2385                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2386         else if (skb->protocol == htons(ETH_P_IPV6))
2387                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2388 out:
2389         kfree_skb(skb);
2390         return -ENOTSUPP;
2391 }
2392
2393 /* Internal, non-exposed redirect flags. */
2394 enum {
2395         BPF_F_NEIGH     = (1ULL << 1),
2396         BPF_F_PEER      = (1ULL << 2),
2397         BPF_F_NEXTHOP   = (1ULL << 3),
2398 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2399 };
2400
2401 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2402 {
2403         struct net_device *dev;
2404         struct sk_buff *clone;
2405         int ret;
2406
2407         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2408                 return -EINVAL;
2409
2410         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2411         if (unlikely(!dev))
2412                 return -EINVAL;
2413
2414         clone = skb_clone(skb, GFP_ATOMIC);
2415         if (unlikely(!clone))
2416                 return -ENOMEM;
2417
2418         /* For direct write, we need to keep the invariant that the skbs
2419          * we're dealing with need to be uncloned. Should uncloning fail
2420          * here, we need to free the just generated clone to unclone once
2421          * again.
2422          */
2423         ret = bpf_try_make_head_writable(skb);
2424         if (unlikely(ret)) {
2425                 kfree_skb(clone);
2426                 return -ENOMEM;
2427         }
2428
2429         return __bpf_redirect(clone, dev, flags);
2430 }
2431
2432 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2433         .func           = bpf_clone_redirect,
2434         .gpl_only       = false,
2435         .ret_type       = RET_INTEGER,
2436         .arg1_type      = ARG_PTR_TO_CTX,
2437         .arg2_type      = ARG_ANYTHING,
2438         .arg3_type      = ARG_ANYTHING,
2439 };
2440
2441 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2442 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2443
2444 int skb_do_redirect(struct sk_buff *skb)
2445 {
2446         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2447         struct net *net = dev_net(skb->dev);
2448         struct net_device *dev;
2449         u32 flags = ri->flags;
2450
2451         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2452         ri->tgt_index = 0;
2453         ri->flags = 0;
2454         if (unlikely(!dev))
2455                 goto out_drop;
2456         if (flags & BPF_F_PEER) {
2457                 const struct net_device_ops *ops = dev->netdev_ops;
2458
2459                 if (unlikely(!ops->ndo_get_peer_dev ||
2460                              !skb_at_tc_ingress(skb)))
2461                         goto out_drop;
2462                 dev = ops->ndo_get_peer_dev(dev);
2463                 if (unlikely(!dev ||
2464                              !(dev->flags & IFF_UP) ||
2465                              net_eq(net, dev_net(dev))))
2466                         goto out_drop;
2467                 skb->dev = dev;
2468                 return -EAGAIN;
2469         }
2470         return flags & BPF_F_NEIGH ?
2471                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2472                                     &ri->nh : NULL) :
2473                __bpf_redirect(skb, dev, flags);
2474 out_drop:
2475         kfree_skb(skb);
2476         return -EINVAL;
2477 }
2478
2479 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2480 {
2481         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2482
2483         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2484                 return TC_ACT_SHOT;
2485
2486         ri->flags = flags;
2487         ri->tgt_index = ifindex;
2488
2489         return TC_ACT_REDIRECT;
2490 }
2491
2492 static const struct bpf_func_proto bpf_redirect_proto = {
2493         .func           = bpf_redirect,
2494         .gpl_only       = false,
2495         .ret_type       = RET_INTEGER,
2496         .arg1_type      = ARG_ANYTHING,
2497         .arg2_type      = ARG_ANYTHING,
2498 };
2499
2500 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2501 {
2502         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2503
2504         if (unlikely(flags))
2505                 return TC_ACT_SHOT;
2506
2507         ri->flags = BPF_F_PEER;
2508         ri->tgt_index = ifindex;
2509
2510         return TC_ACT_REDIRECT;
2511 }
2512
2513 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2514         .func           = bpf_redirect_peer,
2515         .gpl_only       = false,
2516         .ret_type       = RET_INTEGER,
2517         .arg1_type      = ARG_ANYTHING,
2518         .arg2_type      = ARG_ANYTHING,
2519 };
2520
2521 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2522            int, plen, u64, flags)
2523 {
2524         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2525
2526         if (unlikely((plen && plen < sizeof(*params)) || flags))
2527                 return TC_ACT_SHOT;
2528
2529         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2530         ri->tgt_index = ifindex;
2531
2532         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2533         if (plen)
2534                 memcpy(&ri->nh, params, sizeof(ri->nh));
2535
2536         return TC_ACT_REDIRECT;
2537 }
2538
2539 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2540         .func           = bpf_redirect_neigh,
2541         .gpl_only       = false,
2542         .ret_type       = RET_INTEGER,
2543         .arg1_type      = ARG_ANYTHING,
2544         .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2545         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2546         .arg4_type      = ARG_ANYTHING,
2547 };
2548
2549 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2550 {
2551         msg->apply_bytes = bytes;
2552         return 0;
2553 }
2554
2555 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2556         .func           = bpf_msg_apply_bytes,
2557         .gpl_only       = false,
2558         .ret_type       = RET_INTEGER,
2559         .arg1_type      = ARG_PTR_TO_CTX,
2560         .arg2_type      = ARG_ANYTHING,
2561 };
2562
2563 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2564 {
2565         msg->cork_bytes = bytes;
2566         return 0;
2567 }
2568
2569 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2570         .func           = bpf_msg_cork_bytes,
2571         .gpl_only       = false,
2572         .ret_type       = RET_INTEGER,
2573         .arg1_type      = ARG_PTR_TO_CTX,
2574         .arg2_type      = ARG_ANYTHING,
2575 };
2576
2577 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2578            u32, end, u64, flags)
2579 {
2580         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2581         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2582         struct scatterlist *sge;
2583         u8 *raw, *to, *from;
2584         struct page *page;
2585
2586         if (unlikely(flags || end <= start))
2587                 return -EINVAL;
2588
2589         /* First find the starting scatterlist element */
2590         i = msg->sg.start;
2591         do {
2592                 offset += len;
2593                 len = sk_msg_elem(msg, i)->length;
2594                 if (start < offset + len)
2595                         break;
2596                 sk_msg_iter_var_next(i);
2597         } while (i != msg->sg.end);
2598
2599         if (unlikely(start >= offset + len))
2600                 return -EINVAL;
2601
2602         first_sge = i;
2603         /* The start may point into the sg element so we need to also
2604          * account for the headroom.
2605          */
2606         bytes_sg_total = start - offset + bytes;
2607         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2608                 goto out;
2609
2610         /* At this point we need to linearize multiple scatterlist
2611          * elements or a single shared page. Either way we need to
2612          * copy into a linear buffer exclusively owned by BPF. Then
2613          * place the buffer in the scatterlist and fixup the original
2614          * entries by removing the entries now in the linear buffer
2615          * and shifting the remaining entries. For now we do not try
2616          * to copy partial entries to avoid complexity of running out
2617          * of sg_entry slots. The downside is reading a single byte
2618          * will copy the entire sg entry.
2619          */
2620         do {
2621                 copy += sk_msg_elem(msg, i)->length;
2622                 sk_msg_iter_var_next(i);
2623                 if (bytes_sg_total <= copy)
2624                         break;
2625         } while (i != msg->sg.end);
2626         last_sge = i;
2627
2628         if (unlikely(bytes_sg_total > copy))
2629                 return -EINVAL;
2630
2631         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2632                            get_order(copy));
2633         if (unlikely(!page))
2634                 return -ENOMEM;
2635
2636         raw = page_address(page);
2637         i = first_sge;
2638         do {
2639                 sge = sk_msg_elem(msg, i);
2640                 from = sg_virt(sge);
2641                 len = sge->length;
2642                 to = raw + poffset;
2643
2644                 memcpy(to, from, len);
2645                 poffset += len;
2646                 sge->length = 0;
2647                 put_page(sg_page(sge));
2648
2649                 sk_msg_iter_var_next(i);
2650         } while (i != last_sge);
2651
2652         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2653
2654         /* To repair sg ring we need to shift entries. If we only
2655          * had a single entry though we can just replace it and
2656          * be done. Otherwise walk the ring and shift the entries.
2657          */
2658         WARN_ON_ONCE(last_sge == first_sge);
2659         shift = last_sge > first_sge ?
2660                 last_sge - first_sge - 1 :
2661                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2662         if (!shift)
2663                 goto out;
2664
2665         i = first_sge;
2666         sk_msg_iter_var_next(i);
2667         do {
2668                 u32 move_from;
2669
2670                 if (i + shift >= NR_MSG_FRAG_IDS)
2671                         move_from = i + shift - NR_MSG_FRAG_IDS;
2672                 else
2673                         move_from = i + shift;
2674                 if (move_from == msg->sg.end)
2675                         break;
2676
2677                 msg->sg.data[i] = msg->sg.data[move_from];
2678                 msg->sg.data[move_from].length = 0;
2679                 msg->sg.data[move_from].page_link = 0;
2680                 msg->sg.data[move_from].offset = 0;
2681                 sk_msg_iter_var_next(i);
2682         } while (1);
2683
2684         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2685                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2686                       msg->sg.end - shift;
2687 out:
2688         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2689         msg->data_end = msg->data + bytes;
2690         return 0;
2691 }
2692
2693 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2694         .func           = bpf_msg_pull_data,
2695         .gpl_only       = false,
2696         .ret_type       = RET_INTEGER,
2697         .arg1_type      = ARG_PTR_TO_CTX,
2698         .arg2_type      = ARG_ANYTHING,
2699         .arg3_type      = ARG_ANYTHING,
2700         .arg4_type      = ARG_ANYTHING,
2701 };
2702
2703 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2704            u32, len, u64, flags)
2705 {
2706         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2707         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2708         u8 *raw, *to, *from;
2709         struct page *page;
2710
2711         if (unlikely(flags))
2712                 return -EINVAL;
2713
2714         /* First find the starting scatterlist element */
2715         i = msg->sg.start;
2716         do {
2717                 offset += l;
2718                 l = sk_msg_elem(msg, i)->length;
2719
2720                 if (start < offset + l)
2721                         break;
2722                 sk_msg_iter_var_next(i);
2723         } while (i != msg->sg.end);
2724
2725         if (start >= offset + l)
2726                 return -EINVAL;
2727
2728         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2729
2730         /* If no space available will fallback to copy, we need at
2731          * least one scatterlist elem available to push data into
2732          * when start aligns to the beginning of an element or two
2733          * when it falls inside an element. We handle the start equals
2734          * offset case because its the common case for inserting a
2735          * header.
2736          */
2737         if (!space || (space == 1 && start != offset))
2738                 copy = msg->sg.data[i].length;
2739
2740         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2741                            get_order(copy + len));
2742         if (unlikely(!page))
2743                 return -ENOMEM;
2744
2745         if (copy) {
2746                 int front, back;
2747
2748                 raw = page_address(page);
2749
2750                 psge = sk_msg_elem(msg, i);
2751                 front = start - offset;
2752                 back = psge->length - front;
2753                 from = sg_virt(psge);
2754
2755                 if (front)
2756                         memcpy(raw, from, front);
2757
2758                 if (back) {
2759                         from += front;
2760                         to = raw + front + len;
2761
2762                         memcpy(to, from, back);
2763                 }
2764
2765                 put_page(sg_page(psge));
2766         } else if (start - offset) {
2767                 psge = sk_msg_elem(msg, i);
2768                 rsge = sk_msg_elem_cpy(msg, i);
2769
2770                 psge->length = start - offset;
2771                 rsge.length -= psge->length;
2772                 rsge.offset += start;
2773
2774                 sk_msg_iter_var_next(i);
2775                 sg_unmark_end(psge);
2776                 sg_unmark_end(&rsge);
2777                 sk_msg_iter_next(msg, end);
2778         }
2779
2780         /* Slot(s) to place newly allocated data */
2781         new = i;
2782
2783         /* Shift one or two slots as needed */
2784         if (!copy) {
2785                 sge = sk_msg_elem_cpy(msg, i);
2786
2787                 sk_msg_iter_var_next(i);
2788                 sg_unmark_end(&sge);
2789                 sk_msg_iter_next(msg, end);
2790
2791                 nsge = sk_msg_elem_cpy(msg, i);
2792                 if (rsge.length) {
2793                         sk_msg_iter_var_next(i);
2794                         nnsge = sk_msg_elem_cpy(msg, i);
2795                 }
2796
2797                 while (i != msg->sg.end) {
2798                         msg->sg.data[i] = sge;
2799                         sge = nsge;
2800                         sk_msg_iter_var_next(i);
2801                         if (rsge.length) {
2802                                 nsge = nnsge;
2803                                 nnsge = sk_msg_elem_cpy(msg, i);
2804                         } else {
2805                                 nsge = sk_msg_elem_cpy(msg, i);
2806                         }
2807                 }
2808         }
2809
2810         /* Place newly allocated data buffer */
2811         sk_mem_charge(msg->sk, len);
2812         msg->sg.size += len;
2813         __clear_bit(new, &msg->sg.copy);
2814         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2815         if (rsge.length) {
2816                 get_page(sg_page(&rsge));
2817                 sk_msg_iter_var_next(new);
2818                 msg->sg.data[new] = rsge;
2819         }
2820
2821         sk_msg_compute_data_pointers(msg);
2822         return 0;
2823 }
2824
2825 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2826         .func           = bpf_msg_push_data,
2827         .gpl_only       = false,
2828         .ret_type       = RET_INTEGER,
2829         .arg1_type      = ARG_PTR_TO_CTX,
2830         .arg2_type      = ARG_ANYTHING,
2831         .arg3_type      = ARG_ANYTHING,
2832         .arg4_type      = ARG_ANYTHING,
2833 };
2834
2835 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2836 {
2837         int prev;
2838
2839         do {
2840                 prev = i;
2841                 sk_msg_iter_var_next(i);
2842                 msg->sg.data[prev] = msg->sg.data[i];
2843         } while (i != msg->sg.end);
2844
2845         sk_msg_iter_prev(msg, end);
2846 }
2847
2848 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2849 {
2850         struct scatterlist tmp, sge;
2851
2852         sk_msg_iter_next(msg, end);
2853         sge = sk_msg_elem_cpy(msg, i);
2854         sk_msg_iter_var_next(i);
2855         tmp = sk_msg_elem_cpy(msg, i);
2856
2857         while (i != msg->sg.end) {
2858                 msg->sg.data[i] = sge;
2859                 sk_msg_iter_var_next(i);
2860                 sge = tmp;
2861                 tmp = sk_msg_elem_cpy(msg, i);
2862         }
2863 }
2864
2865 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2866            u32, len, u64, flags)
2867 {
2868         u32 i = 0, l = 0, space, offset = 0;
2869         u64 last = start + len;
2870         int pop;
2871
2872         if (unlikely(flags))
2873                 return -EINVAL;
2874
2875         /* First find the starting scatterlist element */
2876         i = msg->sg.start;
2877         do {
2878                 offset += l;
2879                 l = sk_msg_elem(msg, i)->length;
2880
2881                 if (start < offset + l)
2882                         break;
2883                 sk_msg_iter_var_next(i);
2884         } while (i != msg->sg.end);
2885
2886         /* Bounds checks: start and pop must be inside message */
2887         if (start >= offset + l || last >= msg->sg.size)
2888                 return -EINVAL;
2889
2890         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2891
2892         pop = len;
2893         /* --------------| offset
2894          * -| start      |-------- len -------|
2895          *
2896          *  |----- a ----|-------- pop -------|----- b ----|
2897          *  |______________________________________________| length
2898          *
2899          *
2900          * a:   region at front of scatter element to save
2901          * b:   region at back of scatter element to save when length > A + pop
2902          * pop: region to pop from element, same as input 'pop' here will be
2903          *      decremented below per iteration.
2904          *
2905          * Two top-level cases to handle when start != offset, first B is non
2906          * zero and second B is zero corresponding to when a pop includes more
2907          * than one element.
2908          *
2909          * Then if B is non-zero AND there is no space allocate space and
2910          * compact A, B regions into page. If there is space shift ring to
2911          * the rigth free'ing the next element in ring to place B, leaving
2912          * A untouched except to reduce length.
2913          */
2914         if (start != offset) {
2915                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2916                 int a = start;
2917                 int b = sge->length - pop - a;
2918
2919                 sk_msg_iter_var_next(i);
2920
2921                 if (pop < sge->length - a) {
2922                         if (space) {
2923                                 sge->length = a;
2924                                 sk_msg_shift_right(msg, i);
2925                                 nsge = sk_msg_elem(msg, i);
2926                                 get_page(sg_page(sge));
2927                                 sg_set_page(nsge,
2928                                             sg_page(sge),
2929                                             b, sge->offset + pop + a);
2930                         } else {
2931                                 struct page *page, *orig;
2932                                 u8 *to, *from;
2933
2934                                 page = alloc_pages(__GFP_NOWARN |
2935                                                    __GFP_COMP   | GFP_ATOMIC,
2936                                                    get_order(a + b));
2937                                 if (unlikely(!page))
2938                                         return -ENOMEM;
2939
2940                                 sge->length = a;
2941                                 orig = sg_page(sge);
2942                                 from = sg_virt(sge);
2943                                 to = page_address(page);
2944                                 memcpy(to, from, a);
2945                                 memcpy(to + a, from + a + pop, b);
2946                                 sg_set_page(sge, page, a + b, 0);
2947                                 put_page(orig);
2948                         }
2949                         pop = 0;
2950                 } else if (pop >= sge->length - a) {
2951                         pop -= (sge->length - a);
2952                         sge->length = a;
2953                 }
2954         }
2955
2956         /* From above the current layout _must_ be as follows,
2957          *
2958          * -| offset
2959          * -| start
2960          *
2961          *  |---- pop ---|---------------- b ------------|
2962          *  |____________________________________________| length
2963          *
2964          * Offset and start of the current msg elem are equal because in the
2965          * previous case we handled offset != start and either consumed the
2966          * entire element and advanced to the next element OR pop == 0.
2967          *
2968          * Two cases to handle here are first pop is less than the length
2969          * leaving some remainder b above. Simply adjust the element's layout
2970          * in this case. Or pop >= length of the element so that b = 0. In this
2971          * case advance to next element decrementing pop.
2972          */
2973         while (pop) {
2974                 struct scatterlist *sge = sk_msg_elem(msg, i);
2975
2976                 if (pop < sge->length) {
2977                         sge->length -= pop;
2978                         sge->offset += pop;
2979                         pop = 0;
2980                 } else {
2981                         pop -= sge->length;
2982                         sk_msg_shift_left(msg, i);
2983                 }
2984                 sk_msg_iter_var_next(i);
2985         }
2986
2987         sk_mem_uncharge(msg->sk, len - pop);
2988         msg->sg.size -= (len - pop);
2989         sk_msg_compute_data_pointers(msg);
2990         return 0;
2991 }
2992
2993 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2994         .func           = bpf_msg_pop_data,
2995         .gpl_only       = false,
2996         .ret_type       = RET_INTEGER,
2997         .arg1_type      = ARG_PTR_TO_CTX,
2998         .arg2_type      = ARG_ANYTHING,
2999         .arg3_type      = ARG_ANYTHING,
3000         .arg4_type      = ARG_ANYTHING,
3001 };
3002
3003 #ifdef CONFIG_CGROUP_NET_CLASSID
3004 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3005 {
3006         return __task_get_classid(current);
3007 }
3008
3009 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3010         .func           = bpf_get_cgroup_classid_curr,
3011         .gpl_only       = false,
3012         .ret_type       = RET_INTEGER,
3013 };
3014
3015 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3016 {
3017         struct sock *sk = skb_to_full_sk(skb);
3018
3019         if (!sk || !sk_fullsock(sk))
3020                 return 0;
3021
3022         return sock_cgroup_classid(&sk->sk_cgrp_data);
3023 }
3024
3025 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3026         .func           = bpf_skb_cgroup_classid,
3027         .gpl_only       = false,
3028         .ret_type       = RET_INTEGER,
3029         .arg1_type      = ARG_PTR_TO_CTX,
3030 };
3031 #endif
3032
3033 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3034 {
3035         return task_get_classid(skb);
3036 }
3037
3038 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3039         .func           = bpf_get_cgroup_classid,
3040         .gpl_only       = false,
3041         .ret_type       = RET_INTEGER,
3042         .arg1_type      = ARG_PTR_TO_CTX,
3043 };
3044
3045 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3046 {
3047         return dst_tclassid(skb);
3048 }
3049
3050 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3051         .func           = bpf_get_route_realm,
3052         .gpl_only       = false,
3053         .ret_type       = RET_INTEGER,
3054         .arg1_type      = ARG_PTR_TO_CTX,
3055 };
3056
3057 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3058 {
3059         /* If skb_clear_hash() was called due to mangling, we can
3060          * trigger SW recalculation here. Later access to hash
3061          * can then use the inline skb->hash via context directly
3062          * instead of calling this helper again.
3063          */
3064         return skb_get_hash(skb);
3065 }
3066
3067 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3068         .func           = bpf_get_hash_recalc,
3069         .gpl_only       = false,
3070         .ret_type       = RET_INTEGER,
3071         .arg1_type      = ARG_PTR_TO_CTX,
3072 };
3073
3074 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3075 {
3076         /* After all direct packet write, this can be used once for
3077          * triggering a lazy recalc on next skb_get_hash() invocation.
3078          */
3079         skb_clear_hash(skb);
3080         return 0;
3081 }
3082
3083 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3084         .func           = bpf_set_hash_invalid,
3085         .gpl_only       = false,
3086         .ret_type       = RET_INTEGER,
3087         .arg1_type      = ARG_PTR_TO_CTX,
3088 };
3089
3090 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3091 {
3092         /* Set user specified hash as L4(+), so that it gets returned
3093          * on skb_get_hash() call unless BPF prog later on triggers a
3094          * skb_clear_hash().
3095          */
3096         __skb_set_sw_hash(skb, hash, true);
3097         return 0;
3098 }
3099
3100 static const struct bpf_func_proto bpf_set_hash_proto = {
3101         .func           = bpf_set_hash,
3102         .gpl_only       = false,
3103         .ret_type       = RET_INTEGER,
3104         .arg1_type      = ARG_PTR_TO_CTX,
3105         .arg2_type      = ARG_ANYTHING,
3106 };
3107
3108 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3109            u16, vlan_tci)
3110 {
3111         int ret;
3112
3113         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3114                      vlan_proto != htons(ETH_P_8021AD)))
3115                 vlan_proto = htons(ETH_P_8021Q);
3116
3117         bpf_push_mac_rcsum(skb);
3118         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3119         bpf_pull_mac_rcsum(skb);
3120
3121         bpf_compute_data_pointers(skb);
3122         return ret;
3123 }
3124
3125 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3126         .func           = bpf_skb_vlan_push,
3127         .gpl_only       = false,
3128         .ret_type       = RET_INTEGER,
3129         .arg1_type      = ARG_PTR_TO_CTX,
3130         .arg2_type      = ARG_ANYTHING,
3131         .arg3_type      = ARG_ANYTHING,
3132 };
3133
3134 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3135 {
3136         int ret;
3137
3138         bpf_push_mac_rcsum(skb);
3139         ret = skb_vlan_pop(skb);
3140         bpf_pull_mac_rcsum(skb);
3141
3142         bpf_compute_data_pointers(skb);
3143         return ret;
3144 }
3145
3146 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3147         .func           = bpf_skb_vlan_pop,
3148         .gpl_only       = false,
3149         .ret_type       = RET_INTEGER,
3150         .arg1_type      = ARG_PTR_TO_CTX,
3151 };
3152
3153 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3154 {
3155         /* Caller already did skb_cow() with len as headroom,
3156          * so no need to do it here.
3157          */
3158         skb_push(skb, len);
3159         memmove(skb->data, skb->data + len, off);
3160         memset(skb->data + off, 0, len);
3161
3162         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3163          * needed here as it does not change the skb->csum
3164          * result for checksum complete when summing over
3165          * zeroed blocks.
3166          */
3167         return 0;
3168 }
3169
3170 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3171 {
3172         /* skb_ensure_writable() is not needed here, as we're
3173          * already working on an uncloned skb.
3174          */
3175         if (unlikely(!pskb_may_pull(skb, off + len)))
3176                 return -ENOMEM;
3177
3178         skb_postpull_rcsum(skb, skb->data + off, len);
3179         memmove(skb->data + len, skb->data, off);
3180         __skb_pull(skb, len);
3181
3182         return 0;
3183 }
3184
3185 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3186 {
3187         bool trans_same = skb->transport_header == skb->network_header;
3188         int ret;
3189
3190         /* There's no need for __skb_push()/__skb_pull() pair to
3191          * get to the start of the mac header as we're guaranteed
3192          * to always start from here under eBPF.
3193          */
3194         ret = bpf_skb_generic_push(skb, off, len);
3195         if (likely(!ret)) {
3196                 skb->mac_header -= len;
3197                 skb->network_header -= len;
3198                 if (trans_same)
3199                         skb->transport_header = skb->network_header;
3200         }
3201
3202         return ret;
3203 }
3204
3205 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3206 {
3207         bool trans_same = skb->transport_header == skb->network_header;
3208         int ret;
3209
3210         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3211         ret = bpf_skb_generic_pop(skb, off, len);
3212         if (likely(!ret)) {
3213                 skb->mac_header += len;
3214                 skb->network_header += len;
3215                 if (trans_same)
3216                         skb->transport_header = skb->network_header;
3217         }
3218
3219         return ret;
3220 }
3221
3222 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3223 {
3224         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3225         u32 off = skb_mac_header_len(skb);
3226         int ret;
3227
3228         ret = skb_cow(skb, len_diff);
3229         if (unlikely(ret < 0))
3230                 return ret;
3231
3232         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3233         if (unlikely(ret < 0))
3234                 return ret;
3235
3236         if (skb_is_gso(skb)) {
3237                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3238
3239                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3240                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3241                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3242                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3243                 }
3244         }
3245
3246         skb->protocol = htons(ETH_P_IPV6);
3247         skb_clear_hash(skb);
3248
3249         return 0;
3250 }
3251
3252 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3253 {
3254         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3255         u32 off = skb_mac_header_len(skb);
3256         int ret;
3257
3258         ret = skb_unclone(skb, GFP_ATOMIC);
3259         if (unlikely(ret < 0))
3260                 return ret;
3261
3262         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3263         if (unlikely(ret < 0))
3264                 return ret;
3265
3266         if (skb_is_gso(skb)) {
3267                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3268
3269                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3270                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3271                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3272                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3273                 }
3274         }
3275
3276         skb->protocol = htons(ETH_P_IP);
3277         skb_clear_hash(skb);
3278
3279         return 0;
3280 }
3281
3282 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3283 {
3284         __be16 from_proto = skb->protocol;
3285
3286         if (from_proto == htons(ETH_P_IP) &&
3287               to_proto == htons(ETH_P_IPV6))
3288                 return bpf_skb_proto_4_to_6(skb);
3289
3290         if (from_proto == htons(ETH_P_IPV6) &&
3291               to_proto == htons(ETH_P_IP))
3292                 return bpf_skb_proto_6_to_4(skb);
3293
3294         return -ENOTSUPP;
3295 }
3296
3297 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3298            u64, flags)
3299 {
3300         int ret;
3301
3302         if (unlikely(flags))
3303                 return -EINVAL;
3304
3305         /* General idea is that this helper does the basic groundwork
3306          * needed for changing the protocol, and eBPF program fills the
3307          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3308          * and other helpers, rather than passing a raw buffer here.
3309          *
3310          * The rationale is to keep this minimal and without a need to
3311          * deal with raw packet data. F.e. even if we would pass buffers
3312          * here, the program still needs to call the bpf_lX_csum_replace()
3313          * helpers anyway. Plus, this way we keep also separation of
3314          * concerns, since f.e. bpf_skb_store_bytes() should only take
3315          * care of stores.
3316          *
3317          * Currently, additional options and extension header space are
3318          * not supported, but flags register is reserved so we can adapt
3319          * that. For offloads, we mark packet as dodgy, so that headers
3320          * need to be verified first.
