drm/nouveau/disp/gm200-: enforce identity-mapped SOR assignment for LVDS/eDP panels
[linux-2.6-microblaze.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <net/xfrm.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/ip_fib.h>
65 #include <net/flow.h>
66 #include <net/arp.h>
67 #include <net/ipv6.h>
68 #include <linux/seg6_local.h>
69 #include <net/seg6.h>
70 #include <net/seg6_local.h>
71
72 /**
73  *      sk_filter_trim_cap - run a packet through a socket filter
74  *      @sk: sock associated with &sk_buff
75  *      @skb: buffer to filter
76  *      @cap: limit on how short the eBPF program may trim the packet
77  *
78  * Run the eBPF program and then cut skb->data to correct size returned by
79  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
80  * than pkt_len we keep whole skb->data. This is the socket level
81  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
82  * be accepted or -EPERM if the packet should be tossed.
83  *
84  */
85 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
86 {
87         int err;
88         struct sk_filter *filter;
89
90         /*
91          * If the skb was allocated from pfmemalloc reserves, only
92          * allow SOCK_MEMALLOC sockets to use it as this socket is
93          * helping free memory
94          */
95         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
96                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
97                 return -ENOMEM;
98         }
99         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
100         if (err)
101                 return err;
102
103         err = security_sock_rcv_skb(sk, skb);
104         if (err)
105                 return err;
106
107         rcu_read_lock();
108         filter = rcu_dereference(sk->sk_filter);
109         if (filter) {
110                 struct sock *save_sk = skb->sk;
111                 unsigned int pkt_len;
112
113                 skb->sk = sk;
114                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
115                 skb->sk = save_sk;
116                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
117         }
118         rcu_read_unlock();
119
120         return err;
121 }
122 EXPORT_SYMBOL(sk_filter_trim_cap);
123
124 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
125 {
126         return skb_get_poff(skb);
127 }
128
129 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
130 {
131         struct nlattr *nla;
132
133         if (skb_is_nonlinear(skb))
134                 return 0;
135
136         if (skb->len < sizeof(struct nlattr))
137                 return 0;
138
139         if (a > skb->len - sizeof(struct nlattr))
140                 return 0;
141
142         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
143         if (nla)
144                 return (void *) nla - (void *) skb->data;
145
146         return 0;
147 }
148
149 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
150 {
151         struct nlattr *nla;
152
153         if (skb_is_nonlinear(skb))
154                 return 0;
155
156         if (skb->len < sizeof(struct nlattr))
157                 return 0;
158
159         if (a > skb->len - sizeof(struct nlattr))
160                 return 0;
161
162         nla = (struct nlattr *) &skb->data[a];
163         if (nla->nla_len > skb->len - a)
164                 return 0;
165
166         nla = nla_find_nested(nla, x);
167         if (nla)
168                 return (void *) nla - (void *) skb->data;
169
170         return 0;
171 }
172
173 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
174            data, int, headlen, int, offset)
175 {
176         u8 tmp, *ptr;
177         const int len = sizeof(tmp);
178
179         if (offset >= 0) {
180                 if (headlen - offset >= len)
181                         return *(u8 *)(data + offset);
182                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
183                         return tmp;
184         } else {
185                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
186                 if (likely(ptr))
187                         return *(u8 *)ptr;
188         }
189
190         return -EFAULT;
191 }
192
193 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
194            int, offset)
195 {
196         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
197                                          offset);
198 }
199
200 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
201            data, int, headlen, int, offset)
202 {
203         u16 tmp, *ptr;
204         const int len = sizeof(tmp);
205
206         if (offset >= 0) {
207                 if (headlen - offset >= len)
208                         return get_unaligned_be16(data + offset);
209                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
210                         return be16_to_cpu(tmp);
211         } else {
212                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
213                 if (likely(ptr))
214                         return get_unaligned_be16(ptr);
215         }
216
217         return -EFAULT;
218 }
219
220 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
221            int, offset)
222 {
223         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
224                                           offset);
225 }
226
227 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
228            data, int, headlen, int, offset)
229 {
230         u32 tmp, *ptr;
231         const int len = sizeof(tmp);
232
233         if (likely(offset >= 0)) {
234                 if (headlen - offset >= len)
235                         return get_unaligned_be32(data + offset);
236                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
237                         return be32_to_cpu(tmp);
238         } else {
239                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
240                 if (likely(ptr))
241                         return get_unaligned_be32(ptr);
242         }
243
244         return -EFAULT;
245 }
246
247 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
248            int, offset)
249 {
250         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
251                                           offset);
252 }
253
254 BPF_CALL_0(bpf_get_raw_cpu_id)
255 {
256         return raw_smp_processor_id();
257 }
258
259 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
260         .func           = bpf_get_raw_cpu_id,
261         .gpl_only       = false,
262         .ret_type       = RET_INTEGER,
263 };
264
265 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
266                               struct bpf_insn *insn_buf)
267 {
268         struct bpf_insn *insn = insn_buf;
269
270         switch (skb_field) {
271         case SKF_AD_MARK:
272                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
273
274                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
275                                       offsetof(struct sk_buff, mark));
276                 break;
277
278         case SKF_AD_PKTTYPE:
279                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
280                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
281 #ifdef __BIG_ENDIAN_BITFIELD
282                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
283 #endif
284                 break;
285
286         case SKF_AD_QUEUE:
287                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
288
289                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
290                                       offsetof(struct sk_buff, queue_mapping));
291                 break;
292
293         case SKF_AD_VLAN_TAG:
294         case SKF_AD_VLAN_TAG_PRESENT:
295                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
296                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
297
298                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
299                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, vlan_tci));
301                 if (skb_field == SKF_AD_VLAN_TAG) {
302                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
303                                                 ~VLAN_TAG_PRESENT);
304                 } else {
305                         /* dst_reg >>= 12 */
306                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
307                         /* dst_reg &= 1 */
308                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
309                 }
310                 break;
311         }
312
313         return insn - insn_buf;
314 }
315
316 static bool convert_bpf_extensions(struct sock_filter *fp,
317                                    struct bpf_insn **insnp)
318 {
319         struct bpf_insn *insn = *insnp;
320         u32 cnt;
321
322         switch (fp->k) {
323         case SKF_AD_OFF + SKF_AD_PROTOCOL:
324                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
325
326                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
327                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
328                                       offsetof(struct sk_buff, protocol));
329                 /* A = ntohs(A) [emitting a nop or swap16] */
330                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
331                 break;
332
333         case SKF_AD_OFF + SKF_AD_PKTTYPE:
334                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
335                 insn += cnt - 1;
336                 break;
337
338         case SKF_AD_OFF + SKF_AD_IFINDEX:
339         case SKF_AD_OFF + SKF_AD_HATYPE:
340                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
341                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
342
343                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
344                                       BPF_REG_TMP, BPF_REG_CTX,
345                                       offsetof(struct sk_buff, dev));
346                 /* if (tmp != 0) goto pc + 1 */
347                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
348                 *insn++ = BPF_EXIT_INSN();
349                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
350                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
351                                             offsetof(struct net_device, ifindex));
352                 else
353                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
354                                             offsetof(struct net_device, type));
355                 break;
356
357         case SKF_AD_OFF + SKF_AD_MARK:
358                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
359                 insn += cnt - 1;
360                 break;
361
362         case SKF_AD_OFF + SKF_AD_RXHASH:
363                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
364
365                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
366                                     offsetof(struct sk_buff, hash));
367                 break;
368
369         case SKF_AD_OFF + SKF_AD_QUEUE:
370                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
371                 insn += cnt - 1;
372                 break;
373
374         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
375                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
376                                          BPF_REG_A, BPF_REG_CTX, insn);
377                 insn += cnt - 1;
378                 break;
379
380         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
381                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
382                                          BPF_REG_A, BPF_REG_CTX, insn);
383                 insn += cnt - 1;
384                 break;
385
386         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
387                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
388
389                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
390                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
391                                       offsetof(struct sk_buff, vlan_proto));
392                 /* A = ntohs(A) [emitting a nop or swap16] */
393                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
394                 break;
395
396         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
397         case SKF_AD_OFF + SKF_AD_NLATTR:
398         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
399         case SKF_AD_OFF + SKF_AD_CPU:
400         case SKF_AD_OFF + SKF_AD_RANDOM:
401                 /* arg1 = CTX */
402                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
403                 /* arg2 = A */
404                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
405                 /* arg3 = X */
406                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
407                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
408                 switch (fp->k) {
409                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
410                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
411                         break;
412                 case SKF_AD_OFF + SKF_AD_NLATTR:
413                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
414                         break;
415                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
416                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
417                         break;
418                 case SKF_AD_OFF + SKF_AD_CPU:
419                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
420                         break;
421                 case SKF_AD_OFF + SKF_AD_RANDOM:
422                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
423                         bpf_user_rnd_init_once();
424                         break;
425                 }
426                 break;
427
428         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
429                 /* A ^= X */
430                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
431                 break;
432
433         default:
434                 /* This is just a dummy call to avoid letting the compiler
435                  * evict __bpf_call_base() as an optimization. Placed here
436                  * where no-one bothers.
437                  */
438                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
439                 return false;
440         }
441
442         *insnp = insn;
443         return true;
444 }
445
446 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
447 {
448         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
449         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
450         bool endian = BPF_SIZE(fp->code) == BPF_H ||
451                       BPF_SIZE(fp->code) == BPF_W;
452         bool indirect = BPF_MODE(fp->code) == BPF_IND;
453         const int ip_align = NET_IP_ALIGN;
454         struct bpf_insn *insn = *insnp;
455         int offset = fp->k;
456
457         if (!indirect &&
458             ((unaligned_ok && offset >= 0) ||
459              (!unaligned_ok && offset >= 0 &&
460               offset + ip_align >= 0 &&
461               offset + ip_align % size == 0))) {
462                 bool ldx_off_ok = offset <= S16_MAX;
463
464                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
465                 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
466                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
467                                       size, 2 + endian + (!ldx_off_ok * 2));
468                 if (ldx_off_ok) {
469                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
470                                               BPF_REG_D, offset);
471                 } else {
472                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
473                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
474                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
475                                               BPF_REG_TMP, 0);
476                 }
477                 if (endian)
478                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
479                 *insn++ = BPF_JMP_A(8);
480         }
481
482         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
483         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
484         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
485         if (!indirect) {
486                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
487         } else {
488                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
489                 if (fp->k)
490                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
491         }
492
493         switch (BPF_SIZE(fp->code)) {
494         case BPF_B:
495                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
496                 break;
497         case BPF_H:
498                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
499                 break;
500         case BPF_W:
501                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
502                 break;
503         default:
504                 return false;
505         }
506
507         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
508         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
509         *insn   = BPF_EXIT_INSN();
510
511         *insnp = insn;
512         return true;
513 }
514
515 /**
516  *      bpf_convert_filter - convert filter program
517  *      @prog: the user passed filter program
518  *      @len: the length of the user passed filter program
519  *      @new_prog: allocated 'struct bpf_prog' or NULL
520  *      @new_len: pointer to store length of converted program
521  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
522  *
523  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
524  * style extended BPF (eBPF).
525  * Conversion workflow:
526  *
527  * 1) First pass for calculating the new program length:
528  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
529  *
530  * 2) 2nd pass to remap in two passes: 1st pass finds new
531  *    jump offsets, 2nd pass remapping:
532  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
533  */
534 static int bpf_convert_filter(struct sock_filter *prog, int len,
535                               struct bpf_prog *new_prog, int *new_len,
536                               bool *seen_ld_abs)
537 {
538         int new_flen = 0, pass = 0, target, i, stack_off;
539         struct bpf_insn *new_insn, *first_insn = NULL;
540         struct sock_filter *fp;
541         int *addrs = NULL;
542         u8 bpf_src;
543
544         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
545         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
546
547         if (len <= 0 || len > BPF_MAXINSNS)
548                 return -EINVAL;
549
550         if (new_prog) {
551                 first_insn = new_prog->insnsi;
552                 addrs = kcalloc(len, sizeof(*addrs),
553                                 GFP_KERNEL | __GFP_NOWARN);
554                 if (!addrs)
555                         return -ENOMEM;
556         }
557
558 do_pass:
559         new_insn = first_insn;
560         fp = prog;
561
562         /* Classic BPF related prologue emission. */
563         if (new_prog) {
564                 /* Classic BPF expects A and X to be reset first. These need
565                  * to be guaranteed to be the first two instructions.
566                  */
567                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
568                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
569
570                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
571                  * In eBPF case it's done by the compiler, here we need to
572                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
573                  */
574                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
575                 if (*seen_ld_abs) {
576                         /* For packet access in classic BPF, cache skb->data
577                          * in callee-saved BPF R8 and skb->len - skb->data_len
578                          * (headlen) in BPF R9. Since classic BPF is read-only
579                          * on CTX, we only need to cache it once.
580                          */
581                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
582                                                   BPF_REG_D, BPF_REG_CTX,
583                                                   offsetof(struct sk_buff, data));
584                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
585                                                   offsetof(struct sk_buff, len));
586                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
587                                                   offsetof(struct sk_buff, data_len));
588                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
589                 }
590         } else {
591                 new_insn += 3;
592         }
593
594         for (i = 0; i < len; fp++, i++) {
595                 struct bpf_insn tmp_insns[32] = { };
596                 struct bpf_insn *insn = tmp_insns;
597
598                 if (addrs)
599                         addrs[i] = new_insn - first_insn;
600
601                 switch (fp->code) {
602                 /* All arithmetic insns and skb loads map as-is. */
603                 case BPF_ALU | BPF_ADD | BPF_X:
604                 case BPF_ALU | BPF_ADD | BPF_K:
605                 case BPF_ALU | BPF_SUB | BPF_X:
606                 case BPF_ALU | BPF_SUB | BPF_K:
607                 case BPF_ALU | BPF_AND | BPF_X:
608                 case BPF_ALU | BPF_AND | BPF_K:
609                 case BPF_ALU | BPF_OR | BPF_X:
610                 case BPF_ALU | BPF_OR | BPF_K:
611                 case BPF_ALU | BPF_LSH | BPF_X:
612                 case BPF_ALU | BPF_LSH | BPF_K:
613                 case BPF_ALU | BPF_RSH | BPF_X:
614                 case BPF_ALU | BPF_RSH | BPF_K:
615                 case BPF_ALU | BPF_XOR | BPF_X:
616                 case BPF_ALU | BPF_XOR | BPF_K:
617                 case BPF_ALU | BPF_MUL | BPF_X:
618                 case BPF_ALU | BPF_MUL | BPF_K:
619                 case BPF_ALU | BPF_DIV | BPF_X:
620                 case BPF_ALU | BPF_DIV | BPF_K:
621                 case BPF_ALU | BPF_MOD | BPF_X:
622                 case BPF_ALU | BPF_MOD | BPF_K:
623                 case BPF_ALU | BPF_NEG:
624                 case BPF_LD | BPF_ABS | BPF_W:
625                 case BPF_LD | BPF_ABS | BPF_H:
626                 case BPF_LD | BPF_ABS | BPF_B:
627                 case BPF_LD | BPF_IND | BPF_W:
628                 case BPF_LD | BPF_IND | BPF_H:
629                 case BPF_LD | BPF_IND | BPF_B:
630                         /* Check for overloaded BPF extension and
631                          * directly convert it if found, otherwise
632                          * just move on with mapping.