3321          */
3322         ret = bpf_skb_proto_xlat(skb, proto);
3323         bpf_compute_data_pointers(skb);
3324         return ret;
3325 }
3326
3327 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3328         .func           = bpf_skb_change_proto,
3329         .gpl_only       = false,
3330         .ret_type       = RET_INTEGER,
3331         .arg1_type      = ARG_PTR_TO_CTX,
3332         .arg2_type      = ARG_ANYTHING,
3333         .arg3_type      = ARG_ANYTHING,
3334 };
3335
3336 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3337 {
3338         /* We only allow a restricted subset to be changed for now. */
3339         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3340                      !skb_pkt_type_ok(pkt_type)))
3341                 return -EINVAL;
3342
3343         skb->pkt_type = pkt_type;
3344         return 0;
3345 }
3346
3347 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3348         .func           = bpf_skb_change_type,
3349         .gpl_only       = false,
3350         .ret_type       = RET_INTEGER,
3351         .arg1_type      = ARG_PTR_TO_CTX,
3352         .arg2_type      = ARG_ANYTHING,
3353 };
3354
3355 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3356 {
3357         switch (skb->protocol) {
3358         case htons(ETH_P_IP):
3359                 return sizeof(struct iphdr);
3360         case htons(ETH_P_IPV6):
3361                 return sizeof(struct ipv6hdr);
3362         default:
3363                 return ~0U;
3364         }
3365 }
3366
3367 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3368                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3369
3370 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3371                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3372                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3373                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3374                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3375                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3376                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3377
3378 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3379                             u64 flags)
3380 {
3381         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3382         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3383         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3384         unsigned int gso_type = SKB_GSO_DODGY;
3385         int ret;
3386
3387         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3388                 /* udp gso_size delineates datagrams, only allow if fixed */
3389                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3390                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3391                         return -ENOTSUPP;
3392         }
3393
3394         ret = skb_cow_head(skb, len_diff);
3395         if (unlikely(ret < 0))
3396                 return ret;
3397
3398         if (encap) {
3399                 if (skb->protocol != htons(ETH_P_IP) &&
3400                     skb->protocol != htons(ETH_P_IPV6))
3401                         return -ENOTSUPP;
3402
3403                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3404                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3405                         return -EINVAL;
3406
3407                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3408                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3409                         return -EINVAL;
3410
3411                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3412                     inner_mac_len < ETH_HLEN)
3413                         return -EINVAL;
3414
3415                 if (skb->encapsulation)
3416                         return -EALREADY;
3417
3418                 mac_len = skb->network_header - skb->mac_header;
3419                 inner_net = skb->network_header;
3420                 if (inner_mac_len > len_diff)
3421                         return -EINVAL;
3422                 inner_trans = skb->transport_header;
3423         }
3424
3425         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3426         if (unlikely(ret < 0))
3427                 return ret;
3428
3429         if (encap) {
3430                 skb->inner_mac_header = inner_net - inner_mac_len;
3431                 skb->inner_network_header = inner_net;
3432                 skb->inner_transport_header = inner_trans;
3433
3434                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3435                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3436                 else
3437                         skb_set_inner_protocol(skb, skb->protocol);
3438
3439                 skb->encapsulation = 1;
3440                 skb_set_network_header(skb, mac_len);
3441
3442                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3443                         gso_type |= SKB_GSO_UDP_TUNNEL;
3444                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3445                         gso_type |= SKB_GSO_GRE;
3446                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3447                         gso_type |= SKB_GSO_IPXIP6;
3448                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3449                         gso_type |= SKB_GSO_IPXIP4;
3450
3451                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3452                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3453                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3454                                         sizeof(struct ipv6hdr) :
3455                                         sizeof(struct iphdr);
3456
3457                         skb_set_transport_header(skb, mac_len + nh_len);
3458                 }
3459
3460                 /* Match skb->protocol to new outer l3 protocol */
3461                 if (skb->protocol == htons(ETH_P_IP) &&
3462                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3463                         skb->protocol = htons(ETH_P_IPV6);
3464                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3465                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3466                         skb->protocol = htons(ETH_P_IP);
3467         }
3468
3469         if (skb_is_gso(skb)) {
3470                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3471
3472                 /* Due to header grow, MSS needs to be downgraded. */
3473                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3474                         skb_decrease_gso_size(shinfo, len_diff);
3475
3476                 /* Header must be checked, and gso_segs recomputed. */
3477                 shinfo->gso_type |= gso_type;
3478                 shinfo->gso_segs = 0;
3479         }
3480
3481         return 0;
3482 }
3483
3484 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3485                               u64 flags)
3486 {
3487         int ret;
3488
3489         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3490                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3491                 return -EINVAL;
3492
3493         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3494                 /* udp gso_size delineates datagrams, only allow if fixed */
3495                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3496                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3497                         return -ENOTSUPP;
3498         }
3499
3500         ret = skb_unclone(skb, GFP_ATOMIC);
3501         if (unlikely(ret < 0))
3502                 return ret;
3503
3504         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3505         if (unlikely(ret < 0))
3506                 return ret;
3507
3508         if (skb_is_gso(skb)) {
3509                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3510
3511                 /* Due to header shrink, MSS can be upgraded. */
3512                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3513                         skb_increase_gso_size(shinfo, len_diff);
3514
3515                 /* Header must be checked, and gso_segs recomputed. */
3516                 shinfo->gso_type |= SKB_GSO_DODGY;
3517                 shinfo->gso_segs = 0;
3518         }
3519
3520         return 0;
3521 }
3522
3523 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3524
3525 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3526            u32, mode, u64, flags)
3527 {
3528         u32 len_diff_abs = abs(len_diff);
3529         bool shrink = len_diff < 0;
3530         int ret = 0;
3531
3532         if (unlikely(flags || mode))
3533                 return -EINVAL;
3534         if (unlikely(len_diff_abs > 0xfffU))
3535                 return -EFAULT;
3536
3537         if (!shrink) {
3538                 ret = skb_cow(skb, len_diff);
3539                 if (unlikely(ret < 0))
3540                         return ret;
3541                 __skb_push(skb, len_diff_abs);
3542                 memset(skb->data, 0, len_diff_abs);
3543         } else {
3544                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3545                         return -ENOMEM;
3546                 __skb_pull(skb, len_diff_abs);
3547         }
3548         if (tls_sw_has_ctx_rx(skb->sk)) {
3549                 struct strp_msg *rxm = strp_msg(skb);
3550
3551                 rxm->full_len += len_diff;
3552         }
3553         return ret;
3554 }
3555
3556 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3557         .func           = sk_skb_adjust_room,
3558         .gpl_only       = false,
3559         .ret_type       = RET_INTEGER,
3560         .arg1_type      = ARG_PTR_TO_CTX,
3561         .arg2_type      = ARG_ANYTHING,
3562         .arg3_type      = ARG_ANYTHING,
3563         .arg4_type      = ARG_ANYTHING,
3564 };
3565
3566 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3567            u32, mode, u64, flags)
3568 {
3569         u32 len_cur, len_diff_abs = abs(len_diff);
3570         u32 len_min = bpf_skb_net_base_len(skb);
3571         u32 len_max = BPF_SKB_MAX_LEN;
3572         __be16 proto = skb->protocol;
3573         bool shrink = len_diff < 0;
3574         u32 off;
3575         int ret;
3576
3577         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3578                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3579                 return -EINVAL;
3580         if (unlikely(len_diff_abs > 0xfffU))
3581                 return -EFAULT;
3582         if (unlikely(proto != htons(ETH_P_IP) &&
3583                      proto != htons(ETH_P_IPV6)))
3584                 return -ENOTSUPP;
3585
3586         off = skb_mac_header_len(skb);
3587         switch (mode) {
3588         case BPF_ADJ_ROOM_NET:
3589                 off += bpf_skb_net_base_len(skb);
3590                 break;
3591         case BPF_ADJ_ROOM_MAC:
3592                 break;
3593         default:
3594                 return -ENOTSUPP;
3595         }
3596
3597         len_cur = skb->len - skb_network_offset(skb);
3598         if ((shrink && (len_diff_abs >= len_cur ||
3599                         len_cur - len_diff_abs < len_min)) ||
3600             (!shrink && (skb->len + len_diff_abs > len_max &&
3601                          !skb_is_gso(skb))))
3602                 return -ENOTSUPP;
3603
3604         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3605                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3606         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3607                 __skb_reset_checksum_unnecessary(skb);
3608
3609         bpf_compute_data_pointers(skb);
3610         return ret;
3611 }
3612
3613 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3614         .func           = bpf_skb_adjust_room,
3615         .gpl_only       = false,
3616         .ret_type       = RET_INTEGER,
3617         .arg1_type      = ARG_PTR_TO_CTX,
3618         .arg2_type      = ARG_ANYTHING,
3619         .arg3_type      = ARG_ANYTHING,
3620         .arg4_type      = ARG_ANYTHING,
3621 };
3622
3623 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3624 {
3625         u32 min_len = skb_network_offset(skb);
3626
3627         if (skb_transport_header_was_set(skb))
3628                 min_len = skb_transport_offset(skb);
3629         if (skb->ip_summed == CHECKSUM_PARTIAL)
3630                 min_len = skb_checksum_start_offset(skb) +
3631                           skb->csum_offset + sizeof(__sum16);
3632         return min_len;
3633 }
3634
3635 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3636 {
3637         unsigned int old_len = skb->len;
3638         int ret;
3639
3640         ret = __skb_grow_rcsum(skb, new_len);
3641         if (!ret)
3642                 memset(skb->data + old_len, 0, new_len - old_len);
3643         return ret;
3644 }
3645
3646 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3647 {
3648         return __skb_trim_rcsum(skb, new_len);
3649 }
3650
3651 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3652                                         u64 flags)
3653 {
3654         u32 max_len = BPF_SKB_MAX_LEN;
3655         u32 min_len = __bpf_skb_min_len(skb);
3656         int ret;
3657
3658         if (unlikely(flags || new_len > max_len || new_len < min_len))
3659                 return -EINVAL;
3660         if (skb->encapsulation)
3661                 return -ENOTSUPP;
3662
3663         /* The basic idea of this helper is that it's performing the
3664          * needed work to either grow or trim an skb, and eBPF program
3665          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3666          * bpf_lX_csum_replace() and others rather than passing a raw
3667          * buffer here. This one is a slow path helper and intended
3668          * for replies with control messages.
3669          *
3670          * Like in bpf_skb_change_proto(), we want to keep this rather
3671          * minimal and without protocol specifics so that we are able
3672          * to separate concerns as in bpf_skb_store_bytes() should only
3673          * be the one responsible for writing buffers.
3674          *
3675          * It's really expected to be a slow path operation here for
3676          * control message replies, so we're implicitly linearizing,
3677          * uncloning and drop offloads from the skb by this.
3678          */
3679         ret = __bpf_try_make_writable(skb, skb->len);
3680         if (!ret) {
3681                 if (new_len > skb->len)
3682                         ret = bpf_skb_grow_rcsum(skb, new_len);
3683                 else if (new_len < skb->len)
3684                         ret = bpf_skb_trim_rcsum(skb, new_len);
3685                 if (!ret && skb_is_gso(skb))
3686                         skb_gso_reset(skb);
3687         }
3688         return ret;
3689 }
3690
3691 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3692            u64, flags)
3693 {
3694         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3695
3696         bpf_compute_data_pointers(skb);
3697         return ret;
3698 }
3699
3700 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3701         .func           = bpf_skb_change_tail,
3702         .gpl_only       = false,
3703         .ret_type       = RET_INTEGER,
3704         .arg1_type      = ARG_PTR_TO_CTX,
3705         .arg2_type      = ARG_ANYTHING,
3706         .arg3_type      = ARG_ANYTHING,
3707 };
3708
3709 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3710            u64, flags)
3711 {
3712         return __bpf_skb_change_tail(skb, new_len, flags);
3713 }
3714
3715 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3716         .func           = sk_skb_change_tail,
3717         .gpl_only       = false,
3718         .ret_type       = RET_INTEGER,
3719         .arg1_type      = ARG_PTR_TO_CTX,
3720         .arg2_type      = ARG_ANYTHING,
3721         .arg3_type      = ARG_ANYTHING,
3722 };
3723
3724 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3725                                         u64 flags)
3726 {
3727         u32 max_len = BPF_SKB_MAX_LEN;
3728         u32 new_len = skb->len + head_room;
3729         int ret;
3730
3731         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3732                      new_len < skb->len))
3733                 return -EINVAL;
3734
3735         ret = skb_cow(skb, head_room);
3736         if (likely(!ret)) {
3737                 /* Idea for this helper is that we currently only
3738                  * allow to expand on mac header. This means that
3739                  * skb->protocol network header, etc, stay as is.
3740                  * Compared to bpf_skb_change_tail(), we're more
3741                  * flexible due to not needing to linearize or
3742                  * reset GSO. Intention for this helper is to be
3743                  * used by an L3 skb that needs to push mac header
3744                  * for redirection into L2 device.
3745                  */
3746                 __skb_push(skb, head_room);
3747                 memset(skb->data, 0, head_room);
3748                 skb_reset_mac_header(skb);
3749                 skb_reset_mac_len(skb);
3750         }
3751
3752         return ret;
3753 }
3754
3755 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3756            u64, flags)
3757 {
3758         int ret = __bpf_skb_change_head(skb, head_room, flags);
3759
3760         bpf_compute_data_pointers(skb);
3761         return ret;
3762 }
3763
3764 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3765         .func           = bpf_skb_change_head,
3766         .gpl_only       = false,
3767         .ret_type       = RET_INTEGER,
3768         .arg1_type      = ARG_PTR_TO_CTX,
3769         .arg2_type      = ARG_ANYTHING,
3770         .arg3_type      = ARG_ANYTHING,
3771 };
3772
3773 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3774            u64, flags)
3775 {
3776         return __bpf_skb_change_head(skb, head_room, flags);
3777 }
3778
3779 static const struct bpf_func_proto sk_skb_change_head_proto = {
3780         .func           = sk_skb_change_head,
3781         .gpl_only       = false,
3782         .ret_type       = RET_INTEGER,
3783         .arg1_type      = ARG_PTR_TO_CTX,
3784         .arg2_type      = ARG_ANYTHING,
3785         .arg3_type      = ARG_ANYTHING,
3786 };
3787 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3788 {
3789         return xdp_data_meta_unsupported(xdp) ? 0 :
3790                xdp->data - xdp->data_meta;
3791 }
3792
3793 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3794 {
3795         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3796         unsigned long metalen = xdp_get_metalen(xdp);
3797         void *data_start = xdp_frame_end + metalen;
3798         void *data = xdp->data + offset;
3799
3800         if (unlikely(data < data_start ||
3801                      data > xdp->data_end - ETH_HLEN))
3802                 return -EINVAL;
3803
3804         if (metalen)
3805                 memmove(xdp->data_meta + offset,
3806                         xdp->data_meta, metalen);
3807         xdp->data_meta += offset;
3808         xdp->data = data;
3809
3810         return 0;
3811 }
3812
3813 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3814         .func           = bpf_xdp_adjust_head,
3815         .gpl_only       = false,
3816         .ret_type       = RET_INTEGER,
3817         .arg1_type      = ARG_PTR_TO_CTX,
3818         .arg2_type      = ARG_ANYTHING,
3819 };
3820
3821 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3822 {
3823         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3824         void *data_end = xdp->data_end + offset;
3825
3826         /* Notice that xdp_data_hard_end have reserved some tailroom */
3827         if (unlikely(data_end > data_hard_end))
3828                 return -EINVAL;
3829
3830         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3831         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3832                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3833                 return -EINVAL;
3834         }
3835
3836         if (unlikely(data_end < xdp->data + ETH_HLEN))
3837                 return -EINVAL;
3838
3839         /* Clear memory area on grow, can contain uninit kernel memory */
3840         if (offset > 0)
3841                 memset(xdp->data_end, 0, offset);
3842
3843         xdp->data_end = data_end;
3844
3845         return 0;
3846 }
3847
3848 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3849         .func           = bpf_xdp_adjust_tail,
3850         .gpl_only       = false,
3851         .ret_type       = RET_INTEGER,
3852         .arg1_type      = ARG_PTR_TO_CTX,
3853         .arg2_type      = ARG_ANYTHING,
3854 };
3855
3856 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3857 {
3858         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3859         void *meta = xdp->data_meta + offset;
3860         unsigned long metalen = xdp->data - meta;
3861
3862         if (xdp_data_meta_unsupported(xdp))
3863                 return -ENOTSUPP;
3864         if (unlikely(meta < xdp_frame_end ||
3865                      meta > xdp->data))
3866                 return -EINVAL;
3867         if (unlikely(xdp_metalen_invalid(metalen)))
3868                 return -EACCES;
3869
3870         xdp->data_meta = meta;
3871
3872         return 0;
3873 }
3874
3875 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3876         .func           = bpf_xdp_adjust_meta,
3877         .gpl_only       = false,
3878         .ret_type       = RET_INTEGER,
3879         .arg1_type      = ARG_PTR_TO_CTX,
3880         .arg2_type      = ARG_ANYTHING,
3881 };
3882
3883 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3884  * below:
3885  *
3886  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3887  *    of the redirect and store it (along with some other metadata) in a per-CPU
3888  *    struct bpf_redirect_info.
3889  *
3890  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3891  *    call xdp_do_redirect() which will use the information in struct
3892  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3893  *    bulk queue structure.
3894  *
3895  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3896  *    which will flush all the different bulk queues, thus completing the
3897  *    redirect.
3898  *
3899  * Pointers to the map entries will be kept around for this whole sequence of
3900  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3901  * the core code; instead, the RCU protection relies on everything happening
3902  * inside a single NAPI poll sequence, which means it's between a pair of calls
3903  * to local_bh_disable()/local_bh_enable().
3904  *
3905  * The map entries are marked as __rcu and the map code makes sure to
3906  * dereference those pointers with rcu_dereference_check() in a way that works
3907  * for both sections that to hold an rcu_read_lock() and sections that are
3908  * called from NAPI without a separate rcu_read_lock(). The code below does not
3909  * use RCU annotations, but relies on those in the map code.
3910  */
3911 void xdp_do_flush(void)
3912 {
3913         __dev_flush();
3914         __cpu_map_flush();
3915         __xsk_map_flush();
3916 }
3917 EXPORT_SYMBOL_GPL(xdp_do_flush);
3918
3919 void bpf_clear_redirect_map(struct bpf_map *map)
3920 {
3921         struct bpf_redirect_info *ri;
3922         int cpu;
3923
3924         for_each_possible_cpu(cpu) {
3925                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3926                 /* Avoid polluting remote cacheline due to writes if
3927                  * not needed. Once we pass this test, we need the
3928                  * cmpxchg() to make sure it hasn't been changed in
3929                  * the meantime by remote CPU.
3930                  */
3931                 if (unlikely(READ_ONCE(ri->map) == map))
3932                         cmpxchg(&ri->map, map, NULL);
3933         }
3934 }
3935
3936 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3937                     struct bpf_prog *xdp_prog)
3938 {
3939         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3940         enum bpf_map_type map_type = ri->map_type;
3941         void *fwd = ri->tgt_value;
3942         u32 map_id = ri->map_id;
3943         struct bpf_map *map;
3944         int err;
3945
3946         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3947         ri->map_type = BPF_MAP_TYPE_UNSPEC;
3948
3949         switch (map_type) {
3950         case BPF_MAP_TYPE_DEVMAP:
3951                 fallthrough;
3952         case BPF_MAP_TYPE_DEVMAP_HASH:
3953                 map = READ_ONCE(ri->map);
3954                 if (unlikely(map)) {
3955                         WRITE_ONCE(ri->map, NULL);
3956                         err = dev_map_enqueue_multi(xdp, dev, map,
3957                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
3958                 } else {
3959                         err = dev_map_enqueue(fwd, xdp, dev);
3960                 }
3961                 break;
3962         case BPF_MAP_TYPE_CPUMAP:
3963                 err = cpu_map_enqueue(fwd, xdp, dev);
3964                 break;
3965         case BPF_MAP_TYPE_XSKMAP:
3966                 err = __xsk_map_redirect(fwd, xdp);
3967                 break;
3968         case BPF_MAP_TYPE_UNSPEC:
3969                 if (map_id == INT_MAX) {
3970                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
3971                         if (unlikely(!fwd)) {
3972                                 err = -EINVAL;
3973                                 break;
3974                         }
3975                         err = dev_xdp_enqueue(fwd, xdp, dev);
3976                         break;
3977                 }
3978                 fallthrough;
3979         default:
3980                 err = -EBADRQC;
3981         }
3982
3983         if (unlikely(err))
3984                 goto err;
3985
3986         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
3987         return 0;
3988 err:
3989         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
3990         return err;
3991 }
3992 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3993
3994 static int xdp_do_generic_redirect_map(struct net_device *dev,
3995                                        struct sk_buff *skb,
3996                                        struct xdp_buff *xdp,
3997                                        struct bpf_prog *xdp_prog,
3998                                        void *fwd,
3999                                        enum bpf_map_type map_type, u32 map_id)
4000 {
4001         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4002         struct bpf_map *map;
4003         int err;
4004
4005         switch (map_type) {
4006         case BPF_MAP_TYPE_DEVMAP:
4007                 fallthrough;
4008         case BPF_MAP_TYPE_DEVMAP_HASH:
4009                 map = READ_ONCE(ri->map);
4010                 if (unlikely(map)) {
4011                         WRITE_ONCE(ri->map, NULL);
4012                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4013                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4014                 } else {
4015                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4016                 }
4017                 if (unlikely(err))
4018                         goto err;
4019                 break;
4020         case BPF_MAP_TYPE_XSKMAP:
4021                 err = xsk_generic_rcv(fwd, xdp);
4022                 if (err)
4023                         goto err;
4024                 consume_skb(skb);
4025                 break;
4026         case BPF_MAP_TYPE_CPUMAP:
4027                 err = cpu_map_generic_redirect(fwd, skb);
4028                 if (unlikely(err))
4029                         goto err;
4030                 break;
4031         default:
4032                 err = -EBADRQC;
4033                 goto err;
4034         }
4035
4036         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4037         return 0;
4038 err:
4039         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4040         return err;
4041 }
4042
4043 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4044                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4045 {
4046         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4047         enum bpf_map_type map_type = ri->map_type;
4048         void *fwd = ri->tgt_value;
4049         u32 map_id = ri->map_id;
4050         int err;
4051
4052         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4053         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4054
4055         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4056                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4057                 if (unlikely(!fwd)) {
4058                         err = -EINVAL;
4059                         goto err;
4060                 }
4061
4062                 err = xdp_ok_fwd_dev(fwd, skb->len);
4063                 if (unlikely(err))
4064                         goto err;
4065
4066                 skb->dev = fwd;
4067                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4068                 generic_xdp_tx(skb, xdp_prog);
4069                 return 0;
4070         }
4071
4072         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4073 err:
4074         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4075         return err;
4076 }
4077
4078 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4079 {
4080         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4081
4082         if (unlikely(flags))
4083                 return XDP_ABORTED;
4084
4085         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4086          * by map_idr) is used for ifindex based XDP redirect.
4087          */
4088         ri->tgt_index = ifindex;
4089         ri->map_id = INT_MAX;
4090         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4091
4092         return XDP_REDIRECT;
4093 }
4094
4095 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4096         .func           = bpf_xdp_redirect,
4097         .gpl_only       = false,
4098         .ret_type       = RET_INTEGER,
4099         .arg1_type      = ARG_ANYTHING,
4100         .arg2_type      = ARG_ANYTHING,
4101 };
4102
4103 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4104            u64, flags)
4105 {
4106         return map->ops->map_redirect(map, ifindex, flags);
4107 }
4108
4109 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4110         .func           = bpf_xdp_redirect_map,
4111         .gpl_only       = false,
4112         .ret_type       = RET_INTEGER,
4113         .arg1_type      = ARG_CONST_MAP_PTR,
4114         .arg2_type      = ARG_ANYTHING,
4115         .arg3_type      = ARG_ANYTHING,
4116 };
4117
4118 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4119                                   unsigned long off, unsigned long len)
4120 {
4121         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4122
4123         if (unlikely(!ptr))
4124                 return len;
4125         if (ptr != dst_buff)
4126                 memcpy(dst_buff, ptr, len);
4127
4128         return 0;
4129 }
4130
4131 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4132            u64, flags, void *, meta, u64, meta_size)
4133 {
4134         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4135
4136         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4137                 return -EINVAL;
4138         if (unlikely(!skb || skb_size > skb->len))
4139                 return -EFAULT;
4140
4141         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4142                                 bpf_skb_copy);
4143 }
4144
4145 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4146         .func           = bpf_skb_event_output,
4147         .gpl_only       = true,
4148         .ret_type       = RET_INTEGER,
4149         .arg1_type      = ARG_PTR_TO_CTX,
4150         .arg2_type      = ARG_CONST_MAP_PTR,
4151         .arg3_type      = ARG_ANYTHING,
4152         .arg4_type      = ARG_PTR_TO_MEM,
4153         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4154 };
4155
4156 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4157
4158 const struct bpf_func_proto bpf_skb_output_proto = {
4159         .func           = bpf_skb_event_output,
4160         .gpl_only       = true,
4161         .ret_type       = RET_INTEGER,
4162         .arg1_type      = ARG_PTR_TO_BTF_ID,
4163         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4164         .arg2_type      = ARG_CONST_MAP_PTR,
4165         .arg3_type      = ARG_ANYTHING,
4166         .arg4_type      = ARG_PTR_TO_MEM,
4167         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4168 };
4169
4170 static unsigned short bpf_tunnel_key_af(u64 flags)
4171 {
4172         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4173 }
4174
4175 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4176            u32, size, u64, flags)
4177 {
4178         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4179         u8 compat[sizeof(struct bpf_tunnel_key)];
4180         void *to_orig = to;
4181         int err;
4182
4183         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4184                 err = -EINVAL;
4185                 goto err_clear;
4186         }
4187         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4188                 err = -EPROTO;
4189                 goto err_clear;
4190         }
4191         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4192                 err = -EINVAL;
4193                 switch (size) {
4194                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4195                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4196                         goto set_compat;
4197                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4198                         /* Fixup deprecated structure layouts here, so we have
4199                          * a common path later on.
4200                          */
4201                         if (ip_tunnel_info_af(info) != AF_INET)
4202                                 goto err_clear;
4203 set_compat:
4204                         to = (struct bpf_tunnel_key *)compat;
4205                         break;
4206                 default:
4207                         goto err_clear;
4208                 }
4209         }
4210
4211         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4212         to->tunnel_tos = info->key.tos;
4213         to->tunnel_ttl = info->key.ttl;
4214         to->tunnel_ext = 0;
4215
4216         if (flags & BPF_F_TUNINFO_IPV6) {
4217                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4218                        sizeof(to->remote_ipv6));
4219                 to->tunnel_label = be32_to_cpu(info->key.label);
4220         } else {
4221                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4222                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4223                 to->tunnel_label = 0;
4224         }
4225
4226         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4227                 memcpy(to_orig, to, size);
4228
4229         return 0;
4230 err_clear:
4231         memset(to_orig, 0, size);
4232         return err;
4233 }
4234
4235 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4236         .func           = bpf_skb_get_tunnel_key,
4237         .gpl_only       = false,
4238         .ret_type       = RET_INTEGER,
4239         .arg1_type      = ARG_PTR_TO_CTX,
4240         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4241         .arg3_type      = ARG_CONST_SIZE,
4242         .arg4_type      = ARG_ANYTHING,
4243 };
4244
4245 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4246 {
4247         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4248         int err;
4249
4250         if (unlikely(!info ||
4251                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4252                 err = -ENOENT;
4253                 goto err_clear;
4254         }
4255         if (unlikely(size < info->options_len)) {
4256                 err = -ENOMEM;
4257                 goto err_clear;
4258         }
4259
4260         ip_tunnel_info_opts_get(to, info);
4261         if (size > info->options_len)
4262                 memset(to + info->options_len, 0, size - info->options_len);
4263
4264         return info->options_len;
4265 err_clear:
4266         memset(to, 0, size);
4267         return err;
4268 }
4269
4270 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4271         .func           = bpf_skb_get_tunnel_opt,
4272         .gpl_only       = false,
4273         .ret_type       = RET_INTEGER,
4274         .arg1_type      = ARG_PTR_TO_CTX,
4275         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4276         .arg3_type      = ARG_CONST_SIZE,
4277 };
4278
4279 static struct metadata_dst __percpu *md_dst;
4280
4281 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4282            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4283 {
4284         struct metadata_dst *md = this_cpu_ptr(md_dst);
4285         u8 compat[sizeof(struct bpf_tunnel_key)];
4286         struct ip_tunnel_info *info;
4287
4288         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4289                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4290                 return -EINVAL;
4291         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4292                 switch (size) {
4293                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4294                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4295                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4296                         /* Fixup deprecated structure layouts here, so we have
4297                          * a common path later on.
4298                          */
4299                         memcpy(compat, from, size);
4300                         memset(compat + size, 0, sizeof(compat) - size);
4301                         from = (const struct bpf_tunnel_key *) compat;
4302                         break;
4303                 default:
4304                         return -EINVAL;
4305                 }
4306         }
4307         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4308                      from->tunnel_ext))
4309                 return -EINVAL;
4310
4311         skb_dst_drop(skb);
4312         dst_hold((struct dst_entry *) md);
4313         skb_dst_set(skb, (struct dst_entry *) md);
4314
4315         info = &md->u.tun_info;
4316         memset(info, 0, sizeof(*info));
4317         info->mode = IP_TUNNEL_INFO_TX;
4318
4319         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4320         if (flags & BPF_F_DONT_FRAGMENT)
4321                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4322         if (flags & BPF_F_ZERO_CSUM_TX)
4323                 info->key.tun_flags &= ~TUNNEL_CSUM;
4324         if (flags & BPF_F_SEQ_NUMBER)
4325                 info->key.tun_flags |= TUNNEL_SEQ;
4326
4327         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4328         info->key.tos = from->tunnel_tos;
4329         info->key.ttl = from->tunnel_ttl;
4330
4331         if (flags & BPF_F_TUNINFO_IPV6) {
4332                 info->mode |= IP_TUNNEL_INFO_IPV6;
4333                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4334                        sizeof(from->remote_ipv6));
4335                 info->key.label = cpu_to_be32(from->tunnel_label) &
4336                                   IPV6_FLOWLABEL_MASK;
4337         } else {
4338                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4339         }
4340
4341         return 0;
4342 }
4343
4344 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4345         .func           = bpf_skb_set_tunnel_key,
4346         .gpl_only       = false,
4347         .ret_type       = RET_INTEGER,
4348         .arg1_type      = ARG_PTR_TO_CTX,
4349         .arg2_type      = ARG_PTR_TO_MEM,
4350         .arg3_type      = ARG_CONST_SIZE,
4351         .arg4_type      = ARG_ANYTHING,
4352 };
4353
4354 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4355            const u8 *, from, u32, size)
4356 {
4357         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4358         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4359
4360         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4361                 return -EINVAL;
4362         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4363                 return -ENOMEM;
4364
4365         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4366
4367         return 0;
4368 }
4369
4370 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4371         .func           = bpf_skb_set_tunnel_opt,
4372         .gpl_only       = false,
4373         .ret_type       = RET_INTEGER,
4374         .arg1_type      = ARG_PTR_TO_CTX,
4375         .arg2_type      = ARG_PTR_TO_MEM,
4376         .arg3_type      = ARG_CONST_SIZE,
4377 };
4378
4379 static const struct bpf_func_proto *
4380 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4381 {
4382         if (!md_dst) {
4383                 struct metadata_dst __percpu *tmp;
4384
4385                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4386                                                 METADATA_IP_TUNNEL,
4387                                                 GFP_KERNEL);
4388                 if (!tmp)
4389                         return NULL;
4390                 if (cmpxchg(&md_dst, NULL, tmp))
4391                         metadata_dst_free_percpu(tmp);
4392         }
4393
4394         switch (which) {
4395         case BPF_FUNC_skb_set_tunnel_key:
4396                 return &bpf_skb_set_tunnel_key_proto;
4397         case BPF_FUNC_skb_set_tunnel_opt:
4398                 return &bpf_skb_set_tunnel_opt_proto;
4399         default:
4400                 return NULL;
4401         }
4402 }
4403
4404 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4405            u32, idx)
4406 {
4407         struct bpf_array *array = container_of(map, struct bpf_array, map);
4408         struct cgroup *cgrp;
4409         struct sock *sk;
4410
4411         sk = skb_to_full_sk(skb);
4412         if (!sk || !sk_fullsock(sk))
4413                 return -ENOENT;
4414         if (unlikely(idx >= array->map.max_entries))
4415                 return -E2BIG;
4416
4417         cgrp = READ_ONCE(array->ptrs[idx]);
4418         if (unlikely(!cgrp))
4419                 return -EAGAIN;
4420
4421         return sk_under_cgroup_hierarchy(sk, cgrp);
4422 }
4423
4424 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4425         .func           = bpf_skb_under_cgroup,
4426         .gpl_only       = false,
4427         .ret_type       = RET_INTEGER,
4428         .arg1_type      = ARG_PTR_TO_CTX,
4429         .arg2_type      = ARG_CONST_MAP_PTR,
4430         .arg3_type      = ARG_ANYTHING,
4431 };
4432
4433 #ifdef CONFIG_SOCK_CGROUP_DATA
4434 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4435 {
4436         struct cgroup *cgrp;
4437
4438         sk = sk_to_full_sk(sk);
4439         if (!sk || !sk_fullsock(sk))
4440                 return 0;
4441
4442         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4443         return cgroup_id(cgrp);
4444 }
4445
4446 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4447 {
4448         return __bpf_sk_cgroup_id(skb->sk);
4449 }
4450
4451 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4452         .func           = bpf_skb_cgroup_id,
4453         .gpl_only       = false,
4454         .ret_type       = RET_INTEGER,
4455         .arg1_type      = ARG_PTR_TO_CTX,
4456 };
4457
4458 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4459                                               int ancestor_level)
4460 {
4461         struct cgroup *ancestor;
4462         struct cgroup *cgrp;
4463
4464         sk = sk_to_full_sk(sk);
4465         if (!sk || !sk_fullsock(sk))
4466                 return 0;
4467
4468         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4469         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4470         if (!ancestor)
4471                 return 0;
4472
4473         return cgroup_id(ancestor);
4474 }
4475
4476 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4477            ancestor_level)
4478 {
4479         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4480 }
4481
4482 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4483         .func           = bpf_skb_ancestor_cgroup_id,
4484         .gpl_only       = false,
4485         .ret_type       = RET_INTEGER,
4486         .arg1_type      = ARG_PTR_TO_CTX,
4487         .arg2_type      = ARG_ANYTHING,
4488 };
4489
4490 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4491 {
4492         return __bpf_sk_cgroup_id(sk);
4493 }
4494
4495 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4496         .func           = bpf_sk_cgroup_id,
4497         .gpl_only       = false,
4498         .ret_type       = RET_INTEGER,
4499         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4500 };
4501
4502 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4503 {
4504         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4505 }
4506
4507 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4508         .func           = bpf_sk_ancestor_cgroup_id,
4509         .gpl_only       = false,
4510         .ret_type       = RET_INTEGER,
4511         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4512         .arg2_type      = ARG_ANYTHING,
4513 };
4514 #endif
4515
4516 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4517                                   unsigned long off, unsigned long len)
4518 {
4519         memcpy(dst_buff, src_buff + off, len);
4520         return 0;
4521 }
4522
4523 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4524            u64, flags, void *, meta, u64, meta_size)
4525 {
4526         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4527
4528         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4529                 return -EINVAL;
4530         if (unlikely(!xdp ||
4531                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4532                 return -EFAULT;
4533
4534         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4535                                 xdp_size, bpf_xdp_copy);
4536 }
4537
4538 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4539         .func           = bpf_xdp_event_output,
4540         .gpl_only       = true,
4541         .ret_type       = RET_INTEGER,
4542         .arg1_type      = ARG_PTR_TO_CTX,
4543         .arg2_type      = ARG_CONST_MAP_PTR,
4544         .arg3_type      = ARG_ANYTHING,
4545         .arg4_type      = ARG_PTR_TO_MEM,
4546         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4547 };
4548
4549 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4550
4551 const struct bpf_func_proto bpf_xdp_output_proto = {
4552         .func           = bpf_xdp_event_output,
4553         .gpl_only       = true,
4554         .ret_type       = RET_INTEGER,
4555         .arg1_type      = ARG_PTR_TO_BTF_ID,
4556         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4557         .arg2_type      = ARG_CONST_MAP_PTR,
4558         .arg3_type      = ARG_ANYTHING,
4559         .arg4_type      = ARG_PTR_TO_MEM,
4560         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4561 };
4562
4563 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4564 {
4565         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4566 }
4567
4568 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4569         .func           = bpf_get_socket_cookie,
4570         .gpl_only       = false,
4571         .ret_type       = RET_INTEGER,
4572         .arg1_type      = ARG_PTR_TO_CTX,
4573 };
4574
4575 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4576 {
4577         return __sock_gen_cookie(ctx->sk);
4578 }
4579
4580 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4581         .func           = bpf_get_socket_cookie_sock_addr,
4582         .gpl_only       = false,
4583         .ret_type       = RET_INTEGER,
4584         .arg1_type      = ARG_PTR_TO_CTX,
4585 };
4586
4587 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4588 {
4589         return __sock_gen_cookie(ctx);
4590 }
4591
4592 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4593         .func           = bpf_get_socket_cookie_sock,
4594         .gpl_only       = false,
4595         .ret_type       = RET_INTEGER,
4596         .arg1_type      = ARG_PTR_TO_CTX,
4597 };
4598
4599 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4600 {
4601         return sk ? sock_gen_cookie(sk) : 0;
4602 }
4603
4604 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4605         .func           = bpf_get_socket_ptr_cookie,
4606         .gpl_only       = false,
4607         .ret_type       = RET_INTEGER,
4608         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4609 };
4610
4611 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4612 {
4613         return __sock_gen_cookie(ctx->sk);
4614 }
4615
4616 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4617         .func           = bpf_get_socket_cookie_sock_ops,
4618         .gpl_only       = false,
4619         .ret_type       = RET_INTEGER,
4620         .arg1_type      = ARG_PTR_TO_CTX,
4621 };
4622
4623 static u64 __bpf_get_netns_cookie(struct sock *sk)
4624 {
4625         const struct net *net = sk ? sock_net(sk) : &init_net;
4626
4627         return net->net_cookie;
4628 }
4629
4630 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4631 {
4632         return __bpf_get_netns_cookie(ctx);
4633 }
4634
4635 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4636         .func           = bpf_get_netns_cookie_sock,
4637         .gpl_only       = false,
4638         .ret_type       = RET_INTEGER,
4639         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4640 };
4641
4642 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4643 {
4644         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4645 }
4646
4647 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4648         .func           = bpf_get_netns_cookie_sock_addr,
4649         .gpl_only       = false,
4650         .ret_type       = RET_INTEGER,
4651         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4652 };
4653
4654 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4655 {
4656         struct sock *sk = sk_to_full_sk(skb->sk);
4657         kuid_t kuid;
4658
4659         if (!sk || !sk_fullsock(sk))
4660                 return overflowuid;
4661         kuid = sock_net_uid(sock_net(sk), sk);
4662         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4663 }
4664
4665 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4666         .func           = bpf_get_socket_uid,
4667         .gpl_only       = false,
4668         .ret_type       = RET_INTEGER,
4669         .arg1_type      = ARG_PTR_TO_CTX,
4670 };
4671
4672 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4673                            char *optval, int optlen)
4674 {
4675         char devname[IFNAMSIZ];
4676         int val, valbool;
4677         struct net *net;
4678         int ifindex;
4679         int ret = 0;
4680
4681         if (!sk_fullsock(sk))
4682                 return -EINVAL;
4683
4684         sock_owned_by_me(sk);
4685
4686         if (level == SOL_SOCKET) {
4687                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4688                         return -EINVAL;
4689                 val = *((int *)optval);
4690                 valbool = val ? 1 : 0;
4691
4692                 /* Only some socketops are supported */
4693                 switch (optname) {
4694                 case SO_RCVBUF:
4695                         val = min_t(u32, val, sysctl_rmem_max);
4696                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4697                         WRITE_ONCE(sk->sk_rcvbuf,
4698                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4699                         break;
4700                 case SO_SNDBUF:
4701                         val = min_t(u32, val, sysctl_wmem_max);
4702                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4703                         WRITE_ONCE(sk->sk_sndbuf,
4704                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4705                         break;
4706                 case SO_MAX_PACING_RATE: /* 32bit version */
4707                         if (val != ~0U)
4708                                 cmpxchg(&sk->sk_pacing_status,
4709                                         SK_PACING_NONE,
4710                                         SK_PACING_NEEDED);
4711                         sk->sk_max_pacing_rate = (val == ~0U) ?