633                          */
634                         if (BPF_CLASS(fp->code) == BPF_LD &&
635                             BPF_MODE(fp->code) == BPF_ABS &&
636                             convert_bpf_extensions(fp, &insn))
637                                 break;
638                         if (BPF_CLASS(fp->code) == BPF_LD &&
639                             convert_bpf_ld_abs(fp, &insn)) {
640                                 *seen_ld_abs = true;
641                                 break;
642                         }
643
644                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
645                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
646                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
647                                 /* Error with exception code on div/mod by 0.
648                                  * For cBPF programs, this was always return 0.
649                                  */
650                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
651                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
652                                 *insn++ = BPF_EXIT_INSN();
653                         }
654
655                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
656                         break;
657
658                 /* Jump transformation cannot use BPF block macros
659                  * everywhere as offset calculation and target updates
660                  * require a bit more work than the rest, i.e. jump
661                  * opcodes map as-is, but offsets need adjustment.
662                  */
663
664 #define BPF_EMIT_JMP                                                    \
665         do {                                                            \
666                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
667                 s32 off;                                                \
668                                                                         \
669                 if (target >= len || target < 0)                        \
670                         goto err;                                       \
671                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
672                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
673                 off -= insn - tmp_insns;                                \
674                 /* Reject anything not fitting into insn->off. */       \
675                 if (off < off_min || off > off_max)                     \
676                         goto err;                                       \
677                 insn->off = off;                                        \
678         } while (0)
679
680                 case BPF_JMP | BPF_JA:
681                         target = i + fp->k + 1;
682                         insn->code = fp->code;
683                         BPF_EMIT_JMP;
684                         break;
685
686                 case BPF_JMP | BPF_JEQ | BPF_K:
687                 case BPF_JMP | BPF_JEQ | BPF_X:
688                 case BPF_JMP | BPF_JSET | BPF_K:
689                 case BPF_JMP | BPF_JSET | BPF_X:
690                 case BPF_JMP | BPF_JGT | BPF_K:
691                 case BPF_JMP | BPF_JGT | BPF_X:
692                 case BPF_JMP | BPF_JGE | BPF_K:
693                 case BPF_JMP | BPF_JGE | BPF_X:
694                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
695                                 /* BPF immediates are signed, zero extend
696                                  * immediate into tmp register and use it
697                                  * in compare insn.
698                                  */
699                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
700
701                                 insn->dst_reg = BPF_REG_A;
702                                 insn->src_reg = BPF_REG_TMP;
703                                 bpf_src = BPF_X;
704                         } else {
705                                 insn->dst_reg = BPF_REG_A;
706                                 insn->imm = fp->k;
707                                 bpf_src = BPF_SRC(fp->code);
708                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
709                         }
710
711                         /* Common case where 'jump_false' is next insn. */
712                         if (fp->jf == 0) {
713                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
714                                 target = i + fp->jt + 1;
715                                 BPF_EMIT_JMP;
716                                 break;
717                         }
718
719                         /* Convert some jumps when 'jump_true' is next insn. */
720                         if (fp->jt == 0) {
721                                 switch (BPF_OP(fp->code)) {
722                                 case BPF_JEQ:
723                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
724                                         break;
725                                 case BPF_JGT:
726                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
727                                         break;
728                                 case BPF_JGE:
729                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
730                                         break;
731                                 default:
732                                         goto jmp_rest;
733                                 }
734
735                                 target = i + fp->jf + 1;
736                                 BPF_EMIT_JMP;
737                                 break;
738                         }
739 jmp_rest:
740                         /* Other jumps are mapped into two insns: Jxx and JA. */
741                         target = i + fp->jt + 1;
742                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
743                         BPF_EMIT_JMP;
744                         insn++;
745
746                         insn->code = BPF_JMP | BPF_JA;
747                         target = i + fp->jf + 1;
748                         BPF_EMIT_JMP;
749                         break;
750
751                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
752                 case BPF_LDX | BPF_MSH | BPF_B: {
753                         struct sock_filter tmp = {
754                                 .code   = BPF_LD | BPF_ABS | BPF_B,
755                                 .k      = fp->k,
756                         };
757
758                         *seen_ld_abs = true;
759
760                         /* X = A */
761                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
762                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
763                         convert_bpf_ld_abs(&tmp, &insn);
764                         insn++;
765                         /* A &= 0xf */
766                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
767                         /* A <<= 2 */
768                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
769                         /* tmp = X */
770                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
771                         /* X = A */
772                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
773                         /* A = tmp */
774                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
775                         break;
776                 }
777                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
778                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
779                  */
780                 case BPF_RET | BPF_A:
781                 case BPF_RET | BPF_K:
782                         if (BPF_RVAL(fp->code) == BPF_K)
783                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
784                                                         0, fp->k);
785                         *insn = BPF_EXIT_INSN();
786                         break;
787
788                 /* Store to stack. */
789                 case BPF_ST:
790                 case BPF_STX:
791                         stack_off = fp->k * 4  + 4;
792                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
793                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
794                                             -stack_off);
795                         /* check_load_and_stores() verifies that classic BPF can
796                          * load from stack only after write, so tracking
797                          * stack_depth for ST|STX insns is enough
798                          */
799                         if (new_prog && new_prog->aux->stack_depth < stack_off)
800                                 new_prog->aux->stack_depth = stack_off;
801                         break;
802
803                 /* Load from stack. */
804                 case BPF_LD | BPF_MEM:
805                 case BPF_LDX | BPF_MEM:
806                         stack_off = fp->k * 4  + 4;
807                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
808                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
809                                             -stack_off);
810                         break;
811
812                 /* A = K or X = K */
813                 case BPF_LD | BPF_IMM:
814                 case BPF_LDX | BPF_IMM:
815                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
816                                               BPF_REG_A : BPF_REG_X, fp->k);
817                         break;
818
819                 /* X = A */
820                 case BPF_MISC | BPF_TAX:
821                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
822                         break;
823
824                 /* A = X */
825                 case BPF_MISC | BPF_TXA:
826                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
827                         break;
828
829                 /* A = skb->len or X = skb->len */
830                 case BPF_LD | BPF_W | BPF_LEN:
831                 case BPF_LDX | BPF_W | BPF_LEN:
832                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
833                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
834                                             offsetof(struct sk_buff, len));
835                         break;
836
837                 /* Access seccomp_data fields. */
838                 case BPF_LDX | BPF_ABS | BPF_W:
839                         /* A = *(u32 *) (ctx + K) */
840                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
841                         break;
842
843                 /* Unknown instruction. */
844                 default:
845                         goto err;
846                 }
847
848                 insn++;
849                 if (new_prog)
850                         memcpy(new_insn, tmp_insns,
851                                sizeof(*insn) * (insn - tmp_insns));
852                 new_insn += insn - tmp_insns;
853         }
854
855         if (!new_prog) {
856                 /* Only calculating new length. */
857                 *new_len = new_insn - first_insn;
858                 if (*seen_ld_abs)
859                         *new_len += 4; /* Prologue bits. */
860                 return 0;
861         }
862
863         pass++;
864         if (new_flen != new_insn - first_insn) {
865                 new_flen = new_insn - first_insn;
866                 if (pass > 2)
867                         goto err;
868                 goto do_pass;
869         }
870
871         kfree(addrs);
872         BUG_ON(*new_len != new_flen);
873         return 0;
874 err:
875         kfree(addrs);
876         return -EINVAL;
877 }
878
879 /* Security:
880  *
881  * As we dont want to clear mem[] array for each packet going through
882  * __bpf_prog_run(), we check that filter loaded by user never try to read
883  * a cell if not previously written, and we check all branches to be sure
884  * a malicious user doesn't try to abuse us.
885  */
886 static int check_load_and_stores(const struct sock_filter *filter, int flen)
887 {
888         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
889         int pc, ret = 0;
890
891         BUILD_BUG_ON(BPF_MEMWORDS > 16);
892
893         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
894         if (!masks)
895                 return -ENOMEM;
896
897         memset(masks, 0xff, flen * sizeof(*masks));
898
899         for (pc = 0; pc < flen; pc++) {
900                 memvalid &= masks[pc];
901
902                 switch (filter[pc].code) {
903                 case BPF_ST:
904                 case BPF_STX:
905                         memvalid |= (1 << filter[pc].k);
906                         break;
907                 case BPF_LD | BPF_MEM:
908                 case BPF_LDX | BPF_MEM:
909                         if (!(memvalid & (1 << filter[pc].k))) {
910                                 ret = -EINVAL;
911                                 goto error;
912                         }
913                         break;
914                 case BPF_JMP | BPF_JA:
915                         /* A jump must set masks on target */
916                         masks[pc + 1 + filter[pc].k] &= memvalid;
917                         memvalid = ~0;
918                         break;
919                 case BPF_JMP | BPF_JEQ | BPF_K:
920                 case BPF_JMP | BPF_JEQ | BPF_X:
921                 case BPF_JMP | BPF_JGE | BPF_K:
922                 case BPF_JMP | BPF_JGE | BPF_X:
923                 case BPF_JMP | BPF_JGT | BPF_K:
924                 case BPF_JMP | BPF_JGT | BPF_X:
925                 case BPF_JMP | BPF_JSET | BPF_K:
926                 case BPF_JMP | BPF_JSET | BPF_X:
927                         /* A jump must set masks on targets */
928                         masks[pc + 1 + filter[pc].jt] &= memvalid;
929                         masks[pc + 1 + filter[pc].jf] &= memvalid;
930                         memvalid = ~0;
931                         break;
932                 }
933         }
934 error:
935         kfree(masks);
936         return ret;
937 }
938
939 static bool chk_code_allowed(u16 code_to_probe)
940 {
941         static const bool codes[] = {
942                 /* 32 bit ALU operations */
943                 [BPF_ALU | BPF_ADD | BPF_K] = true,
944                 [BPF_ALU | BPF_ADD | BPF_X] = true,
945                 [BPF_ALU | BPF_SUB | BPF_K] = true,
946                 [BPF_ALU | BPF_SUB | BPF_X] = true,
947                 [BPF_ALU | BPF_MUL | BPF_K] = true,
948                 [BPF_ALU | BPF_MUL | BPF_X] = true,
949                 [BPF_ALU | BPF_DIV | BPF_K] = true,
950                 [BPF_ALU | BPF_DIV | BPF_X] = true,
951                 [BPF_ALU | BPF_MOD | BPF_K] = true,
952                 [BPF_ALU | BPF_MOD | BPF_X] = true,
953                 [BPF_ALU | BPF_AND | BPF_K] = true,
954                 [BPF_ALU | BPF_AND | BPF_X] = true,
955                 [BPF_ALU | BPF_OR | BPF_K] = true,
956                 [BPF_ALU | BPF_OR | BPF_X] = true,
957                 [BPF_ALU | BPF_XOR | BPF_K] = true,
958                 [BPF_ALU | BPF_XOR | BPF_X] = true,
959                 [BPF_ALU | BPF_LSH | BPF_K] = true,
960                 [BPF_ALU | BPF_LSH | BPF_X] = true,
961                 [BPF_ALU | BPF_RSH | BPF_K] = true,
962                 [BPF_ALU | BPF_RSH | BPF_X] = true,
963                 [BPF_ALU | BPF_NEG] = true,
964                 /* Load instructions */
965                 [BPF_LD | BPF_W | BPF_ABS] = true,
966                 [BPF_LD | BPF_H | BPF_ABS] = true,
967                 [BPF_LD | BPF_B | BPF_ABS] = true,
968                 [BPF_LD | BPF_W | BPF_LEN] = true,
969                 [BPF_LD | BPF_W | BPF_IND] = true,
970                 [BPF_LD | BPF_H | BPF_IND] = true,
971                 [BPF_LD | BPF_B | BPF_IND] = true,
972                 [BPF_LD | BPF_IMM] = true,
973                 [BPF_LD | BPF_MEM] = true,
974                 [BPF_LDX | BPF_W | BPF_LEN] = true,
975                 [BPF_LDX | BPF_B | BPF_MSH] = true,
976                 [BPF_LDX | BPF_IMM] = true,
977                 [BPF_LDX | BPF_MEM] = true,
978                 /* Store instructions */
979                 [BPF_ST] = true,
980                 [BPF_STX] = true,
981                 /* Misc instructions */
982                 [BPF_MISC | BPF_TAX] = true,
983                 [BPF_MISC | BPF_TXA] = true,
984                 /* Return instructions */
985                 [BPF_RET | BPF_K] = true,
986                 [BPF_RET | BPF_A] = true,
987                 /* Jump instructions */
988                 [BPF_JMP | BPF_JA] = true,
989                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
990                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
991                 [BPF_JMP | BPF_JGE | BPF_K] = true,
992                 [BPF_JMP | BPF_JGE | BPF_X] = true,
993                 [BPF_JMP | BPF_JGT | BPF_K] = true,
994                 [BPF_JMP | BPF_JGT | BPF_X] = true,
995                 [BPF_JMP | BPF_JSET | BPF_K] = true,
996                 [BPF_JMP | BPF_JSET | BPF_X] = true,
997         };
998
999         if (code_to_probe >= ARRAY_SIZE(codes))
1000                 return false;
1001
1002         return codes[code_to_probe];
1003 }
1004
1005 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1006                                 unsigned int flen)
1007 {
1008         if (filter == NULL)
1009                 return false;
1010         if (flen == 0 || flen > BPF_MAXINSNS)
1011                 return false;
1012
1013         return true;
1014 }
1015
1016 /**
1017  *      bpf_check_classic - verify socket filter code
1018  *      @filter: filter to verify
1019  *      @flen: length of filter
1020  *
1021  * Check the user's filter code. If we let some ugly
1022  * filter code slip through kaboom! The filter must contain
1023  * no references or jumps that are out of range, no illegal
1024  * instructions, and must end with a RET instruction.
1025  *
1026  * All jumps are forward as they are not signed.
1027  *
1028  * Returns 0 if the rule set is legal or -EINVAL if not.
1029  */
1030 static int bpf_check_classic(const struct sock_filter *filter,
1031                              unsigned int flen)
1032 {
1033         bool anc_found;
1034         int pc;
1035
1036         /* Check the filter code now */
1037         for (pc = 0; pc < flen; pc++) {
1038                 const struct sock_filter *ftest = &filter[pc];
1039
1040                 /* May we actually operate on this code? */
1041                 if (!chk_code_allowed(ftest->code))
1042                         return -EINVAL;
1043
1044                 /* Some instructions need special checks */
1045                 switch (ftest->code) {
1046                 case BPF_ALU | BPF_DIV | BPF_K:
1047                 case BPF_ALU | BPF_MOD | BPF_K:
1048                         /* Check for division by zero */
1049                         if (ftest->k == 0)
1050                                 return -EINVAL;
1051                         break;
1052                 case BPF_ALU | BPF_LSH | BPF_K:
1053                 case BPF_ALU | BPF_RSH | BPF_K:
1054                         if (ftest->k >= 32)
1055                                 return -EINVAL;
1056                         break;
1057                 case BPF_LD | BPF_MEM:
1058                 case BPF_LDX | BPF_MEM:
1059                 case BPF_ST:
1060                 case BPF_STX:
1061                         /* Check for invalid memory addresses */
1062                         if (ftest->k >= BPF_MEMWORDS)
1063                                 return -EINVAL;
1064                         break;
1065                 case BPF_JMP | BPF_JA:
1066                         /* Note, the large ftest->k might cause loops.