4712                                                  ~0UL : (unsigned int)val;
4713                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4714                                                  sk->sk_max_pacing_rate);
4715                         break;
4716                 case SO_PRIORITY:
4717                         sk->sk_priority = val;
4718                         break;
4719                 case SO_RCVLOWAT:
4720                         if (val < 0)
4721                                 val = INT_MAX;
4722                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4723                         break;
4724                 case SO_MARK:
4725                         if (sk->sk_mark != val) {
4726                                 sk->sk_mark = val;
4727                                 sk_dst_reset(sk);
4728                         }
4729                         break;
4730                 case SO_BINDTODEVICE:
4731                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4732                         strncpy(devname, optval, optlen);
4733                         devname[optlen] = 0;
4734
4735                         ifindex = 0;
4736                         if (devname[0] != '\0') {
4737                                 struct net_device *dev;
4738
4739                                 ret = -ENODEV;
4740
4741                                 net = sock_net(sk);
4742                                 dev = dev_get_by_name(net, devname);
4743                                 if (!dev)
4744                                         break;
4745                                 ifindex = dev->ifindex;
4746                                 dev_put(dev);
4747                         }
4748                         fallthrough;
4749                 case SO_BINDTOIFINDEX:
4750                         if (optname == SO_BINDTOIFINDEX)
4751                                 ifindex = val;
4752                         ret = sock_bindtoindex(sk, ifindex, false);
4753                         break;
4754                 case SO_KEEPALIVE:
4755                         if (sk->sk_prot->keepalive)
4756                                 sk->sk_prot->keepalive(sk, valbool);
4757                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4758                         break;
4759                 case SO_REUSEPORT:
4760                         sk->sk_reuseport = valbool;
4761                         break;
4762                 default:
4763                         ret = -EINVAL;
4764                 }
4765 #ifdef CONFIG_INET
4766         } else if (level == SOL_IP) {
4767                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4768                         return -EINVAL;
4769
4770                 val = *((int *)optval);
4771                 /* Only some options are supported */
4772                 switch (optname) {
4773                 case IP_TOS:
4774                         if (val < -1 || val > 0xff) {
4775                                 ret = -EINVAL;
4776                         } else {
4777                                 struct inet_sock *inet = inet_sk(sk);
4778
4779                                 if (val == -1)
4780                                         val = 0;
4781                                 inet->tos = val;
4782                         }
4783                         break;
4784                 default:
4785                         ret = -EINVAL;
4786                 }
4787 #if IS_ENABLED(CONFIG_IPV6)
4788         } else if (level == SOL_IPV6) {
4789                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4790                         return -EINVAL;
4791
4792                 val = *((int *)optval);
4793                 /* Only some options are supported */
4794                 switch (optname) {
4795                 case IPV6_TCLASS:
4796                         if (val < -1 || val > 0xff) {
4797                                 ret = -EINVAL;
4798                         } else {
4799                                 struct ipv6_pinfo *np = inet6_sk(sk);
4800
4801                                 if (val == -1)
4802                                         val = 0;
4803                                 np->tclass = val;
4804                         }
4805                         break;
4806                 default:
4807                         ret = -EINVAL;
4808                 }
4809 #endif
4810         } else if (level == SOL_TCP &&
4811                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4812                 if (optname == TCP_CONGESTION) {
4813                         char name[TCP_CA_NAME_MAX];
4814
4815                         strncpy(name, optval, min_t(long, optlen,
4816                                                     TCP_CA_NAME_MAX-1));
4817                         name[TCP_CA_NAME_MAX-1] = 0;
4818                         ret = tcp_set_congestion_control(sk, name, false, true);
4819                 } else {
4820                         struct inet_connection_sock *icsk = inet_csk(sk);
4821                         struct tcp_sock *tp = tcp_sk(sk);
4822                         unsigned long timeout;
4823
4824                         if (optlen != sizeof(int))
4825                                 return -EINVAL;
4826
4827                         val = *((int *)optval);
4828                         /* Only some options are supported */
4829                         switch (optname) {
4830                         case TCP_BPF_IW:
4831                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4832                                         ret = -EINVAL;
4833                                 else
4834                                         tp->snd_cwnd = val;
4835                                 break;
4836                         case TCP_BPF_SNDCWND_CLAMP:
4837                                 if (val <= 0) {
4838                                         ret = -EINVAL;
4839                                 } else {
4840                                         tp->snd_cwnd_clamp = val;
4841                                         tp->snd_ssthresh = val;
4842                                 }
4843                                 break;
4844                         case TCP_BPF_DELACK_MAX:
4845                                 timeout = usecs_to_jiffies(val);
4846                                 if (timeout > TCP_DELACK_MAX ||
4847                                     timeout < TCP_TIMEOUT_MIN)
4848                                         return -EINVAL;
4849                                 inet_csk(sk)->icsk_delack_max = timeout;
4850                                 break;
4851                         case TCP_BPF_RTO_MIN:
4852                                 timeout = usecs_to_jiffies(val);
4853                                 if (timeout > TCP_RTO_MIN ||
4854                                     timeout < TCP_TIMEOUT_MIN)
4855                                         return -EINVAL;
4856                                 inet_csk(sk)->icsk_rto_min = timeout;
4857                                 break;
4858                         case TCP_SAVE_SYN:
4859                                 if (val < 0 || val > 1)
4860                                         ret = -EINVAL;
4861                                 else
4862                                         tp->save_syn = val;
4863                                 break;
4864                         case TCP_KEEPIDLE:
4865                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4866                                 break;
4867                         case TCP_KEEPINTVL:
4868                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4869                                         ret = -EINVAL;
4870                                 else
4871                                         tp->keepalive_intvl = val * HZ;
4872                                 break;
4873                         case TCP_KEEPCNT:
4874                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4875                                         ret = -EINVAL;
4876                                 else
4877                                         tp->keepalive_probes = val;
4878                                 break;
4879                         case TCP_SYNCNT:
4880                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4881                                         ret = -EINVAL;
4882                                 else
4883                                         icsk->icsk_syn_retries = val;
4884                                 break;
4885                         case TCP_USER_TIMEOUT:
4886                                 if (val < 0)
4887                                         ret = -EINVAL;
4888                                 else
4889                                         icsk->icsk_user_timeout = val;
4890                                 break;
4891                         case TCP_NOTSENT_LOWAT:
4892                                 tp->notsent_lowat = val;
4893                                 sk->sk_write_space(sk);
4894                                 break;
4895                         case TCP_WINDOW_CLAMP:
4896                                 ret = tcp_set_window_clamp(sk, val);
4897                                 break;
4898                         default:
4899                                 ret = -EINVAL;
4900                         }
4901                 }
4902 #endif
4903         } else {
4904                 ret = -EINVAL;
4905         }
4906         return ret;
4907 }
4908
4909 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4910                            char *optval, int optlen)
4911 {
4912         if (!sk_fullsock(sk))
4913                 goto err_clear;
4914
4915         sock_owned_by_me(sk);
4916
4917         if (level == SOL_SOCKET) {
4918                 if (optlen != sizeof(int))
4919                         goto err_clear;
4920
4921                 switch (optname) {
4922                 case SO_MARK:
4923                         *((int *)optval) = sk->sk_mark;
4924                         break;
4925                 case SO_PRIORITY:
4926                         *((int *)optval) = sk->sk_priority;
4927                         break;
4928                 case SO_BINDTOIFINDEX:
4929                         *((int *)optval) = sk->sk_bound_dev_if;
4930                         break;
4931                 case SO_REUSEPORT:
4932                         *((int *)optval) = sk->sk_reuseport;
4933                         break;
4934                 default:
4935                         goto err_clear;
4936                 }
4937 #ifdef CONFIG_INET
4938         } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4939                 struct inet_connection_sock *icsk;
4940                 struct tcp_sock *tp;
4941
4942                 switch (optname) {
4943                 case TCP_CONGESTION:
4944                         icsk = inet_csk(sk);
4945
4946                         if (!icsk->icsk_ca_ops || optlen <= 1)
4947                                 goto err_clear;
4948                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4949                         optval[optlen - 1] = 0;
4950                         break;
4951                 case TCP_SAVED_SYN:
4952                         tp = tcp_sk(sk);
4953
4954                         if (optlen <= 0 || !tp->saved_syn ||
4955                             optlen > tcp_saved_syn_len(tp->saved_syn))
4956                                 goto err_clear;
4957                         memcpy(optval, tp->saved_syn->data, optlen);
4958                         break;
4959                 default:
4960                         goto err_clear;
4961                 }
4962         } else if (level == SOL_IP) {
4963                 struct inet_sock *inet = inet_sk(sk);
4964
4965                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4966                         goto err_clear;
4967
4968                 /* Only some options are supported */
4969                 switch (optname) {
4970                 case IP_TOS:
4971                         *((int *)optval) = (int)inet->tos;
4972                         break;
4973                 default:
4974                         goto err_clear;
4975                 }
4976 #if IS_ENABLED(CONFIG_IPV6)
4977         } else if (level == SOL_IPV6) {
4978                 struct ipv6_pinfo *np = inet6_sk(sk);
4979
4980                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4981                         goto err_clear;
4982
4983                 /* Only some options are supported */
4984                 switch (optname) {
4985                 case IPV6_TCLASS:
4986                         *((int *)optval) = (int)np->tclass;
4987                         break;
4988                 default:
4989                         goto err_clear;
4990                 }
4991 #endif
4992 #endif
4993         } else {
4994                 goto err_clear;
4995         }
4996         return 0;
4997 err_clear:
4998         memset(optval, 0, optlen);
4999         return -EINVAL;
5000 }
5001
5002 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5003            int, optname, char *, optval, int, optlen)
5004 {
5005         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5006 }
5007
5008 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5009         .func           = bpf_sk_setsockopt,
5010         .gpl_only       = false,
5011         .ret_type       = RET_INTEGER,
5012         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5013         .arg2_type      = ARG_ANYTHING,
5014         .arg3_type      = ARG_ANYTHING,
5015         .arg4_type      = ARG_PTR_TO_MEM,
5016         .arg5_type      = ARG_CONST_SIZE,
5017 };
5018
5019 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5020            int, optname, char *, optval, int, optlen)
5021 {
5022         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5023 }
5024
5025 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5026         .func           = bpf_sk_getsockopt,
5027         .gpl_only       = false,
5028         .ret_type       = RET_INTEGER,
5029         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5030         .arg2_type      = ARG_ANYTHING,
5031         .arg3_type      = ARG_ANYTHING,
5032         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5033         .arg5_type      = ARG_CONST_SIZE,
5034 };
5035
5036 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5037            int, level, int, optname, char *, optval, int, optlen)
5038 {
5039         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5040 }
5041
5042 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5043         .func           = bpf_sock_addr_setsockopt,
5044         .gpl_only       = false,
5045         .ret_type       = RET_INTEGER,
5046         .arg1_type      = ARG_PTR_TO_CTX,
5047         .arg2_type      = ARG_ANYTHING,
5048         .arg3_type      = ARG_ANYTHING,
5049         .arg4_type      = ARG_PTR_TO_MEM,
5050         .arg5_type      = ARG_CONST_SIZE,
5051 };
5052
5053 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5054            int, level, int, optname, char *, optval, int, optlen)
5055 {
5056         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5057 }
5058
5059 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5060         .func           = bpf_sock_addr_getsockopt,
5061         .gpl_only       = false,
5062         .ret_type       = RET_INTEGER,
5063         .arg1_type      = ARG_PTR_TO_CTX,
5064         .arg2_type      = ARG_ANYTHING,
5065         .arg3_type      = ARG_ANYTHING,
5066         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5067         .arg5_type      = ARG_CONST_SIZE,
5068 };
5069
5070 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5071            int, level, int, optname, char *, optval, int, optlen)
5072 {
5073         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5074 }
5075
5076 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5077         .func           = bpf_sock_ops_setsockopt,
5078         .gpl_only       = false,
5079         .ret_type       = RET_INTEGER,
5080         .arg1_type      = ARG_PTR_TO_CTX,
5081         .arg2_type      = ARG_ANYTHING,
5082         .arg3_type      = ARG_ANYTHING,
5083         .arg4_type      = ARG_PTR_TO_MEM,
5084         .arg5_type      = ARG_CONST_SIZE,
5085 };
5086
5087 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5088                                 int optname, const u8 **start)
5089 {
5090         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5091         const u8 *hdr_start;
5092         int ret;
5093
5094         if (syn_skb) {
5095                 /* sk is a request_sock here */
5096
5097                 if (optname == TCP_BPF_SYN) {
5098                         hdr_start = syn_skb->data;
5099                         ret = tcp_hdrlen(syn_skb);
5100                 } else if (optname == TCP_BPF_SYN_IP) {
5101                         hdr_start = skb_network_header(syn_skb);
5102                         ret = skb_network_header_len(syn_skb) +
5103                                 tcp_hdrlen(syn_skb);
5104                 } else {
5105                         /* optname == TCP_BPF_SYN_MAC */
5106                         hdr_start = skb_mac_header(syn_skb);
5107                         ret = skb_mac_header_len(syn_skb) +
5108                                 skb_network_header_len(syn_skb) +
5109                                 tcp_hdrlen(syn_skb);
5110                 }
5111         } else {
5112                 struct sock *sk = bpf_sock->sk;
5113                 struct saved_syn *saved_syn;
5114
5115                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5116                         /* synack retransmit. bpf_sock->syn_skb will
5117                          * not be available.  It has to resort to
5118                          * saved_syn (if it is saved).
5119                          */
5120                         saved_syn = inet_reqsk(sk)->saved_syn;
5121                 else
5122                         saved_syn = tcp_sk(sk)->saved_syn;
5123
5124                 if (!saved_syn)
5125                         return -ENOENT;
5126
5127                 if (optname == TCP_BPF_SYN) {
5128                         hdr_start = saved_syn->data +
5129                                 saved_syn->mac_hdrlen +
5130                                 saved_syn->network_hdrlen;
5131                         ret = saved_syn->tcp_hdrlen;
5132                 } else if (optname == TCP_BPF_SYN_IP) {
5133                         hdr_start = saved_syn->data +
5134                                 saved_syn->mac_hdrlen;
5135                         ret = saved_syn->network_hdrlen +
5136                                 saved_syn->tcp_hdrlen;
5137                 } else {
5138                         /* optname == TCP_BPF_SYN_MAC */
5139
5140                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5141                         if (!saved_syn->mac_hdrlen)
5142                                 return -ENOENT;
5143
5144                         hdr_start = saved_syn->data;
5145                         ret = saved_syn->mac_hdrlen +
5146                                 saved_syn->network_hdrlen +
5147                                 saved_syn->tcp_hdrlen;
5148                 }
5149         }
5150
5151         *start = hdr_start;
5152         return ret;
5153 }
5154
5155 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5156            int, level, int, optname, char *, optval, int, optlen)
5157 {
5158         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5159             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5160                 int ret, copy_len = 0;
5161                 const u8 *start;
5162
5163                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5164                 if (ret > 0) {
5165                         copy_len = ret;
5166                         if (optlen < copy_len) {
5167                                 copy_len = optlen;
5168                                 ret = -ENOSPC;
5169                         }
5170
5171                         memcpy(optval, start, copy_len);
5172                 }
5173
5174                 /* Zero out unused buffer at the end */
5175                 memset(optval + copy_len, 0, optlen - copy_len);
5176
5177                 return ret;
5178         }
5179
5180         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5181 }
5182
5183 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5184         .func           = bpf_sock_ops_getsockopt,
5185         .gpl_only       = false,
5186         .ret_type       = RET_INTEGER,
5187         .arg1_type      = ARG_PTR_TO_CTX,
5188         .arg2_type      = ARG_ANYTHING,
5189         .arg3_type      = ARG_ANYTHING,
5190         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5191         .arg5_type      = ARG_CONST_SIZE,
5192 };
5193
5194 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5195            int, argval)
5196 {
5197         struct sock *sk = bpf_sock->sk;
5198         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5199
5200         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5201                 return -EINVAL;
5202
5203         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5204
5205         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5206 }
5207
5208 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5209         .func           = bpf_sock_ops_cb_flags_set,
5210         .gpl_only       = false,
5211         .ret_type       = RET_INTEGER,
5212         .arg1_type      = ARG_PTR_TO_CTX,
5213         .arg2_type      = ARG_ANYTHING,
5214 };
5215
5216 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5217 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5218
5219 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5220            int, addr_len)
5221 {
5222 #ifdef CONFIG_INET
5223         struct sock *sk = ctx->sk;
5224         u32 flags = BIND_FROM_BPF;
5225         int err;
5226
5227         err = -EINVAL;
5228         if (addr_len < offsetofend(struct sockaddr, sa_family))
5229                 return err;
5230         if (addr->sa_family == AF_INET) {
5231                 if (addr_len < sizeof(struct sockaddr_in))
5232                         return err;
5233                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5234                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5235                 return __inet_bind(sk, addr, addr_len, flags);
5236 #if IS_ENABLED(CONFIG_IPV6)
5237         } else if (addr->sa_family == AF_INET6) {
5238                 if (addr_len < SIN6_LEN_RFC2133)
5239                         return err;
5240                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5241                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5242                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5243                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5244                  */
5245                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5246 #endif /* CONFIG_IPV6 */
5247         }
5248 #endif /* CONFIG_INET */
5249
5250         return -EAFNOSUPPORT;
5251 }
5252
5253 static const struct bpf_func_proto bpf_bind_proto = {
5254         .func           = bpf_bind,
5255         .gpl_only       = false,
5256         .ret_type       = RET_INTEGER,
5257         .arg1_type      = ARG_PTR_TO_CTX,
5258         .arg2_type      = ARG_PTR_TO_MEM,
5259         .arg3_type      = ARG_CONST_SIZE,
5260 };
5261
5262 #ifdef CONFIG_XFRM
5263 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5264            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5265 {
5266         const struct sec_path *sp = skb_sec_path(skb);
5267         const struct xfrm_state *x;
5268
5269         if (!sp || unlikely(index >= sp->len || flags))
5270                 goto err_clear;
5271
5272         x = sp->xvec[index];
5273
5274         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5275                 goto err_clear;
5276
5277         to->reqid = x->props.reqid;
5278         to->spi = x->id.spi;
5279         to->family = x->props.family;
5280         to->ext = 0;
5281
5282         if (to->family == AF_INET6) {
5283                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5284                        sizeof(to->remote_ipv6));
5285         } else {
5286                 to->remote_ipv4 = x->props.saddr.a4;
5287                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5288         }
5289
5290         return 0;
5291 err_clear:
5292         memset(to, 0, size);
5293         return -EINVAL;
5294 }
5295
5296 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5297         .func           = bpf_skb_get_xfrm_state,
5298         .gpl_only       = false,
5299         .ret_type       = RET_INTEGER,
5300         .arg1_type      = ARG_PTR_TO_CTX,
5301         .arg2_type      = ARG_ANYTHING,
5302         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5303         .arg4_type      = ARG_CONST_SIZE,
5304         .arg5_type      = ARG_ANYTHING,
5305 };
5306 #endif
5307
5308 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5309 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5310                                   const struct neighbour *neigh,
5311                                   const struct net_device *dev, u32 mtu)
5312 {
5313         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5314         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5315         params->h_vlan_TCI = 0;
5316         params->h_vlan_proto = 0;
5317         if (mtu)
5318                 params->mtu_result = mtu; /* union with tot_len */
5319
5320         return 0;
5321 }
5322 #endif
5323
5324 #if IS_ENABLED(CONFIG_INET)
5325 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5326                                u32 flags, bool check_mtu)
5327 {
5328         struct fib_nh_common *nhc;
5329         struct in_device *in_dev;
5330         struct neighbour *neigh;
5331         struct net_device *dev;
5332         struct fib_result res;
5333         struct flowi4 fl4;
5334         u32 mtu = 0;
5335         int err;
5336
5337         dev = dev_get_by_index_rcu(net, params->ifindex);
5338         if (unlikely(!dev))
5339                 return -ENODEV;
5340
5341         /* verify forwarding is enabled on this interface */
5342         in_dev = __in_dev_get_rcu(dev);
5343         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5344                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5345
5346         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5347                 fl4.flowi4_iif = 1;
5348                 fl4.flowi4_oif = params->ifindex;
5349         } else {
5350                 fl4.flowi4_iif = params->ifindex;
5351                 fl4.flowi4_oif = 0;
5352         }
5353         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5354         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5355         fl4.flowi4_flags = 0;
5356
5357         fl4.flowi4_proto = params->l4_protocol;
5358         fl4.daddr = params->ipv4_dst;
5359         fl4.saddr = params->ipv4_src;
5360         fl4.fl4_sport = params->sport;
5361         fl4.fl4_dport = params->dport;
5362         fl4.flowi4_multipath_hash = 0;
5363
5364         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5365                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5366                 struct fib_table *tb;
5367
5368                 tb = fib_get_table(net, tbid);
5369                 if (unlikely(!tb))
5370                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5371
5372                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5373         } else {
5374                 fl4.flowi4_mark = 0;
5375                 fl4.flowi4_secid = 0;
5376                 fl4.flowi4_tun_key.tun_id = 0;
5377                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5378
5379                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5380         }
5381
5382         if (err) {
5383                 /* map fib lookup errors to RTN_ type */
5384                 if (err == -EINVAL)
5385                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5386                 if (err == -EHOSTUNREACH)
5387                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5388                 if (err == -EACCES)
5389                         return BPF_FIB_LKUP_RET_PROHIBIT;
5390
5391                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5392         }
5393
5394         if (res.type != RTN_UNICAST)
5395                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5396
5397         if (fib_info_num_path(res.fi) > 1)
5398                 fib_select_path(net, &res, &fl4, NULL);
5399
5400         if (check_mtu) {
5401                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5402                 if (params->tot_len > mtu) {
5403                         params->mtu_result = mtu; /* union with tot_len */
5404                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5405                 }
5406         }
5407
5408         nhc = res.nhc;
5409
5410         /* do not handle lwt encaps right now */
5411         if (nhc->nhc_lwtstate)
5412                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5413
5414         dev = nhc->nhc_dev;
5415
5416         params->rt_metric = res.fi->fib_priority;
5417         params->ifindex = dev->ifindex;
5418
5419         /* xdp and cls_bpf programs are run in RCU-bh so
5420          * rcu_read_lock_bh is not needed here
5421          */
5422         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5423                 if (nhc->nhc_gw_family)
5424                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5425
5426                 neigh = __ipv4_neigh_lookup_noref(dev,
5427                                                  (__force u32)params->ipv4_dst);
5428         } else {
5429                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5430
5431                 params->family = AF_INET6;
5432                 *dst = nhc->nhc_gw.ipv6;
5433                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5434         }
5435
5436         if (!neigh)
5437                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5438
5439         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5440 }
5441 #endif
5442
5443 #if IS_ENABLED(CONFIG_IPV6)
5444 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5445                                u32 flags, bool check_mtu)
5446 {
5447         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5448         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5449         struct fib6_result res = {};
5450         struct neighbour *neigh;
5451         struct net_device *dev;
5452         struct inet6_dev *idev;
5453         struct flowi6 fl6;
5454         int strict = 0;
5455         int oif, err;
5456         u32 mtu = 0;
5457
5458         /* link local addresses are never forwarded */
5459         if (rt6_need_strict(dst) || rt6_need_strict(src))
5460                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5461
5462         dev = dev_get_by_index_rcu(net, params->ifindex);
5463         if (unlikely(!dev))
5464                 return -ENODEV;
5465
5466         idev = __in6_dev_get_safely(dev);
5467         if (unlikely(!idev || !idev->cnf.forwarding))
5468                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5469
5470         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5471                 fl6.flowi6_iif = 1;
5472                 oif = fl6.flowi6_oif = params->ifindex;
5473         } else {
5474                 oif = fl6.flowi6_iif = params->ifindex;
5475                 fl6.flowi6_oif = 0;
5476                 strict = RT6_LOOKUP_F_HAS_SADDR;
5477         }
5478         fl6.flowlabel = params->flowinfo;
5479         fl6.flowi6_scope = 0;
5480         fl6.flowi6_flags = 0;
5481         fl6.mp_hash = 0;
5482
5483         fl6.flowi6_proto = params->l4_protocol;
5484         fl6.daddr = *dst;
5485         fl6.saddr = *src;
5486         fl6.fl6_sport = params->sport;
5487         fl6.fl6_dport = params->dport;
5488
5489         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5490                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5491                 struct fib6_table *tb;
5492
5493                 tb = ipv6_stub->fib6_get_table(net, tbid);
5494                 if (unlikely(!tb))
5495                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5496
5497                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5498                                                    strict);
5499         } else {
5500                 fl6.flowi6_mark = 0;
5501                 fl6.flowi6_secid = 0;
5502                 fl6.flowi6_tun_key.tun_id = 0;
5503                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5504
5505                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5506         }
5507
5508         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5509                      res.f6i == net->ipv6.fib6_null_entry))
5510                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5511
5512         switch (res.fib6_type) {
5513         /* only unicast is forwarded */
5514         case RTN_UNICAST:
5515                 break;
5516         case RTN_BLACKHOLE:
5517                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5518         case RTN_UNREACHABLE:
5519                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5520         case RTN_PROHIBIT:
5521                 return BPF_FIB_LKUP_RET_PROHIBIT;
5522         default:
5523                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5524         }
5525
5526         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5527                                     fl6.flowi6_oif != 0, NULL, strict);
5528
5529         if (check_mtu) {
5530                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5531                 if (params->tot_len > mtu) {
5532                         params->mtu_result = mtu; /* union with tot_len */
5533                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5534                 }
5535         }
5536
5537         if (res.nh->fib_nh_lws)
5538                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5539
5540         if (res.nh->fib_nh_gw_family)
5541                 *dst = res.nh->fib_nh_gw6;
5542
5543         dev = res.nh->fib_nh_dev;
5544         params->rt_metric = res.f6i->fib6_metric;
5545         params->ifindex = dev->ifindex;
5546
5547         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5548          * not needed here.
5549          */
5550         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5551         if (!neigh)
5552                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5553
5554         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5555 }
5556 #endif
5557
5558 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5559            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5560 {
5561         if (plen < sizeof(*params))
5562                 return -EINVAL;
5563
5564         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5565                 return -EINVAL;
5566
5567         switch (params->family) {
5568 #if IS_ENABLED(CONFIG_INET)
5569         case AF_INET:
5570                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5571                                            flags, true);
5572 #endif
5573 #if IS_ENABLED(CONFIG_IPV6)
5574         case AF_INET6:
5575                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5576                                            flags, true);
5577 #endif
5578         }
5579         return -EAFNOSUPPORT;
5580 }
5581
5582 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5583         .func           = bpf_xdp_fib_lookup,
5584         .gpl_only       = true,
5585         .ret_type       = RET_INTEGER,
5586         .arg1_type      = ARG_PTR_TO_CTX,
5587         .arg2_type      = ARG_PTR_TO_MEM,
5588         .arg3_type      = ARG_CONST_SIZE,
5589         .arg4_type      = ARG_ANYTHING,
5590 };
5591
5592 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5593            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5594 {
5595         struct net *net = dev_net(skb->dev);
5596         int rc = -EAFNOSUPPORT;
5597         bool check_mtu = false;
5598
5599         if (plen < sizeof(*params))
5600                 return -EINVAL;
5601
5602         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5603                 return -EINVAL;
5604
5605         if (params->tot_len)
5606                 check_mtu = true;
5607
5608         switch (params->family) {
5609 #if IS_ENABLED(CONFIG_INET)
5610         case AF_INET:
5611                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5612                 break;
5613 #endif
5614 #if IS_ENABLED(CONFIG_IPV6)
5615         case AF_INET6:
5616                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5617                 break;
5618 #endif
5619         }
5620
5621         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5622                 struct net_device *dev;
5623
5624                 /* When tot_len isn't provided by user, check skb
5625                  * against MTU of FIB lookup resulting net_device
5626                  */
5627                 dev = dev_get_by_index_rcu(net, params->ifindex);
5628                 if (!is_skb_forwardable(dev, skb))
5629                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5630
5631                 params->mtu_result = dev->mtu; /* union with tot_len */
5632         }
5633
5634         return rc;
5635 }
5636
5637 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5638         .func           = bpf_skb_fib_lookup,
5639         .gpl_only       = true,
5640         .ret_type       = RET_INTEGER,
5641         .arg1_type      = ARG_PTR_TO_CTX,
5642         .arg2_type      = ARG_PTR_TO_MEM,
5643         .arg3_type      = ARG_CONST_SIZE,
5644         .arg4_type      = ARG_ANYTHING,
5645 };
5646
5647 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5648                                             u32 ifindex)
5649 {
5650         struct net *netns = dev_net(dev_curr);
5651
5652         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5653         if (ifindex == 0)
5654                 return dev_curr;
5655
5656         return dev_get_by_index_rcu(netns, ifindex);
5657 }
5658
5659 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5660            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5661 {
5662         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5663         struct net_device *dev = skb->dev;
5664         int skb_len, dev_len;
5665         int mtu;
5666
5667         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5668                 return -EINVAL;
5669
5670         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5671                 return -EINVAL;
5672
5673         dev = __dev_via_ifindex(dev, ifindex);
5674         if (unlikely(!dev))
5675                 return -ENODEV;
5676
5677         mtu = READ_ONCE(dev->mtu);
5678
5679         dev_len = mtu + dev->hard_header_len;
5680
5681         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5682         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5683
5684         skb_len += len_diff; /* minus result pass check */
5685         if (skb_len <= dev_len) {
5686                 ret = BPF_MTU_CHK_RET_SUCCESS;
5687                 goto out;
5688         }
5689         /* At this point, skb->len exceed MTU, but as it include length of all
5690          * segments, it can still be below MTU.  The SKB can possibly get
5691          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5692          * must choose if segs are to be MTU checked.
5693          */
5694         if (skb_is_gso(skb)) {
5695                 ret = BPF_MTU_CHK_RET_SUCCESS;
5696
5697                 if (flags & BPF_MTU_CHK_SEGS &&
5698                     !skb_gso_validate_network_len(skb, mtu))
5699                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5700         }
5701 out:
5702         /* BPF verifier guarantees valid pointer */
5703         *mtu_len = mtu;
5704
5705         return ret;
5706 }
5707
5708 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5709            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5710 {
5711         struct net_device *dev = xdp->rxq->dev;
5712         int xdp_len = xdp->data_end - xdp->data;
5713         int ret = BPF_MTU_CHK_RET_SUCCESS;
5714         int mtu, dev_len;
5715
5716         /* XDP variant doesn't support multi-buffer segment check (yet) */
5717         if (unlikely(flags))
5718                 return -EINVAL;
5719
5720         dev = __dev_via_ifindex(dev, ifindex);
5721         if (unlikely(!dev))
5722                 return -ENODEV;
5723
5724         mtu = READ_ONCE(dev->mtu);
5725
5726         /* Add L2-header as dev MTU is L3 size */
5727         dev_len = mtu + dev->hard_header_len;
5728
5729         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5730         if (*mtu_len)
5731                 xdp_len = *mtu_len + dev->hard_header_len;
5732
5733         xdp_len += len_diff; /* minus result pass check */
5734         if (xdp_len > dev_len)
5735                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5736
5737         /* BPF verifier guarantees valid pointer */
5738         *mtu_len = mtu;
5739
5740         return ret;
5741 }
5742
5743 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5744         .func           = bpf_skb_check_mtu,
5745         .gpl_only       = true,
5746         .ret_type       = RET_INTEGER,
5747         .arg1_type      = ARG_PTR_TO_CTX,
5748         .arg2_type      = ARG_ANYTHING,
5749         .arg3_type      = ARG_PTR_TO_INT,
5750         .arg4_type      = ARG_ANYTHING,
5751         .arg5_type      = ARG_ANYTHING,
5752 };
5753
5754 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5755         .func           = bpf_xdp_check_mtu,
5756         .gpl_only       = true,
5757         .ret_type       = RET_INTEGER,
5758         .arg1_type      = ARG_PTR_TO_CTX,
5759         .arg2_type      = ARG_ANYTHING,
5760         .arg3_type      = ARG_PTR_TO_INT,
5761         .arg4_type      = ARG_ANYTHING,
5762         .arg5_type      = ARG_ANYTHING,
5763 };
5764
5765 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5766 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5767 {
5768         int err;
5769         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5770
5771         if (!seg6_validate_srh(srh, len, false))
5772                 return -EINVAL;
5773
5774         switch (type) {
5775         case BPF_LWT_ENCAP_SEG6_INLINE:
5776                 if (skb->protocol != htons(ETH_P_IPV6))
5777                         return -EBADMSG;
5778
5779                 err = seg6_do_srh_inline(skb, srh);
5780                 break;
5781         case BPF_LWT_ENCAP_SEG6:
5782                 skb_reset_inner_headers(skb);
5783                 skb->encapsulation = 1;
5784                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5785                 break;
5786         default:
5787                 return -EINVAL;
5788         }
5789
5790         bpf_compute_data_pointers(skb);
5791         if (err)
5792                 return err;
5793
5794         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5795         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5796
5797         return seg6_lookup_nexthop(skb, NULL, 0);
5798 }
5799 #endif /* CONFIG_IPV6_SEG6_BPF */
5800
5801 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5802 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5803                              bool ingress)
5804 {
5805         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5806 }
5807 #endif
5808
5809 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5810            u32, len)
5811 {
5812         switch (type) {
5813 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5814         case BPF_LWT_ENCAP_SEG6:
5815         case BPF_LWT_ENCAP_SEG6_INLINE:
5816                 return bpf_push_seg6_encap(skb, type, hdr, len);
5817 #endif
5818 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5819         case BPF_LWT_ENCAP_IP:
5820                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5821 #endif
5822         default:
5823                 return -EINVAL;
5824         }
5825 }
5826
5827 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5828            void *, hdr, u32, len)
5829 {
5830         switch (type) {
5831 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5832         case BPF_LWT_ENCAP_IP:
5833                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5834 #endif
5835         default:
5836                 return -EINVAL;
5837         }
5838 }
5839
5840 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5841         .func           = bpf_lwt_in_push_encap,
5842         .gpl_only       = false,
5843         .ret_type       = RET_INTEGER,
5844         .arg1_type      = ARG_PTR_TO_CTX,
5845         .arg2_type      = ARG_ANYTHING,
5846         .arg3_type      = ARG_PTR_TO_MEM,
5847         .arg4_type      = ARG_CONST_SIZE
5848 };
5849
5850 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5851         .func           = bpf_lwt_xmit_push_encap,
5852         .gpl_only       = false,
5853         .ret_type       = RET_INTEGER,
5854         .arg1_type      = ARG_PTR_TO_CTX,
5855         .arg2_type      = ARG_ANYTHING,
5856         .arg3_type      = ARG_PTR_TO_MEM,
5857         .arg4_type      = ARG_CONST_SIZE
5858 };
5859
5860 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5861 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5862            const void *, from, u32, len)
5863 {
5864         struct seg6_bpf_srh_state *srh_state =
5865                 this_cpu_ptr(&seg6_bpf_srh_states);
5866         struct ipv6_sr_hdr *srh = srh_state->srh;
5867         void *srh_tlvs, *srh_end, *ptr;
5868         int srhoff = 0;
5869
5870         if (srh == NULL)
5871                 return -EINVAL;
5872
5873         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5874         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5875
5876         ptr = skb->data + offset;
5877         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5878                 srh_state->valid = false;
5879         else if (ptr < (void *)&srh->flags ||
5880                  ptr + len > (void *)&srh->segments)
5881                 return -EFAULT;
5882
5883         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5884                 return -EFAULT;
5885         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5886                 return -EINVAL;
5887         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5888
5889         memcpy(skb->data + offset, from, len);
5890         return 0;
5891 }
5892
5893 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5894         .func           = bpf_lwt_seg6_store_bytes,
5895         .gpl_only       = false,
5896         .ret_type       = RET_INTEGER,
5897         .arg1_type      = ARG_PTR_TO_CTX,
5898         .arg2_type      = ARG_ANYTHING,
5899         .arg3_type      = ARG_PTR_TO_MEM,
5900         .arg4_type      = ARG_CONST_SIZE
5901 };
5902
5903 static void bpf_update_srh_state(struct sk_buff *skb)
5904 {
5905         struct seg6_bpf_srh_state *srh_state =
5906                 this_cpu_ptr(&seg6_bpf_srh_states);
5907         int srhoff = 0;
5908
5909         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5910                 srh_state->srh = NULL;
5911         } else {
5912                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5913                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5914                 srh_state->valid = true;
5915         }
5916 }
5917
5918 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5919            u32, action, void *, param, u32, param_len)
5920 {
5921         struct seg6_bpf_srh_state *srh_state =
5922                 this_cpu_ptr(&seg6_bpf_srh_states);
5923         int hdroff = 0;
5924         int err;
5925
5926         switch (action) {
5927         case SEG6_LOCAL_ACTION_END_X:
5928                 if (!seg6_bpf_has_valid_srh(skb))
5929                         return -EBADMSG;
5930                 if (param_len != sizeof(struct in6_addr))
5931                         return -EINVAL;
5932                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5933         case SEG6_LOCAL_ACTION_END_T:
5934                 if (!seg6_bpf_has_valid_srh(skb))
5935                         return -EBADMSG;
5936                 if (param_len != sizeof(int))
5937                         return -EINVAL;
5938                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5939         case SEG6_LOCAL_ACTION_END_DT6:
5940                 if (!seg6_bpf_has_valid_srh(skb))
5941                         return -EBADMSG;
5942                 if (param_len != sizeof(int))
5943                         return -EINVAL;
5944
5945                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5946                         return -EBADMSG;
5947                 if (!pskb_pull(skb, hdroff))
5948                         return -EBADMSG;
5949
5950                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5951                 skb_reset_network_header(skb);
5952                 skb_reset_transport_header(skb);
5953                 skb->encapsulation = 0;
5954
5955                 bpf_compute_data_pointers(skb);
5956                 bpf_update_srh_state(skb);
5957                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5958         case SEG6_LOCAL_ACTION_END_B6:
5959                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5960                         return -EBADMSG;
5961                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5962                                           param, param_len);
5963                 if (!err)
5964                         bpf_update_srh_state(skb);
5965
5966                 return err;
5967         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5968                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5969                         return -EBADMSG;
5970                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5971                                           param, param_len);
5972                 if (!err)
5973                         bpf_update_srh_state(skb);
5974
5975                 return err;
5976         default:
5977                 return -EINVAL;
5978         }
5979 }
5980
5981 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5982         .func           = bpf_lwt_seg6_action,
5983         .gpl_only       = false,
5984         .ret_type       = RET_INTEGER,
5985         .arg1_type      = ARG_PTR_TO_CTX,
5986         .arg2_type      = ARG_ANYTHING,
5987         .arg3_type      = ARG_PTR_TO_MEM,
5988         .arg4_type      = ARG_CONST_SIZE
5989 };
5990
5991 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5992            s32, len)
5993 {
5994         struct seg6_bpf_srh_state *srh_state =
5995                 this_cpu_ptr(&seg6_bpf_srh_states);
5996         struct ipv6_sr_hdr *srh = srh_state->srh;
5997         void *srh_end, *srh_tlvs, *ptr;
5998         struct ipv6hdr *hdr;
5999         int srhoff = 0;
6000         int ret;
6001
6002         if (unlikely(srh == NULL))
6003                 return -EINVAL;
6004
6005         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6006                         ((srh->first_segment + 1) << 4));
6007         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6008                         srh_state->hdrlen);
6009         ptr = skb->data + offset;
6010
6011         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6012                 return -EFAULT;
6013         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6014                 return -EFAULT;
6015
6016         if (len > 0) {
6017                 ret = skb_cow_head(skb, len);
6018                 if (unlikely(ret < 0))
6019                         return ret;
6020
6021                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6022         } else {
6023                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6024         }
6025
6026         bpf_compute_data_pointers(skb);
6027         if (unlikely(ret < 0))
6028                 return ret;
6029
6030         hdr = (struct ipv6hdr *)skb->data;
6031         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6032
6033         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6034                 return -EINVAL;
6035         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6036         srh_state->hdrlen += len;
6037         srh_state->valid = false;
6038         return 0;
6039 }
6040
6041 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6042         .func           = bpf_lwt_seg6_adjust_srh,
6043         .gpl_only       = false,
6044         .ret_type       = RET_INTEGER,
6045         .arg1_type      = ARG_PTR_TO_CTX,
6046         .arg2_type      = ARG_ANYTHING,
6047         .arg3_type      = ARG_ANYTHING,
6048 };
6049 #endif /* CONFIG_IPV6_SEG6_BPF */
6050
6051 #ifdef CONFIG_INET
6052 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6053                               int dif, int sdif, u8 family, u8 proto)
6054 {
6055         bool refcounted = false;
6056         struct sock *sk = NULL;
6057
6058         if (family == AF_INET) {
6059                 __be32 src4 = tuple->ipv4.saddr;
6060                 __be32 dst4 = tuple->ipv4.daddr;
6061
6062                 if (proto == IPPROTO_TCP)
6063                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6064                                            src4, tuple->ipv4.sport,
6065                                            dst4, tuple->ipv4.dport,
6066                                            dif, sdif, &refcounted);
6067                 else
6068                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6069                                                dst4, tuple->ipv4.dport,
6070                                                dif, sdif, &udp_table, NULL);
6071 #if IS_ENABLED(CONFIG_IPV6)
6072         } else {
6073                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6074                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6075
6076                 if (proto == IPPROTO_TCP)
6077                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6078                                             src6, tuple->ipv6.sport,
6079                                             dst6, ntohs(tuple->ipv6.dport),
6080                                             dif, sdif, &refcounted);
6081                 else if (likely(ipv6_bpf_stub))
6082                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6083                                                             src6, tuple->ipv6.sport,
6084                                                             dst6, tuple->ipv6.dport,
6085                                                             dif, sdif,
6086                                                             &udp_table, NULL);
6087 #endif
6088         }
6089
6090         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6091                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6092                 sk = NULL;
6093         }
6094         return sk;
6095 }
6096
6097 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6098  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6099  * Returns the socket as an 'unsigned long' to simplify the casting in the
6100  * callers to satisfy BPF_CALL declarations.
6101  */
6102 static struct sock *
6103 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6104                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6105                  u64 flags)
6106 {
6107         struct sock *sk = NULL;
6108         u8 family = AF_UNSPEC;
6109         struct net *net;
6110         int sdif;
6111
6112         if (len == sizeof(tuple->ipv4))
6113                 family = AF_INET;
6114         else if (len == sizeof(tuple->ipv6))
6115                 family = AF_INET6;
6116         else
6117                 return NULL;
6118
6119         if (unlikely(family == AF_UNSPEC || flags ||
6120                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6121                 goto out;
6122
6123         if (family == AF_INET)
6124                 sdif = inet_sdif(skb);
6125         else
6126                 sdif = inet6_sdif(skb);
6127
6128         if ((s32)netns_id < 0) {
6129                 net = caller_net;
6130                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6131         } else {
6132                 net = get_net_ns_by_id(caller_net, netns_id);
6133                 if (unlikely(!net))
6134                         goto out;
6135                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6136                 put_net(net);
6137         }
6138
6139 out:
6140         return sk;
6141 }
6142
6143 static struct sock *
6144 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6145                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6146                 u64 flags)
6147 {
6148         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6149                                            ifindex, proto, netns_id, flags);
6150
6151         if (sk) {
6152                 sk = sk_to_full_sk(sk);
6153                 if (!sk_fullsock(sk)) {
6154                         sock_gen_put(sk);
6155                         return NULL;
6156                 }
6157         }
6158
6159         return sk;
6160 }
6161
6162 static struct sock *
6163 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6164                u8 proto, u64 netns_id, u64 flags)
6165 {
6166         struct net *caller_net;
6167         int ifindex;
6168
6169         if (skb->dev) {
6170                 caller_net = dev_net(skb->dev);
6171                 ifindex = skb->dev->ifindex;
6172         } else {
6173                 caller_net = sock_net(skb->sk);
6174                 ifindex = 0;
6175         }
6176
6177         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6178                                 netns_id, flags);
6179 }
6180
6181 static struct sock *
6182 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6183               u8 proto, u64 netns_id, u64 flags)
6184 {
6185         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6186                                          flags);
6187
6188         if (sk) {
6189                 sk = sk_to_full_sk(sk);
6190                 if (!sk_fullsock(sk)) {
6191                         sock_gen_put(sk);
6192                         return NULL;
6193                 }
6194         }
6195
6196         return sk;
6197 }
6198
6199 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6200            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6201 {
6202         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6203                                              netns_id, flags);
6204 }
6205
6206 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6207         .func           = bpf_skc_lookup_tcp,
6208         .gpl_only       = false,
6209         .pkt_access     = true,
6210         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6211         .arg1_type      = ARG_PTR_TO_CTX,
6212         .arg2_type      = ARG_PTR_TO_MEM,
6213         .arg3_type      = ARG_CONST_SIZE,
6214         .arg4_type      = ARG_ANYTHING,
6215         .arg5_type      = ARG_ANYTHING,
6216 };
6217
6218 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6219            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6220 {
6221         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6222                                             netns_id, flags);
6223 }
6224
6225 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6226         .func           = bpf_sk_lookup_tcp,
6227         .gpl_only       = false,
6228         .pkt_access     = true,
6229         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6230         .arg1_type      = ARG_PTR_TO_CTX,
6231         .arg2_type      = ARG_PTR_TO_MEM,
6232         .arg3_type      = ARG_CONST_SIZE,
6233         .arg4_type      = ARG_ANYTHING,
6234         .arg5_type      = ARG_ANYTHING,
6235 };
6236
6237 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6238            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6239 {
6240         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6241                                             netns_id, flags);
6242 }
6243
6244 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6245         .func           = bpf_sk_lookup_udp,
6246         .gpl_only       = false,
6247         .pkt_access     = true,
6248         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6249         .arg1_type      = ARG_PTR_TO_CTX,
6250         .arg2_type      = ARG_PTR_TO_MEM,
6251         .arg3_type      = ARG_CONST_SIZE,
6252         .arg4_type      = ARG_ANYTHING,
6253         .arg5_type      = ARG_ANYTHING,
6254 };
6255
6256 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6257 {
6258         if (sk && sk_is_refcounted(sk))
6259                 sock_gen_put(sk);
6260         return 0;
6261 }
6262
6263 static const struct bpf_func_proto bpf_sk_release_proto = {
6264         .func           = bpf_sk_release,
6265         .gpl_only       = false,
6266         .ret_type       = RET_INTEGER,
6267         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6268 };
6269
6270 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6271            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6272 {
6273         struct net *caller_net = dev_net(ctx->rxq->dev);
6274         int ifindex = ctx->rxq->dev->ifindex;
6275
6276         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6277                                               ifindex, IPPROTO_UDP, netns_id,
6278                                               flags);
6279 }
6280
6281 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6282         .func           = bpf_xdp_sk_lookup_udp,
6283         .gpl_only       = false,
6284         .pkt_access     = true,
6285         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6286         .arg1_type      = ARG_PTR_TO_CTX,
6287         .arg2_type      = ARG_PTR_TO_MEM,
6288         .arg3_type      = ARG_CONST_SIZE,
6289         .arg4_type      = ARG_ANYTHING,
6290         .arg5_type      = ARG_ANYTHING,
6291 };
6292
6293 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6294            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6295 {
6296         struct net *caller_net = dev_net(ctx->rxq->dev);
6297         int ifindex = ctx->rxq->dev->ifindex;
6298
6299         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6300                                                ifindex, IPPROTO_TCP, netns_id,
6301                                                flags);
6302 }
6303
6304 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6305         .func           = bpf_xdp_skc_lookup_tcp,
6306         .gpl_only       = false,
6307         .pkt_access     = true,
6308         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6309         .arg1_type      = ARG_PTR_TO_CTX,
6310         .arg2_type      = ARG_PTR_TO_MEM,
6311         .arg3_type      = ARG_CONST_SIZE,
6312         .arg4_type      = ARG_ANYTHING,
6313         .arg5_type      = ARG_ANYTHING,
6314 };
6315
6316 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6317            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6318 {
6319         struct net *caller_net = dev_net(ctx->rxq->dev);
6320         int ifindex = ctx->rxq->dev->ifindex;
6321
6322         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6323                                               ifindex, IPPROTO_TCP, netns_id,
6324                                               flags);
6325 }
6326
6327 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6328         .func           = bpf_xdp_sk_lookup_tcp,
6329         .gpl_only       = false,
6330         .pkt_access     = true,
6331         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6332         .arg1_type      = ARG_PTR_TO_CTX,
6333         .arg2_type      = ARG_PTR_TO_MEM,
6334         .arg3_type      = ARG_CONST_SIZE,
6335         .arg4_type      = ARG_ANYTHING,
6336         .arg5_type      = ARG_ANYTHING,
6337 };
6338
6339 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6340            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6341 {
6342         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6343                                                sock_net(ctx->sk), 0,
6344                                                IPPROTO_TCP, netns_id, flags);
6345 }
6346
6347 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6348         .func           = bpf_sock_addr_skc_lookup_tcp,
6349         .gpl_only       = false,
6350         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6351         .arg1_type      = ARG_PTR_TO_CTX,
6352         .arg2_type      = ARG_PTR_TO_MEM,
6353         .arg3_type      = ARG_CONST_SIZE,
6354         .arg4_type      = ARG_ANYTHING,
6355         .arg5_type      = ARG_ANYTHING,
6356 };
6357
6358 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6359            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6360 {
6361         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6362                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6363                                               netns_id, flags);
6364 }
6365
6366 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6367         .func           = bpf_sock_addr_sk_lookup_tcp,
6368         .gpl_only       = false,
6369         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6370         .arg1_type      = ARG_PTR_TO_CTX,
6371         .arg2_type      = ARG_PTR_TO_MEM,
6372         .arg3_type      = ARG_CONST_SIZE,
6373         .arg4_type      = ARG_ANYTHING,
6374         .arg5_type      = ARG_ANYTHING,
6375 };
6376
6377 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6378            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6379 {
6380         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6381                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6382                                               netns_id, flags);
6383 }
6384
6385 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6386         .func           = bpf_sock_addr_sk_lookup_udp,
6387         .gpl_only       = false,
6388         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6389         .arg1_type      = ARG_PTR_TO_CTX,
6390         .arg2_type      = ARG_PTR_TO_MEM,
6391         .arg3_type      = ARG_CONST_SIZE,
6392         .arg4_type      = ARG_ANYTHING,
6393         .arg5_type      = ARG_ANYTHING,
6394 };
6395
6396 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6397                                   struct bpf_insn_access_aux *info)
6398 {
6399         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6400                                           icsk_retransmits))
6401                 return false;
6402
6403         if (off % size != 0)
6404                 return false;
6405
6406         switch (off) {
6407         case offsetof(struct bpf_tcp_sock, bytes_received):
6408         case offsetof(struct bpf_tcp_sock, bytes_acked):
6409                 return size == sizeof(__u64);
6410         default:
6411                 return size == sizeof(__u32);
6412         }
6413 }
6414
6415 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6416                                     const struct bpf_insn *si,
6417                                     struct bpf_insn *insn_buf,
6418                                     struct bpf_prog *prog, u32 *target_size)
6419 {
6420         struct bpf_insn *insn = insn_buf;
6421
6422 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6423         do {                                                            \
6424                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6425                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6426                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6427                                       si->dst_reg, si->src_reg,         \
6428                                       offsetof(struct tcp_sock, FIELD)); \
6429         } while (0)
6430
6431 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6432         do {                                                            \
6433                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6434                                           FIELD) >                      \
6435                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6436                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6437                                         struct inet_connection_sock,    \
6438                                         FIELD),                         \
6439                                       si->dst_reg, si->src_reg,         \
6440                                       offsetof(                         \
6441                                         struct inet_connection_sock,    \
6442                                         FIELD));                        \
6443         } while (0)
6444
6445         if (insn > insn_buf)
6446                 return insn - insn_buf;
6447
6448         switch (si->off) {
6449         case offsetof(struct bpf_tcp_sock, rtt_min):
6450                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6451                              sizeof(struct minmax));
6452                 BUILD_BUG_ON(sizeof(struct minmax) <
6453                              sizeof(struct minmax_sample));
6454
6455                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6456                                       offsetof(struct tcp_sock, rtt_min) +
6457                                       offsetof(struct minmax_sample, v));
6458                 break;
6459         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6460                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6461                 break;
6462         case offsetof(struct bpf_tcp_sock, srtt_us):
6463                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6464                 break;
6465         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6466                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6467                 break;
6468         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6469                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6470                 break;
6471         case offsetof(struct bpf_tcp_sock, snd_nxt):
6472                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6473                 break;
6474         case offsetof(struct bpf_tcp_sock, snd_una):
6475                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6476                 break;
6477         case offsetof(struct bpf_tcp_sock, mss_cache):
6478                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6479                 break;
6480         case offsetof(struct bpf_tcp_sock, ecn_flags):
6481                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6482                 break;
6483         case offsetof(struct bpf_tcp_sock, rate_delivered):
6484                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6485                 break;
6486         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6487                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6488                 break;
6489         case offsetof(struct bpf_tcp_sock, packets_out):
6490                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6491                 break;
6492         case offsetof(struct bpf_tcp_sock, retrans_out):
6493                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6494                 break;
6495         case offsetof(struct bpf_tcp_sock, total_retrans):
6496                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6497                 break;
6498         case offsetof(struct bpf_tcp_sock, segs_in):
6499                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6500                 break;
6501         case offsetof(struct bpf_tcp_sock, data_segs_in):
6502                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6503                 break;
6504         case offsetof(struct bpf_tcp_sock, segs_out):
6505                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6506                 break;
6507         case offsetof(struct bpf_tcp_sock, data_segs_out):
6508                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6509                 break;
6510         case offsetof(struct bpf_tcp_sock, lost_out):
6511                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6512                 break;
6513         case offsetof(struct bpf_tcp_sock, sacked_out):
6514                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6515                 break;
6516         case offsetof(struct bpf_tcp_sock, bytes_received):
6517                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6518                 break;
6519         case offsetof(struct bpf_tcp_sock, bytes_acked):
6520                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6521                 break;
6522         case offsetof(struct bpf_tcp_sock, dsack_dups):
6523                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6524                 break;
6525         case offsetof(struct bpf_tcp_sock, delivered):
6526                 BPF_TCP_SOCK_GET_COMMON(delivered);
6527                 break;
6528         case offsetof(struct bpf_tcp_sock, delivered_ce):
6529                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6530                 break;
6531         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6532                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6533                 break;
6534         }
6535
6536         return insn - insn_buf;
6537 }
6538
6539 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6540 {
6541         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6542                 return (unsigned long)sk;
6543
6544         return (unsigned long)NULL;
6545 }
6546
6547 const struct bpf_func_proto bpf_tcp_sock_proto = {
6548         .func           = bpf_tcp_sock,
6549         .gpl_only       = false,
6550         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6551         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6552 };
6553
6554 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6555 {
6556         sk = sk_to_full_sk(sk);
6557
6558         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6559                 return (unsigned long)sk;
6560
6561         return (unsigned long)NULL;
6562 }
6563
6564 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6565         .func           = bpf_get_listener_sock,
6566         .gpl_only       = false,
6567         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6568         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6569 };
6570
6571 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6572 {
6573         unsigned int iphdr_len;
6574
6575         switch (skb_protocol(skb, true)) {
6576         case cpu_to_be16(ETH_P_IP):
6577                 iphdr_len = sizeof(struct iphdr);
6578                 break;
6579         case cpu_to_be16(ETH_P_IPV6):
6580                 iphdr_len = sizeof(struct ipv6hdr);
6581                 break;
6582         default:
6583                 return 0;
6584         }
6585
6586         if (skb_headlen(skb) < iphdr_len)
6587                 return 0;
6588
6589         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6590                 return 0;
6591
6592         return INET_ECN_set_ce(skb);
6593 }
6594
6595 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6596                                   struct bpf_insn_access_aux *info)
6597 {
6598         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6599                 return false;
6600
6601         if (off % size != 0)
6602                 return false;
6603
6604         switch (off) {
6605         default:
6606                 return size == sizeof(__u32);
6607         }
6608 }
6609
6610 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6611                                     const struct bpf_insn *si,
6612                                     struct bpf_insn *insn_buf,
6613                                     struct bpf_prog *prog, u32 *target_size)
6614 {
6615         struct bpf_insn *insn = insn_buf;
6616
6617 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6618         do {                                                            \
6619                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6620                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6621                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6622                                       si->dst_reg, si->src_reg,         \
6623                                       offsetof(struct xdp_sock, FIELD)); \
6624         } while (0)
6625
6626         switch (si->off) {
6627         case offsetof(struct bpf_xdp_sock, queue_id):
6628                 BPF_XDP_SOCK_GET(queue_id);
6629                 break;
6630         }
6631
6632         return insn - insn_buf;
6633 }
6634
6635 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6636         .func           = bpf_skb_ecn_set_ce,
6637         .gpl_only       = false,
6638         .ret_type       = RET_INTEGER,
6639         .arg1_type      = ARG_PTR_TO_CTX,
6640 };
6641
6642 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6643            struct tcphdr *, th, u32, th_len)
6644 {
6645 #ifdef CONFIG_SYN_COOKIES
6646         u32 cookie;
6647         int ret;
6648
6649         if (unlikely(!sk || th_len < sizeof(*th)))
6650                 return -EINVAL;
6651
6652         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6653         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6654                 return -EINVAL;
6655
6656         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6657                 return -EINVAL;
6658
6659         if (!th->ack || th->rst || th->syn)
6660                 return -ENOENT;
6661
6662         if (tcp_synq_no_recent_overflow(sk))
6663                 return -ENOENT;
6664
6665         cookie = ntohl(th->ack_seq) - 1;
6666
6667         switch (sk->sk_family) {
6668         case AF_INET:
6669                 if (unlikely(iph_len < sizeof(struct iphdr)))
6670                         return -EINVAL;
6671
6672                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6673                 break;
6674
6675 #if IS_BUILTIN(CONFIG_IPV6)
6676         case AF_INET6:
6677                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6678                         return -EINVAL;
6679
6680                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6681                 break;
6682 #endif /* CONFIG_IPV6 */
6683
6684         default:
6685                 return -EPROTONOSUPPORT;
6686         }
6687
6688         if (ret > 0)
6689                 return 0;
6690
6691         return -ENOENT;
6692 #else
6693         return -ENOTSUPP;
6694 #endif
6695 }
6696
6697 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6698         .func           = bpf_tcp_check_syncookie,
6699         .gpl_only       = true,
6700         .pkt_access     = true,
6701         .ret_type       = RET_INTEGER,
6702         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6703         .arg2_type      = ARG_PTR_TO_MEM,
6704         .arg3_type      = ARG_CONST_SIZE,
6705         .arg4_type      = ARG_PTR_TO_MEM,
6706         .arg5_type      = ARG_CONST_SIZE,
6707 };
6708
6709 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6710            struct tcphdr *, th, u32, th_len)
6711 {
6712 #ifdef CONFIG_SYN_COOKIES
6713         u32 cookie;
6714         u16 mss;
6715
6716         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6717                 return -EINVAL;
6718
6719         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6720                 return -EINVAL;
6721
6722         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6723                 return -ENOENT;
6724
6725         if (!th->syn || th->ack || th->fin || th->rst)
6726                 return -EINVAL;
6727
6728         if (unlikely(iph_len < sizeof(struct iphdr)))
6729                 return -EINVAL;
6730
6731         /* Both struct iphdr and struct ipv6hdr have the version field at the
6732          * same offset so we can cast to the shorter header (struct iphdr).
6733          */
6734         switch (((struct iphdr *)iph)->version) {
6735         case 4:
6736                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6737                         return -EINVAL;
6738
6739                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6740                 break;
6741
6742 #if IS_BUILTIN(CONFIG_IPV6)
6743         case 6:
6744                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6745                         return -EINVAL;
6746
6747                 if (sk->sk_family != AF_INET6)
6748                         return -EINVAL;
6749
6750                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6751                 break;
6752 #endif /* CONFIG_IPV6 */
6753
6754         default:
6755                 return -EPROTONOSUPPORT;
6756         }
6757         if (mss == 0)
6758                 return -ENOENT;
6759
6760         return cookie | ((u64)mss << 32);
6761 #else
6762         return -EOPNOTSUPP;
6763 #endif /* CONFIG_SYN_COOKIES */
6764 }
6765
6766 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6767         .func           = bpf_tcp_gen_syncookie,
6768         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6769         .pkt_access     = true,
6770         .ret_type       = RET_INTEGER,
6771         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6772         .arg2_type      = ARG_PTR_TO_MEM,
6773         .arg3_type      = ARG_CONST_SIZE,
6774         .arg4_type      = ARG_PTR_TO_MEM,
6775         .arg5_type      = ARG_CONST_SIZE,
6776 };
6777
6778 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6779 {
6780         if (!sk || flags != 0)
6781                 return -EINVAL;
6782         if (!skb_at_tc_ingress(skb))
6783                 return -EOPNOTSUPP;
6784         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6785                 return -ENETUNREACH;
6786         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6787                 return -ESOCKTNOSUPPORT;
6788         if (sk_is_refcounted(sk) &&
6789             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6790                 return -ENOENT;
6791
6792         skb_orphan(skb);
6793         skb->sk = sk;
6794         skb->destructor = sock_pfree;
6795
6796         return 0;
6797 }
6798
6799 static const struct bpf_func_proto bpf_sk_assign_proto = {
6800         .func           = bpf_sk_assign,
6801         .gpl_only       = false,
6802         .ret_type       = RET_INTEGER,
6803         .arg1_type      = ARG_PTR_TO_CTX,
6804         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6805         .arg3_type      = ARG_ANYTHING,
6806 };
6807
6808 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6809                                     u8 search_kind, const u8 *magic,
6810                                     u8 magic_len, bool *eol)
6811 {
6812         u8 kind, kind_len;
6813
6814         *eol = false;
6815
6816         while (op < opend) {
6817                 kind = op[0];
6818
6819                 if (kind == TCPOPT_EOL) {
6820                         *eol = true;
6821                         return ERR_PTR(-ENOMSG);
6822                 } else if (kind == TCPOPT_NOP) {
6823                         op++;
6824                         continue;
6825                 }
6826
6827                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6828                         /* Something is wrong in the received header.