1067                          * Compare this with conditional jumps below,
1068                          * where offsets are limited. --ANK (981016)
1069                          */
1070                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1071                                 return -EINVAL;
1072                         break;
1073                 case BPF_JMP | BPF_JEQ | BPF_K:
1074                 case BPF_JMP | BPF_JEQ | BPF_X:
1075                 case BPF_JMP | BPF_JGE | BPF_K:
1076                 case BPF_JMP | BPF_JGE | BPF_X:
1077                 case BPF_JMP | BPF_JGT | BPF_K:
1078                 case BPF_JMP | BPF_JGT | BPF_X:
1079                 case BPF_JMP | BPF_JSET | BPF_K:
1080                 case BPF_JMP | BPF_JSET | BPF_X:
1081                         /* Both conditionals must be safe */
1082                         if (pc + ftest->jt + 1 >= flen ||
1083                             pc + ftest->jf + 1 >= flen)
1084                                 return -EINVAL;
1085                         break;
1086                 case BPF_LD | BPF_W | BPF_ABS:
1087                 case BPF_LD | BPF_H | BPF_ABS:
1088                 case BPF_LD | BPF_B | BPF_ABS:
1089                         anc_found = false;
1090                         if (bpf_anc_helper(ftest) & BPF_ANC)
1091                                 anc_found = true;
1092                         /* Ancillary operation unknown or unsupported */
1093                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1094                                 return -EINVAL;
1095                 }
1096         }
1097
1098         /* Last instruction must be a RET code */
1099         switch (filter[flen - 1].code) {
1100         case BPF_RET | BPF_K:
1101         case BPF_RET | BPF_A:
1102                 return check_load_and_stores(filter, flen);
1103         }
1104
1105         return -EINVAL;
1106 }
1107
1108 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1109                                       const struct sock_fprog *fprog)
1110 {
1111         unsigned int fsize = bpf_classic_proglen(fprog);
1112         struct sock_fprog_kern *fkprog;
1113
1114         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1115         if (!fp->orig_prog)
1116                 return -ENOMEM;
1117
1118         fkprog = fp->orig_prog;
1119         fkprog->len = fprog->len;
1120
1121         fkprog->filter = kmemdup(fp->insns, fsize,
1122                                  GFP_KERNEL | __GFP_NOWARN);
1123         if (!fkprog->filter) {
1124                 kfree(fp->orig_prog);
1125                 return -ENOMEM;
1126         }
1127
1128         return 0;
1129 }
1130
1131 static void bpf_release_orig_filter(struct bpf_prog *fp)
1132 {
1133         struct sock_fprog_kern *fprog = fp->orig_prog;
1134
1135         if (fprog) {
1136                 kfree(fprog->filter);
1137                 kfree(fprog);
1138         }
1139 }
1140
1141 static void __bpf_prog_release(struct bpf_prog *prog)
1142 {
1143         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1144                 bpf_prog_put(prog);
1145         } else {
1146                 bpf_release_orig_filter(prog);
1147                 bpf_prog_free(prog);
1148         }
1149 }
1150
1151 static void __sk_filter_release(struct sk_filter *fp)
1152 {
1153         __bpf_prog_release(fp->prog);
1154         kfree(fp);
1155 }
1156
1157 /**
1158  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1159  *      @rcu: rcu_head that contains the sk_filter to free
1160  */
1161 static void sk_filter_release_rcu(struct rcu_head *rcu)
1162 {
1163         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1164
1165         __sk_filter_release(fp);
1166 }
1167
1168 /**
1169  *      sk_filter_release - release a socket filter
1170  *      @fp: filter to remove
1171  *
1172  *      Remove a filter from a socket and release its resources.
1173  */
1174 static void sk_filter_release(struct sk_filter *fp)
1175 {
1176         if (refcount_dec_and_test(&fp->refcnt))
1177                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1178 }
1179
1180 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1181 {
1182         u32 filter_size = bpf_prog_size(fp->prog->len);
1183
1184         atomic_sub(filter_size, &sk->sk_omem_alloc);
1185         sk_filter_release(fp);
1186 }
1187
1188 /* try to charge the socket memory if there is space available
1189  * return true on success
1190  */
1191 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1192 {
1193         u32 filter_size = bpf_prog_size(fp->prog->len);
1194
1195         /* same check as in sock_kmalloc() */
1196         if (filter_size <= sysctl_optmem_max &&
1197             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1198                 atomic_add(filter_size, &sk->sk_omem_alloc);
1199                 return true;
1200         }
1201         return false;
1202 }
1203
1204 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1205 {
1206         if (!refcount_inc_not_zero(&fp->refcnt))
1207                 return false;
1208
1209         if (!__sk_filter_charge(sk, fp)) {
1210                 sk_filter_release(fp);
1211                 return false;
1212         }
1213         return true;
1214 }
1215
1216 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1217 {
1218         struct sock_filter *old_prog;
1219         struct bpf_prog *old_fp;
1220         int err, new_len, old_len = fp->len;
1221         bool seen_ld_abs = false;
1222
1223         /* We are free to overwrite insns et al right here as it
1224          * won't be used at this point in time anymore internally
1225          * after the migration to the internal BPF instruction
1226          * representation.
1227          */
1228         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1229                      sizeof(struct bpf_insn));
1230
1231         /* Conversion cannot happen on overlapping memory areas,
1232          * so we need to keep the user BPF around until the 2nd
1233          * pass. At this time, the user BPF is stored in fp->insns.
1234          */
1235         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1236                            GFP_KERNEL | __GFP_NOWARN);
1237         if (!old_prog) {
1238                 err = -ENOMEM;
1239                 goto out_err;
1240         }
1241
1242         /* 1st pass: calculate the new program length. */
1243         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1244                                  &seen_ld_abs);
1245         if (err)
1246                 goto out_err_free;
1247
1248         /* Expand fp for appending the new filter representation. */
1249         old_fp = fp;
1250         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1251         if (!fp) {
1252                 /* The old_fp is still around in case we couldn't
1253                  * allocate new memory, so uncharge on that one.
1254                  */
1255                 fp = old_fp;
1256                 err = -ENOMEM;
1257                 goto out_err_free;
1258         }
1259
1260         fp->len = new_len;
1261
1262         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1263         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1264                                  &seen_ld_abs);
1265         if (err)
1266                 /* 2nd bpf_convert_filter() can fail only if it fails
1267                  * to allocate memory, remapping must succeed. Note,
1268                  * that at this time old_fp has already been released
1269                  * by krealloc().
1270                  */
1271                 goto out_err_free;
1272
1273         fp = bpf_prog_select_runtime(fp, &err);
1274         if (err)
1275                 goto out_err_free;
1276
1277         kfree(old_prog);
1278         return fp;
1279
1280 out_err_free:
1281         kfree(old_prog);
1282 out_err:
1283         __bpf_prog_release(fp);
1284         return ERR_PTR(err);
1285 }
1286
1287 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1288                                            bpf_aux_classic_check_t trans)
1289 {
1290         int err;
1291
1292         fp->bpf_func = NULL;
1293         fp->jited = 0;
1294
1295         err = bpf_check_classic(fp->insns, fp->len);
1296         if (err) {
1297                 __bpf_prog_release(fp);
1298                 return ERR_PTR(err);
1299         }
1300
1301         /* There might be additional checks and transformations
1302          * needed on classic filters, f.e. in case of seccomp.
1303          */
1304         if (trans) {
1305                 err = trans(fp->insns, fp->len);
1306                 if (err) {
1307                         __bpf_prog_release(fp);
1308                         return ERR_PTR(err);
1309                 }
1310         }
1311
1312         /* Probe if we can JIT compile the filter and if so, do
1313          * the compilation of the filter.
1314          */
1315         bpf_jit_compile(fp);
1316
1317         /* JIT compiler couldn't process this filter, so do the
1318          * internal BPF translation for the optimized interpreter.
1319          */
1320         if (!fp->jited)
1321                 fp = bpf_migrate_filter(fp);
1322
1323         return fp;
1324 }
1325
1326 /**
1327  *      bpf_prog_create - create an unattached filter
1328  *      @pfp: the unattached filter that is created
1329  *      @fprog: the filter program
1330  *
1331  * Create a filter independent of any socket. We first run some
1332  * sanity checks on it to make sure it does not explode on us later.
1333  * If an error occurs or there is insufficient memory for the filter
1334  * a negative errno code is returned. On success the return is zero.
1335  */
1336 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1337 {
1338         unsigned int fsize = bpf_classic_proglen(fprog);
1339         struct bpf_prog *fp;
1340
1341         /* Make sure new filter is there and in the right amounts. */
1342         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1343                 return -EINVAL;
1344
1345         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1346         if (!fp)
1347                 return -ENOMEM;
1348
1349         memcpy(fp->insns, fprog->filter, fsize);
1350
1351         fp->len = fprog->len;
1352         /* Since unattached filters are not copied back to user
1353          * space through sk_get_filter(), we do not need to hold
1354          * a copy here, and can spare us the work.
1355          */
1356         fp->orig_prog = NULL;
1357
1358         /* bpf_prepare_filter() already takes care of freeing
1359          * memory in case something goes wrong.
1360          */
1361         fp = bpf_prepare_filter(fp, NULL);
1362         if (IS_ERR(fp))
1363                 return PTR_ERR(fp);
1364
1365         *pfp = fp;
1366         return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(bpf_prog_create);
1369
1370 /**
1371  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1372  *      @pfp: the unattached filter that is created
1373  *      @fprog: the filter program
1374  *      @trans: post-classic verifier transformation handler
1375  *      @save_orig: save classic BPF program
1376  *
1377  * This function effectively does the same as bpf_prog_create(), only
1378  * that it builds up its insns buffer from user space provided buffer.
1379  * It also allows for passing a bpf_aux_classic_check_t handler.
1380  */
1381 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1382                               bpf_aux_classic_check_t trans, bool save_orig)
1383 {
1384         unsigned int fsize = bpf_classic_proglen(fprog);
1385         struct bpf_prog *fp;
1386         int err;
1387
1388         /* Make sure new filter is there and in the right amounts. */
1389         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1390                 return -EINVAL;
1391
1392         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1393         if (!fp)
1394                 return -ENOMEM;
1395
1396         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1397                 __bpf_prog_free(fp);
1398                 return -EFAULT;
1399         }
1400
1401         fp->len = fprog->len;
1402         fp->orig_prog = NULL;
1403
1404         if (save_orig) {
1405                 err = bpf_prog_store_orig_filter(fp, fprog);
1406                 if (err) {
1407                         __bpf_prog_free(fp);
1408                         return -ENOMEM;
1409                 }
1410         }
1411
1412         /* bpf_prepare_filter() already takes care of freeing
1413          * memory in case something goes wrong.
1414          */
1415         fp = bpf_prepare_filter(fp, trans);
1416         if (IS_ERR(fp))
1417                 return PTR_ERR(fp);
1418
1419         *pfp = fp;
1420         return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1423
1424 void bpf_prog_destroy(struct bpf_prog *fp)
1425 {
1426         __bpf_prog_release(fp);
1427 }
1428 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1429
1430 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1431 {
1432         struct sk_filter *fp, *old_fp;
1433
1434         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1435         if (!fp)
1436                 return -ENOMEM;
1437
1438         fp->prog = prog;
1439
1440         if (!__sk_filter_charge(sk, fp)) {
1441                 kfree(fp);
1442                 return -ENOMEM;
1443         }
1444         refcount_set(&fp->refcnt, 1);
1445
1446         old_fp = rcu_dereference_protected(sk->sk_filter,
1447                                            lockdep_sock_is_held(sk));
1448         rcu_assign_pointer(sk->sk_filter, fp);
1449
1450         if (old_fp)
1451                 sk_filter_uncharge(sk, old_fp);
1452
1453         return 0;
1454 }
1455
1456 static
1457 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1458 {
1459         unsigned int fsize = bpf_classic_proglen(fprog);
1460         struct bpf_prog *prog;
1461         int err;
1462
1463         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1464                 return ERR_PTR(-EPERM);
1465
1466         /* Make sure new filter is there and in the right amounts. */
1467         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1468                 return ERR_PTR(-EINVAL);
1469
1470         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1471         if (!prog)
1472                 return ERR_PTR(-ENOMEM);
1473
1474         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1475                 __bpf_prog_free(prog);
1476                 return ERR_PTR(-EFAULT);
1477         }
1478
1479         prog->len = fprog->len;
1480
1481         err = bpf_prog_store_orig_filter(prog, fprog);
1482         if (err) {
1483                 __bpf_prog_free(prog);
1484                 return ERR_PTR(-ENOMEM);
1485         }
1486
1487         /* bpf_prepare_filter() already takes care of freeing
1488          * memory in case something goes wrong.
1489          */
1490         return bpf_prepare_filter(prog, NULL);
1491 }
1492
1493 /**
1494  *      sk_attach_filter - attach a socket filter
1495  *      @fprog: the filter program
1496  *      @sk: the socket to use
1497  *
1498  * Attach the user's filter code. We first run some sanity checks on
1499  * it to make sure it does not explode on us later. If an error
1500  * occurs or there is insufficient memory for the filter a negative
1501  * errno code is returned. On success the return is zero.
1502  */
1503 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1504 {
1505         struct bpf_prog *prog = __get_filter(fprog, sk);
1506         int err;
1507
1508         if (IS_ERR(prog))
1509                 return PTR_ERR(prog);
1510
1511         err = __sk_attach_prog(prog, sk);
1512         if (err < 0) {
1513                 __bpf_prog_release(prog);
1514                 return err;
1515         }
1516
1517         return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(sk_attach_filter);
1520
1521 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1522 {
1523         struct bpf_prog *prog = __get_filter(fprog, sk);
1524         int err;
1525
1526         if (IS_ERR(prog))
1527                 return PTR_ERR(prog);
1528
1529         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1530                 err = -ENOMEM;
1531         else
1532                 err = reuseport_attach_prog(sk, prog);
1533
1534         if (err)
1535                 __bpf_prog_release(prog);
1536
1537         return err;
1538 }
1539
1540 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1541 {
1542         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1543                 return ERR_PTR(-EPERM);
1544
1545         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1546 }
1547
1548 int sk_attach_bpf(u32 ufd, struct sock *sk)
1549 {
1550         struct bpf_prog *prog = __get_bpf(ufd, sk);
1551         int err;
1552
1553         if (IS_ERR(prog))
1554                 return PTR_ERR(prog);
1555
1556         err = __sk_attach_prog(prog, sk);
1557         if (err < 0) {
1558                 bpf_prog_put(prog);
1559                 return err;
1560         }
1561
1562         return 0;
1563 }
1564
1565 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1566 {
1567         struct bpf_prog *prog;
1568         int err;
1569
1570         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1571                 return -EPERM;
1572
1573         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1574         if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1575                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1576         if (IS_ERR(prog))
1577                 return PTR_ERR(prog);
1578
1579         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1580                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1581                  * bpf prog (e.g. sockmap).  It depends on the
1582                  * limitation imposed by bpf_prog_load().