6829                          * Follow the TCP stack's tcp_parse_options()
6830                          * and just bail here.
6831                          */
6832                         return ERR_PTR(-EFAULT);
6833
6834                 kind_len = op[1];
6835                 if (search_kind == kind) {
6836                         if (!magic_len)
6837                                 return op;
6838
6839                         if (magic_len > kind_len - 2)
6840                                 return ERR_PTR(-ENOMSG);
6841
6842                         if (!memcmp(&op[2], magic, magic_len))
6843                                 return op;
6844                 }
6845
6846                 op += kind_len;
6847         }
6848
6849         return ERR_PTR(-ENOMSG);
6850 }
6851
6852 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6853            void *, search_res, u32, len, u64, flags)
6854 {
6855         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6856         const u8 *op, *opend, *magic, *search = search_res;
6857         u8 search_kind, search_len, copy_len, magic_len;
6858         int ret;
6859
6860         /* 2 byte is the minimal option len except TCPOPT_NOP and
6861          * TCPOPT_EOL which are useless for the bpf prog to learn
6862          * and this helper disallow loading them also.
6863          */
6864         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6865                 return -EINVAL;
6866
6867         search_kind = search[0];
6868         search_len = search[1];
6869
6870         if (search_len > len || search_kind == TCPOPT_NOP ||
6871             search_kind == TCPOPT_EOL)
6872                 return -EINVAL;
6873
6874         if (search_kind == TCPOPT_EXP || search_kind == 253) {
6875                 /* 16 or 32 bit magic.  +2 for kind and kind length */
6876                 if (search_len != 4 && search_len != 6)
6877                         return -EINVAL;
6878                 magic = &search[2];
6879                 magic_len = search_len - 2;
6880         } else {
6881                 if (search_len)
6882                         return -EINVAL;
6883                 magic = NULL;
6884                 magic_len = 0;
6885         }
6886
6887         if (load_syn) {
6888                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6889                 if (ret < 0)
6890                         return ret;
6891
6892                 opend = op + ret;
6893                 op += sizeof(struct tcphdr);
6894         } else {
6895                 if (!bpf_sock->skb ||
6896                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6897                         /* This bpf_sock->op cannot call this helper */
6898                         return -EPERM;
6899
6900                 opend = bpf_sock->skb_data_end;
6901                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6902         }
6903
6904         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6905                                 &eol);
6906         if (IS_ERR(op))
6907                 return PTR_ERR(op);
6908
6909         copy_len = op[1];
6910         ret = copy_len;
6911         if (copy_len > len) {
6912                 ret = -ENOSPC;
6913                 copy_len = len;
6914         }
6915
6916         memcpy(search_res, op, copy_len);
6917         return ret;
6918 }
6919
6920 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6921         .func           = bpf_sock_ops_load_hdr_opt,
6922         .gpl_only       = false,
6923         .ret_type       = RET_INTEGER,
6924         .arg1_type      = ARG_PTR_TO_CTX,
6925         .arg2_type      = ARG_PTR_TO_MEM,
6926         .arg3_type      = ARG_CONST_SIZE,
6927         .arg4_type      = ARG_ANYTHING,
6928 };
6929
6930 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6931            const void *, from, u32, len, u64, flags)
6932 {
6933         u8 new_kind, new_kind_len, magic_len = 0, *opend;
6934         const u8 *op, *new_op, *magic = NULL;
6935         struct sk_buff *skb;
6936         bool eol;
6937
6938         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6939                 return -EPERM;
6940
6941         if (len < 2 || flags)
6942                 return -EINVAL;
6943
6944         new_op = from;
6945         new_kind = new_op[0];
6946         new_kind_len = new_op[1];
6947
6948         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6949             new_kind == TCPOPT_EOL)
6950                 return -EINVAL;
6951
6952         if (new_kind_len > bpf_sock->remaining_opt_len)
6953                 return -ENOSPC;
6954
6955         /* 253 is another experimental kind */
6956         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6957                 if (new_kind_len < 4)
6958                         return -EINVAL;
6959                 /* Match for the 2 byte magic also.
6960                  * RFC 6994: the magic could be 2 or 4 bytes.
6961                  * Hence, matching by 2 byte only is on the
6962                  * conservative side but it is the right
6963                  * thing to do for the 'search-for-duplication'
6964                  * purpose.
6965                  */
6966                 magic = &new_op[2];
6967                 magic_len = 2;
6968         }
6969
6970         /* Check for duplication */
6971         skb = bpf_sock->skb;
6972         op = skb->data + sizeof(struct tcphdr);
6973         opend = bpf_sock->skb_data_end;
6974
6975         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6976                                 &eol);
6977         if (!IS_ERR(op))
6978                 return -EEXIST;
6979
6980         if (PTR_ERR(op) != -ENOMSG)
6981                 return PTR_ERR(op);
6982
6983         if (eol)
6984                 /* The option has been ended.  Treat it as no more
6985                  * header option can be written.
6986                  */
6987                 return -ENOSPC;
6988
6989         /* No duplication found.  Store the header option. */
6990         memcpy(opend, from, new_kind_len);
6991
6992         bpf_sock->remaining_opt_len -= new_kind_len;
6993         bpf_sock->skb_data_end += new_kind_len;
6994
6995         return 0;
6996 }
6997
6998 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6999         .func           = bpf_sock_ops_store_hdr_opt,
7000         .gpl_only       = false,
7001         .ret_type       = RET_INTEGER,
7002         .arg1_type      = ARG_PTR_TO_CTX,
7003         .arg2_type      = ARG_PTR_TO_MEM,
7004         .arg3_type      = ARG_CONST_SIZE,
7005         .arg4_type      = ARG_ANYTHING,
7006 };
7007
7008 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7009            u32, len, u64, flags)
7010 {
7011         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7012                 return -EPERM;
7013
7014         if (flags || len < 2)
7015                 return -EINVAL;
7016
7017         if (len > bpf_sock->remaining_opt_len)
7018                 return -ENOSPC;
7019
7020         bpf_sock->remaining_opt_len -= len;
7021
7022         return 0;
7023 }
7024
7025 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7026         .func           = bpf_sock_ops_reserve_hdr_opt,
7027         .gpl_only       = false,
7028         .ret_type       = RET_INTEGER,
7029         .arg1_type      = ARG_PTR_TO_CTX,
7030         .arg2_type      = ARG_ANYTHING,
7031         .arg3_type      = ARG_ANYTHING,
7032 };
7033
7034 #endif /* CONFIG_INET */
7035
7036 bool bpf_helper_changes_pkt_data(void *func)
7037 {
7038         if (func == bpf_skb_vlan_push ||
7039             func == bpf_skb_vlan_pop ||
7040             func == bpf_skb_store_bytes ||
7041             func == bpf_skb_change_proto ||
7042             func == bpf_skb_change_head ||
7043             func == sk_skb_change_head ||
7044             func == bpf_skb_change_tail ||
7045             func == sk_skb_change_tail ||
7046             func == bpf_skb_adjust_room ||
7047             func == sk_skb_adjust_room ||
7048             func == bpf_skb_pull_data ||
7049             func == sk_skb_pull_data ||
7050             func == bpf_clone_redirect ||
7051             func == bpf_l3_csum_replace ||
7052             func == bpf_l4_csum_replace ||
7053             func == bpf_xdp_adjust_head ||
7054             func == bpf_xdp_adjust_meta ||
7055             func == bpf_msg_pull_data ||
7056             func == bpf_msg_push_data ||
7057             func == bpf_msg_pop_data ||
7058             func == bpf_xdp_adjust_tail ||
7059 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7060             func == bpf_lwt_seg6_store_bytes ||
7061             func == bpf_lwt_seg6_adjust_srh ||
7062             func == bpf_lwt_seg6_action ||
7063 #endif
7064 #ifdef CONFIG_INET
7065             func == bpf_sock_ops_store_hdr_opt ||
7066 #endif
7067             func == bpf_lwt_in_push_encap ||
7068             func == bpf_lwt_xmit_push_encap)
7069                 return true;
7070
7071         return false;
7072 }
7073
7074 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7075 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7076
7077 static const struct bpf_func_proto *
7078 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7079 {
7080         switch (func_id) {
7081         /* inet and inet6 sockets are created in a process
7082          * context so there is always a valid uid/gid
7083          */
7084         case BPF_FUNC_get_current_uid_gid:
7085                 return &bpf_get_current_uid_gid_proto;
7086         case BPF_FUNC_get_local_storage:
7087                 return &bpf_get_local_storage_proto;
7088         case BPF_FUNC_get_socket_cookie:
7089                 return &bpf_get_socket_cookie_sock_proto;
7090         case BPF_FUNC_get_netns_cookie:
7091                 return &bpf_get_netns_cookie_sock_proto;
7092         case BPF_FUNC_perf_event_output:
7093                 return &bpf_event_output_data_proto;
7094         case BPF_FUNC_get_current_pid_tgid:
7095                 return &bpf_get_current_pid_tgid_proto;
7096         case BPF_FUNC_get_current_comm:
7097                 return &bpf_get_current_comm_proto;
7098 #ifdef CONFIG_CGROUPS
7099         case BPF_FUNC_get_current_cgroup_id:
7100                 return &bpf_get_current_cgroup_id_proto;
7101         case BPF_FUNC_get_current_ancestor_cgroup_id:
7102                 return &bpf_get_current_ancestor_cgroup_id_proto;
7103 #endif
7104 #ifdef CONFIG_CGROUP_NET_CLASSID
7105         case BPF_FUNC_get_cgroup_classid:
7106                 return &bpf_get_cgroup_classid_curr_proto;
7107 #endif
7108         case BPF_FUNC_sk_storage_get:
7109                 return &bpf_sk_storage_get_cg_sock_proto;
7110         default:
7111                 return bpf_base_func_proto(func_id);
7112         }
7113 }
7114
7115 static const struct bpf_func_proto *
7116 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7117 {
7118         switch (func_id) {
7119         /* inet and inet6 sockets are created in a process
7120          * context so there is always a valid uid/gid
7121          */
7122         case BPF_FUNC_get_current_uid_gid:
7123                 return &bpf_get_current_uid_gid_proto;
7124         case BPF_FUNC_bind:
7125                 switch (prog->expected_attach_type) {
7126                 case BPF_CGROUP_INET4_CONNECT:
7127                 case BPF_CGROUP_INET6_CONNECT:
7128                         return &bpf_bind_proto;
7129                 default:
7130                         return NULL;
7131                 }
7132         case BPF_FUNC_get_socket_cookie:
7133                 return &bpf_get_socket_cookie_sock_addr_proto;
7134         case BPF_FUNC_get_netns_cookie:
7135                 return &bpf_get_netns_cookie_sock_addr_proto;
7136         case BPF_FUNC_get_local_storage:
7137                 return &bpf_get_local_storage_proto;
7138         case BPF_FUNC_perf_event_output:
7139                 return &bpf_event_output_data_proto;
7140         case BPF_FUNC_get_current_pid_tgid:
7141                 return &bpf_get_current_pid_tgid_proto;
7142         case BPF_FUNC_get_current_comm:
7143                 return &bpf_get_current_comm_proto;
7144 #ifdef CONFIG_CGROUPS
7145         case BPF_FUNC_get_current_cgroup_id:
7146                 return &bpf_get_current_cgroup_id_proto;
7147         case BPF_FUNC_get_current_ancestor_cgroup_id:
7148                 return &bpf_get_current_ancestor_cgroup_id_proto;
7149 #endif
7150 #ifdef CONFIG_CGROUP_NET_CLASSID
7151         case BPF_FUNC_get_cgroup_classid:
7152                 return &bpf_get_cgroup_classid_curr_proto;
7153 #endif
7154 #ifdef CONFIG_INET
7155         case BPF_FUNC_sk_lookup_tcp:
7156                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7157         case BPF_FUNC_sk_lookup_udp:
7158                 return &bpf_sock_addr_sk_lookup_udp_proto;
7159         case BPF_FUNC_sk_release:
7160                 return &bpf_sk_release_proto;
7161         case BPF_FUNC_skc_lookup_tcp:
7162                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7163 #endif /* CONFIG_INET */
7164         case BPF_FUNC_sk_storage_get:
7165                 return &bpf_sk_storage_get_proto;
7166         case BPF_FUNC_sk_storage_delete:
7167                 return &bpf_sk_storage_delete_proto;
7168         case BPF_FUNC_setsockopt:
7169                 switch (prog->expected_attach_type) {
7170                 case BPF_CGROUP_INET4_BIND:
7171                 case BPF_CGROUP_INET6_BIND:
7172                 case BPF_CGROUP_INET4_CONNECT:
7173                 case BPF_CGROUP_INET6_CONNECT:
7174                 case BPF_CGROUP_UDP4_RECVMSG:
7175                 case BPF_CGROUP_UDP6_RECVMSG:
7176                 case BPF_CGROUP_UDP4_SENDMSG:
7177                 case BPF_CGROUP_UDP6_SENDMSG:
7178                 case BPF_CGROUP_INET4_GETPEERNAME:
7179                 case BPF_CGROUP_INET6_GETPEERNAME:
7180                 case BPF_CGROUP_INET4_GETSOCKNAME:
7181                 case BPF_CGROUP_INET6_GETSOCKNAME:
7182                         return &bpf_sock_addr_setsockopt_proto;
7183                 default:
7184                         return NULL;
7185                 }
7186         case BPF_FUNC_getsockopt:
7187                 switch (prog->expected_attach_type) {
7188                 case BPF_CGROUP_INET4_BIND:
7189                 case BPF_CGROUP_INET6_BIND:
7190                 case BPF_CGROUP_INET4_CONNECT:
7191                 case BPF_CGROUP_INET6_CONNECT:
7192                 case BPF_CGROUP_UDP4_RECVMSG:
7193                 case BPF_CGROUP_UDP6_RECVMSG:
7194                 case BPF_CGROUP_UDP4_SENDMSG:
7195                 case BPF_CGROUP_UDP6_SENDMSG:
7196                 case BPF_CGROUP_INET4_GETPEERNAME:
7197                 case BPF_CGROUP_INET6_GETPEERNAME:
7198                 case BPF_CGROUP_INET4_GETSOCKNAME:
7199                 case BPF_CGROUP_INET6_GETSOCKNAME:
7200                         return &bpf_sock_addr_getsockopt_proto;
7201                 default:
7202                         return NULL;
7203                 }
7204         default:
7205                 return bpf_sk_base_func_proto(func_id);
7206         }
7207 }
7208
7209 static const struct bpf_func_proto *
7210 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7211 {
7212         switch (func_id) {
7213         case BPF_FUNC_skb_load_bytes:
7214                 return &bpf_skb_load_bytes_proto;
7215         case BPF_FUNC_skb_load_bytes_relative:
7216                 return &bpf_skb_load_bytes_relative_proto;
7217         case BPF_FUNC_get_socket_cookie:
7218                 return &bpf_get_socket_cookie_proto;
7219         case BPF_FUNC_get_socket_uid:
7220                 return &bpf_get_socket_uid_proto;
7221         case BPF_FUNC_perf_event_output:
7222                 return &bpf_skb_event_output_proto;
7223         default:
7224                 return bpf_sk_base_func_proto(func_id);
7225         }
7226 }
7227
7228 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7229 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7230
7231 static const struct bpf_func_proto *
7232 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7233 {
7234         switch (func_id) {
7235         case BPF_FUNC_get_local_storage:
7236                 return &bpf_get_local_storage_proto;
7237         case BPF_FUNC_sk_fullsock:
7238                 return &bpf_sk_fullsock_proto;
7239         case BPF_FUNC_sk_storage_get:
7240                 return &bpf_sk_storage_get_proto;
7241         case BPF_FUNC_sk_storage_delete:
7242                 return &bpf_sk_storage_delete_proto;
7243         case BPF_FUNC_perf_event_output:
7244                 return &bpf_skb_event_output_proto;
7245 #ifdef CONFIG_SOCK_CGROUP_DATA
7246         case BPF_FUNC_skb_cgroup_id:
7247                 return &bpf_skb_cgroup_id_proto;
7248         case BPF_FUNC_skb_ancestor_cgroup_id:
7249                 return &bpf_skb_ancestor_cgroup_id_proto;
7250         case BPF_FUNC_sk_cgroup_id:
7251                 return &bpf_sk_cgroup_id_proto;
7252         case BPF_FUNC_sk_ancestor_cgroup_id:
7253                 return &bpf_sk_ancestor_cgroup_id_proto;
7254 #endif
7255 #ifdef CONFIG_INET
7256         case BPF_FUNC_sk_lookup_tcp:
7257                 return &bpf_sk_lookup_tcp_proto;
7258         case BPF_FUNC_sk_lookup_udp:
7259                 return &bpf_sk_lookup_udp_proto;
7260         case BPF_FUNC_sk_release:
7261                 return &bpf_sk_release_proto;
7262         case BPF_FUNC_skc_lookup_tcp:
7263                 return &bpf_skc_lookup_tcp_proto;
7264         case BPF_FUNC_tcp_sock:
7265                 return &bpf_tcp_sock_proto;
7266         case BPF_FUNC_get_listener_sock:
7267                 return &bpf_get_listener_sock_proto;
7268         case BPF_FUNC_skb_ecn_set_ce:
7269                 return &bpf_skb_ecn_set_ce_proto;
7270 #endif
7271         default:
7272                 return sk_filter_func_proto(func_id, prog);
7273         }
7274 }
7275
7276 static const struct bpf_func_proto *
7277 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7278 {
7279         switch (func_id) {
7280         case BPF_FUNC_skb_store_bytes:
7281                 return &bpf_skb_store_bytes_proto;
7282         case BPF_FUNC_skb_load_bytes:
7283                 return &bpf_skb_load_bytes_proto;
7284         case BPF_FUNC_skb_load_bytes_relative:
7285                 return &bpf_skb_load_bytes_relative_proto;
7286         case BPF_FUNC_skb_pull_data:
7287                 return &bpf_skb_pull_data_proto;
7288         case BPF_FUNC_csum_diff:
7289                 return &bpf_csum_diff_proto;
7290         case BPF_FUNC_csum_update:
7291                 return &bpf_csum_update_proto;
7292         case BPF_FUNC_csum_level:
7293                 return &bpf_csum_level_proto;
7294         case BPF_FUNC_l3_csum_replace:
7295                 return &bpf_l3_csum_replace_proto;
7296         case BPF_FUNC_l4_csum_replace:
7297                 return &bpf_l4_csum_replace_proto;
7298         case BPF_FUNC_clone_redirect:
7299                 return &bpf_clone_redirect_proto;
7300         case BPF_FUNC_get_cgroup_classid:
7301                 return &bpf_get_cgroup_classid_proto;
7302         case BPF_FUNC_skb_vlan_push:
7303                 return &bpf_skb_vlan_push_proto;
7304         case BPF_FUNC_skb_vlan_pop:
7305                 return &bpf_skb_vlan_pop_proto;
7306         case BPF_FUNC_skb_change_proto:
7307                 return &bpf_skb_change_proto_proto;
7308         case BPF_FUNC_skb_change_type:
7309                 return &bpf_skb_change_type_proto;
7310         case BPF_FUNC_skb_adjust_room:
7311                 return &bpf_skb_adjust_room_proto;
7312         case BPF_FUNC_skb_change_tail:
7313                 return &bpf_skb_change_tail_proto;
7314         case BPF_FUNC_skb_change_head:
7315                 return &bpf_skb_change_head_proto;
7316         case BPF_FUNC_skb_get_tunnel_key:
7317                 return &bpf_skb_get_tunnel_key_proto;
7318         case BPF_FUNC_skb_set_tunnel_key:
7319                 return bpf_get_skb_set_tunnel_proto(func_id);
7320         case BPF_FUNC_skb_get_tunnel_opt:
7321                 return &bpf_skb_get_tunnel_opt_proto;
7322         case BPF_FUNC_skb_set_tunnel_opt:
7323                 return bpf_get_skb_set_tunnel_proto(func_id);
7324         case BPF_FUNC_redirect:
7325                 return &bpf_redirect_proto;
7326         case BPF_FUNC_redirect_neigh:
7327                 return &bpf_redirect_neigh_proto;
7328         case BPF_FUNC_redirect_peer:
7329                 return &bpf_redirect_peer_proto;
7330         case BPF_FUNC_get_route_realm:
7331                 return &bpf_get_route_realm_proto;
7332         case BPF_FUNC_get_hash_recalc:
7333                 return &bpf_get_hash_recalc_proto;
7334         case BPF_FUNC_set_hash_invalid:
7335                 return &bpf_set_hash_invalid_proto;
7336         case BPF_FUNC_set_hash:
7337                 return &bpf_set_hash_proto;
7338         case BPF_FUNC_perf_event_output:
7339                 return &bpf_skb_event_output_proto;
7340         case BPF_FUNC_get_smp_processor_id:
7341                 return &bpf_get_smp_processor_id_proto;
7342         case BPF_FUNC_skb_under_cgroup:
7343                 return &bpf_skb_under_cgroup_proto;
7344         case BPF_FUNC_get_socket_cookie:
7345                 return &bpf_get_socket_cookie_proto;
7346         case BPF_FUNC_get_socket_uid:
7347                 return &bpf_get_socket_uid_proto;
7348         case BPF_FUNC_fib_lookup:
7349                 return &bpf_skb_fib_lookup_proto;
7350         case BPF_FUNC_check_mtu:
7351                 return &bpf_skb_check_mtu_proto;
7352         case BPF_FUNC_sk_fullsock:
7353                 return &bpf_sk_fullsock_proto;
7354         case BPF_FUNC_sk_storage_get:
7355                 return &bpf_sk_storage_get_proto;
7356         case BPF_FUNC_sk_storage_delete:
7357                 return &bpf_sk_storage_delete_proto;
7358 #ifdef CONFIG_XFRM
7359         case BPF_FUNC_skb_get_xfrm_state:
7360                 return &bpf_skb_get_xfrm_state_proto;
7361 #endif
7362 #ifdef CONFIG_CGROUP_NET_CLASSID
7363         case BPF_FUNC_skb_cgroup_classid:
7364                 return &bpf_skb_cgroup_classid_proto;
7365 #endif
7366 #ifdef CONFIG_SOCK_CGROUP_DATA
7367         case BPF_FUNC_skb_cgroup_id:
7368                 return &bpf_skb_cgroup_id_proto;
7369         case BPF_FUNC_skb_ancestor_cgroup_id:
7370                 return &bpf_skb_ancestor_cgroup_id_proto;
7371 #endif
7372 #ifdef CONFIG_INET
7373         case BPF_FUNC_sk_lookup_tcp:
7374                 return &bpf_sk_lookup_tcp_proto;
7375         case BPF_FUNC_sk_lookup_udp:
7376                 return &bpf_sk_lookup_udp_proto;
7377         case BPF_FUNC_sk_release:
7378                 return &bpf_sk_release_proto;
7379         case BPF_FUNC_tcp_sock:
7380                 return &bpf_tcp_sock_proto;
7381         case BPF_FUNC_get_listener_sock:
7382                 return &bpf_get_listener_sock_proto;
7383         case BPF_FUNC_skc_lookup_tcp:
7384                 return &bpf_skc_lookup_tcp_proto;
7385         case BPF_FUNC_tcp_check_syncookie:
7386                 return &bpf_tcp_check_syncookie_proto;
7387         case BPF_FUNC_skb_ecn_set_ce:
7388                 return &bpf_skb_ecn_set_ce_proto;
7389         case BPF_FUNC_tcp_gen_syncookie:
7390                 return &bpf_tcp_gen_syncookie_proto;
7391         case BPF_FUNC_sk_assign:
7392                 return &bpf_sk_assign_proto;
7393 #endif
7394         default:
7395                 return bpf_sk_base_func_proto(func_id);
7396         }
7397 }
7398
7399 static const struct bpf_func_proto *
7400 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7401 {
7402         switch (func_id) {
7403         case BPF_FUNC_perf_event_output:
7404                 return &bpf_xdp_event_output_proto;
7405         case BPF_FUNC_get_smp_processor_id:
7406                 return &bpf_get_smp_processor_id_proto;
7407         case BPF_FUNC_csum_diff:
7408                 return &bpf_csum_diff_proto;
7409         case BPF_FUNC_xdp_adjust_head:
7410                 return &bpf_xdp_adjust_head_proto;
7411         case BPF_FUNC_xdp_adjust_meta:
7412                 return &bpf_xdp_adjust_meta_proto;
7413         case BPF_FUNC_redirect:
7414                 return &bpf_xdp_redirect_proto;
7415         case BPF_FUNC_redirect_map:
7416                 return &bpf_xdp_redirect_map_proto;
7417         case BPF_FUNC_xdp_adjust_tail:
7418                 return &bpf_xdp_adjust_tail_proto;
7419         case BPF_FUNC_fib_lookup:
7420                 return &bpf_xdp_fib_lookup_proto;
7421         case BPF_FUNC_check_mtu:
7422                 return &bpf_xdp_check_mtu_proto;
7423 #ifdef CONFIG_INET
7424         case BPF_FUNC_sk_lookup_udp:
7425                 return &bpf_xdp_sk_lookup_udp_proto;
7426         case BPF_FUNC_sk_lookup_tcp:
7427                 return &bpf_xdp_sk_lookup_tcp_proto;
7428         case BPF_FUNC_sk_release:
7429                 return &bpf_sk_release_proto;
7430         case BPF_FUNC_skc_lookup_tcp:
7431                 return &bpf_xdp_skc_lookup_tcp_proto;
7432         case BPF_FUNC_tcp_check_syncookie:
7433                 return &bpf_tcp_check_syncookie_proto;
7434         case BPF_FUNC_tcp_gen_syncookie:
7435                 return &bpf_tcp_gen_syncookie_proto;
7436 #endif
7437         default:
7438                 return bpf_sk_base_func_proto(func_id);
7439         }
7440 }
7441
7442 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7443 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7444
7445 static const struct bpf_func_proto *
7446 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7447 {
7448         switch (func_id) {
7449         case BPF_FUNC_setsockopt:
7450                 return &bpf_sock_ops_setsockopt_proto;
7451         case BPF_FUNC_getsockopt:
7452                 return &bpf_sock_ops_getsockopt_proto;
7453         case BPF_FUNC_sock_ops_cb_flags_set:
7454                 return &bpf_sock_ops_cb_flags_set_proto;
7455         case BPF_FUNC_sock_map_update:
7456                 return &bpf_sock_map_update_proto;
7457         case BPF_FUNC_sock_hash_update:
7458                 return &bpf_sock_hash_update_proto;
7459         case BPF_FUNC_get_socket_cookie:
7460                 return &bpf_get_socket_cookie_sock_ops_proto;
7461         case BPF_FUNC_get_local_storage:
7462                 return &bpf_get_local_storage_proto;
7463         case BPF_FUNC_perf_event_output:
7464                 return &bpf_event_output_data_proto;
7465         case BPF_FUNC_sk_storage_get:
7466                 return &bpf_sk_storage_get_proto;
7467         case BPF_FUNC_sk_storage_delete:
7468                 return &bpf_sk_storage_delete_proto;
7469 #ifdef CONFIG_INET
7470         case BPF_FUNC_load_hdr_opt:
7471                 return &bpf_sock_ops_load_hdr_opt_proto;
7472         case BPF_FUNC_store_hdr_opt:
7473                 return &bpf_sock_ops_store_hdr_opt_proto;
7474         case BPF_FUNC_reserve_hdr_opt:
7475                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7476         case BPF_FUNC_tcp_sock:
7477                 return &bpf_tcp_sock_proto;
7478 #endif /* CONFIG_INET */
7479         default:
7480                 return bpf_sk_base_func_proto(func_id);
7481         }
7482 }
7483
7484 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7485 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7486
7487 static const struct bpf_func_proto *
7488 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7489 {
7490         switch (func_id) {
7491         case BPF_FUNC_msg_redirect_map:
7492                 return &bpf_msg_redirect_map_proto;
7493         case BPF_FUNC_msg_redirect_hash:
7494                 return &bpf_msg_redirect_hash_proto;
7495         case BPF_FUNC_msg_apply_bytes:
7496                 return &bpf_msg_apply_bytes_proto;
7497         case BPF_FUNC_msg_cork_bytes:
7498                 return &bpf_msg_cork_bytes_proto;
7499         case BPF_FUNC_msg_pull_data:
7500                 return &bpf_msg_pull_data_proto;
7501         case BPF_FUNC_msg_push_data:
7502                 return &bpf_msg_push_data_proto;
7503         case BPF_FUNC_msg_pop_data:
7504                 return &bpf_msg_pop_data_proto;
7505         case BPF_FUNC_perf_event_output:
7506                 return &bpf_event_output_data_proto;
7507         case BPF_FUNC_get_current_uid_gid:
7508                 return &bpf_get_current_uid_gid_proto;
7509         case BPF_FUNC_get_current_pid_tgid:
7510                 return &bpf_get_current_pid_tgid_proto;
7511         case BPF_FUNC_sk_storage_get:
7512                 return &bpf_sk_storage_get_proto;
7513         case BPF_FUNC_sk_storage_delete:
7514                 return &bpf_sk_storage_delete_proto;
7515 #ifdef CONFIG_CGROUPS
7516         case BPF_FUNC_get_current_cgroup_id:
7517                 return &bpf_get_current_cgroup_id_proto;
7518         case BPF_FUNC_get_current_ancestor_cgroup_id:
7519                 return &bpf_get_current_ancestor_cgroup_id_proto;
7520 #endif
7521 #ifdef CONFIG_CGROUP_NET_CLASSID
7522         case BPF_FUNC_get_cgroup_classid:
7523                 return &bpf_get_cgroup_classid_curr_proto;
7524 #endif
7525         default:
7526                 return bpf_sk_base_func_proto(func_id);
7527         }
7528 }
7529
7530 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7531 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7532
7533 static const struct bpf_func_proto *
7534 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7535 {
7536         switch (func_id) {
7537         case BPF_FUNC_skb_store_bytes:
7538                 return &bpf_skb_store_bytes_proto;
7539         case BPF_FUNC_skb_load_bytes:
7540                 return &bpf_skb_load_bytes_proto;
7541         case BPF_FUNC_skb_pull_data:
7542                 return &sk_skb_pull_data_proto;
7543         case BPF_FUNC_skb_change_tail:
7544                 return &sk_skb_change_tail_proto;
7545         case BPF_FUNC_skb_change_head:
7546                 return &sk_skb_change_head_proto;
7547         case BPF_FUNC_skb_adjust_room:
7548                 return &sk_skb_adjust_room_proto;
7549         case BPF_FUNC_get_socket_cookie:
7550                 return &bpf_get_socket_cookie_proto;
7551         case BPF_FUNC_get_socket_uid:
7552                 return &bpf_get_socket_uid_proto;
7553         case BPF_FUNC_sk_redirect_map:
7554                 return &bpf_sk_redirect_map_proto;
7555         case BPF_FUNC_sk_redirect_hash:
7556                 return &bpf_sk_redirect_hash_proto;
7557         case BPF_FUNC_perf_event_output:
7558                 return &bpf_skb_event_output_proto;
7559 #ifdef CONFIG_INET
7560         case BPF_FUNC_sk_lookup_tcp:
7561                 return &bpf_sk_lookup_tcp_proto;
7562         case BPF_FUNC_sk_lookup_udp:
7563                 return &bpf_sk_lookup_udp_proto;
7564         case BPF_FUNC_sk_release:
7565                 return &bpf_sk_release_proto;
7566         case BPF_FUNC_skc_lookup_tcp:
7567                 return &bpf_skc_lookup_tcp_proto;
7568 #endif
7569         default:
7570                 return bpf_sk_base_func_proto(func_id);
7571         }
7572 }
7573
7574 static const struct bpf_func_proto *
7575 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7576 {
7577         switch (func_id) {
7578         case BPF_FUNC_skb_load_bytes:
7579                 return &bpf_flow_dissector_load_bytes_proto;
7580         default:
7581                 return bpf_sk_base_func_proto(func_id);
7582         }
7583 }
7584
7585 static const struct bpf_func_proto *
7586 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7587 {
7588         switch (func_id) {
7589         case BPF_FUNC_skb_load_bytes:
7590                 return &bpf_skb_load_bytes_proto;
7591         case BPF_FUNC_skb_pull_data:
7592                 return &bpf_skb_pull_data_proto;
7593         case BPF_FUNC_csum_diff:
7594                 return &bpf_csum_diff_proto;
7595         case BPF_FUNC_get_cgroup_classid:
7596                 return &bpf_get_cgroup_classid_proto;
7597         case BPF_FUNC_get_route_realm:
7598                 return &bpf_get_route_realm_proto;
7599         case BPF_FUNC_get_hash_recalc:
7600                 return &bpf_get_hash_recalc_proto;
7601         case BPF_FUNC_perf_event_output:
7602                 return &bpf_skb_event_output_proto;
7603         case BPF_FUNC_get_smp_processor_id:
7604                 return &bpf_get_smp_processor_id_proto;
7605         case BPF_FUNC_skb_under_cgroup:
7606                 return &bpf_skb_under_cgroup_proto;
7607         default:
7608                 return bpf_sk_base_func_proto(func_id);
7609         }
7610 }
7611
7612 static const struct bpf_func_proto *
7613 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7614 {
7615         switch (func_id) {
7616         case BPF_FUNC_lwt_push_encap:
7617                 return &bpf_lwt_in_push_encap_proto;
7618         default:
7619                 return lwt_out_func_proto(func_id, prog);
7620         }
7621 }
7622
7623 static const struct bpf_func_proto *
7624 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7625 {
7626         switch (func_id) {
7627         case BPF_FUNC_skb_get_tunnel_key:
7628                 return &bpf_skb_get_tunnel_key_proto;
7629         case BPF_FUNC_skb_set_tunnel_key:
7630                 return bpf_get_skb_set_tunnel_proto(func_id);
7631         case BPF_FUNC_skb_get_tunnel_opt:
7632                 return &bpf_skb_get_tunnel_opt_proto;
7633         case BPF_FUNC_skb_set_tunnel_opt:
7634                 return bpf_get_skb_set_tunnel_proto(func_id);
7635         case BPF_FUNC_redirect:
7636                 return &bpf_redirect_proto;
7637         case BPF_FUNC_clone_redirect:
7638                 return &bpf_clone_redirect_proto;
7639         case BPF_FUNC_skb_change_tail:
7640                 return &bpf_skb_change_tail_proto;
7641         case BPF_FUNC_skb_change_head:
7642                 return &bpf_skb_change_head_proto;
7643         case BPF_FUNC_skb_store_bytes:
7644                 return &bpf_skb_store_bytes_proto;
7645         case BPF_FUNC_csum_update:
7646                 return &bpf_csum_update_proto;
7647         case BPF_FUNC_csum_level:
7648                 return &bpf_csum_level_proto;
7649         case BPF_FUNC_l3_csum_replace:
7650                 return &bpf_l3_csum_replace_proto;
7651         case BPF_FUNC_l4_csum_replace:
7652                 return &bpf_l4_csum_replace_proto;
7653         case BPF_FUNC_set_hash_invalid:
7654                 return &bpf_set_hash_invalid_proto;
7655         case BPF_FUNC_lwt_push_encap:
7656                 return &bpf_lwt_xmit_push_encap_proto;
7657         default:
7658                 return lwt_out_func_proto(func_id, prog);
7659         }
7660 }
7661
7662 static const struct bpf_func_proto *
7663 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7664 {
7665         switch (func_id) {
7666 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7667         case BPF_FUNC_lwt_seg6_store_bytes:
7668                 return &bpf_lwt_seg6_store_bytes_proto;
7669         case BPF_FUNC_lwt_seg6_action:
7670                 return &bpf_lwt_seg6_action_proto;
7671         case BPF_FUNC_lwt_seg6_adjust_srh:
7672                 return &bpf_lwt_seg6_adjust_srh_proto;
7673 #endif
7674         default:
7675                 return lwt_out_func_proto(func_id, prog);
7676         }
7677 }
7678
7679 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7680                                     const struct bpf_prog *prog,
7681                                     struct bpf_insn_access_aux *info)
7682 {
7683         const int size_default = sizeof(__u32);
7684
7685         if (off < 0 || off >= sizeof(struct __sk_buff))
7686                 return false;
7687
7688         /* The verifier guarantees that size > 0. */
7689         if (off % size != 0)
7690                 return false;
7691
7692         switch (off) {
7693         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7694                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7695                         return false;
7696                 break;
7697         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7698         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7699         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7700         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7701         case bpf_ctx_range(struct __sk_buff, data):
7702         case bpf_ctx_range(struct __sk_buff, data_meta):
7703         case bpf_ctx_range(struct __sk_buff, data_end):
7704                 if (size != size_default)
7705                         return false;
7706                 break;
7707         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7708                 return false;
7709         case bpf_ctx_range(struct __sk_buff, tstamp):
7710                 if (size != sizeof(__u64))
7711                         return false;
7712                 break;
7713         case offsetof(struct __sk_buff, sk):
7714                 if (type == BPF_WRITE || size != sizeof(__u64))
7715                         return false;
7716                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7717                 break;
7718         default:
7719                 /* Only narrow read access allowed for now. */
7720                 if (type == BPF_WRITE) {
7721                         if (size != size_default)
7722                                 return false;
7723                 } else {
7724                         bpf_ctx_record_field_size(info, size_default);
7725                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7726                                 return false;
7727                 }
7728         }
7729
7730         return true;
7731 }
7732
7733 static bool sk_filter_is_valid_access(int off, int size,
7734                                       enum bpf_access_type type,
7735                                       const struct bpf_prog *prog,
7736                                       struct bpf_insn_access_aux *info)
7737 {
7738         switch (off) {
7739         case bpf_ctx_range(struct __sk_buff, tc_classid):
7740         case bpf_ctx_range(struct __sk_buff, data):
7741         case bpf_ctx_range(struct __sk_buff, data_meta):
7742         case bpf_ctx_range(struct __sk_buff, data_end):
7743         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7744         case bpf_ctx_range(struct __sk_buff, tstamp):
7745         case bpf_ctx_range(struct __sk_buff, wire_len):
7746                 return false;
7747         }
7748
7749         if (type == BPF_WRITE) {
7750                 switch (off) {
7751                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7752                         break;
7753                 default:
7754                         return false;
7755                 }
7756         }
7757
7758         return bpf_skb_is_valid_access(off, size, type, prog, info);
7759 }
7760
7761 static bool cg_skb_is_valid_access(int off, int size,
7762                                    enum bpf_access_type type,
7763                                    const struct bpf_prog *prog,
7764                                    struct bpf_insn_access_aux *info)
7765 {
7766         switch (off) {
7767         case bpf_ctx_range(struct __sk_buff, tc_classid):
7768         case bpf_ctx_range(struct __sk_buff, data_meta):
7769         case bpf_ctx_range(struct __sk_buff, wire_len):
7770                 return false;
7771         case bpf_ctx_range(struct __sk_buff, data):
7772         case bpf_ctx_range(struct __sk_buff, data_end):
7773                 if (!bpf_capable())
7774                         return false;
7775                 break;
7776         }
7777
7778         if (type == BPF_WRITE) {
7779                 switch (off) {
7780                 case bpf_ctx_range(struct __sk_buff, mark):
7781                 case bpf_ctx_range(struct __sk_buff, priority):
7782                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7783                         break;
7784                 case bpf_ctx_range(struct __sk_buff, tstamp):
7785                         if (!bpf_capable())
7786                                 return false;
7787                         break;
7788                 default:
7789                         return false;
7790                 }
7791         }
7792
7793         switch (off) {
7794         case bpf_ctx_range(struct __sk_buff, data):
7795                 info->reg_type = PTR_TO_PACKET;
7796                 break;
7797         case bpf_ctx_range(struct __sk_buff, data_end):
7798                 info->reg_type = PTR_TO_PACKET_END;
7799                 break;
7800         }
7801
7802         return bpf_skb_is_valid_access(off, size, type, prog, info);
7803 }
7804
7805 static bool lwt_is_valid_access(int off, int size,
7806                                 enum bpf_access_type type,
7807                                 const struct bpf_prog *prog,
7808                                 struct bpf_insn_access_aux *info)
7809 {
7810         switch (off) {
7811         case bpf_ctx_range(struct __sk_buff, tc_classid):
7812         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7813         case bpf_ctx_range(struct __sk_buff, data_meta):
7814         case bpf_ctx_range(struct __sk_buff, tstamp):
7815         case bpf_ctx_range(struct __sk_buff, wire_len):
7816                 return false;
7817         }
7818
7819         if (type == BPF_WRITE) {
7820                 switch (off) {
7821                 case bpf_ctx_range(struct __sk_buff, mark):
7822                 case bpf_ctx_range(struct __sk_buff, priority):
7823                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7824                         break;
7825                 default:
7826                         return false;
7827                 }
7828         }
7829
7830         switch (off) {
7831         case bpf_ctx_range(struct __sk_buff, data):
7832                 info->reg_type = PTR_TO_PACKET;
7833                 break;
7834         case bpf_ctx_range(struct __sk_buff, data_end):
7835                 info->reg_type = PTR_TO_PACKET_END;
7836                 break;
7837         }
7838
7839         return bpf_skb_is_valid_access(off, size, type, prog, info);
7840 }
7841
7842 /* Attach type specific accesses */
7843 static bool __sock_filter_check_attach_type(int off,
7844                                             enum bpf_access_type access_type,
7845                                             enum bpf_attach_type attach_type)
7846 {
7847         switch (off) {
7848         case offsetof(struct bpf_sock, bound_dev_if):
7849         case offsetof(struct bpf_sock, mark):
7850         case offsetof(struct bpf_sock, priority):
7851                 switch (attach_type) {
7852                 case BPF_CGROUP_INET_SOCK_CREATE:
7853                 case BPF_CGROUP_INET_SOCK_RELEASE:
7854                         goto full_access;
7855                 default:
7856                         return false;
7857                 }
7858         case bpf_ctx_range(struct bpf_sock, src_ip4):
7859                 switch (attach_type) {
7860                 case BPF_CGROUP_INET4_POST_BIND:
7861                         goto read_only;
7862                 default:
7863                         return false;
7864                 }
7865         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7866                 switch (attach_type) {
7867                 case BPF_CGROUP_INET6_POST_BIND:
7868                         goto read_only;
7869                 default:
7870                         return false;
7871                 }
7872         case bpf_ctx_range(struct bpf_sock, src_port):
7873                 switch (attach_type) {
7874                 case BPF_CGROUP_INET4_POST_BIND:
7875                 case BPF_CGROUP_INET6_POST_BIND:
7876                         goto read_only;
7877                 default:
7878                         return false;
7879                 }
7880         }
7881 read_only:
7882         return access_type == BPF_READ;
7883 full_access:
7884         return true;
7885 }
7886
7887 bool bpf_sock_common_is_valid_access(int off, int size,
7888                                      enum bpf_access_type type,
7889                                      struct bpf_insn_access_aux *info)
7890 {
7891         switch (off) {
7892         case bpf_ctx_range_till(struct bpf_sock, type, priority):
7893                 return false;
7894         default:
7895                 return bpf_sock_is_valid_access(off, size, type, info);
7896         }
7897 }
7898
7899 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7900                               struct bpf_insn_access_aux *info)
7901 {
7902         const int size_default = sizeof(__u32);
7903
7904         if (off < 0 || off >= sizeof(struct bpf_sock))
7905                 return false;
7906         if (off % size != 0)
7907                 return false;
7908
7909         switch (off) {
7910         case offsetof(struct bpf_sock, state):
7911         case offsetof(struct bpf_sock, family):
7912         case offsetof(struct bpf_sock, type):
7913         case offsetof(struct bpf_sock, protocol):
7914         case offsetof(struct bpf_sock, dst_port):
7915         case offsetof(struct bpf_sock, src_port):
7916         case offsetof(struct bpf_sock, rx_queue_mapping):
7917         case bpf_ctx_range(struct bpf_sock, src_ip4):
7918         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7919         case bpf_ctx_range(struct bpf_sock, dst_ip4):
7920         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7921                 bpf_ctx_record_field_size(info, size_default);
7922                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7923         }
7924
7925         return size == size_default;
7926 }
7927
7928 static bool sock_filter_is_valid_access(int off, int size,
7929                                         enum bpf_access_type type,
7930                                         const struct bpf_prog *prog,
7931                                         struct bpf_insn_access_aux *info)
7932 {
7933         if (!bpf_sock_is_valid_access(off, size, type, info))
7934                 return false;
7935         return __sock_filter_check_attach_type(off, type,
7936                                                prog->expected_attach_type);
7937 }
7938
7939 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7940                              const struct bpf_prog *prog)
7941 {
7942         /* Neither direct read nor direct write requires any preliminary
7943          * action.
7944          */
7945         return 0;
7946 }
7947
7948 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7949                                 const struct bpf_prog *prog, int drop_verdict)
7950 {
7951         struct bpf_insn *insn = insn_buf;
7952
7953         if (!direct_write)
7954                 return 0;
7955
7956         /* if (!skb->cloned)
7957          *       goto start;
7958          *
7959          * (Fast-path, otherwise approximation that we might be
7960          *  a clone, do the rest in helper.)
7961          */
7962         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7963         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7964         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7965
7966         /* ret = bpf_skb_pull_data(skb, 0); */
7967         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7968         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7969         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7970                                BPF_FUNC_skb_pull_data);
7971         /* if (!ret)
7972          *      goto restore;
7973          * return TC_ACT_SHOT;
7974          */
7975         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7976         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7977         *insn++ = BPF_EXIT_INSN();
7978
7979         /* restore: */
7980         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7981         /* start: */
7982         *insn++ = prog->insnsi[0];
7983
7984         return insn - insn_buf;
7985 }
7986
7987 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7988                           struct bpf_insn *insn_buf)
7989 {
7990         bool indirect = BPF_MODE(orig->code) == BPF_IND;
7991         struct bpf_insn *insn = insn_buf;
7992
7993         if (!indirect) {
7994                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7995         } else {
7996                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7997                 if (orig->imm)
7998                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7999         }
8000         /* We're guaranteed here that CTX is in R6. */
8001         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8002
8003         switch (BPF_SIZE(orig->code)) {
8004         case BPF_B:
8005                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8006                 break;
8007         case BPF_H:
8008                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8009                 break;
8010         case BPF_W:
8011                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8012                 break;
8013         }
8014
8015         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8016         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8017         *insn++ = BPF_EXIT_INSN();
8018
8019         return insn - insn_buf;
8020 }
8021
8022 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8023                                const struct bpf_prog *prog)
8024 {
8025         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8026 }
8027
8028 static bool tc_cls_act_is_valid_access(int off, int size,
8029                                        enum bpf_access_type type,
8030                                        const struct bpf_prog *prog,
8031                                        struct bpf_insn_access_aux *info)
8032 {
8033         if (type == BPF_WRITE) {
8034                 switch (off) {
8035                 case bpf_ctx_range(struct __sk_buff, mark):
8036                 case bpf_ctx_range(struct __sk_buff, tc_index):
8037                 case bpf_ctx_range(struct __sk_buff, priority):
8038                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8039                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8040                 case bpf_ctx_range(struct __sk_buff, tstamp):
8041                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8042                         break;
8043                 default:
8044                         return false;
8045                 }
8046         }
8047
8048         switch (off) {
8049         case bpf_ctx_range(struct __sk_buff, data):
8050                 info->reg_type = PTR_TO_PACKET;
8051                 break;
8052         case bpf_ctx_range(struct __sk_buff, data_meta):
8053                 info->reg_type = PTR_TO_PACKET_META;
8054                 break;
8055         case bpf_ctx_range(struct __sk_buff, data_end):
8056                 info->reg_type = PTR_TO_PACKET_END;
8057                 break;
8058         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8059                 return false;
8060         }
8061
8062         return bpf_skb_is_valid_access(off, size, type, prog, info);
8063 }
8064
8065 static bool __is_valid_xdp_access(int off, int size)
8066 {
8067         if (off < 0 || off >= sizeof(struct xdp_md))
8068                 return false;
8069         if (off % size != 0)
8070                 return false;
8071         if (size != sizeof(__u32))
8072                 return false;
8073
8074         return true;
8075 }
8076
8077 static bool xdp_is_valid_access(int off, int size,
8078                                 enum bpf_access_type type,
8079                                 const struct bpf_prog *prog,
8080                                 struct bpf_insn_access_aux *info)
8081 {
8082         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8083                 switch (off) {
8084                 case offsetof(struct xdp_md, egress_ifindex):
8085                         return false;
8086                 }
8087         }
8088
8089         if (type == BPF_WRITE) {
8090                 if (bpf_prog_is_dev_bound(prog->aux)) {
8091                         switch (off) {
8092                         case offsetof(struct xdp_md, rx_queue_index):
8093                                 return __is_valid_xdp_access(off, size);
8094                         }
8095                 }
8096                 return false;
8097         }
8098
8099         switch (off) {
8100         case offsetof(struct xdp_md, data):
8101                 info->reg_type = PTR_TO_PACKET;
8102                 break;
8103         case offsetof(struct xdp_md, data_meta):
8104                 info->reg_type = PTR_TO_PACKET_META;
8105                 break;
8106         case offsetof(struct xdp_md, data_end):
8107                 info->reg_type = PTR_TO_PACKET_END;
8108                 break;
8109         }
8110
8111         return __is_valid_xdp_access(off, size);
8112 }
8113
8114 void bpf_warn_invalid_xdp_action(u32 act)
8115 {
8116         const u32 act_max = XDP_REDIRECT;
8117
8118         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
8119                   act > act_max ? "Illegal" : "Driver unsupported",
8120                   act);
8121 }
8122 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8123
8124 static bool sock_addr_is_valid_access(int off, int size,
8125                                       enum bpf_access_type type,
8126                                       const struct bpf_prog *prog,
8127                                       struct bpf_insn_access_aux *info)
8128 {
8129         const int size_default = sizeof(__u32);
8130
8131         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8132                 return false;
8133         if (off % size != 0)
8134                 return false;
8135
8136         /* Disallow access to IPv6 fields from IPv4 contex and vise
8137          * versa.
8138          */
8139         switch (off) {
8140         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8141                 switch (prog->expected_attach_type) {
8142                 case BPF_CGROUP_INET4_BIND:
8143                 case BPF_CGROUP_INET4_CONNECT:
8144                 case BPF_CGROUP_INET4_GETPEERNAME:
8145                 case BPF_CGROUP_INET4_GETSOCKNAME:
8146                 case BPF_CGROUP_UDP4_SENDMSG:
8147                 case BPF_CGROUP_UDP4_RECVMSG:
8148                         break;
8149                 default:
8150                         return false;
8151                 }
8152                 break;
8153         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8154                 switch (prog->expected_attach_type) {
8155                 case BPF_CGROUP_INET6_BIND:
8156                 case BPF_CGROUP_INET6_CONNECT:
8157                 case BPF_CGROUP_INET6_GETPEERNAME:
8158                 case BPF_CGROUP_INET6_GETSOCKNAME:
8159                 case BPF_CGROUP_UDP6_SENDMSG:
8160                 case BPF_CGROUP_UDP6_RECVMSG:
8161                         break;
8162                 default:
8163                         return false;
8164                 }
8165                 break;
8166         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8167                 switch (prog->expected_attach_type) {
8168                 case BPF_CGROUP_UDP4_SENDMSG:
8169                         break;
8170                 default:
8171                         return false;
8172                 }
8173                 break;
8174         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8175                                 msg_src_ip6[3]):
8176                 switch (prog->expected_attach_type) {
8177                 case BPF_CGROUP_UDP6_SENDMSG:
8178                         break;
8179                 default:
8180                         return false;
8181                 }
8182                 break;
8183         }
8184
8185         switch (off) {
8186         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8187         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8188         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8189         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8190                                 msg_src_ip6[3]):
8191         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8192                 if (type == BPF_READ) {
8193                         bpf_ctx_record_field_size(info, size_default);
8194
8195                         if (bpf_ctx_wide_access_ok(off, size,
8196                                                    struct bpf_sock_addr,
8197                                                    user_ip6))
8198                                 return true;
8199
8200                         if (bpf_ctx_wide_access_ok(off, size,
8201                                                    struct bpf_sock_addr,
8202                                                    msg_src_ip6))
8203                                 return true;
8204
8205                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8206                                 return false;
8207                 } else {
8208                         if (bpf_ctx_wide_access_ok(off, size,
8209                                                    struct bpf_sock_addr,
8210                                                    user_ip6))
8211                                 return true;
8212
8213                         if (bpf_ctx_wide_access_ok(off, size,
8214                                                    struct bpf_sock_addr,
8215                                                    msg_src_ip6))
8216                                 return true;
8217
8218                         if (size != size_default)
8219                                 return false;
8220                 }
8221                 break;
8222         case offsetof(struct bpf_sock_addr, sk):
8223                 if (type != BPF_READ)
8224                         return false;
8225                 if (size != sizeof(__u64))
8226                         return false;
8227                 info->reg_type = PTR_TO_SOCKET;
8228                 break;
8229         default:
8230                 if (type == BPF_READ) {
8231                         if (size != size_default)
8232                                 return false;
8233                 } else {
8234                         return false;
8235                 }
8236         }
8237
8238         return true;
8239 }
8240
8241 static bool sock_ops_is_valid_access(int off, int size,
8242                                      enum bpf_access_type type,
8243                                      const struct bpf_prog *prog,
8244                                      struct bpf_insn_access_aux *info)
8245 {
8246         const int size_default = sizeof(__u32);
8247
8248         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8249                 return false;
8250
8251         /* The verifier guarantees that size > 0. */
8252         if (off % size != 0)
8253                 return false;
8254
8255         if (type == BPF_WRITE) {
8256                 switch (off) {
8257                 case offsetof(struct bpf_sock_ops, reply):
8258                 case offsetof(struct bpf_sock_ops, sk_txhash):
8259                         if (size != size_default)
8260                                 return false;
8261                         break;
8262                 default:
8263                         return false;
8264                 }
8265         } else {
8266                 switch (off) {
8267                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8268                                         bytes_acked):
8269                         if (size != sizeof(__u64))
8270                                 return false;
8271                         break;
8272                 case offsetof(struct bpf_sock_ops, sk):
8273                         if (size != sizeof(__u64))
8274                                 return false;
8275                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8276                         break;
8277                 case offsetof(struct bpf_sock_ops, skb_data):
8278                         if (size != sizeof(__u64))
8279                                 return false;
8280                         info->reg_type = PTR_TO_PACKET;
8281                         break;
8282                 case offsetof(struct bpf_sock_ops, skb_data_end):
8283                         if (size != sizeof(__u64))
8284                                 return false;
8285                         info->reg_type = PTR_TO_PACKET_END;
8286                         break;
8287                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8288                         bpf_ctx_record_field_size(info, size_default);
8289                         return bpf_ctx_narrow_access_ok(off, size,
8290                                                         size_default);
8291                 default:
8292                         if (size != size_default)
8293                                 return false;
8294                         break;
8295                 }
8296         }
8297
8298         return true;
8299 }
8300
8301 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8302                            const struct bpf_prog *prog)
8303 {
8304         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8305 }
8306
8307 static bool sk_skb_is_valid_access(int off, int size,
8308                                    enum bpf_access_type type,
8309                                    const struct bpf_prog *prog,
8310                                    struct bpf_insn_access_aux *info)
8311 {
8312         switch (off) {
8313         case bpf_ctx_range(struct __sk_buff, tc_classid):
8314         case bpf_ctx_range(struct __sk_buff, data_meta):
8315         case bpf_ctx_range(struct __sk_buff, tstamp):
8316         case bpf_ctx_range(struct __sk_buff, wire_len):
8317                 return false;
8318         }
8319
8320         if (type == BPF_WRITE) {
8321                 switch (off) {
8322                 case bpf_ctx_range(struct __sk_buff, tc_index):
8323                 case bpf_ctx_range(struct __sk_buff, priority):
8324                         break;
8325                 default:
8326                         return false;
8327                 }
8328         }
8329
8330         switch (off) {
8331         case bpf_ctx_range(struct __sk_buff, mark):
8332                 return false;
8333         case bpf_ctx_range(struct __sk_buff, data):
8334                 info->reg_type = PTR_TO_PACKET;
8335                 break;
8336         case bpf_ctx_range(struct __sk_buff, data_end):
8337                 info->reg_type = PTR_TO_PACKET_END;
8338                 break;
8339         }
8340
8341         return bpf_skb_is_valid_access(off, size, type, prog, info);
8342 }
8343
8344 static bool sk_msg_is_valid_access(int off, int size,
8345                                    enum bpf_access_type type,
8346                                    const struct bpf_prog *prog,
8347                                    struct bpf_insn_access_aux *info)
8348 {
8349         if (type == BPF_WRITE)
8350                 return false;
8351
8352         if (off % size != 0)
8353                 return false;
8354
8355         switch (off) {
8356         case offsetof(struct sk_msg_md, data):
8357                 info->reg_type = PTR_TO_PACKET;
8358                 if (size != sizeof(__u64))
8359                         return false;
8360                 break;
8361         case offsetof(struct sk_msg_md, data_end):
8362                 info->reg_type = PTR_TO_PACKET_END;
8363                 if (size != sizeof(__u64))
8364                         return false;
8365                 break;
8366         case offsetof(struct sk_msg_md, sk):
8367                 if (size != sizeof(__u64))
8368                         return false;
8369                 info->reg_type = PTR_TO_SOCKET;
8370                 break;
8371         case bpf_ctx_range(struct sk_msg_md, family):
8372         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8373         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8374         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8375         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8376         case bpf_ctx_range(struct sk_msg_md, remote_port):
8377         case bpf_ctx_range(struct sk_msg_md, local_port):
8378         case bpf_ctx_range(struct sk_msg_md, size):
8379                 if (size != sizeof(__u32))
8380                         return false;
8381                 break;
8382         default:
8383                 return false;
8384         }
8385         return true;
8386 }
8387
8388 static bool flow_dissector_is_valid_access(int off, int size,
8389                                            enum bpf_access_type type,
8390                                            const struct bpf_prog *prog,
8391                                            struct bpf_insn_access_aux *info)
8392 {
8393         const int size_default = sizeof(__u32);
8394
8395         if (off < 0 || off >= sizeof(struct __sk_buff))
8396                 return false;
8397
8398         if (type == BPF_WRITE)
8399                 return false;
8400
8401         switch (off) {
8402         case bpf_ctx_range(struct __sk_buff, data):
8403                 if (size != size_default)
8404                         return false;
8405                 info->reg_type = PTR_TO_PACKET;
8406                 return true;
8407         case bpf_ctx_range(struct __sk_buff, data_end):
8408                 if (size != size_default)
8409                         return false;
8410                 info->reg_type = PTR_TO_PACKET_END;
8411                 return true;
8412         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8413                 if (size != sizeof(__u64))
8414                         return false;
8415                 info->reg_type = PTR_TO_FLOW_KEYS;
8416                 return true;
8417         default:
8418                 return false;
8419         }
8420 }
8421
8422 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8423                                              const struct bpf_insn *si,
8424                                              struct bpf_insn *insn_buf,
8425                                              struct bpf_prog *prog,
8426                                              u32 *target_size)
8427
8428 {
8429         struct bpf_insn *insn = insn_buf;
8430
8431         switch (si->off) {
8432         case offsetof(struct __sk_buff, data):
8433                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8434                                       si->dst_reg, si->src_reg,
8435                                       offsetof(struct bpf_flow_dissector, data));
8436                 break;
8437
8438         case offsetof(struct __sk_buff, data_end):
8439                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8440                                       si->dst_reg, si->src_reg,
8441                                       offsetof(struct bpf_flow_dissector, data_end));
8442                 break;
8443
8444         case offsetof(struct __sk_buff, flow_keys):
8445                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8446                                       si->dst_reg, si->src_reg,
8447                                       offsetof(struct bpf_flow_dissector, flow_keys));
8448                 break;
8449         }
8450
8451         return insn - insn_buf;
8452 }
8453
8454 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8455                                                   struct bpf_insn *insn)
8456 {
8457         /* si->dst_reg = skb_shinfo(SKB); */
8458 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8459         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8460                               BPF_REG_AX, si->src_reg,
8461                               offsetof(struct sk_buff, end));
8462         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8463                               si->dst_reg, si->src_reg,
8464                               offsetof(struct sk_buff, head));
8465         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8466 #else
8467         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8468                               si->dst_reg, si->src_reg,
8469                               offsetof(struct sk_buff, end));
8470 #endif
8471
8472         return insn;
8473 }
8474
8475 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8476                                   const struct bpf_insn *si,
8477                                   struct bpf_insn *insn_buf,
8478                                   struct bpf_prog *prog, u32 *target_size)
8479 {
8480         struct bpf_insn *insn = insn_buf;
8481         int off;
8482
8483         switch (si->off) {
8484         case offsetof(struct __sk_buff, len):
8485                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8486                                       bpf_target_off(struct sk_buff, len, 4,
8487                                                      target_size));
8488                 break;
8489
8490         case offsetof(struct __sk_buff, protocol):
8491                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8492                                       bpf_target_off(struct sk_buff, protocol, 2,
8493                                                      target_size));
8494                 break;
8495
8496         case offsetof(struct __sk_buff, vlan_proto):
8497                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8498                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
8499                                                      target_size));
8500                 break;
8501
8502         case offsetof(struct __sk_buff, priority):
8503                 if (type == BPF_WRITE)
8504                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8505                                               bpf_target_off(struct sk_buff, priority, 4,
8506                                                              target_size));
8507                 else
8508                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8509                                               bpf_target_off(struct sk_buff, priority, 4,
8510                                                              target_size));
8511                 break;
8512
8513         case offsetof(struct __sk_buff, ingress_ifindex):
8514                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8515                                       bpf_target_off(struct sk_buff, skb_iif, 4,
8516                                                      target_size));
8517                 break;
8518
8519         case offsetof(struct __sk_buff, ifindex):
8520                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8521                                       si->dst_reg, si->src_reg,
8522                                       offsetof(struct sk_buff, dev));
8523                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8524                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8525                                       bpf_target_off(struct net_device, ifindex, 4,
8526                                                      target_size));
8527                 break;
8528
8529         case offsetof(struct __sk_buff, hash):
8530                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8531                                       bpf_target_off(struct sk_buff, hash, 4,
8532                                                      target_size));
8533                 break;
8534
8535         case offsetof(struct __sk_buff, mark):
8536                 if (type == BPF_WRITE)
8537                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8538                                               bpf_target_off(struct sk_buff, mark, 4,
8539                                                              target_size));
8540                 else
8541                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8542                                               bpf_target_off(struct sk_buff, mark, 4,
8543                                                              target_size));
8544                 break;
8545
8546         case offsetof(struct __sk_buff, pkt_type):
8547                 *target_size = 1;
8548                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8549                                       PKT_TYPE_OFFSET());
8550                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8551 #ifdef __BIG_ENDIAN_BITFIELD
8552                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8553 #endif
8554                 break;
8555
8556         case offsetof(struct __sk_buff, queue_mapping):
8557                 if (type == BPF_WRITE) {
8558                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8559                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8560                                               bpf_target_off(struct sk_buff,
8561                                                              queue_mapping,
8562                                                              2, target_size));
8563                 } else {
8564                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8565                                               bpf_target_off(struct sk_buff,
8566                                                              queue_mapping,
8567                                                              2, target_size));
8568                 }
8569                 break;
8570
8571         case offsetof(struct __sk_buff, vlan_present):
8572                 *target_size = 1;
8573                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8574                                       PKT_VLAN_PRESENT_OFFSET());
8575                 if (PKT_VLAN_PRESENT_BIT)
8576                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8577                 if (PKT_VLAN_PRESENT_BIT < 7)
8578                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8579                 break;
8580
8581         case offsetof(struct __sk_buff, vlan_tci):
8582                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8583                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
8584                                                      target_size));
8585                 break;
8586
8587         case offsetof(struct __sk_buff, cb[0]) ...