1583                  * Hence, sysctl_optmem_max is not checked.
1584                  */
1585                 if ((sk->sk_type != SOCK_STREAM &&
1586                      sk->sk_type != SOCK_DGRAM) ||
1587                     (sk->sk_protocol != IPPROTO_UDP &&
1588                      sk->sk_protocol != IPPROTO_TCP) ||
1589                     (sk->sk_family != AF_INET &&
1590                      sk->sk_family != AF_INET6)) {
1591                         err = -ENOTSUPP;
1592                         goto err_prog_put;
1593                 }
1594         } else {
1595                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1596                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1597                         err = -ENOMEM;
1598                         goto err_prog_put;
1599                 }
1600         }
1601
1602         err = reuseport_attach_prog(sk, prog);
1603 err_prog_put:
1604         if (err)
1605                 bpf_prog_put(prog);
1606
1607         return err;
1608 }
1609
1610 void sk_reuseport_prog_free(struct bpf_prog *prog)
1611 {
1612         if (!prog)
1613                 return;
1614
1615         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1616                 bpf_prog_put(prog);
1617         else
1618                 bpf_prog_destroy(prog);
1619 }
1620
1621 struct bpf_scratchpad {
1622         union {
1623                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1624                 u8     buff[MAX_BPF_STACK];
1625         };
1626 };
1627
1628 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1629
1630 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1631                                           unsigned int write_len)
1632 {
1633         return skb_ensure_writable(skb, write_len);
1634 }
1635
1636 static inline int bpf_try_make_writable(struct sk_buff *skb,
1637                                         unsigned int write_len)
1638 {
1639         int err = __bpf_try_make_writable(skb, write_len);
1640
1641         bpf_compute_data_pointers(skb);
1642         return err;
1643 }
1644
1645 static int bpf_try_make_head_writable(struct sk_buff *skb)
1646 {
1647         return bpf_try_make_writable(skb, skb_headlen(skb));
1648 }
1649
1650 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1651 {
1652         if (skb_at_tc_ingress(skb))
1653                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1654 }
1655
1656 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1657 {
1658         if (skb_at_tc_ingress(skb))
1659                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1660 }
1661
1662 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1663            const void *, from, u32, len, u64, flags)
1664 {
1665         void *ptr;
1666
1667         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1668                 return -EINVAL;
1669         if (unlikely(offset > 0xffff))
1670                 return -EFAULT;
1671         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1672                 return -EFAULT;
1673
1674         ptr = skb->data + offset;
1675         if (flags & BPF_F_RECOMPUTE_CSUM)
1676                 __skb_postpull_rcsum(skb, ptr, len, offset);
1677
1678         memcpy(ptr, from, len);
1679
1680         if (flags & BPF_F_RECOMPUTE_CSUM)
1681                 __skb_postpush_rcsum(skb, ptr, len, offset);
1682         if (flags & BPF_F_INVALIDATE_HASH)
1683                 skb_clear_hash(skb);
1684
1685         return 0;
1686 }
1687
1688 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1689         .func           = bpf_skb_store_bytes,
1690         .gpl_only       = false,
1691         .ret_type       = RET_INTEGER,
1692         .arg1_type      = ARG_PTR_TO_CTX,
1693         .arg2_type      = ARG_ANYTHING,
1694         .arg3_type      = ARG_PTR_TO_MEM,
1695         .arg4_type      = ARG_CONST_SIZE,
1696         .arg5_type      = ARG_ANYTHING,
1697 };
1698
1699 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1700            void *, to, u32, len)
1701 {
1702         void *ptr;
1703
1704         if (unlikely(offset > 0xffff))
1705                 goto err_clear;
1706
1707         ptr = skb_header_pointer(skb, offset, len, to);
1708         if (unlikely(!ptr))
1709                 goto err_clear;
1710         if (ptr != to)
1711                 memcpy(to, ptr, len);
1712
1713         return 0;
1714 err_clear:
1715         memset(to, 0, len);
1716         return -EFAULT;
1717 }
1718
1719 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1720         .func           = bpf_skb_load_bytes,
1721         .gpl_only       = false,
1722         .ret_type       = RET_INTEGER,
1723         .arg1_type      = ARG_PTR_TO_CTX,
1724         .arg2_type      = ARG_ANYTHING,
1725         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1726         .arg4_type      = ARG_CONST_SIZE,
1727 };
1728
1729 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1730            u32, offset, void *, to, u32, len, u32, start_header)
1731 {
1732         u8 *end = skb_tail_pointer(skb);
1733         u8 *net = skb_network_header(skb);
1734         u8 *mac = skb_mac_header(skb);
1735         u8 *ptr;
1736
1737         if (unlikely(offset > 0xffff || len > (end - mac)))
1738                 goto err_clear;
1739
1740         switch (start_header) {
1741         case BPF_HDR_START_MAC:
1742                 ptr = mac + offset;
1743                 break;
1744         case BPF_HDR_START_NET:
1745                 ptr = net + offset;
1746                 break;
1747         default:
1748                 goto err_clear;
1749         }
1750
1751         if (likely(ptr >= mac && ptr + len <= end)) {
1752                 memcpy(to, ptr, len);
1753                 return 0;
1754         }
1755
1756 err_clear:
1757         memset(to, 0, len);
1758         return -EFAULT;
1759 }
1760
1761 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1762         .func           = bpf_skb_load_bytes_relative,
1763         .gpl_only       = false,
1764         .ret_type       = RET_INTEGER,
1765         .arg1_type      = ARG_PTR_TO_CTX,
1766         .arg2_type      = ARG_ANYTHING,
1767         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1768         .arg4_type      = ARG_CONST_SIZE,
1769         .arg5_type      = ARG_ANYTHING,
1770 };
1771
1772 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1773 {
1774         /* Idea is the following: should the needed direct read/write
1775          * test fail during runtime, we can pull in more data and redo
1776          * again, since implicitly, we invalidate previous checks here.
1777          *
1778          * Or, since we know how much we need to make read/writeable,
1779          * this can be done once at the program beginning for direct
1780          * access case. By this we overcome limitations of only current
1781          * headroom being accessible.
1782          */
1783         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1784 }
1785
1786 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1787         .func           = bpf_skb_pull_data,
1788         .gpl_only       = false,
1789         .ret_type       = RET_INTEGER,
1790         .arg1_type      = ARG_PTR_TO_CTX,
1791         .arg2_type      = ARG_ANYTHING,
1792 };
1793
1794 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1795                                            unsigned int write_len)
1796 {
1797         int err = __bpf_try_make_writable(skb, write_len);
1798
1799         bpf_compute_data_end_sk_skb(skb);
1800         return err;
1801 }
1802
1803 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1804 {
1805         /* Idea is the following: should the needed direct read/write
1806          * test fail during runtime, we can pull in more data and redo
1807          * again, since implicitly, we invalidate previous checks here.
1808          *
1809          * Or, since we know how much we need to make read/writeable,
1810          * this can be done once at the program beginning for direct
1811          * access case. By this we overcome limitations of only current
1812          * headroom being accessible.
1813          */
1814         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1815 }
1816
1817 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1818         .func           = sk_skb_pull_data,
1819         .gpl_only       = false,
1820         .ret_type       = RET_INTEGER,
1821         .arg1_type      = ARG_PTR_TO_CTX,
1822         .arg2_type      = ARG_ANYTHING,
1823 };
1824
1825 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1826            u64, from, u64, to, u64, flags)
1827 {
1828         __sum16 *ptr;
1829
1830         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1831                 return -EINVAL;
1832         if (unlikely(offset > 0xffff || offset & 1))
1833                 return -EFAULT;
1834         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1835                 return -EFAULT;
1836
1837         ptr = (__sum16 *)(skb->data + offset);
1838         switch (flags & BPF_F_HDR_FIELD_MASK) {
1839         case 0:
1840                 if (unlikely(from != 0))
1841                         return -EINVAL;
1842
1843                 csum_replace_by_diff(ptr, to);
1844                 break;
1845         case 2:
1846                 csum_replace2(ptr, from, to);
1847                 break;
1848         case 4:
1849                 csum_replace4(ptr, from, to);
1850                 break;
1851         default:
1852                 return -EINVAL;
1853         }
1854
1855         return 0;
1856 }
1857
1858 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1859         .func           = bpf_l3_csum_replace,
1860         .gpl_only       = false,
1861         .ret_type       = RET_INTEGER,
1862         .arg1_type      = ARG_PTR_TO_CTX,
1863         .arg2_type      = ARG_ANYTHING,
1864         .arg3_type      = ARG_ANYTHING,
1865         .arg4_type      = ARG_ANYTHING,
1866         .arg5_type      = ARG_ANYTHING,
1867 };
1868
1869 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1870            u64, from, u64, to, u64, flags)
1871 {
1872         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1873         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1874         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1875         __sum16 *ptr;
1876
1877         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1878                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1879                 return -EINVAL;
1880         if (unlikely(offset > 0xffff || offset & 1))
1881                 return -EFAULT;
1882         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883                 return -EFAULT;
1884
1885         ptr = (__sum16 *)(skb->data + offset);
1886         if (is_mmzero && !do_mforce && !*ptr)
1887                 return 0;
1888
1889         switch (flags & BPF_F_HDR_FIELD_MASK) {
1890         case 0:
1891                 if (unlikely(from != 0))
1892                         return -EINVAL;
1893
1894                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1895                 break;
1896         case 2:
1897                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1898                 break;
1899         case 4:
1900                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1901                 break;
1902         default:
1903                 return -EINVAL;
1904         }
1905
1906         if (is_mmzero && !*ptr)
1907                 *ptr = CSUM_MANGLED_0;
1908         return 0;
1909 }
1910
1911 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1912         .func           = bpf_l4_csum_replace,
1913         .gpl_only       = false,
1914         .ret_type       = RET_INTEGER,
1915         .arg1_type      = ARG_PTR_TO_CTX,
1916         .arg2_type      = ARG_ANYTHING,
1917         .arg3_type      = ARG_ANYTHING,
1918         .arg4_type      = ARG_ANYTHING,
1919         .arg5_type      = ARG_ANYTHING,
1920 };
1921
1922 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1923            __be32 *, to, u32, to_size, __wsum, seed)
1924 {
1925         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1926         u32 diff_size = from_size + to_size;
1927         int i, j = 0;
1928
1929         /* This is quite flexible, some examples:
1930          *
1931          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1932          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1933          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1934          *
1935          * Even for diffing, from_size and to_size don't need to be equal.
1936          */
1937         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1938                      diff_size > sizeof(sp->diff)))
1939                 return -EINVAL;
1940
1941         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1942                 sp->diff[j] = ~from[i];
1943         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1944                 sp->diff[j] = to[i];
1945
1946         return csum_partial(sp->diff, diff_size, seed);
1947 }
1948
1949 static const struct bpf_func_proto bpf_csum_diff_proto = {
1950         .func           = bpf_csum_diff,
1951         .gpl_only       = false,
1952         .pkt_access     = true,
1953         .ret_type       = RET_INTEGER,
1954         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1955         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1956         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
1957         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1958         .arg5_type      = ARG_ANYTHING,
1959 };
1960
1961 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1962 {
1963         /* The interface is to be used in combination with bpf_csum_diff()
1964          * for direct packet writes. csum rotation for alignment as well
1965          * as emulating csum_sub() can be done from the eBPF program.
1966          */
1967         if (skb->ip_summed == CHECKSUM_COMPLETE)
1968                 return (skb->csum = csum_add(skb->csum, csum));
1969
1970         return -ENOTSUPP;
1971 }
1972
1973 static const struct bpf_func_proto bpf_csum_update_proto = {
1974         .func           = bpf_csum_update,
1975         .gpl_only       = false,
1976         .ret_type       = RET_INTEGER,
1977         .arg1_type      = ARG_PTR_TO_CTX,
1978         .arg2_type      = ARG_ANYTHING,
1979 };
1980
1981 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1982 {
1983         return dev_forward_skb(dev, skb);
1984 }
1985
1986 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1987                                       struct sk_buff *skb)
1988 {
1989         int ret = ____dev_forward_skb(dev, skb);
1990
1991         if (likely(!ret)) {
1992                 skb->dev = dev;
1993                 ret = netif_rx(skb);
1994         }
1995
1996         return ret;
1997 }
1998
1999 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2000 {
2001         int ret;
2002
2003         if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
2004                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2005                 kfree_skb(skb);
2006                 return -ENETDOWN;
2007         }
2008
2009         skb->dev = dev;
2010
2011         __this_cpu_inc(xmit_recursion);
2012         ret = dev_queue_xmit(skb);
2013         __this_cpu_dec(xmit_recursion);
2014
2015         return ret;
2016 }
2017
2018 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2019                                  u32 flags)
2020 {
2021         /* skb->mac_len is not set on normal egress */
2022         unsigned int mlen = skb->network_header - skb->mac_header;
2023
2024         __skb_pull(skb, mlen);
2025
2026         /* At ingress, the mac header has already been pulled once.
2027          * At egress, skb_pospull_rcsum has to be done in case that
2028          * the skb is originated from ingress (i.e. a forwarded skb)
2029          * to ensure that rcsum starts at net header.
2030          */
2031         if (!skb_at_tc_ingress(skb))
2032                 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2033         skb_pop_mac_header(skb);
2034         skb_reset_mac_len(skb);
2035         return flags & BPF_F_INGRESS ?
2036                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2037 }
2038
2039 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2040                                  u32 flags)
2041 {
2042         /* Verify that a link layer header is carried */
2043         if (unlikely(skb->mac_header >= skb->network_header)) {
2044                 kfree_skb(skb);
2045                 return -ERANGE;
2046         }
2047
2048         bpf_push_mac_rcsum(skb);
2049         return flags & BPF_F_INGRESS ?
2050                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2051 }
2052
2053 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2054                           u32 flags)
2055 {
2056         if (dev_is_mac_header_xmit(dev))
2057                 return __bpf_redirect_common(skb, dev, flags);
2058         else
2059                 return __bpf_redirect_no_mac(skb, dev, flags);
2060 }
2061
2062 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2063 {
2064         struct net_device *dev;
2065         struct sk_buff *clone;
2066         int ret;
2067
2068         if (unlikely(flags & ~(BPF_F_INGRESS)))
2069                 return -EINVAL;
2070
2071         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2072         if (unlikely(!dev))
2073                 return -EINVAL;
2074
2075         clone = skb_clone(skb, GFP_ATOMIC);
2076         if (unlikely(!clone))
2077                 return -ENOMEM;
2078
2079         /* For direct write, we need to keep the invariant that the skbs
2080          * we're dealing with need to be uncloned. Should uncloning fail
2081          * here, we need to free the just generated clone to unclone once
2082          * again.
2083          */
2084         ret = bpf_try_make_head_writable(skb);
2085         if (unlikely(ret)) {
2086                 kfree_skb(clone);
2087                 return -ENOMEM;
2088         }
2089
2090         return __bpf_redirect(clone, dev, flags);
2091 }
2092
2093 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2094         .func           = bpf_clone_redirect,
2095         .gpl_only       = false,
2096         .ret_type       = RET_INTEGER,
2097         .arg1_type      = ARG_PTR_TO_CTX,
2098         .arg2_type      = ARG_ANYTHING,
2099         .arg3_type      = ARG_ANYTHING,
2100 };
2101
2102 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2103 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2104
2105 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2106 {
2107         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2108
2109         if (unlikely(flags & ~(BPF_F_INGRESS)))
2110                 return TC_ACT_SHOT;
2111
2112         ri->ifindex = ifindex;
2113         ri->flags = flags;
2114
2115         return TC_ACT_REDIRECT;
2116 }
2117
2118 int skb_do_redirect(struct sk_buff *skb)
2119 {
2120         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2121         struct net_device *dev;
2122
2123         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2124         ri->ifindex = 0;
2125         if (unlikely(!dev)) {
2126                 kfree_skb(skb);
2127                 return -EINVAL;
2128         }
2129
2130         return __bpf_redirect(skb, dev, ri->flags);
2131 }
2132
2133 static const struct bpf_func_proto bpf_redirect_proto = {
2134         .func           = bpf_redirect,
2135         .gpl_only       = false,
2136         .ret_type       = RET_INTEGER,
2137         .arg1_type      = ARG_ANYTHING,
2138         .arg2_type      = ARG_ANYTHING,
2139 };
2140
2141 BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
2142            struct bpf_map *, map, void *, key, u64, flags)
2143 {
2144         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2145
2146         /* If user passes invalid input drop the packet. */
2147         if (unlikely(flags & ~(BPF_F_INGRESS)))
2148                 return SK_DROP;
2149
2150         tcb->bpf.flags = flags;
2151         tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
2152         if (!tcb->bpf.sk_redir)
2153                 return SK_DROP;
2154
2155         return SK_PASS;
2156 }
2157
2158 static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
2159         .func           = bpf_sk_redirect_hash,
2160         .gpl_only       = false,
2161         .ret_type       = RET_INTEGER,
2162         .arg1_type      = ARG_PTR_TO_CTX,
2163         .arg2_type      = ARG_CONST_MAP_PTR,
2164         .arg3_type      = ARG_PTR_TO_MAP_KEY,
2165         .arg4_type      = ARG_ANYTHING,
2166 };
2167
2168 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
2169            struct bpf_map *, map, u32, key, u64, flags)
2170 {
2171         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2172
2173         /* If user passes invalid input drop the packet. */
2174         if (unlikely(flags & ~(BPF_F_INGRESS)))
2175                 return SK_DROP;
2176
2177         tcb->bpf.flags = flags;
2178         tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
2179         if (!tcb->bpf.sk_redir)
2180                 return SK_DROP;
2181
2182         return SK_PASS;
2183 }
2184
2185 struct sock *do_sk_redirect_map(struct sk_buff *skb)
2186 {
2187         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2188
2189         return tcb->bpf.sk_redir;
2190 }
2191
2192 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
2193         .func           = bpf_sk_redirect_map,
2194         .gpl_only       = false,
2195         .ret_type       = RET_INTEGER,
2196         .arg1_type      = ARG_PTR_TO_CTX,
2197         .arg2_type      = ARG_CONST_MAP_PTR,
2198         .arg3_type      = ARG_ANYTHING,
2199         .arg4_type      = ARG_ANYTHING,
2200 };
2201
2202 BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
2203            struct bpf_map *, map, void *, key, u64, flags)
2204 {
2205         /* If user passes invalid input drop the packet. */
2206         if (unlikely(flags & ~(BPF_F_INGRESS)))
2207                 return SK_DROP;
2208
2209         msg->flags = flags;
2210         msg->sk_redir = __sock_hash_lookup_elem(map, key);
2211         if (!msg->sk_redir)
2212                 return SK_DROP;
2213
2214         return SK_PASS;
2215 }
2216
2217 static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
2218         .func           = bpf_msg_redirect_hash,
2219         .gpl_only       = false,
2220         .ret_type       = RET_INTEGER,
2221         .arg1_type      = ARG_PTR_TO_CTX,
2222         .arg2_type      = ARG_CONST_MAP_PTR,
2223         .arg3_type      = ARG_PTR_TO_MAP_KEY,
2224         .arg4_type      = ARG_ANYTHING,
2225 };
2226
2227 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
2228            struct bpf_map *, map, u32, key, u64, flags)
2229 {
2230         /* If user passes invalid input drop the packet. */
2231         if (unlikely(flags & ~(BPF_F_INGRESS)))
2232                 return SK_DROP;
2233
2234         msg->flags = flags;
2235         msg->sk_redir = __sock_map_lookup_elem(map, key);
2236         if (!msg->sk_redir)
2237                 return SK_DROP;
2238
2239         return SK_PASS;
2240 }
2241
2242 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
2243 {
2244         return msg->sk_redir;
2245 }
2246
2247 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
2248         .func           = bpf_msg_redirect_map,
2249         .gpl_only       = false,
2250         .ret_type       = RET_INTEGER,
2251         .arg1_type      = ARG_PTR_TO_CTX,
2252         .arg2_type      = ARG_CONST_MAP_PTR,
2253         .arg3_type      = ARG_ANYTHING,
2254         .arg4_type      = ARG_ANYTHING,
2255 };
2256
2257 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
2258 {
2259         msg->apply_bytes = bytes;
2260         return 0;
2261 }
2262
2263 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2264         .func           = bpf_msg_apply_bytes,
2265         .gpl_only       = false,
2266         .ret_type       = RET_INTEGER,
2267         .arg1_type      = ARG_PTR_TO_CTX,
2268         .arg2_type      = ARG_ANYTHING,
2269 };
2270
2271 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
2272 {
2273         msg->cork_bytes = bytes;
2274         return 0;
2275 }
2276
2277 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2278         .func           = bpf_msg_cork_bytes,
2279         .gpl_only       = false,
2280         .ret_type       = RET_INTEGER,
2281         .arg1_type      = ARG_PTR_TO_CTX,
2282         .arg2_type      = ARG_ANYTHING,
2283 };
2284
2285 BPF_CALL_4(bpf_msg_pull_data,
2286            struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
2287 {
2288         unsigned int len = 0, offset = 0, copy = 0;
2289         struct scatterlist *sg = msg->sg_data;
2290         int first_sg, last_sg, i, shift;
2291         unsigned char *p, *to, *from;
2292         int bytes = end - start;
2293         struct page *page;
2294
2295         if (unlikely(flags || end <= start))
2296                 return -EINVAL;
2297
2298         /* First find the starting scatterlist element */
2299         i = msg->sg_start;
2300         do {
2301                 len = sg[i].length;
2302                 offset += len;
2303                 if (start < offset + len)
2304                         break;
2305                 i++;
2306                 if (i == MAX_SKB_FRAGS)
2307                         i = 0;
2308         } while (i != msg->sg_end);
2309
2310         if (unlikely(start >= offset + len))
2311                 return -EINVAL;
2312
2313         if (!msg->sg_copy[i] && bytes <= len)
2314                 goto out;
2315
2316         first_sg = i;
2317
2318         /* At this point we need to linearize multiple scatterlist
2319          * elements or a single shared page. Either way we need to
2320          * copy into a linear buffer exclusively owned by BPF. Then
2321          * place the buffer in the scatterlist and fixup the original
2322          * entries by removing the entries now in the linear buffer
2323          * and shifting the remaining entries. For now we do not try
2324          * to copy partial entries to avoid complexity of running out
2325          * of sg_entry slots. The downside is reading a single byte
2326          * will copy the entire sg entry.
2327          */
2328         do {
2329                 copy += sg[i].length;
2330                 i++;
2331                 if (i == MAX_SKB_FRAGS)
2332                         i = 0;
2333                 if (bytes < copy)
2334                         break;
2335         } while (i != msg->sg_end);
2336         last_sg = i;
2337
2338         if (unlikely(copy < end - start))
2339                 return -EINVAL;
2340
2341         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
2342         if (unlikely(!page))
2343                 return -ENOMEM;
2344         p = page_address(page);
2345         offset = 0;
2346
2347         i = first_sg;
2348         do {
2349                 from = sg_virt(&sg[i]);
2350                 len = sg[i].length;
2351                 to = p + offset;
2352
2353                 memcpy(to, from, len);
2354                 offset += len;
2355                 sg[i].length = 0;
2356                 put_page(sg_page(&sg[i]));
2357
2358                 i++;
2359                 if (i == MAX_SKB_FRAGS)
2360                         i = 0;
2361         } while (i != last_sg);
2362
2363         sg[first_sg].length = copy;
2364         sg_set_page(&sg[first_sg], page, copy, 0);
2365
2366         /* To repair sg ring we need to shift entries. If we only
2367          * had a single entry though we can just replace it and
2368          * be done. Otherwise walk the ring and shift the entries.
2369          */
2370         shift = last_sg - first_sg - 1;
2371         if (!shift)
2372                 goto out;
2373
2374         i = first_sg + 1;
2375         do {
2376                 int move_from;
2377
2378                 if (i + shift >= MAX_SKB_FRAGS)
2379                         move_from = i + shift - MAX_SKB_FRAGS;
2380                 else
2381                         move_from = i + shift;
2382
2383                 if (move_from == msg->sg_end)
2384                         break;
2385
2386                 sg[i] = sg[move_from];
2387                 sg[move_from].length = 0;
2388                 sg[move_from].page_link = 0;
2389                 sg[move_from].offset = 0;
2390
2391                 i++;
2392                 if (i == MAX_SKB_FRAGS)
2393                         i = 0;
2394         } while (1);
2395         msg->sg_end -= shift;
2396         if (msg->sg_end < 0)
2397                 msg->sg_end += MAX_SKB_FRAGS;
2398 out:
2399         msg->data = sg_virt(&sg[i]) + start - offset;
2400         msg->data_end = msg->data + bytes;
2401
2402         return 0;
2403 }
2404
2405 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2406         .func           = bpf_msg_pull_data,
2407         .gpl_only       = false,
2408         .ret_type       = RET_INTEGER,
2409         .arg1_type      = ARG_PTR_TO_CTX,
2410         .arg2_type      = ARG_ANYTHING,
2411         .arg3_type      = ARG_ANYTHING,
2412         .arg4_type      = ARG_ANYTHING,
2413 };
2414
2415 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2416 {
2417         return task_get_classid(skb);
2418 }
2419
2420 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2421         .func           = bpf_get_cgroup_classid,
2422         .gpl_only       = false,
2423         .ret_type       = RET_INTEGER,
2424         .arg1_type      = ARG_PTR_TO_CTX,
2425 };
2426
2427 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2428 {
2429         return dst_tclassid(skb);
2430 }
2431
2432 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2433         .func           = bpf_get_route_realm,
2434         .gpl_only       = false,
2435         .ret_type       = RET_INTEGER,
2436         .arg1_type      = ARG_PTR_TO_CTX,
2437 };
2438
2439 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2440 {
2441         /* If skb_clear_hash() was called due to mangling, we can
2442          * trigger SW recalculation here. Later access to hash
2443          * can then use the inline skb->hash via context directly
2444          * instead of calling this helper again.
2445          */
2446         return skb_get_hash(skb);
2447 }
2448
2449 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2450         .func           = bpf_get_hash_recalc,
2451         .gpl_only       = false,
2452         .ret_type       = RET_INTEGER,
2453         .arg1_type      = ARG_PTR_TO_CTX,
2454 };
2455
2456 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2457 {
2458         /* After all direct packet write, this can be used once for
2459          * triggering a lazy recalc on next skb_get_hash() invocation.
2460          */
2461         skb_clear_hash(skb);
2462         return 0;
2463 }
2464
2465 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2466         .func           = bpf_set_hash_invalid,
2467         .gpl_only       = false,
2468         .ret_type       = RET_INTEGER,
2469         .arg1_type      = ARG_PTR_TO_CTX,
2470 };
2471
2472 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2473 {
2474         /* Set user specified hash as L4(+), so that it gets returned
2475          * on skb_get_hash() call unless BPF prog later on triggers a
2476          * skb_clear_hash().
2477          */
2478         __skb_set_sw_hash(skb, hash, true);
2479         return 0;
2480 }
2481
2482 static const struct bpf_func_proto bpf_set_hash_proto = {
2483         .func           = bpf_set_hash,
2484         .gpl_only       = false,
2485         .ret_type       = RET_INTEGER,
2486         .arg1_type      = ARG_PTR_TO_CTX,
2487         .arg2_type      = ARG_ANYTHING,
2488 };
2489
2490 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2491            u16, vlan_tci)
2492 {
2493         int ret;
2494
2495         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2496                      vlan_proto != htons(ETH_P_8021AD)))
2497                 vlan_proto = htons(ETH_P_8021Q);
2498
2499         bpf_push_mac_rcsum(skb);
2500         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2501         bpf_pull_mac_rcsum(skb);
2502
2503         bpf_compute_data_pointers(skb);
2504         return ret;
2505 }
2506
2507 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2508         .func           = bpf_skb_vlan_push,
2509         .gpl_only       = false,
2510         .ret_type       = RET_INTEGER,
2511         .arg1_type      = ARG_PTR_TO_CTX,
2512         .arg2_type      = ARG_ANYTHING,
2513         .arg3_type      = ARG_ANYTHING,
2514 };
2515
2516 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2517 {
2518         int ret;
2519
2520         bpf_push_mac_rcsum(skb);
2521         ret = skb_vlan_pop(skb);
2522         bpf_pull_mac_rcsum(skb);
2523
2524         bpf_compute_data_pointers(skb);
2525         return ret;
2526 }
2527
2528 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2529         .func           = bpf_skb_vlan_pop,
2530         .gpl_only       = false,
2531         .ret_type       = RET_INTEGER,
2532         .arg1_type      = ARG_PTR_TO_CTX,
2533 };
2534
2535 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2536 {
2537         /* Caller already did skb_cow() with len as headroom,
2538          * so no need to do it here.
2539          */
2540         skb_push(skb, len);
2541         memmove(skb->data, skb->data + len, off);
2542         memset(skb->data + off, 0, len);
2543
2544         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2545          * needed here as it does not change the skb->csum
2546          * result for checksum complete when summing over
2547          * zeroed blocks.
2548          */
2549         return 0;
2550 }
2551
2552 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2553 {
2554         /* skb_ensure_writable() is not needed here, as we're
2555          * already working on an uncloned skb.