8588              offsetofend(struct __sk_buff, cb[4]) - 1:
8589                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8590                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8591                               offsetof(struct qdisc_skb_cb, data)) %
8592                              sizeof(__u64));
8593
8594                 prog->cb_access = 1;
8595                 off  = si->off;
8596                 off -= offsetof(struct __sk_buff, cb[0]);
8597                 off += offsetof(struct sk_buff, cb);
8598                 off += offsetof(struct qdisc_skb_cb, data);
8599                 if (type == BPF_WRITE)
8600                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8601                                               si->src_reg, off);
8602                 else
8603                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8604                                               si->src_reg, off);
8605                 break;
8606
8607         case offsetof(struct __sk_buff, tc_classid):
8608                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8609
8610                 off  = si->off;
8611                 off -= offsetof(struct __sk_buff, tc_classid);
8612                 off += offsetof(struct sk_buff, cb);
8613                 off += offsetof(struct qdisc_skb_cb, tc_classid);
8614                 *target_size = 2;
8615                 if (type == BPF_WRITE)
8616                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8617                                               si->src_reg, off);
8618                 else
8619                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8620                                               si->src_reg, off);
8621                 break;
8622
8623         case offsetof(struct __sk_buff, data):
8624                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8625                                       si->dst_reg, si->src_reg,
8626                                       offsetof(struct sk_buff, data));
8627                 break;
8628
8629         case offsetof(struct __sk_buff, data_meta):
8630                 off  = si->off;
8631                 off -= offsetof(struct __sk_buff, data_meta);
8632                 off += offsetof(struct sk_buff, cb);
8633                 off += offsetof(struct bpf_skb_data_end, data_meta);
8634                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8635                                       si->src_reg, off);
8636                 break;
8637
8638         case offsetof(struct __sk_buff, data_end):
8639                 off  = si->off;
8640                 off -= offsetof(struct __sk_buff, data_end);
8641                 off += offsetof(struct sk_buff, cb);
8642                 off += offsetof(struct bpf_skb_data_end, data_end);
8643                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8644                                       si->src_reg, off);
8645                 break;
8646
8647         case offsetof(struct __sk_buff, tc_index):
8648 #ifdef CONFIG_NET_SCHED
8649                 if (type == BPF_WRITE)
8650                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8651                                               bpf_target_off(struct sk_buff, tc_index, 2,
8652                                                              target_size));
8653                 else
8654                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8655                                               bpf_target_off(struct sk_buff, tc_index, 2,
8656                                                              target_size));
8657 #else
8658                 *target_size = 2;
8659                 if (type == BPF_WRITE)
8660                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8661                 else
8662                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8663 #endif
8664                 break;
8665
8666         case offsetof(struct __sk_buff, napi_id):
8667 #if defined(CONFIG_NET_RX_BUSY_POLL)
8668                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8669                                       bpf_target_off(struct sk_buff, napi_id, 4,
8670                                                      target_size));
8671                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8672                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8673 #else
8674                 *target_size = 4;
8675                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8676 #endif
8677                 break;
8678         case offsetof(struct __sk_buff, family):
8679                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8680
8681                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8682                                       si->dst_reg, si->src_reg,
8683                                       offsetof(struct sk_buff, sk));
8684                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8685                                       bpf_target_off(struct sock_common,
8686                                                      skc_family,
8687                                                      2, target_size));
8688                 break;
8689         case offsetof(struct __sk_buff, remote_ip4):
8690                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8691
8692                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8693                                       si->dst_reg, si->src_reg,
8694                                       offsetof(struct sk_buff, sk));
8695                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8696                                       bpf_target_off(struct sock_common,
8697                                                      skc_daddr,
8698                                                      4, target_size));
8699                 break;
8700         case offsetof(struct __sk_buff, local_ip4):
8701                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8702                                           skc_rcv_saddr) != 4);
8703
8704                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8705                                       si->dst_reg, si->src_reg,
8706                                       offsetof(struct sk_buff, sk));
8707                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8708                                       bpf_target_off(struct sock_common,
8709                                                      skc_rcv_saddr,
8710                                                      4, target_size));
8711                 break;
8712         case offsetof(struct __sk_buff, remote_ip6[0]) ...
8713              offsetof(struct __sk_buff, remote_ip6[3]):
8714 #if IS_ENABLED(CONFIG_IPV6)
8715                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8716                                           skc_v6_daddr.s6_addr32[0]) != 4);
8717
8718                 off = si->off;
8719                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8720
8721                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8722                                       si->dst_reg, si->src_reg,
8723                                       offsetof(struct sk_buff, sk));
8724                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8725                                       offsetof(struct sock_common,
8726                                                skc_v6_daddr.s6_addr32[0]) +
8727                                       off);
8728 #else
8729                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8730 #endif
8731                 break;
8732         case offsetof(struct __sk_buff, local_ip6[0]) ...
8733              offsetof(struct __sk_buff, local_ip6[3]):
8734 #if IS_ENABLED(CONFIG_IPV6)
8735                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8736                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8737
8738                 off = si->off;
8739                 off -= offsetof(struct __sk_buff, local_ip6[0]);
8740
8741                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8742                                       si->dst_reg, si->src_reg,
8743                                       offsetof(struct sk_buff, sk));
8744                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8745                                       offsetof(struct sock_common,
8746                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8747                                       off);
8748 #else
8749                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8750 #endif
8751                 break;
8752
8753         case offsetof(struct __sk_buff, remote_port):
8754                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8755
8756                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8757                                       si->dst_reg, si->src_reg,
8758                                       offsetof(struct sk_buff, sk));
8759                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8760                                       bpf_target_off(struct sock_common,
8761                                                      skc_dport,
8762                                                      2, target_size));
8763 #ifndef __BIG_ENDIAN_BITFIELD
8764                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8765 #endif
8766                 break;
8767
8768         case offsetof(struct __sk_buff, local_port):
8769                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8770
8771                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8772                                       si->dst_reg, si->src_reg,
8773                                       offsetof(struct sk_buff, sk));
8774                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8775                                       bpf_target_off(struct sock_common,
8776                                                      skc_num, 2, target_size));
8777                 break;
8778
8779         case offsetof(struct __sk_buff, tstamp):
8780                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8781
8782                 if (type == BPF_WRITE)
8783                         *insn++ = BPF_STX_MEM(BPF_DW,
8784                                               si->dst_reg, si->src_reg,
8785                                               bpf_target_off(struct sk_buff,
8786                                                              tstamp, 8,
8787                                                              target_size));
8788                 else
8789                         *insn++ = BPF_LDX_MEM(BPF_DW,
8790                                               si->dst_reg, si->src_reg,
8791                                               bpf_target_off(struct sk_buff,
8792                                                              tstamp, 8,
8793                                                              target_size));
8794                 break;
8795
8796         case offsetof(struct __sk_buff, gso_segs):
8797                 insn = bpf_convert_shinfo_access(si, insn);
8798                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8799                                       si->dst_reg, si->dst_reg,
8800                                       bpf_target_off(struct skb_shared_info,
8801                                                      gso_segs, 2,
8802                                                      target_size));
8803                 break;
8804         case offsetof(struct __sk_buff, gso_size):
8805                 insn = bpf_convert_shinfo_access(si, insn);
8806                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8807                                       si->dst_reg, si->dst_reg,
8808                                       bpf_target_off(struct skb_shared_info,
8809                                                      gso_size, 2,
8810                                                      target_size));
8811                 break;
8812         case offsetof(struct __sk_buff, wire_len):
8813                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8814
8815                 off = si->off;
8816                 off -= offsetof(struct __sk_buff, wire_len);
8817                 off += offsetof(struct sk_buff, cb);
8818                 off += offsetof(struct qdisc_skb_cb, pkt_len);
8819                 *target_size = 4;
8820                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8821                 break;
8822
8823         case offsetof(struct __sk_buff, sk):
8824                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8825                                       si->dst_reg, si->src_reg,
8826                                       offsetof(struct sk_buff, sk));
8827                 break;
8828         }
8829
8830         return insn - insn_buf;
8831 }
8832
8833 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8834                                 const struct bpf_insn *si,
8835                                 struct bpf_insn *insn_buf,
8836                                 struct bpf_prog *prog, u32 *target_size)
8837 {
8838         struct bpf_insn *insn = insn_buf;
8839         int off;
8840
8841         switch (si->off) {
8842         case offsetof(struct bpf_sock, bound_dev_if):
8843                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8844
8845                 if (type == BPF_WRITE)
8846                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8847                                         offsetof(struct sock, sk_bound_dev_if));
8848                 else
8849                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8850                                       offsetof(struct sock, sk_bound_dev_if));
8851                 break;
8852
8853         case offsetof(struct bpf_sock, mark):
8854                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8855
8856                 if (type == BPF_WRITE)
8857                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8858                                         offsetof(struct sock, sk_mark));
8859                 else
8860                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8861                                       offsetof(struct sock, sk_mark));
8862                 break;
8863
8864         case offsetof(struct bpf_sock, priority):
8865                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8866
8867                 if (type == BPF_WRITE)
8868                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8869                                         offsetof(struct sock, sk_priority));
8870                 else
8871                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8872                                       offsetof(struct sock, sk_priority));
8873                 break;
8874
8875         case offsetof(struct bpf_sock, family):
8876                 *insn++ = BPF_LDX_MEM(
8877                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8878                         si->dst_reg, si->src_reg,
8879                         bpf_target_off(struct sock_common,
8880                                        skc_family,
8881                                        sizeof_field(struct sock_common,
8882                                                     skc_family),
8883                                        target_size));
8884                 break;
8885
8886         case offsetof(struct bpf_sock, type):
8887                 *insn++ = BPF_LDX_MEM(
8888                         BPF_FIELD_SIZEOF(struct sock, sk_type),
8889                         si->dst_reg, si->src_reg,
8890                         bpf_target_off(struct sock, sk_type,
8891                                        sizeof_field(struct sock, sk_type),
8892                                        target_size));
8893                 break;
8894
8895         case offsetof(struct bpf_sock, protocol):
8896                 *insn++ = BPF_LDX_MEM(
8897                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8898                         si->dst_reg, si->src_reg,
8899                         bpf_target_off(struct sock, sk_protocol,
8900                                        sizeof_field(struct sock, sk_protocol),
8901                                        target_size));
8902                 break;
8903
8904         case offsetof(struct bpf_sock, src_ip4):
8905                 *insn++ = BPF_LDX_MEM(
8906                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8907                         bpf_target_off(struct sock_common, skc_rcv_saddr,
8908                                        sizeof_field(struct sock_common,
8909                                                     skc_rcv_saddr),
8910                                        target_size));
8911                 break;
8912
8913         case offsetof(struct bpf_sock, dst_ip4):
8914                 *insn++ = BPF_LDX_MEM(
8915                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8916                         bpf_target_off(struct sock_common, skc_daddr,
8917                                        sizeof_field(struct sock_common,
8918                                                     skc_daddr),
8919                                        target_size));
8920                 break;
8921
8922         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8923 #if IS_ENABLED(CONFIG_IPV6)
8924                 off = si->off;
8925                 off -= offsetof(struct bpf_sock, src_ip6[0]);
8926                 *insn++ = BPF_LDX_MEM(
8927                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8928                         bpf_target_off(
8929                                 struct sock_common,
8930                                 skc_v6_rcv_saddr.s6_addr32[0],
8931                                 sizeof_field(struct sock_common,
8932                                              skc_v6_rcv_saddr.s6_addr32[0]),
8933                                 target_size) + off);
8934 #else
8935                 (void)off;
8936                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8937 #endif
8938                 break;
8939
8940         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8941 #if IS_ENABLED(CONFIG_IPV6)
8942                 off = si->off;
8943                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
8944                 *insn++ = BPF_LDX_MEM(
8945                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8946                         bpf_target_off(struct sock_common,
8947                                        skc_v6_daddr.s6_addr32[0],
8948                                        sizeof_field(struct sock_common,
8949                                                     skc_v6_daddr.s6_addr32[0]),
8950                                        target_size) + off);
8951 #else
8952                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8953                 *target_size = 4;
8954 #endif
8955                 break;
8956
8957         case offsetof(struct bpf_sock, src_port):
8958                 *insn++ = BPF_LDX_MEM(
8959                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8960                         si->dst_reg, si->src_reg,
8961                         bpf_target_off(struct sock_common, skc_num,
8962                                        sizeof_field(struct sock_common,
8963                                                     skc_num),
8964                                        target_size));
8965                 break;
8966
8967         case offsetof(struct bpf_sock, dst_port):
8968                 *insn++ = BPF_LDX_MEM(
8969                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8970                         si->dst_reg, si->src_reg,
8971                         bpf_target_off(struct sock_common, skc_dport,
8972                                        sizeof_field(struct sock_common,
8973                                                     skc_dport),
8974                                        target_size));
8975                 break;
8976
8977         case offsetof(struct bpf_sock, state):
8978                 *insn++ = BPF_LDX_MEM(
8979                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8980                         si->dst_reg, si->src_reg,
8981                         bpf_target_off(struct sock_common, skc_state,
8982                                        sizeof_field(struct sock_common,
8983                                                     skc_state),
8984                                        target_size));
8985                 break;
8986         case offsetof(struct bpf_sock, rx_queue_mapping):
8987 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
8988                 *insn++ = BPF_LDX_MEM(
8989                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8990                         si->dst_reg, si->src_reg,
8991                         bpf_target_off(struct sock, sk_rx_queue_mapping,
8992                                        sizeof_field(struct sock,
8993                                                     sk_rx_queue_mapping),
8994                                        target_size));
8995                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8996                                       1);
8997                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8998 #else
8999                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9000                 *target_size = 2;
9001 #endif
9002                 break;
9003         }
9004
9005         return insn - insn_buf;
9006 }
9007
9008 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9009                                          const struct bpf_insn *si,
9010                                          struct bpf_insn *insn_buf,
9011                                          struct bpf_prog *prog, u32 *target_size)
9012 {
9013         struct bpf_insn *insn = insn_buf;
9014
9015         switch (si->off) {
9016         case offsetof(struct __sk_buff, ifindex):
9017                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9018                                       si->dst_reg, si->src_reg,
9019                                       offsetof(struct sk_buff, dev));
9020                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9021                                       bpf_target_off(struct net_device, ifindex, 4,
9022                                                      target_size));
9023                 break;
9024         default:
9025                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9026                                               target_size);
9027         }
9028
9029         return insn - insn_buf;
9030 }
9031
9032 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9033                                   const struct bpf_insn *si,
9034                                   struct bpf_insn *insn_buf,
9035                                   struct bpf_prog *prog, u32 *target_size)
9036 {
9037         struct bpf_insn *insn = insn_buf;
9038
9039         switch (si->off) {
9040         case offsetof(struct xdp_md, data):
9041                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9042                                       si->dst_reg, si->src_reg,
9043                                       offsetof(struct xdp_buff, data));
9044                 break;
9045         case offsetof(struct xdp_md, data_meta):
9046                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9047                                       si->dst_reg, si->src_reg,
9048                                       offsetof(struct xdp_buff, data_meta));
9049                 break;
9050         case offsetof(struct xdp_md, data_end):
9051                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9052                                       si->dst_reg, si->src_reg,
9053                                       offsetof(struct xdp_buff, data_end));
9054                 break;
9055         case offsetof(struct xdp_md, ingress_ifindex):
9056                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9057                                       si->dst_reg, si->src_reg,
9058                                       offsetof(struct xdp_buff, rxq));
9059                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9060                                       si->dst_reg, si->dst_reg,
9061                                       offsetof(struct xdp_rxq_info, dev));
9062                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9063                                       offsetof(struct net_device, ifindex));
9064                 break;
9065         case offsetof(struct xdp_md, rx_queue_index):
9066                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9067                                       si->dst_reg, si->src_reg,
9068                                       offsetof(struct xdp_buff, rxq));
9069                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9070                                       offsetof(struct xdp_rxq_info,
9071                                                queue_index));
9072                 break;
9073         case offsetof(struct xdp_md, egress_ifindex):
9074                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9075                                       si->dst_reg, si->src_reg,
9076                                       offsetof(struct xdp_buff, txq));
9077                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9078                                       si->dst_reg, si->dst_reg,
9079                                       offsetof(struct xdp_txq_info, dev));
9080                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9081                                       offsetof(struct net_device, ifindex));
9082                 break;
9083         }
9084
9085         return insn - insn_buf;
9086 }
9087
9088 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9089  * context Structure, F is Field in context structure that contains a pointer
9090  * to Nested Structure of type NS that has the field NF.
9091  *
9092  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9093  * sure that SIZE is not greater than actual size of S.F.NF.
9094  *
9095  * If offset OFF is provided, the load happens from that offset relative to
9096  * offset of NF.
9097  */
9098 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9099         do {                                                                   \
9100                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9101                                       si->src_reg, offsetof(S, F));            \
9102                 *insn++ = BPF_LDX_MEM(                                         \
9103                         SIZE, si->dst_reg, si->dst_reg,                        \
9104                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9105                                        target_size)                            \
9106                                 + OFF);                                        \
9107         } while (0)
9108
9109 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9110         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9111                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9112
9113 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9114  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9115  *
9116  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9117  * "register" since two registers available in convert_ctx_access are not
9118  * enough: we can't override neither SRC, since it contains value to store, nor
9119  * DST since it contains pointer to context that may be used by later
9120  * instructions. But we need a temporary place to save pointer to nested
9121  * structure whose field we want to store to.
9122  */
9123 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9124         do {                                                                   \
9125                 int tmp_reg = BPF_REG_9;                                       \
9126                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9127                         --tmp_reg;                                             \
9128                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9129                         --tmp_reg;                                             \
9130                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9131                                       offsetof(S, TF));                        \
9132                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9133                                       si->dst_reg, offsetof(S, F));            \
9134                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9135                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9136                                        target_size)                            \
9137                                 + OFF);                                        \
9138                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9139                                       offsetof(S, TF));                        \
9140         } while (0)
9141
9142 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9143                                                       TF)                      \
9144         do {                                                                   \
9145                 if (type == BPF_WRITE) {                                       \
9146                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9147                                                          OFF, TF);             \
9148                 } else {                                                       \
9149                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9150                                 S, NS, F, NF, SIZE, OFF);  \
9151                 }                                                              \
9152         } while (0)
9153
9154 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9155         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9156                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9157
9158 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9159                                         const struct bpf_insn *si,
9160                                         struct bpf_insn *insn_buf,
9161                                         struct bpf_prog *prog, u32 *target_size)
9162 {
9163         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9164         struct bpf_insn *insn = insn_buf;
9165
9166         switch (si->off) {
9167         case offsetof(struct bpf_sock_addr, user_family):
9168                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9169                                             struct sockaddr, uaddr, sa_family);
9170                 break;
9171
9172         case offsetof(struct bpf_sock_addr, user_ip4):
9173                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9174                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9175                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9176                 break;
9177
9178         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9179                 off = si->off;
9180                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9181                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9182                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9183                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9184                         tmp_reg);
9185                 break;
9186
9187         case offsetof(struct bpf_sock_addr, user_port):
9188                 /* To get port we need to know sa_family first and then treat
9189                  * sockaddr as either sockaddr_in or sockaddr_in6.
9190                  * Though we can simplify since port field has same offset and
9191                  * size in both structures.
9192                  * Here we check this invariant and use just one of the
9193                  * structures if it's true.
9194                  */
9195                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9196                              offsetof(struct sockaddr_in6, sin6_port));
9197                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9198                              sizeof_field(struct sockaddr_in6, sin6_port));
9199                 /* Account for sin6_port being smaller than user_port. */
9200                 port_size = min(port_size, BPF_LDST_BYTES(si));
9201                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9202                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9203                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9204                 break;
9205
9206         case offsetof(struct bpf_sock_addr, family):
9207                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9208                                             struct sock, sk, sk_family);
9209                 break;
9210
9211         case offsetof(struct bpf_sock_addr, type):
9212                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9213                                             struct sock, sk, sk_type);
9214                 break;
9215
9216         case offsetof(struct bpf_sock_addr, protocol):
9217                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9218                                             struct sock, sk, sk_protocol);
9219                 break;
9220
9221         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9222                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9223                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9224                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9225                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9226                 break;
9227
9228         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9229                                 msg_src_ip6[3]):
9230                 off = si->off;
9231                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9232                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9233                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9234                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9235                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9236                 break;
9237         case offsetof(struct bpf_sock_addr, sk):
9238                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9239                                       si->dst_reg, si->src_reg,
9240                                       offsetof(struct bpf_sock_addr_kern, sk));
9241                 break;
9242         }
9243
9244         return insn - insn_buf;
9245 }
9246
9247 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9248                                        const struct bpf_insn *si,
9249                                        struct bpf_insn *insn_buf,
9250                                        struct bpf_prog *prog,
9251                                        u32 *target_size)
9252 {
9253         struct bpf_insn *insn = insn_buf;
9254         int off;
9255
9256 /* Helper macro for adding read access to tcp_sock or sock fields. */
9257 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9258         do {                                                                  \
9259                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9260                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9261                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9262                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9263                         reg--;                                                \
9264                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9265                         reg--;                                                \
9266                 if (si->dst_reg == si->src_reg) {                             \
9267                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9268                                           offsetof(struct bpf_sock_ops_kern,  \
9269                                           temp));                             \
9270                         fullsock_reg = reg;                                   \
9271                         jmp += 2;                                             \
9272                 }                                                             \
9273                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9274                                                 struct bpf_sock_ops_kern,     \
9275                                                 is_fullsock),                 \
9276                                       fullsock_reg, si->src_reg,              \
9277                                       offsetof(struct bpf_sock_ops_kern,      \
9278                                                is_fullsock));                 \
9279                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9280                 if (si->dst_reg == si->src_reg)                               \
9281                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9282                                       offsetof(struct bpf_sock_ops_kern,      \
9283                                       temp));                                 \
9284                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9285                                                 struct bpf_sock_ops_kern, sk),\
9286                                       si->dst_reg, si->src_reg,               \
9287                                       offsetof(struct bpf_sock_ops_kern, sk));\
9288                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9289                                                        OBJ_FIELD),            \
9290                                       si->dst_reg, si->dst_reg,               \
9291                                       offsetof(OBJ, OBJ_FIELD));              \
9292                 if (si->dst_reg == si->src_reg) {                             \
9293                         *insn++ = BPF_JMP_A(1);                               \
9294                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9295                                       offsetof(struct bpf_sock_ops_kern,      \
9296                                       temp));                                 \
9297                 }                                                             \
9298         } while (0)
9299
9300 #define SOCK_OPS_GET_SK()                                                             \
9301         do {                                                                  \
9302                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9303                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9304                         reg--;                                                \
9305                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9306                         reg--;                                                \
9307                 if (si->dst_reg == si->src_reg) {                             \
9308                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9309                                           offsetof(struct bpf_sock_ops_kern,  \
9310                                           temp));                             \
9311                         fullsock_reg = reg;                                   \
9312                         jmp += 2;                                             \
9313                 }                                                             \
9314                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9315                                                 struct bpf_sock_ops_kern,     \
9316                                                 is_fullsock),                 \
9317                                       fullsock_reg, si->src_reg,              \
9318                                       offsetof(struct bpf_sock_ops_kern,      \
9319                                                is_fullsock));                 \
9320                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9321                 if (si->dst_reg == si->src_reg)                               \
9322                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9323                                       offsetof(struct bpf_sock_ops_kern,      \
9324                                       temp));                                 \
9325                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9326                                                 struct bpf_sock_ops_kern, sk),\
9327                                       si->dst_reg, si->src_reg,               \
9328                                       offsetof(struct bpf_sock_ops_kern, sk));\
9329                 if (si->dst_reg == si->src_reg) {                             \
9330                         *insn++ = BPF_JMP_A(1);                               \
9331                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9332                                       offsetof(struct bpf_sock_ops_kern,      \
9333                                       temp));                                 \
9334                 }                                                             \
9335         } while (0)
9336
9337 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9338                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9339
9340 /* Helper macro for adding write access to tcp_sock or sock fields.
9341  * The macro is called with two registers, dst_reg which contains a pointer
9342  * to ctx (context) and src_reg which contains the value that should be
9343  * stored. However, we need an additional register since we cannot overwrite
9344  * dst_reg because it may be used later in the program.
9345  * Instead we "borrow" one of the other register. We first save its value
9346  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9347  * it at the end of the macro.
9348  */
9349 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9350         do {                                                                  \
9351                 int reg = BPF_REG_9;                                          \
9352                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9353                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9354                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9355                         reg--;                                                \
9356                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9357                         reg--;                                                \
9358                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9359                                       offsetof(struct bpf_sock_ops_kern,      \
9360                                                temp));                        \
9361                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9362                                                 struct bpf_sock_ops_kern,     \
9363                                                 is_fullsock),                 \
9364                                       reg, si->dst_reg,                       \
9365                                       offsetof(struct bpf_sock_ops_kern,      \
9366                                                is_fullsock));                 \
9367                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9368                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9369                                                 struct bpf_sock_ops_kern, sk),\
9370                                       reg, si->dst_reg,                       \
9371                                       offsetof(struct bpf_sock_ops_kern, sk));\
9372                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9373                                       reg, si->src_reg,                       \
9374                                       offsetof(OBJ, OBJ_FIELD));              \
9375                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9376                                       offsetof(struct bpf_sock_ops_kern,      \
9377                                                temp));                        \
9378         } while (0)
9379
9380 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9381         do {                                                                  \
9382                 if (TYPE == BPF_WRITE)                                        \
9383                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9384                 else                                                          \
9385                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9386         } while (0)
9387
9388         if (insn > insn_buf)
9389                 return insn - insn_buf;
9390
9391         switch (si->off) {
9392         case offsetof(struct bpf_sock_ops, op):
9393                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9394                                                        op),
9395                                       si->dst_reg, si->src_reg,
9396                                       offsetof(struct bpf_sock_ops_kern, op));
9397                 break;
9398
9399         case offsetof(struct bpf_sock_ops, replylong[0]) ...
9400              offsetof(struct bpf_sock_ops, replylong[3]):
9401                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9402                              sizeof_field(struct bpf_sock_ops_kern, reply));
9403                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9404                              sizeof_field(struct bpf_sock_ops_kern, replylong));
9405                 off = si->off;
9406                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9407                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9408                 if (type == BPF_WRITE)
9409                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9410                                               off);
9411                 else
9412                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9413                                               off);
9414                 break;
9415
9416         case offsetof(struct bpf_sock_ops, family):
9417                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9418
9419                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9420                                               struct bpf_sock_ops_kern, sk),
9421                                       si->dst_reg, si->src_reg,
9422                                       offsetof(struct bpf_sock_ops_kern, sk));
9423                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9424                                       offsetof(struct sock_common, skc_family));
9425                 break;
9426
9427         case offsetof(struct bpf_sock_ops, remote_ip4):
9428                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9429
9430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9431                                                 struct bpf_sock_ops_kern, sk),
9432                                       si->dst_reg, si->src_reg,
9433                                       offsetof(struct bpf_sock_ops_kern, sk));
9434                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9435                                       offsetof(struct sock_common, skc_daddr));
9436                 break;
9437
9438         case offsetof(struct bpf_sock_ops, local_ip4):
9439                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9440                                           skc_rcv_saddr) != 4);
9441
9442                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9443                                               struct bpf_sock_ops_kern, sk),
9444                                       si->dst_reg, si->src_reg,
9445                                       offsetof(struct bpf_sock_ops_kern, sk));
9446                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9447                                       offsetof(struct sock_common,
9448                                                skc_rcv_saddr));
9449                 break;
9450
9451         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9452              offsetof(struct bpf_sock_ops, remote_ip6[3]):
9453 #if IS_ENABLED(CONFIG_IPV6)
9454                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9455                                           skc_v6_daddr.s6_addr32[0]) != 4);
9456
9457                 off = si->off;
9458                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9459                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9460                                                 struct bpf_sock_ops_kern, sk),
9461                                       si->dst_reg, si->src_reg,
9462                                       offsetof(struct bpf_sock_ops_kern, sk));
9463                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9464                                       offsetof(struct sock_common,
9465                                                skc_v6_daddr.s6_addr32[0]) +
9466                                       off);
9467 #else
9468                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9469 #endif
9470                 break;
9471
9472         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9473              offsetof(struct bpf_sock_ops, local_ip6[3]):
9474 #if IS_ENABLED(CONFIG_IPV6)
9475                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9476                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9477
9478                 off = si->off;
9479                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9480                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9481                                                 struct bpf_sock_ops_kern, sk),
9482                                       si->dst_reg, si->src_reg,
9483                                       offsetof(struct bpf_sock_ops_kern, sk));
9484                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9485                                       offsetof(struct sock_common,
9486                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9487                                       off);
9488 #else
9489                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9490 #endif
9491                 break;
9492
9493         case offsetof(struct bpf_sock_ops, remote_port):
9494                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9495
9496                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9497                                                 struct bpf_sock_ops_kern, sk),
9498                                       si->dst_reg, si->src_reg,
9499                                       offsetof(struct bpf_sock_ops_kern, sk));
9500                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9501                                       offsetof(struct sock_common, skc_dport));
9502 #ifndef __BIG_ENDIAN_BITFIELD
9503                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9504 #endif
9505                 break;
9506
9507         case offsetof(struct bpf_sock_ops, local_port):
9508                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9509
9510                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9511                                                 struct bpf_sock_ops_kern, sk),
9512                                       si->dst_reg, si->src_reg,
9513                                       offsetof(struct bpf_sock_ops_kern, sk));
9514                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9515                                       offsetof(struct sock_common, skc_num));
9516                 break;
9517
9518         case offsetof(struct bpf_sock_ops, is_fullsock):
9519                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9520                                                 struct bpf_sock_ops_kern,
9521                                                 is_fullsock),
9522                                       si->dst_reg, si->src_reg,
9523                                       offsetof(struct bpf_sock_ops_kern,
9524                                                is_fullsock));
9525                 break;
9526
9527         case offsetof(struct bpf_sock_ops, state):
9528                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9529
9530                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9531                                                 struct bpf_sock_ops_kern, sk),
9532                                       si->dst_reg, si->src_reg,
9533                                       offsetof(struct bpf_sock_ops_kern, sk));
9534                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9535                                       offsetof(struct sock_common, skc_state));
9536                 break;
9537
9538         case offsetof(struct bpf_sock_ops, rtt_min):
9539                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9540                              sizeof(struct minmax));
9541                 BUILD_BUG_ON(sizeof(struct minmax) <
9542                              sizeof(struct minmax_sample));
9543
9544                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9545                                                 struct bpf_sock_ops_kern, sk),
9546                                       si->dst_reg, si->src_reg,
9547                                       offsetof(struct bpf_sock_ops_kern, sk));
9548                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9549                                       offsetof(struct tcp_sock, rtt_min) +
9550                                       sizeof_field(struct minmax_sample, t));
9551                 break;
9552
9553         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9554                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9555                                    struct tcp_sock);
9556                 break;
9557
9558         case offsetof(struct bpf_sock_ops, sk_txhash):
9559                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9560                                           struct sock, type);
9561                 break;
9562         case offsetof(struct bpf_sock_ops, snd_cwnd):
9563                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9564                 break;
9565         case offsetof(struct bpf_sock_ops, srtt_us):
9566                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9567                 break;
9568         case offsetof(struct bpf_sock_ops, snd_ssthresh):
9569                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9570                 break;
9571         case offsetof(struct bpf_sock_ops, rcv_nxt):
9572                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9573                 break;
9574         case offsetof(struct bpf_sock_ops, snd_nxt):
9575                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9576                 break;
9577         case offsetof(struct bpf_sock_ops, snd_una):
9578                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9579                 break;
9580         case offsetof(struct bpf_sock_ops, mss_cache):
9581                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9582                 break;
9583         case offsetof(struct bpf_sock_ops, ecn_flags):
9584                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9585                 break;
9586         case offsetof(struct bpf_sock_ops, rate_delivered):
9587                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9588                 break;
9589         case offsetof(struct bpf_sock_ops, rate_interval_us):
9590                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9591                 break;
9592         case offsetof(struct bpf_sock_ops, packets_out):
9593                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9594                 break;
9595         case offsetof(struct bpf_sock_ops, retrans_out):
9596                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9597                 break;
9598         case offsetof(struct bpf_sock_ops, total_retrans):
9599                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9600                 break;
9601         case offsetof(struct bpf_sock_ops, segs_in):
9602                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9603                 break;
9604         case offsetof(struct bpf_sock_ops, data_segs_in):
9605                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9606                 break;
9607         case offsetof(struct bpf_sock_ops, segs_out):
9608                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9609                 break;
9610         case offsetof(struct bpf_sock_ops, data_segs_out):
9611                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9612                 break;
9613         case offsetof(struct bpf_sock_ops, lost_out):
9614                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9615                 break;
9616         case offsetof(struct bpf_sock_ops, sacked_out):
9617                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9618                 break;
9619         case offsetof(struct bpf_sock_ops, bytes_received):
9620                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9621                 break;
9622         case offsetof(struct bpf_sock_ops, bytes_acked):
9623                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9624                 break;
9625         case offsetof(struct bpf_sock_ops, sk):
9626                 SOCK_OPS_GET_SK();
9627                 break;
9628         case offsetof(struct bpf_sock_ops, skb_data_end):
9629                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9630                                                        skb_data_end),
9631                                       si->dst_reg, si->src_reg,
9632                                       offsetof(struct bpf_sock_ops_kern,
9633                                                skb_data_end));
9634                 break;
9635         case offsetof(struct bpf_sock_ops, skb_data):
9636                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9637                                                        skb),
9638                                       si->dst_reg, si->src_reg,
9639                                       offsetof(struct bpf_sock_ops_kern,
9640                                                skb));
9641                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9642                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9643                                       si->dst_reg, si->dst_reg,
9644                                       offsetof(struct sk_buff, data));
9645                 break;
9646         case offsetof(struct bpf_sock_ops, skb_len):
9647                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9648                                                        skb),
9649                                       si->dst_reg, si->src_reg,
9650                                       offsetof(struct bpf_sock_ops_kern,
9651                                                skb));
9652                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9653                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9654                                       si->dst_reg, si->dst_reg,
9655                                       offsetof(struct sk_buff, len));
9656                 break;
9657         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9658                 off = offsetof(struct sk_buff, cb);
9659                 off += offsetof(struct tcp_skb_cb, tcp_flags);
9660                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9661                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9662                                                        skb),
9663                                       si->dst_reg, si->src_reg,
9664                                       offsetof(struct bpf_sock_ops_kern,
9665                                                skb));
9666                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9667                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9668                                                        tcp_flags),
9669                                       si->dst_reg, si->dst_reg, off);
9670                 break;
9671         }
9672         return insn - insn_buf;
9673 }
9674
9675 /* data_end = skb->data + skb_headlen() */
9676 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9677                                                     struct bpf_insn *insn)
9678 {
9679         /* si->dst_reg = skb->data */
9680         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9681                               si->dst_reg, si->src_reg,
9682                               offsetof(struct sk_buff, data));
9683         /* AX = skb->len */
9684         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9685                               BPF_REG_AX, si->src_reg,
9686                               offsetof(struct sk_buff, len));
9687         /* si->dst_reg = skb->data + skb->len */
9688         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9689         /* AX = skb->data_len */
9690         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9691                               BPF_REG_AX, si->src_reg,
9692                               offsetof(struct sk_buff, data_len));
9693         /* si->dst_reg = skb->data + skb->len - skb->data_len */
9694         *insn++ = BPF_ALU64_REG(BPF_SUB, si->dst_reg, BPF_REG_AX);
9695
9696         return insn;
9697 }
9698
9699 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9700                                      const struct bpf_insn *si,
9701                                      struct bpf_insn *insn_buf,
9702                                      struct bpf_prog *prog, u32 *target_size)
9703 {
9704         struct bpf_insn *insn = insn_buf;
9705
9706         switch (si->off) {
9707         case offsetof(struct __sk_buff, data_end):
9708                 insn = bpf_convert_data_end_access(si, insn);
9709                 break;
9710         default:
9711                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9712                                               target_size);
9713         }
9714
9715         return insn - insn_buf;
9716 }
9717
9718 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9719                                      const struct bpf_insn *si,
9720                                      struct bpf_insn *insn_buf,
9721                                      struct bpf_prog *prog, u32 *target_size)
9722 {
9723         struct bpf_insn *insn = insn_buf;
9724 #if IS_ENABLED(CONFIG_IPV6)
9725         int off;
9726 #endif
9727
9728         /* convert ctx uses the fact sg element is first in struct */
9729         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9730
9731         switch (si->off) {
9732         case offsetof(struct sk_msg_md, data):
9733                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9734                                       si->dst_reg, si->src_reg,
9735                                       offsetof(struct sk_msg, data));
9736                 break;
9737         case offsetof(struct sk_msg_md, data_end):
9738                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9739                                       si->dst_reg, si->src_reg,
9740                                       offsetof(struct sk_msg, data_end));
9741                 break;
9742         case offsetof(struct sk_msg_md, family):
9743                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9744
9745                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9746                                               struct sk_msg, sk),
9747                                       si->dst_reg, si->src_reg,
9748                                       offsetof(struct sk_msg, sk));
9749                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9750                                       offsetof(struct sock_common, skc_family));
9751                 break;
9752
9753         case offsetof(struct sk_msg_md, remote_ip4):
9754                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9755
9756                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9757                                                 struct sk_msg, sk),
9758                                       si->dst_reg, si->src_reg,
9759                                       offsetof(struct sk_msg, sk));
9760                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9761                                       offsetof(struct sock_common, skc_daddr));
9762                 break;
9763
9764         case offsetof(struct sk_msg_md, local_ip4):
9765                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9766                                           skc_rcv_saddr) != 4);
9767
9768                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9769                                               struct sk_msg, sk),
9770                                       si->dst_reg, si->src_reg,
9771                                       offsetof(struct sk_msg, sk));
9772                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9773                                       offsetof(struct sock_common,
9774                                                skc_rcv_saddr));
9775                 break;
9776
9777         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9778              offsetof(struct sk_msg_md, remote_ip6[3]):
9779 #if IS_ENABLED(CONFIG_IPV6)
9780                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9781                                           skc_v6_daddr.s6_addr32[0]) != 4);
9782
9783                 off = si->off;
9784                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9785                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9786                                                 struct sk_msg, sk),
9787                                       si->dst_reg, si->src_reg,
9788                                       offsetof(struct sk_msg, sk));
9789                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9790                                       offsetof(struct sock_common,
9791                                                skc_v6_daddr.s6_addr32[0]) +
9792                                       off);
9793 #else
9794                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9795 #endif
9796                 break;
9797
9798         case offsetof(struct sk_msg_md, local_ip6[0]) ...
9799              offsetof(struct sk_msg_md, local_ip6[3]):
9800 #if IS_ENABLED(CONFIG_IPV6)
9801                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9802                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9803
9804                 off = si->off;
9805                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9806                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9807                                                 struct sk_msg, sk),
9808                                       si->dst_reg, si->src_reg,
9809                                       offsetof(struct sk_msg, sk));
9810                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9811                                       offsetof(struct sock_common,
9812                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9813                                       off);
9814 #else
9815                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9816 #endif
9817                 break;
9818
9819         case offsetof(struct sk_msg_md, remote_port):
9820                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9821
9822                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9823                                                 struct sk_msg, sk),
9824                                       si->dst_reg, si->src_reg,
9825                                       offsetof(struct sk_msg, sk));
9826                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9827                                       offsetof(struct sock_common, skc_dport));
9828 #ifndef __BIG_ENDIAN_BITFIELD
9829                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9830 #endif
9831                 break;
9832
9833         case offsetof(struct sk_msg_md, local_port):
9834                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9835
9836                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9837                                                 struct sk_msg, sk),
9838                                       si->dst_reg, si->src_reg,
9839                                       offsetof(struct sk_msg, sk));
9840                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9841                                       offsetof(struct sock_common, skc_num));
9842                 break;
9843
9844         case offsetof(struct sk_msg_md, size):
9845                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9846                                       si->dst_reg, si->src_reg,
9847                                       offsetof(struct sk_msg_sg, size));
9848                 break;
9849
9850         case offsetof(struct sk_msg_md, sk):
9851                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9852                                       si->dst_reg, si->src_reg,
9853                                       offsetof(struct sk_msg, sk));
9854                 break;
9855         }
9856
9857         return insn - insn_buf;
9858 }
9859
9860 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9861         .get_func_proto         = sk_filter_func_proto,
9862         .is_valid_access        = sk_filter_is_valid_access,
9863         .convert_ctx_access     = bpf_convert_ctx_access,
9864         .gen_ld_abs             = bpf_gen_ld_abs,
9865 };
9866
9867 const struct bpf_prog_ops sk_filter_prog_ops = {
9868         .test_run               = bpf_prog_test_run_skb,
9869 };
9870
9871 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9872         .get_func_proto         = tc_cls_act_func_proto,
9873         .is_valid_access        = tc_cls_act_is_valid_access,
9874         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
9875         .gen_prologue           = tc_cls_act_prologue,
9876         .gen_ld_abs             = bpf_gen_ld_abs,
9877         .check_kfunc_call       = bpf_prog_test_check_kfunc_call,
9878 };
9879
9880 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9881         .test_run               = bpf_prog_test_run_skb,
9882 };
9883
9884 const struct bpf_verifier_ops xdp_verifier_ops = {
9885         .get_func_proto         = xdp_func_proto,
9886         .is_valid_access        = xdp_is_valid_access,
9887         .convert_ctx_access     = xdp_convert_ctx_access,
9888         .gen_prologue           = bpf_noop_prologue,
9889 };
9890
9891 const struct bpf_prog_ops xdp_prog_ops = {
9892         .test_run               = bpf_prog_test_run_xdp,
9893 };
9894
9895 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9896         .get_func_proto         = cg_skb_func_proto,
9897         .is_valid_access        = cg_skb_is_valid_access,
9898         .convert_ctx_access     = bpf_convert_ctx_access,
9899 };
9900
9901 const struct bpf_prog_ops cg_skb_prog_ops = {
9902         .test_run               = bpf_prog_test_run_skb,
9903 };
9904
9905 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9906         .get_func_proto         = lwt_in_func_proto,
9907         .is_valid_access        = lwt_is_valid_access,
9908         .convert_ctx_access     = bpf_convert_ctx_access,
9909 };
9910
9911 const struct bpf_prog_ops lwt_in_prog_ops = {
9912         .test_run               = bpf_prog_test_run_skb,
9913 };
9914
9915 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9916         .get_func_proto         = lwt_out_func_proto,
9917         .is_valid_access        = lwt_is_valid_access,
9918         .convert_ctx_access     = bpf_convert_ctx_access,
9919 };
9920
9921 const struct bpf_prog_ops lwt_out_prog_ops = {
9922         .test_run               = bpf_prog_test_run_skb,
9923 };
9924
9925 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9926         .get_func_proto         = lwt_xmit_func_proto,
9927         .is_valid_access        = lwt_is_valid_access,
9928         .convert_ctx_access     = bpf_convert_ctx_access,
9929         .gen_prologue           = tc_cls_act_prologue,
9930 };
9931
9932 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9933         .test_run               = bpf_prog_test_run_skb,
9934 };
9935
9936 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9937         .get_func_proto         = lwt_seg6local_func_proto,
9938         .is_valid_access        = lwt_is_valid_access,
9939         .convert_ctx_access     = bpf_convert_ctx_access,
9940 };
9941
9942 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9943         .test_run               = bpf_prog_test_run_skb,
9944 };
9945
9946 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9947         .get_func_proto         = sock_filter_func_proto,
9948         .is_valid_access        = sock_filter_is_valid_access,
9949         .convert_ctx_access     = bpf_sock_convert_ctx_access,
9950 };
9951
9952 const struct bpf_prog_ops cg_sock_prog_ops = {
9953 };
9954
9955 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9956         .get_func_proto         = sock_addr_func_proto,
9957         .is_valid_access        = sock_addr_is_valid_access,
9958         .convert_ctx_access     = sock_addr_convert_ctx_access,
9959 };
9960
9961 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9962 };
9963
9964 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9965         .get_func_proto         = sock_ops_func_proto,
9966         .is_valid_access        = sock_ops_is_valid_access,
9967         .convert_ctx_access     = sock_ops_convert_ctx_access,
9968 };
9969
9970 const struct bpf_prog_ops sock_ops_prog_ops = {
9971 };
9972
9973 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9974         .get_func_proto         = sk_skb_func_proto,
9975         .is_valid_access        = sk_skb_is_valid_access,
9976         .convert_ctx_access     = sk_skb_convert_ctx_access,
9977         .gen_prologue           = sk_skb_prologue,
9978 };
9979
9980 const struct bpf_prog_ops sk_skb_prog_ops = {
9981 };
9982
9983 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9984         .get_func_proto         = sk_msg_func_proto,
9985         .is_valid_access        = sk_msg_is_valid_access,
9986         .convert_ctx_access     = sk_msg_convert_ctx_access,
9987         .gen_prologue           = bpf_noop_prologue,
9988 };
9989
9990 const struct bpf_prog_ops sk_msg_prog_ops = {
9991 };
9992
9993 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9994         .get_func_proto         = flow_dissector_func_proto,
9995         .is_valid_access        = flow_dissector_is_valid_access,
9996         .convert_ctx_access     = flow_dissector_convert_ctx_access,
9997 };
9998
9999 const struct bpf_prog_ops flow_dissector_prog_ops = {
10000         .test_run               = bpf_prog_test_run_flow_dissector,
10001 };
10002
10003 int sk_detach_filter(struct sock *sk)
10004 {
10005         int ret = -ENOENT;
10006         struct sk_filter *filter;
10007
10008         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10009                 return -EPERM;
10010
10011         filter = rcu_dereference_protected(sk->sk_filter,
10012                                            lockdep_sock_is_held(sk));
10013         if (filter) {
10014                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10015                 sk_filter_uncharge(sk, filter);
10016                 ret = 0;
10017         }
10018
10019         return ret;
10020 }
10021 EXPORT_SYMBOL_GPL(sk_detach_filter);
10022
10023 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10024                   unsigned int len)
10025 {
10026         struct sock_fprog_kern *fprog;
10027         struct sk_filter *filter;
10028         int ret = 0;
10029
10030         lock_sock(sk);
10031         filter = rcu_dereference_protected(sk->sk_filter,
10032                                            lockdep_sock_is_held(sk));
10033         if (!filter)
10034                 goto out;
10035
10036         /* We're copying the filter that has been originally attached,
10037          * so no conversion/decode needed anymore. eBPF programs that
10038          * have no original program cannot be dumped through this.
10039          */
10040         ret = -EACCES;
10041         fprog = filter->prog->orig_prog;
10042         if (!fprog)
10043                 goto out;
10044
10045         ret = fprog->len;
10046         if (!len)
10047                 /* User space only enquires number of filter blocks. */
10048                 goto out;
10049
10050         ret = -EINVAL;
10051         if (len < fprog->len)
10052                 goto out;
10053
10054         ret = -EFAULT;
10055         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10056                 goto out;
10057
10058         /* Instead of bytes, the API requests to return the number
10059          * of filter blocks.
10060          */
10061         ret = fprog->len;
10062 out:
10063         release_sock(sk);
10064         return ret;
10065 }
10066
10067 #ifdef CONFIG_INET
10068 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10069                                     struct sock_reuseport *reuse,
10070                                     struct sock *sk, struct sk_buff *skb,
10071                                     struct sock *migrating_sk,
10072                                     u32 hash)
10073 {
10074         reuse_kern->skb = skb;
10075         reuse_kern->sk = sk;
10076         reuse_kern->selected_sk = NULL;
10077         reuse_kern->migrating_sk = migrating_sk;
10078         reuse_kern->data_end = skb->data + skb_headlen(skb);
10079         reuse_kern->hash = hash;
10080         reuse_kern->reuseport_id = reuse->reuseport_id;
10081         reuse_kern->bind_inany = reuse->bind_inany;
10082 }
10083
10084 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10085                                   struct bpf_prog *prog, struct sk_buff *skb,
10086                                   struct sock *migrating_sk,
10087                                   u32 hash)
10088 {
10089         struct sk_reuseport_kern reuse_kern;
10090         enum sk_action action;
10091
10092         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10093         action = BPF_PROG_RUN(prog, &reuse_kern);
10094
10095         if (action == SK_PASS)
10096                 return reuse_kern.selected_sk;
10097         else
10098                 return ERR_PTR(-ECONNREFUSED);
10099 }
10100
10101 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10102            struct bpf_map *, map, void *, key, u32, flags)
10103 {
10104         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10105         struct sock_reuseport *reuse;
10106         struct sock *selected_sk;
10107
10108         selected_sk = map->ops->map_lookup_elem(map, key);
10109         if (!selected_sk)
10110                 return -ENOENT;
10111
10112         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10113         if (!reuse) {
10114                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10115                 if (sk_is_refcounted(selected_sk))
10116                         sock_put(selected_sk);
10117
10118                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10119                  * The only (!reuse) case here is - the sk has already been
10120                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10121                  *
10122                  * Other maps (e.g. sock_map) do not provide this guarantee and
10123                  * the sk may never be in the reuseport group to begin with.
10124                  */
10125                 return is_sockarray ? -ENOENT : -EINVAL;
10126         }
10127
10128         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10129                 struct sock *sk = reuse_kern->sk;
10130
10131                 if (sk->sk_protocol != selected_sk->sk_protocol)
10132                         return -EPROTOTYPE;
10133                 else if (sk->sk_family != selected_sk->sk_family)
10134                         return -EAFNOSUPPORT;
10135
10136                 /* Catch all. Likely bound to a different sockaddr. */
10137                 return -EBADFD;
10138         }
10139
10140         reuse_kern->selected_sk = selected_sk;
10141
10142         return 0;
10143 }
10144
10145 static const struct bpf_func_proto sk_select_reuseport_proto = {
10146         .func           = sk_select_reuseport,
10147         .gpl_only       = false,
10148         .ret_type       = RET_INTEGER,
10149         .arg1_type      = ARG_PTR_TO_CTX,
10150         .arg2_type      = ARG_CONST_MAP_PTR,
10151         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10152         .arg4_type      = ARG_ANYTHING,
10153 };
10154
10155 BPF_CALL_4(sk_reuseport_load_bytes,
10156            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10157            void *, to, u32, len)
10158 {
10159         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10160 }
10161
10162 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10163         .func           = sk_reuseport_load_bytes,
10164         .gpl_only       = false,
10165         .ret_type       = RET_INTEGER,
10166         .arg1_type      = ARG_PTR_TO_CTX,
10167         .arg2_type      = ARG_ANYTHING,
10168         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10169         .arg4_type      = ARG_CONST_SIZE,
10170 };
10171
10172 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10173            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10174            void *, to, u32, len, u32, start_header)
10175 {
10176         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10177                                                len, start_header);
10178 }
10179
10180 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10181         .func           = sk_reuseport_load_bytes_relative,
10182         .gpl_only       = false,
10183         .ret_type       = RET_INTEGER,
10184         .arg1_type      = ARG_PTR_TO_CTX,
10185         .arg2_type      = ARG_ANYTHING,
10186         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10187         .arg4_type      = ARG_CONST_SIZE,
10188         .arg5_type      = ARG_ANYTHING,
10189 };
10190
10191 static const struct bpf_func_proto *
10192 sk_reuseport_func_proto(enum bpf_func_id func_id,
10193                         const struct bpf_prog *prog)
10194 {
10195         switch (func_id) {
10196         case BPF_FUNC_sk_select_reuseport:
10197                 return &sk_select_reuseport_proto;
10198         case BPF_FUNC_skb_load_bytes:
10199                 return &sk_reuseport_load_bytes_proto;
10200         case BPF_FUNC_skb_load_bytes_relative:
10201                 return &sk_reuseport_load_bytes_relative_proto;
10202         case BPF_FUNC_get_socket_cookie:
10203                 return &bpf_get_socket_ptr_cookie_proto;
10204         default:
10205                 return bpf_base_func_proto(func_id);
10206         }
10207 }
10208
10209 static bool
10210 sk_reuseport_is_valid_access(int off, int size,
10211                              enum bpf_access_type type,
10212                              const struct bpf_prog *prog,
10213                              struct bpf_insn_access_aux *info)
10214 {
10215         const u32 size_default = sizeof(__u32);
10216
10217         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10218             off % size || type != BPF_READ)
10219                 return false;
10220
10221         switch (off) {
10222         case offsetof(struct sk_reuseport_md, data):
10223                 info->reg_type = PTR_TO_PACKET;
10224                 return size == sizeof(__u64);
10225
10226         case offsetof(struct sk_reuseport_md, data_end):
10227                 info->reg_type = PTR_TO_PACKET_END;
10228                 return size == sizeof(__u64);
10229
10230         case offsetof(struct sk_reuseport_md, hash):
10231                 return size == size_default;
10232
10233         case offsetof(struct sk_reuseport_md, sk):
10234                 info->reg_type = PTR_TO_SOCKET;
10235                 return size == sizeof(__u64);
10236
10237         case offsetof(struct sk_reuseport_md, migrating_sk):
10238                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10239                 return size == sizeof(__u64);
10240
10241         /* Fields that allow narrowing */
10242         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10243                 if (size < sizeof_field(struct sk_buff, protocol))
10244                         return false;
10245                 fallthrough;
10246         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10247         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10248         case bpf_ctx_range(struct sk_reuseport_md, len):
10249                 bpf_ctx_record_field_size(info, size_default);
10250                 return bpf_ctx_narrow_access_ok(off, size, size_default);
10251
10252         default:
10253                 return false;
10254         }
10255 }
10256
10257 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10258         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10259                               si->dst_reg, si->src_reg,                 \
10260                               bpf_target_off(struct sk_reuseport_kern, F, \
10261                                              sizeof_field(struct sk_reuseport_kern, F), \
10262                                              target_size));             \
10263         })
10264
10265 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10266         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10267                                     struct sk_buff,                     \
10268                                     skb,                                \
10269                                     SKB_FIELD)
10270
10271 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10272         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10273                                     struct sock,                        \
10274                                     sk,                                 \
10275                                     SK_FIELD)
10276
10277 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10278                                            const struct bpf_insn *si,
10279                                            struct bpf_insn *insn_buf,
10280                                            struct bpf_prog *prog,
10281                                            u32 *target_size)
10282 {
10283         struct bpf_insn *insn = insn_buf;
10284
10285         switch (si->off) {
10286         case offsetof(struct sk_reuseport_md, data):
10287                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10288                 break;
10289
10290         case offsetof(struct sk_reuseport_md, len):
10291                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10292                 break;
10293
10294         case offsetof(struct sk_reuseport_md, eth_protocol):
10295                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10296                 break;
10297
10298         case offsetof(struct sk_reuseport_md, ip_protocol):
10299                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10300                 break;
10301
10302         case offsetof(struct sk_reuseport_md, data_end):
10303                 SK_REUSEPORT_LOAD_FIELD(data_end);
10304                 break;
10305
10306         case offsetof(struct sk_reuseport_md, hash):
10307                 SK_REUSEPORT_LOAD_FIELD(hash);
10308                 break;
10309
10310         case offsetof(struct sk_reuseport_md, bind_inany):
10311                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10312                 break;
10313
10314         case offsetof(struct sk_reuseport_md, sk):
10315                 SK_REUSEPORT_LOAD_FIELD(sk);
10316                 break;
10317
10318         case offsetof(struct sk_reuseport_md, migrating_sk):
10319                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10320                 break;
10321         }
10322
10323         return insn - insn_buf;
10324 }
10325
10326 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10327         .get_func_proto         = sk_reuseport_func_proto,
10328         .is_valid_access        = sk_reuseport_is_valid_access,
10329         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10330 };
10331
10332 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10333 };
10334
10335 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10336 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10337
10338 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10339            struct sock *, sk, u64, flags)
10340 {
10341         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10342                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10343                 return -EINVAL;
10344         if (unlikely(sk && sk_is_refcounted(sk)))
10345                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10346         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10347                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
10348
10349         /* Check if socket is suitable for packet L3/L4 protocol */
10350         if (sk && sk->sk_protocol != ctx->protocol)
10351                 return -EPROTOTYPE;
10352         if (sk && sk->sk_family != ctx->family &&
10353             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10354                 return -EAFNOSUPPORT;
10355
10356         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10357                 return -EEXIST;
10358
10359         /* Select socket as lookup result */
10360         ctx->selected_sk = sk;
10361         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10362         return 0;
10363 }
10364
10365 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10366         .func           = bpf_sk_lookup_assign,
10367         .gpl_only       = false,
10368         .ret_type       = RET_INTEGER,
10369         .arg1_type      = ARG_PTR_TO_CTX,
10370         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10371         .arg3_type      = ARG_ANYTHING,
10372 };
10373
10374 static const struct bpf_func_proto *
10375 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10376 {
10377         switch (func_id) {
10378         case BPF_FUNC_perf_event_output:
10379                 return &bpf_event_output_data_proto;
10380         case BPF_FUNC_sk_assign:
10381                 return &bpf_sk_lookup_assign_proto;
10382         case BPF_FUNC_sk_release:
10383                 return &bpf_sk_release_proto;
10384         default:
10385                 return bpf_sk_base_func_proto(func_id);
10386         }
10387 }
10388
10389 static bool sk_lookup_is_valid_access(int off, int size,
10390                                       enum bpf_access_type type,
10391                                       const struct bpf_prog *prog,
10392                                       struct bpf_insn_access_aux *info)
10393 {
10394         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10395                 return false;
10396         if (off % size != 0)
10397                 return false;
10398         if (type != BPF_READ)
10399                 return false;
10400
10401         switch (off) {
10402         case offsetof(struct bpf_sk_lookup, sk):
10403                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10404                 return size == sizeof(__u64);
10405
10406         case bpf_ctx_range(struct bpf_sk_lookup, family):
10407         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10408         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10409         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10410         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10411         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10412         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10413         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10414                 bpf_ctx_record_field_size(info, sizeof(__u32));
10415                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10416
10417         default:
10418                 return false;
10419         }
10420 }
10421
10422 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10423                                         const struct bpf_insn *si,
10424                                         struct bpf_insn *insn_buf,
10425                                         struct bpf_prog *prog,
10426                                         u32 *target_size)
10427 {
10428         struct bpf_insn *insn = insn_buf;
10429
10430         switch (si->off) {
10431         case offsetof(struct bpf_sk_lookup, sk):
10432                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10433                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
10434                 break;
10435
10436         case offsetof(struct bpf_sk_lookup, family):
10437                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10438                                       bpf_target_off(struct bpf_sk_lookup_kern,
10439                                                      family, 2, target_size));
10440                 break;
10441
10442         case offsetof(struct bpf_sk_lookup, protocol):
10443                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10444                                       bpf_target_off(struct bpf_sk_lookup_kern,
10445                                                      protocol, 2, target_size));
10446                 break;
10447
10448         case offsetof(struct bpf_sk_lookup, remote_ip4):
10449                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10450                                       bpf_target_off(struct bpf_sk_lookup_kern,
10451                                                      v4.saddr, 4, target_size));
10452                 break;
10453
10454         case offsetof(struct bpf_sk_lookup, local_ip4):
10455                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10456                                       bpf_target_off(struct bpf_sk_lookup_kern,
10457                                                      v4.daddr, 4, target_size));
10458                 break;
10459
10460         case bpf_ctx_range_till(struct bpf_sk_lookup,
10461                                 remote_ip6[0], remote_ip6[3]): {
10462 #if IS_ENABLED(CONFIG_IPV6)
10463                 int off = si->off;
10464
10465                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10466                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10467                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10468                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10469                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10470                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10471 #else
10472                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10473 #endif
10474                 break;
10475         }
10476         case bpf_ctx_range_till(struct bpf_sk_lookup,
10477                                 local_ip6[0], local_ip6[3]): {
10478 #if IS_ENABLED(CONFIG_IPV6)
10479                 int off = si->off;
10480
10481                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10482                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10483                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10484                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10485                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10486                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10487 #else
10488                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10489 #endif
10490                 break;
10491         }
10492         case offsetof(struct bpf_sk_lookup, remote_port):
10493                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10494                                       bpf_target_off(struct bpf_sk_lookup_kern,
10495                                                      sport, 2, target_size));
10496                 break;
10497
10498         case offsetof(struct bpf_sk_lookup, local_port):
10499                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10500                                       bpf_target_off(struct bpf_sk_lookup_kern,
10501                                                      dport, 2, target_size));
10502                 break;
10503         }
10504
10505         return insn - insn_buf;
10506 }
10507
10508 const struct bpf_prog_ops sk_lookup_prog_ops = {
10509         .test_run = bpf_prog_test_run_sk_lookup,
10510 };
10511
10512 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10513         .get_func_proto         = sk_lookup_func_proto,
10514         .is_valid_access        = sk_lookup_is_valid_access,
10515         .convert_ctx_access     = sk_lookup_convert_ctx_access,
10516 };
10517
10518 #endif /* CONFIG_INET */
10519
10520 DEFINE_BPF_DISPATCHER(xdp)
10521
10522 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10523 {
10524         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10525 }
10526
10527 #ifdef CONFIG_DEBUG_INFO_BTF
10528 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10529 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10530 BTF_SOCK_TYPE_xxx
10531 #undef BTF_SOCK_TYPE
10532 #else
10533 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10534 #endif
10535
10536 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10537 {
10538         /* tcp6_sock type is not generated in dwarf and hence btf,
10539          * trigger an explicit type generation here.
10540          */
10541         BTF_TYPE_EMIT(struct tcp6_sock);
10542         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10543             sk->sk_family == AF_INET6)
10544                 return (unsigned long)sk;
10545
10546         return (unsigned long)NULL;
10547 }
10548
10549 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10550         .func                   = bpf_skc_to_tcp6_sock,
10551         .gpl_only               = false,
10552         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10553         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10554         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10555 };
10556
10557 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10558 {
10559         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10560                 return (unsigned long)sk;
10561
10562         return (unsigned long)NULL;
10563 }
10564
10565 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10566         .func                   = bpf_skc_to_tcp_sock,
10567         .gpl_only               = false,
10568         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10569         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10570         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10571 };
10572
10573 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10574 {
10575         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10576          * generated if CONFIG_INET=n. Trigger an explicit generation here.
10577          */
10578         BTF_TYPE_EMIT(struct inet_timewait_sock);
10579         BTF_TYPE_EMIT(struct tcp_timewait_sock);
10580
10581 #ifdef CONFIG_INET
10582         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10583                 return (unsigned long)sk;
10584 #endif
10585
10586 #if IS_BUILTIN(CONFIG_IPV6)
10587         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10588                 return (unsigned long)sk;
10589 #endif
10590
10591         return (unsigned long)NULL;
10592 }
10593
10594 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10595         .func                   = bpf_skc_to_tcp_timewait_sock,
10596         .gpl_only               = false,
10597         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10598         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10599         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10600 };
10601
10602 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10603 {
10604 #ifdef CONFIG_INET
10605         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10606                 return (unsigned long)sk;
10607 #endif
10608
10609 #if IS_BUILTIN(CONFIG_IPV6)
10610         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10611                 return (unsigned long)sk;
10612 #endif
10613
10614         return (unsigned long)NULL;
10615 }
10616
10617 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10618         .func                   = bpf_skc_to_tcp_request_sock,
10619         .gpl_only               = false,
10620         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10621         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10622         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10623 };
10624
10625 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10626 {
10627         /* udp6_sock type is not generated in dwarf and hence btf,
10628          * trigger an explicit type generation here.
10629          */
10630         BTF_TYPE_EMIT(struct udp6_sock);
10631         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10632             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10633                 return (unsigned long)sk;
10634
10635         return (unsigned long)NULL;
10636 }
10637
10638 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10639         .func                   = bpf_skc_to_udp6_sock,
10640         .gpl_only               = false,
10641         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10642         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10643         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10644 };
10645
10646 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10647 {
10648         return (unsigned long)sock_from_file(file);
10649 }
10650
10651 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10652 BTF_ID(struct, socket)
10653 BTF_ID(struct, file)
10654
10655 const struct bpf_func_proto bpf_sock_from_file_proto = {
10656         .func           = bpf_sock_from_file,
10657         .gpl_only       = false,
10658         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
10659         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
10660         .arg1_type      = ARG_PTR_TO_BTF_ID,
10661         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
10662 };
10663
10664 static const struct bpf_func_proto *
10665 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10666 {
10667         const struct bpf_func_proto *func;
10668
10669         switch (func_id) {
10670         case BPF_FUNC_skc_to_tcp6_sock:
10671                 func = &bpf_skc_to_tcp6_sock_proto;
10672                 break;
10673         case BPF_FUNC_skc_to_tcp_sock:
10674                 func = &bpf_skc_to_tcp_sock_proto;
10675                 break;
10676         case BPF_FUNC_skc_to_tcp_timewait_sock:
10677                 func = &bpf_skc_to_tcp_timewait_sock_proto;
10678                 break;
10679         case BPF_FUNC_skc_to_tcp_request_sock:
10680                 func = &bpf_skc_to_tcp_request_sock_proto;
10681                 break;
10682         case BPF_FUNC_skc_to_udp6_sock:
10683                 func = &bpf_skc_to_udp6_sock_proto;
10684                 break;
10685         default:
10686                 return bpf_base_func_proto(func_id);
10687         }
10688
10689         if (!perfmon_capable())
10690                 return NULL;
10691
10692         return func;
10693 }