2556          */
2557         if (unlikely(!pskb_may_pull(skb, off + len)))
2558                 return -ENOMEM;
2559
2560         skb_postpull_rcsum(skb, skb->data + off, len);
2561         memmove(skb->data + len, skb->data, off);
2562         __skb_pull(skb, len);
2563
2564         return 0;
2565 }
2566
2567 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2568 {
2569         bool trans_same = skb->transport_header == skb->network_header;
2570         int ret;
2571
2572         /* There's no need for __skb_push()/__skb_pull() pair to
2573          * get to the start of the mac header as we're guaranteed
2574          * to always start from here under eBPF.
2575          */
2576         ret = bpf_skb_generic_push(skb, off, len);
2577         if (likely(!ret)) {
2578                 skb->mac_header -= len;
2579                 skb->network_header -= len;
2580                 if (trans_same)
2581                         skb->transport_header = skb->network_header;
2582         }
2583
2584         return ret;
2585 }
2586
2587 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2588 {
2589         bool trans_same = skb->transport_header == skb->network_header;
2590         int ret;
2591
2592         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2593         ret = bpf_skb_generic_pop(skb, off, len);
2594         if (likely(!ret)) {
2595                 skb->mac_header += len;
2596                 skb->network_header += len;
2597                 if (trans_same)
2598                         skb->transport_header = skb->network_header;
2599         }
2600
2601         return ret;
2602 }
2603
2604 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2605 {
2606         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2607         u32 off = skb_mac_header_len(skb);
2608         int ret;
2609
2610         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2611         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2612                 return -ENOTSUPP;
2613
2614         ret = skb_cow(skb, len_diff);
2615         if (unlikely(ret < 0))
2616                 return ret;
2617
2618         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2619         if (unlikely(ret < 0))
2620                 return ret;
2621
2622         if (skb_is_gso(skb)) {
2623                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2624
2625                 /* SKB_GSO_TCPV4 needs to be changed into
2626                  * SKB_GSO_TCPV6.
2627                  */
2628                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2629                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2630                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2631                 }
2632
2633                 /* Due to IPv6 header, MSS needs to be downgraded. */
2634                 skb_decrease_gso_size(shinfo, len_diff);
2635                 /* Header must be checked, and gso_segs recomputed. */
2636                 shinfo->gso_type |= SKB_GSO_DODGY;
2637                 shinfo->gso_segs = 0;
2638         }
2639
2640         skb->protocol = htons(ETH_P_IPV6);
2641         skb_clear_hash(skb);
2642
2643         return 0;
2644 }
2645
2646 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2647 {
2648         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2649         u32 off = skb_mac_header_len(skb);
2650         int ret;
2651
2652         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2653         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2654                 return -ENOTSUPP;
2655
2656         ret = skb_unclone(skb, GFP_ATOMIC);
2657         if (unlikely(ret < 0))
2658                 return ret;
2659
2660         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2661         if (unlikely(ret < 0))
2662                 return ret;
2663
2664         if (skb_is_gso(skb)) {
2665                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2666
2667                 /* SKB_GSO_TCPV6 needs to be changed into
2668                  * SKB_GSO_TCPV4.
2669                  */
2670                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2671                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2672                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2673                 }
2674
2675                 /* Due to IPv4 header, MSS can be upgraded. */
2676                 skb_increase_gso_size(shinfo, len_diff);
2677                 /* Header must be checked, and gso_segs recomputed. */
2678                 shinfo->gso_type |= SKB_GSO_DODGY;
2679                 shinfo->gso_segs = 0;
2680         }
2681
2682         skb->protocol = htons(ETH_P_IP);
2683         skb_clear_hash(skb);
2684
2685         return 0;
2686 }
2687
2688 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2689 {
2690         __be16 from_proto = skb->protocol;
2691
2692         if (from_proto == htons(ETH_P_IP) &&
2693               to_proto == htons(ETH_P_IPV6))
2694                 return bpf_skb_proto_4_to_6(skb);
2695
2696         if (from_proto == htons(ETH_P_IPV6) &&
2697               to_proto == htons(ETH_P_IP))
2698                 return bpf_skb_proto_6_to_4(skb);
2699
2700         return -ENOTSUPP;
2701 }
2702
2703 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2704            u64, flags)
2705 {
2706         int ret;
2707
2708         if (unlikely(flags))
2709                 return -EINVAL;
2710
2711         /* General idea is that this helper does the basic groundwork
2712          * needed for changing the protocol, and eBPF program fills the
2713          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2714          * and other helpers, rather than passing a raw buffer here.
2715          *
2716          * The rationale is to keep this minimal and without a need to
2717          * deal with raw packet data. F.e. even if we would pass buffers
2718          * here, the program still needs to call the bpf_lX_csum_replace()
2719          * helpers anyway. Plus, this way we keep also separation of
2720          * concerns, since f.e. bpf_skb_store_bytes() should only take
2721          * care of stores.
2722          *
2723          * Currently, additional options and extension header space are
2724          * not supported, but flags register is reserved so we can adapt
2725          * that. For offloads, we mark packet as dodgy, so that headers
2726          * need to be verified first.
2727          */
2728         ret = bpf_skb_proto_xlat(skb, proto);
2729         bpf_compute_data_pointers(skb);
2730         return ret;
2731 }
2732
2733 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2734         .func           = bpf_skb_change_proto,
2735         .gpl_only       = false,
2736         .ret_type       = RET_INTEGER,
2737         .arg1_type      = ARG_PTR_TO_CTX,
2738         .arg2_type      = ARG_ANYTHING,
2739         .arg3_type      = ARG_ANYTHING,
2740 };
2741
2742 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2743 {
2744         /* We only allow a restricted subset to be changed for now. */
2745         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2746                      !skb_pkt_type_ok(pkt_type)))
2747                 return -EINVAL;
2748
2749         skb->pkt_type = pkt_type;
2750         return 0;
2751 }
2752
2753 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2754         .func           = bpf_skb_change_type,
2755         .gpl_only       = false,
2756         .ret_type       = RET_INTEGER,
2757         .arg1_type      = ARG_PTR_TO_CTX,
2758         .arg2_type      = ARG_ANYTHING,
2759 };
2760
2761 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2762 {
2763         switch (skb->protocol) {
2764         case htons(ETH_P_IP):
2765                 return sizeof(struct iphdr);
2766         case htons(ETH_P_IPV6):
2767                 return sizeof(struct ipv6hdr);
2768         default:
2769                 return ~0U;
2770         }
2771 }
2772
2773 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2774 {
2775         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2776         int ret;
2777
2778         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2779         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2780                 return -ENOTSUPP;
2781
2782         ret = skb_cow(skb, len_diff);
2783         if (unlikely(ret < 0))
2784                 return ret;
2785
2786         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2787         if (unlikely(ret < 0))
2788                 return ret;
2789
2790         if (skb_is_gso(skb)) {
2791                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2792
2793                 /* Due to header grow, MSS needs to be downgraded. */
2794                 skb_decrease_gso_size(shinfo, len_diff);
2795                 /* Header must be checked, and gso_segs recomputed. */
2796                 shinfo->gso_type |= SKB_GSO_DODGY;
2797                 shinfo->gso_segs = 0;
2798         }
2799
2800         return 0;
2801 }
2802
2803 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2804 {
2805         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2806         int ret;
2807
2808         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2809         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2810                 return -ENOTSUPP;
2811
2812         ret = skb_unclone(skb, GFP_ATOMIC);
2813         if (unlikely(ret < 0))
2814                 return ret;
2815
2816         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2817         if (unlikely(ret < 0))
2818                 return ret;
2819
2820         if (skb_is_gso(skb)) {
2821                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2822
2823                 /* Due to header shrink, MSS can be upgraded. */
2824                 skb_increase_gso_size(shinfo, len_diff);
2825                 /* Header must be checked, and gso_segs recomputed. */
2826                 shinfo->gso_type |= SKB_GSO_DODGY;
2827                 shinfo->gso_segs = 0;
2828         }
2829
2830         return 0;
2831 }
2832
2833 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2834 {
2835         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
2836                           SKB_MAX_ALLOC;
2837 }
2838
2839 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2840 {
2841         bool trans_same = skb->transport_header == skb->network_header;
2842         u32 len_cur, len_diff_abs = abs(len_diff);
2843         u32 len_min = bpf_skb_net_base_len(skb);
2844         u32 len_max = __bpf_skb_max_len(skb);
2845         __be16 proto = skb->protocol;
2846         bool shrink = len_diff < 0;
2847         int ret;
2848
2849         if (unlikely(len_diff_abs > 0xfffU))
2850                 return -EFAULT;
2851         if (unlikely(proto != htons(ETH_P_IP) &&
2852                      proto != htons(ETH_P_IPV6)))
2853                 return -ENOTSUPP;
2854
2855         len_cur = skb->len - skb_network_offset(skb);
2856         if (skb_transport_header_was_set(skb) && !trans_same)
2857                 len_cur = skb_network_header_len(skb);
2858         if ((shrink && (len_diff_abs >= len_cur ||
2859                         len_cur - len_diff_abs < len_min)) ||
2860             (!shrink && (skb->len + len_diff_abs > len_max &&
2861                          !skb_is_gso(skb))))
2862                 return -ENOTSUPP;
2863
2864         ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2865                        bpf_skb_net_grow(skb, len_diff_abs);
2866
2867         bpf_compute_data_pointers(skb);
2868         return ret;
2869 }
2870
2871 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2872            u32, mode, u64, flags)
2873 {
2874         if (unlikely(flags))
2875                 return -EINVAL;
2876         if (likely(mode == BPF_ADJ_ROOM_NET))
2877                 return bpf_skb_adjust_net(skb, len_diff);
2878
2879         return -ENOTSUPP;
2880 }
2881
2882 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2883         .func           = bpf_skb_adjust_room,
2884         .gpl_only       = false,
2885         .ret_type       = RET_INTEGER,
2886         .arg1_type      = ARG_PTR_TO_CTX,
2887         .arg2_type      = ARG_ANYTHING,
2888         .arg3_type      = ARG_ANYTHING,
2889         .arg4_type      = ARG_ANYTHING,
2890 };
2891
2892 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2893 {
2894         u32 min_len = skb_network_offset(skb);
2895
2896         if (skb_transport_header_was_set(skb))
2897                 min_len = skb_transport_offset(skb);
2898         if (skb->ip_summed == CHECKSUM_PARTIAL)
2899                 min_len = skb_checksum_start_offset(skb) +
2900                           skb->csum_offset + sizeof(__sum16);
2901         return min_len;
2902 }
2903
2904 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2905 {
2906         unsigned int old_len = skb->len;
2907         int ret;
2908
2909         ret = __skb_grow_rcsum(skb, new_len);
2910         if (!ret)
2911                 memset(skb->data + old_len, 0, new_len - old_len);
2912         return ret;
2913 }
2914
2915 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2916 {
2917         return __skb_trim_rcsum(skb, new_len);
2918 }
2919
2920 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
2921                                         u64 flags)
2922 {
2923         u32 max_len = __bpf_skb_max_len(skb);
2924         u32 min_len = __bpf_skb_min_len(skb);
2925         int ret;
2926
2927         if (unlikely(flags || new_len > max_len || new_len < min_len))
2928                 return -EINVAL;
2929         if (skb->encapsulation)
2930                 return -ENOTSUPP;
2931
2932         /* The basic idea of this helper is that it's performing the
2933          * needed work to either grow or trim an skb, and eBPF program
2934          * rewrites the rest via helpers like bpf_skb_store_bytes(),
2935          * bpf_lX_csum_replace() and others rather than passing a raw
2936          * buffer here. This one is a slow path helper and intended
2937          * for replies with control messages.
2938          *
2939          * Like in bpf_skb_change_proto(), we want to keep this rather
2940          * minimal and without protocol specifics so that we are able
2941          * to separate concerns as in bpf_skb_store_bytes() should only
2942          * be the one responsible for writing buffers.
2943          *
2944          * It's really expected to be a slow path operation here for
2945          * control message replies, so we're implicitly linearizing,
2946          * uncloning and drop offloads from the skb by this.
2947          */
2948         ret = __bpf_try_make_writable(skb, skb->len);
2949         if (!ret) {
2950                 if (new_len > skb->len)
2951                         ret = bpf_skb_grow_rcsum(skb, new_len);
2952                 else if (new_len < skb->len)
2953                         ret = bpf_skb_trim_rcsum(skb, new_len);
2954                 if (!ret && skb_is_gso(skb))
2955                         skb_gso_reset(skb);
2956         }
2957         return ret;
2958 }
2959
2960 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2961            u64, flags)
2962 {
2963         int ret = __bpf_skb_change_tail(skb, new_len, flags);
2964
2965         bpf_compute_data_pointers(skb);
2966         return ret;
2967 }
2968
2969 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2970         .func           = bpf_skb_change_tail,
2971         .gpl_only       = false,
2972         .ret_type       = RET_INTEGER,
2973         .arg1_type      = ARG_PTR_TO_CTX,
2974         .arg2_type      = ARG_ANYTHING,
2975         .arg3_type      = ARG_ANYTHING,
2976 };
2977
2978 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2979            u64, flags)
2980 {
2981         int ret = __bpf_skb_change_tail(skb, new_len, flags);
2982
2983         bpf_compute_data_end_sk_skb(skb);
2984         return ret;
2985 }
2986
2987 static const struct bpf_func_proto sk_skb_change_tail_proto = {
2988         .func           = sk_skb_change_tail,
2989         .gpl_only       = false,
2990         .ret_type       = RET_INTEGER,
2991         .arg1_type      = ARG_PTR_TO_CTX,
2992         .arg2_type      = ARG_ANYTHING,
2993         .arg3_type      = ARG_ANYTHING,
2994 };
2995
2996 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
2997                                         u64 flags)
2998 {
2999         u32 max_len = __bpf_skb_max_len(skb);
3000         u32 new_len = skb->len + head_room;
3001         int ret;
3002
3003         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3004                      new_len < skb->len))
3005                 return -EINVAL;
3006
3007         ret = skb_cow(skb, head_room);
3008         if (likely(!ret)) {
3009                 /* Idea for this helper is that we currently only
3010                  * allow to expand on mac header. This means that
3011                  * skb->protocol network header, etc, stay as is.
3012                  * Compared to bpf_skb_change_tail(), we're more
3013                  * flexible due to not needing to linearize or
3014                  * reset GSO. Intention for this helper is to be
3015                  * used by an L3 skb that needs to push mac header
3016                  * for redirection into L2 device.
3017                  */
3018                 __skb_push(skb, head_room);
3019                 memset(skb->data, 0, head_room);
3020                 skb_reset_mac_header(skb);
3021         }
3022
3023         return ret;
3024 }
3025
3026 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3027            u64, flags)
3028 {
3029         int ret = __bpf_skb_change_head(skb, head_room, flags);
3030
3031         bpf_compute_data_pointers(skb);
3032         return ret;
3033 }
3034
3035 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3036         .func           = bpf_skb_change_head,
3037         .gpl_only       = false,
3038         .ret_type       = RET_INTEGER,
3039         .arg1_type      = ARG_PTR_TO_CTX,
3040         .arg2_type      = ARG_ANYTHING,
3041         .arg3_type      = ARG_ANYTHING,
3042 };
3043
3044 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3045            u64, flags)
3046 {
3047         int ret = __bpf_skb_change_head(skb, head_room, flags);
3048
3049         bpf_compute_data_end_sk_skb(skb);
3050         return ret;
3051 }
3052
3053 static const struct bpf_func_proto sk_skb_change_head_proto = {
3054         .func           = sk_skb_change_head,
3055         .gpl_only       = false,
3056         .ret_type       = RET_INTEGER,
3057         .arg1_type      = ARG_PTR_TO_CTX,
3058         .arg2_type      = ARG_ANYTHING,
3059         .arg3_type      = ARG_ANYTHING,
3060 };
3061 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3062 {
3063         return xdp_data_meta_unsupported(xdp) ? 0 :
3064                xdp->data - xdp->data_meta;
3065 }
3066
3067 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3068 {
3069         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3070         unsigned long metalen = xdp_get_metalen(xdp);
3071         void *data_start = xdp_frame_end + metalen;
3072         void *data = xdp->data + offset;
3073
3074         if (unlikely(data < data_start ||
3075                      data > xdp->data_end - ETH_HLEN))
3076                 return -EINVAL;
3077
3078         if (metalen)
3079                 memmove(xdp->data_meta + offset,
3080                         xdp->data_meta, metalen);
3081         xdp->data_meta += offset;
3082         xdp->data = data;
3083
3084         return 0;
3085 }
3086
3087 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3088         .func           = bpf_xdp_adjust_head,
3089         .gpl_only       = false,
3090         .ret_type       = RET_INTEGER,
3091         .arg1_type      = ARG_PTR_TO_CTX,
3092         .arg2_type      = ARG_ANYTHING,
3093 };
3094
3095 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3096 {
3097         void *data_end = xdp->data_end + offset;
3098
3099         /* only shrinking is allowed for now. */
3100         if (unlikely(offset >= 0))
3101                 return -EINVAL;
3102
3103         if (unlikely(data_end < xdp->data + ETH_HLEN))
3104                 return -EINVAL;
3105
3106         xdp->data_end = data_end;
3107
3108         return 0;
3109 }
3110
3111 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3112         .func           = bpf_xdp_adjust_tail,
3113         .gpl_only       = false,
3114         .ret_type       = RET_INTEGER,
3115         .arg1_type      = ARG_PTR_TO_CTX,
3116         .arg2_type      = ARG_ANYTHING,
3117 };
3118
3119 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3120 {
3121         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3122         void *meta = xdp->data_meta + offset;
3123         unsigned long metalen = xdp->data - meta;
3124
3125         if (xdp_data_meta_unsupported(xdp))
3126                 return -ENOTSUPP;
3127         if (unlikely(meta < xdp_frame_end ||
3128                      meta > xdp->data))
3129                 return -EINVAL;
3130         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3131                      (metalen > 32)))
3132                 return -EACCES;
3133
3134         xdp->data_meta = meta;
3135
3136         return 0;
3137 }
3138
3139 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3140         .func           = bpf_xdp_adjust_meta,
3141         .gpl_only       = false,
3142         .ret_type       = RET_INTEGER,
3143         .arg1_type      = ARG_PTR_TO_CTX,
3144         .arg2_type      = ARG_ANYTHING,
3145 };
3146
3147 static int __bpf_tx_xdp(struct net_device *dev,
3148                         struct bpf_map *map,
3149                         struct xdp_buff *xdp,
3150                         u32 index)
3151 {
3152         struct xdp_frame *xdpf;
3153         int err, sent;
3154
3155         if (!dev->netdev_ops->ndo_xdp_xmit) {
3156                 return -EOPNOTSUPP;
3157         }
3158
3159         err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3160         if (unlikely(err))
3161                 return err;
3162
3163         xdpf = convert_to_xdp_frame(xdp);
3164         if (unlikely(!xdpf))
3165                 return -EOVERFLOW;
3166
3167         sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3168         if (sent <= 0)
3169                 return sent;
3170         return 0;
3171 }
3172
3173 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3174                             struct bpf_map *map,
3175                             struct xdp_buff *xdp,
3176                             u32 index)
3177 {
3178         int err;
3179
3180         switch (map->map_type) {
3181         case BPF_MAP_TYPE_DEVMAP: {
3182                 struct bpf_dtab_netdev *dst = fwd;
3183
3184                 err = dev_map_enqueue(dst, xdp, dev_rx);
3185                 if (err)
3186                         return err;
3187                 __dev_map_insert_ctx(map, index);
3188                 break;
3189         }
3190         case BPF_MAP_TYPE_CPUMAP: {
3191                 struct bpf_cpu_map_entry *rcpu = fwd;
3192
3193                 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3194                 if (err)
3195                         return err;
3196                 __cpu_map_insert_ctx(map, index);
3197                 break;
3198         }
3199         case BPF_MAP_TYPE_XSKMAP: {
3200                 struct xdp_sock *xs = fwd;
3201
3202                 err = __xsk_map_redirect(map, xdp, xs);
3203                 return err;
3204         }
3205         default:
3206                 break;
3207         }
3208         return 0;
3209 }
3210
3211 void xdp_do_flush_map(void)
3212 {
3213         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3214         struct bpf_map *map = ri->map_to_flush;
3215
3216         ri->map_to_flush = NULL;
3217         if (map) {
3218                 switch (map->map_type) {
3219                 case BPF_MAP_TYPE_DEVMAP:
3220                         __dev_map_flush(map);
3221                         break;
3222                 case BPF_MAP_TYPE_CPUMAP:
3223                         __cpu_map_flush(map);
3224                         break;
3225                 case BPF_MAP_TYPE_XSKMAP:
3226                         __xsk_map_flush(map);
3227                         break;
3228                 default:
3229                         break;
3230                 }
3231         }
3232 }
3233 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3234
3235 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3236 {
3237         switch (map->map_type) {
3238         case BPF_MAP_TYPE_DEVMAP:
3239                 return __dev_map_lookup_elem(map, index);
3240         case BPF_MAP_TYPE_CPUMAP:
3241                 return __cpu_map_lookup_elem(map, index);
3242         case BPF_MAP_TYPE_XSKMAP:
3243                 return __xsk_map_lookup_elem(map, index);
3244         default:
3245                 return NULL;
3246         }
3247 }
3248
3249 void bpf_clear_redirect_map(struct bpf_map *map)
3250 {
3251         struct bpf_redirect_info *ri;
3252         int cpu;
3253
3254         for_each_possible_cpu(cpu) {
3255                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3256                 /* Avoid polluting remote cacheline due to writes if
3257                  * not needed. Once we pass this test, we need the
3258                  * cmpxchg() to make sure it hasn't been changed in
3259                  * the meantime by remote CPU.
3260                  */
3261                 if (unlikely(READ_ONCE(ri->map) == map))
3262                         cmpxchg(&ri->map, map, NULL);
3263         }
3264 }
3265
3266 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3267                                struct bpf_prog *xdp_prog, struct bpf_map *map)
3268 {
3269         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3270         u32 index = ri->ifindex;
3271         void *fwd = NULL;
3272         int err;
3273
3274         ri->ifindex = 0;
3275         WRITE_ONCE(ri->map, NULL);
3276
3277         fwd = __xdp_map_lookup_elem(map, index);
3278         if (!fwd) {
3279                 err = -EINVAL;
3280                 goto err;
3281         }
3282         if (ri->map_to_flush && ri->map_to_flush != map)
3283                 xdp_do_flush_map();
3284
3285         err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3286         if (unlikely(err))
3287                 goto err;
3288
3289         ri->map_to_flush = map;
3290         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3291         return 0;
3292 err:
3293         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3294         return err;
3295 }
3296
3297 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3298                     struct bpf_prog *xdp_prog)
3299 {
3300         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3301         struct bpf_map *map = READ_ONCE(ri->map);
3302         struct net_device *fwd;
3303         u32 index = ri->ifindex;
3304         int err;
3305
3306         if (map)
3307                 return xdp_do_redirect_map(dev, xdp, xdp_prog, map);
3308
3309         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3310         ri->ifindex = 0;
3311         if (unlikely(!fwd)) {
3312                 err = -EINVAL;
3313                 goto err;
3314         }
3315
3316         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3317         if (unlikely(err))
3318                 goto err;
3319
3320         _trace_xdp_redirect(dev, xdp_prog, index);
3321         return 0;
3322 err:
3323         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3324         return err;
3325 }
3326 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3327
3328 static int xdp_do_generic_redirect_map(struct net_device *dev,
3329                                        struct sk_buff *skb,
3330                                        struct xdp_buff *xdp,
3331                                        struct bpf_prog *xdp_prog,
3332                                        struct bpf_map *map)
3333 {
3334         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3335         u32 index = ri->ifindex;
3336         void *fwd = NULL;
3337         int err = 0;
3338
3339         ri->ifindex = 0;
3340         WRITE_ONCE(ri->map, NULL);
3341
3342         fwd = __xdp_map_lookup_elem(map, index);
3343         if (unlikely(!fwd)) {
3344                 err = -EINVAL;
3345                 goto err;
3346         }
3347
3348         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3349                 struct bpf_dtab_netdev *dst = fwd;
3350
3351                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3352                 if (unlikely(err))
3353                         goto err;
3354         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3355                 struct xdp_sock *xs = fwd;
3356
3357                 err = xsk_generic_rcv(xs, xdp);
3358                 if (err)
3359                         goto err;
3360                 consume_skb(skb);
3361         } else {
3362                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3363                 err = -EBADRQC;
3364                 goto err;
3365         }
3366
3367         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3368         return 0;
3369 err:
3370         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3371         return err;
3372 }
3373
3374 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3375                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3376 {
3377         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3378         struct bpf_map *map = READ_ONCE(ri->map);
3379         u32 index = ri->ifindex;
3380         struct net_device *fwd;
3381         int err = 0;
3382
3383         if (map)
3384                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3385                                                    map);
3386         ri->ifindex = 0;
3387         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3388         if (unlikely(!fwd)) {
3389                 err = -EINVAL;
3390                 goto err;
3391         }
3392
3393         err = xdp_ok_fwd_dev(fwd, skb->len);
3394         if (unlikely(err))
3395                 goto err;
3396
3397         skb->dev = fwd;
3398         _trace_xdp_redirect(dev, xdp_prog, index);
3399         generic_xdp_tx(skb, xdp_prog);
3400         return 0;
3401 err:
3402         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3403         return err;
3404 }
3405 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3406
3407 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3408 {
3409         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3410
3411         if (unlikely(flags))
3412                 return XDP_ABORTED;
3413
3414         ri->ifindex = ifindex;
3415         ri->flags = flags;
3416         WRITE_ONCE(ri->map, NULL);
3417
3418         return XDP_REDIRECT;
3419 }
3420
3421 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3422         .func           = bpf_xdp_redirect,
3423         .gpl_only       = false,
3424         .ret_type       = RET_INTEGER,
3425         .arg1_type      = ARG_ANYTHING,
3426         .arg2_type      = ARG_ANYTHING,
3427 };
3428
3429 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3430            u64, flags)
3431 {
3432         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3433
3434         if (unlikely(flags))
3435                 return XDP_ABORTED;
3436
3437         ri->ifindex = ifindex;
3438         ri->flags = flags;
3439         WRITE_ONCE(ri->map, map);
3440
3441         return XDP_REDIRECT;
3442 }
3443
3444 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3445         .func           = bpf_xdp_redirect_map,
3446         .gpl_only       = false,
3447         .ret_type       = RET_INTEGER,
3448         .arg1_type      = ARG_CONST_MAP_PTR,
3449         .arg2_type      = ARG_ANYTHING,
3450         .arg3_type      = ARG_ANYTHING,
3451 };
3452
3453 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3454                                   unsigned long off, unsigned long len)
3455 {
3456         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3457
3458         if (unlikely(!ptr))
3459                 return len;
3460         if (ptr != dst_buff)
3461                 memcpy(dst_buff, ptr, len);
3462
3463         return 0;
3464 }
3465
3466 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3467            u64, flags, void *, meta, u64, meta_size)
3468 {
3469         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3470
3471         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3472                 return -EINVAL;
3473         if (unlikely(skb_size > skb->len))
3474                 return -EFAULT;
3475
3476         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3477                                 bpf_skb_copy);
3478 }
3479
3480 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3481         .func           = bpf_skb_event_output,
3482         .gpl_only       = true,
3483         .ret_type       = RET_INTEGER,
3484         .arg1_type      = ARG_PTR_TO_CTX,
3485         .arg2_type      = ARG_CONST_MAP_PTR,
3486         .arg3_type      = ARG_ANYTHING,
3487         .arg4_type      = ARG_PTR_TO_MEM,
3488         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3489 };
3490
3491 static unsigned short bpf_tunnel_key_af(u64 flags)
3492 {
3493         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3494 }
3495
3496 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3497            u32, size, u64, flags)
3498 {
3499         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3500         u8 compat[sizeof(struct bpf_tunnel_key)];
3501         void *to_orig = to;
3502         int err;
3503
3504         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3505                 err = -EINVAL;
3506                 goto err_clear;
3507         }
3508         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3509                 err = -EPROTO;
3510                 goto err_clear;
3511         }
3512         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3513                 err = -EINVAL;
3514                 switch (size) {
3515                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3516                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3517                         goto set_compat;
3518                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3519                         /* Fixup deprecated structure layouts here, so we have
3520                          * a common path later on.
3521                          */
3522                         if (ip_tunnel_info_af(info) != AF_INET)
3523                                 goto err_clear;
3524 set_compat:
3525                         to = (struct bpf_tunnel_key *)compat;
3526                         break;
3527                 default:
3528                         goto err_clear;
3529                 }
3530         }
3531
3532         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3533         to->tunnel_tos = info->key.tos;
3534         to->tunnel_ttl = info->key.ttl;
3535         to->tunnel_ext = 0;
3536
3537         if (flags & BPF_F_TUNINFO_IPV6) {
3538                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3539                        sizeof(to->remote_ipv6));
3540                 to->tunnel_label = be32_to_cpu(info->key.label);
3541         } else {
3542                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3543                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3544                 to->tunnel_label = 0;
3545         }
3546
3547         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3548                 memcpy(to_orig, to, size);
3549
3550         return 0;
3551 err_clear:
3552         memset(to_orig, 0, size);
3553         return err;
3554 }
3555
3556 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3557         .func           = bpf_skb_get_tunnel_key,
3558         .gpl_only       = false,
3559         .ret_type       = RET_INTEGER,
3560         .arg1_type      = ARG_PTR_TO_CTX,
3561         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3562         .arg3_type      = ARG_CONST_SIZE,
3563         .arg4_type      = ARG_ANYTHING,
3564 };
3565
3566 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3567 {
3568         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3569         int err;
3570
3571         if (unlikely(!info ||
3572                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3573                 err = -ENOENT;
3574                 goto err_clear;
3575         }
3576         if (unlikely(size < info->options_len)) {
3577                 err = -ENOMEM;
3578                 goto err_clear;
3579         }
3580
3581         ip_tunnel_info_opts_get(to, info);
3582         if (size > info->options_len)
3583                 memset(to + info->options_len, 0, size - info->options_len);
3584
3585         return info->options_len;
3586 err_clear:
3587         memset(to, 0, size);
3588         return err;
3589 }
3590
3591 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3592         .func           = bpf_skb_get_tunnel_opt,
3593         .gpl_only       = false,
3594         .ret_type       = RET_INTEGER,
3595         .arg1_type      = ARG_PTR_TO_CTX,
3596         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3597         .arg3_type      = ARG_CONST_SIZE,
3598 };
3599
3600 static struct metadata_dst __percpu *md_dst;
3601
3602 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3603            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3604 {
3605         struct metadata_dst *md = this_cpu_ptr(md_dst);
3606         u8 compat[sizeof(struct bpf_tunnel_key)];
3607         struct ip_tunnel_info *info;
3608
3609         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3610                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3611                 return -EINVAL;
3612         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3613                 switch (size) {
3614                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3615                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3616                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3617                         /* Fixup deprecated structure layouts here, so we have
3618                          * a common path later on.
3619                          */
3620                         memcpy(compat, from, size);
3621                         memset(compat + size, 0, sizeof(compat) - size);
3622                         from = (const struct bpf_tunnel_key *) compat;
3623                         break;
3624                 default:
3625                         return -EINVAL;
3626                 }
3627         }
3628         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3629                      from->tunnel_ext))
3630                 return -EINVAL;
3631
3632         skb_dst_drop(skb);
3633         dst_hold((struct dst_entry *) md);
3634         skb_dst_set(skb, (struct dst_entry *) md);
3635
3636         info = &md->u.tun_info;
3637         memset(info, 0, sizeof(*info));
3638         info->mode = IP_TUNNEL_INFO_TX;
3639
3640         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3641         if (flags & BPF_F_DONT_FRAGMENT)
3642                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3643         if (flags & BPF_F_ZERO_CSUM_TX)
3644                 info->key.tun_flags &= ~TUNNEL_CSUM;
3645         if (flags & BPF_F_SEQ_NUMBER)
3646                 info->key.tun_flags |= TUNNEL_SEQ;
3647
3648         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3649         info->key.tos = from->tunnel_tos;
3650         info->key.ttl = from->tunnel_ttl;
3651
3652         if (flags & BPF_F_TUNINFO_IPV6) {
3653                 info->mode |= IP_TUNNEL_INFO_IPV6;
3654                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3655                        sizeof(from->remote_ipv6));
3656                 info->key.label = cpu_to_be32(from->tunnel_label) &
3657                                   IPV6_FLOWLABEL_MASK;
3658         } else {
3659                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3660         }
3661
3662         return 0;
3663 }
3664
3665 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3666         .func           = bpf_skb_set_tunnel_key,
3667         .gpl_only       = false,
3668         .ret_type       = RET_INTEGER,
3669         .arg1_type      = ARG_PTR_TO_CTX,
3670         .arg2_type      = ARG_PTR_TO_MEM,
3671         .arg3_type      = ARG_CONST_SIZE,
3672         .arg4_type      = ARG_ANYTHING,
3673 };
3674
3675 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3676            const u8 *, from, u32, size)
3677 {
3678         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3679         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3680
3681         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3682                 return -EINVAL;
3683         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3684                 return -ENOMEM;
3685
3686         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3687
3688         return 0;
3689 }
3690
3691 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3692         .func           = bpf_skb_set_tunnel_opt,
3693         .gpl_only       = false,
3694         .ret_type       = RET_INTEGER,
3695         .arg1_type      = ARG_PTR_TO_CTX,
3696         .arg2_type      = ARG_PTR_TO_MEM,
3697         .arg3_type      = ARG_CONST_SIZE,
3698 };
3699
3700 static const struct bpf_func_proto *
3701 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3702 {
3703         if (!md_dst) {
3704                 struct metadata_dst __percpu *tmp;
3705
3706                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3707                                                 METADATA_IP_TUNNEL,
3708                                                 GFP_KERNEL);
3709                 if (!tmp)
3710                         return NULL;
3711                 if (cmpxchg(&md_dst, NULL, tmp))
3712                         metadata_dst_free_percpu(tmp);
3713         }
3714
3715         switch (which) {
3716         case BPF_FUNC_skb_set_tunnel_key:
3717                 return &bpf_skb_set_tunnel_key_proto;
3718         case BPF_FUNC_skb_set_tunnel_opt:
3719                 return &bpf_skb_set_tunnel_opt_proto;
3720         default:
3721                 return NULL;
3722         }
3723 }
3724
3725 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3726            u32, idx)
3727 {
3728         struct bpf_array *array = container_of(map, struct bpf_array, map);
3729         struct cgroup *cgrp;
3730         struct sock *sk;
3731
3732         sk = skb_to_full_sk(skb);
3733         if (!sk || !sk_fullsock(sk))
3734                 return -ENOENT;
3735         if (unlikely(idx >= array->map.max_entries))
3736                 return -E2BIG;
3737
3738         cgrp = READ_ONCE(array->ptrs[idx]);
3739         if (unlikely(!cgrp))
3740                 return -EAGAIN;
3741
3742         return sk_under_cgroup_hierarchy(sk, cgrp);
3743 }
3744
3745 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3746         .func           = bpf_skb_under_cgroup,
3747         .gpl_only       = false,
3748         .ret_type       = RET_INTEGER,
3749         .arg1_type      = ARG_PTR_TO_CTX,
3750         .arg2_type      = ARG_CONST_MAP_PTR,
3751         .arg3_type      = ARG_ANYTHING,
3752 };
3753
3754 #ifdef CONFIG_SOCK_CGROUP_DATA
3755 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3756 {
3757         struct sock *sk = skb_to_full_sk(skb);
3758         struct cgroup *cgrp;
3759
3760         if (!sk || !sk_fullsock(sk))
3761                 return 0;
3762
3763         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3764         return cgrp->kn->id.id;
3765 }
3766
3767 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3768         .func           = bpf_skb_cgroup_id,
3769         .gpl_only       = false,
3770         .ret_type       = RET_INTEGER,
3771         .arg1_type      = ARG_PTR_TO_CTX,
3772 };
3773
3774 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
3775            ancestor_level)
3776 {
3777         struct sock *sk = skb_to_full_sk(skb);
3778         struct cgroup *ancestor;
3779         struct cgroup *cgrp;
3780
3781         if (!sk || !sk_fullsock(sk))
3782                 return 0;
3783
3784         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3785         ancestor = cgroup_ancestor(cgrp, ancestor_level);
3786         if (!ancestor)
3787                 return 0;
3788
3789         return ancestor->kn->id.id;
3790 }
3791
3792 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
3793         .func           = bpf_skb_ancestor_cgroup_id,
3794         .gpl_only       = false,
3795         .ret_type       = RET_INTEGER,
3796         .arg1_type      = ARG_PTR_TO_CTX,
3797         .arg2_type      = ARG_ANYTHING,
3798 };
3799 #endif
3800
3801 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3802                                   unsigned long off, unsigned long len)
3803 {
3804         memcpy(dst_buff, src_buff + off, len);
3805         return 0;
3806 }
3807
3808 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3809            u64, flags, void *, meta, u64, meta_size)
3810 {
3811         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3812
3813         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3814                 return -EINVAL;
3815         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3816                 return -EFAULT;
3817
3818         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3819                                 xdp_size, bpf_xdp_copy);
3820 }
3821
3822 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3823         .func           = bpf_xdp_event_output,
3824         .gpl_only       = true,
3825         .ret_type       = RET_INTEGER,
3826         .arg1_type      = ARG_PTR_TO_CTX,
3827         .arg2_type      = ARG_CONST_MAP_PTR,
3828         .arg3_type      = ARG_ANYTHING,
3829         .arg4_type      = ARG_PTR_TO_MEM,
3830         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3831 };
3832
3833 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3834 {
3835         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3836 }
3837
3838 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3839         .func           = bpf_get_socket_cookie,
3840         .gpl_only       = false,
3841         .ret_type       = RET_INTEGER,
3842         .arg1_type      = ARG_PTR_TO_CTX,
3843 };
3844
3845 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
3846 {
3847         return sock_gen_cookie(ctx->sk);
3848 }
3849
3850 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
3851         .func           = bpf_get_socket_cookie_sock_addr,
3852         .gpl_only       = false,
3853         .ret_type       = RET_INTEGER,
3854         .arg1_type      = ARG_PTR_TO_CTX,
3855 };
3856
3857 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
3858 {
3859         return sock_gen_cookie(ctx->sk);
3860 }
3861
3862 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
3863         .func           = bpf_get_socket_cookie_sock_ops,
3864         .gpl_only       = false,
3865         .ret_type       = RET_INTEGER,
3866         .arg1_type      = ARG_PTR_TO_CTX,
3867 };
3868
3869 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3870 {
3871         struct sock *sk = sk_to_full_sk(skb->sk);
3872         kuid_t kuid;
3873
3874         if (!sk || !sk_fullsock(sk))
3875                 return overflowuid;
3876         kuid = sock_net_uid(sock_net(sk), sk);
3877         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3878 }
3879
3880 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3881         .func           = bpf_get_socket_uid,
3882         .gpl_only       = false,
3883         .ret_type       = RET_INTEGER,
3884         .arg1_type      = ARG_PTR_TO_CTX,
3885 };
3886
3887 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3888            int, level, int, optname, char *, optval, int, optlen)
3889 {
3890         struct sock *sk = bpf_sock->sk;
3891         int ret = 0;
3892         int val;
3893
3894         if (!sk_fullsock(sk))
3895                 return -EINVAL;
3896
3897         if (level == SOL_SOCKET) {
3898                 if (optlen != sizeof(int))
3899                         return -EINVAL;
3900                 val = *((int *)optval);
3901
3902                 /* Only some socketops are supported */
3903                 switch (optname) {
3904                 case SO_RCVBUF:
3905                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3906                         sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3907                         break;
3908                 case SO_SNDBUF:
3909                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3910                         sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3911                         break;
3912                 case SO_MAX_PACING_RATE:
3913                         sk->sk_max_pacing_rate = val;
3914                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3915                                                  sk->sk_max_pacing_rate);
3916                         break;
3917                 case SO_PRIORITY:
3918                         sk->sk_priority = val;
3919                         break;
3920                 case SO_RCVLOWAT:
3921                         if (val < 0)
3922                                 val = INT_MAX;
3923                         sk->sk_rcvlowat = val ? : 1;
3924                         break;
3925                 case SO_MARK:
3926                         sk->sk_mark = val;
3927                         break;
3928                 default:
3929                         ret = -EINVAL;
3930                 }
3931 #ifdef CONFIG_INET
3932         } else if (level == SOL_IP) {
3933                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3934                         return -EINVAL;
3935
3936                 val = *((int *)optval);
3937                 /* Only some options are supported */
3938                 switch (optname) {
3939                 case IP_TOS:
3940                         if (val < -1 || val > 0xff) {
3941                                 ret = -EINVAL;
3942                         } else {
3943                                 struct inet_sock *inet = inet_sk(sk);
3944
3945                                 if (val == -1)
3946                                         val = 0;
3947                                 inet->tos = val;
3948                         }
3949                         break;
3950                 default:
3951                         ret = -EINVAL;
3952                 }
3953 #if IS_ENABLED(CONFIG_IPV6)
3954         } else if (level == SOL_IPV6) {
3955                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3956                         return -EINVAL;
3957
3958                 val = *((int *)optval);
3959                 /* Only some options are supported */
3960                 switch (optname) {
3961                 case IPV6_TCLASS:
3962                         if (val < -1 || val > 0xff) {
3963                                 ret = -EINVAL;
3964                         } else {
3965                                 struct ipv6_pinfo *np = inet6_sk(sk);
3966
3967                                 if (val == -1)
3968                                         val = 0;
3969                                 np->tclass = val;
3970                         }
3971                         break;
3972                 default:
3973                         ret = -EINVAL;
3974                 }
3975 #endif
3976         } else if (level == SOL_TCP &&
3977                    sk->sk_prot->setsockopt == tcp_setsockopt) {
3978                 if (optname == TCP_CONGESTION) {
3979                         char name[TCP_CA_NAME_MAX];
3980                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3981
3982                         strncpy(name, optval, min_t(long, optlen,
3983                                                     TCP_CA_NAME_MAX-1));
3984                         name[TCP_CA_NAME_MAX-1] = 0;
3985                         ret = tcp_set_congestion_control(sk, name, false,
3986                                                          reinit);
3987                 } else {
3988                         struct tcp_sock *tp = tcp_sk(sk);
3989
3990                         if (optlen != sizeof(int))
3991                                 return -EINVAL;
3992
3993                         val = *((int *)optval);
3994                         /* Only some options are supported */
3995                         switch (optname) {
3996                         case TCP_BPF_IW:
3997                                 if (val <= 0 || tp->data_segs_out > 0)
3998                                         ret = -EINVAL;
3999                                 else
4000                                         tp->snd_cwnd = val;
4001                                 break;
4002                         case TCP_BPF_SNDCWND_CLAMP:
4003                                 if (val <= 0) {
4004                                         ret = -EINVAL;
4005                                 } else {
4006                                         tp->snd_cwnd_clamp = val;
4007                                         tp->snd_ssthresh = val;
4008                                 }
4009                                 break;
4010                         default:
4011                                 ret = -EINVAL;
4012                         }
4013                 }
4014 #endif
4015         } else {
4016                 ret = -EINVAL;
4017         }
4018         return ret;
4019 }
4020
4021 static const struct bpf_func_proto bpf_setsockopt_proto = {
4022         .func           = bpf_setsockopt,
4023         .gpl_only       = false,
4024         .ret_type       = RET_INTEGER,
4025         .arg1_type      = ARG_PTR_TO_CTX,
4026         .arg2_type      = ARG_ANYTHING,
4027         .arg3_type      = ARG_ANYTHING,
4028         .arg4_type      = ARG_PTR_TO_MEM,
4029         .arg5_type      = ARG_CONST_SIZE,
4030 };
4031
4032 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4033            int, level, int, optname, char *, optval, int, optlen)
4034 {
4035         struct sock *sk = bpf_sock->sk;
4036
4037         if (!sk_fullsock(sk))
4038                 goto err_clear;
4039
4040 #ifdef CONFIG_INET
4041         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4042                 if (optname == TCP_CONGESTION) {
4043                         struct inet_connection_sock *icsk = inet_csk(sk);
4044
4045                         if (!icsk->icsk_ca_ops || optlen <= 1)
4046                                 goto err_clear;
4047                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4048                         optval[optlen - 1] = 0;
4049                 } else {
4050                         goto err_clear;
4051                 }
4052         } else if (level == SOL_IP) {
4053                 struct inet_sock *inet = inet_sk(sk);
4054
4055                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4056                         goto err_clear;
4057
4058                 /* Only some options are supported */
4059                 switch (optname) {
4060                 case IP_TOS:
4061                         *((int *)optval) = (int)inet->tos;
4062                         break;
4063                 default:
4064                         goto err_clear;
4065                 }
4066 #if IS_ENABLED(CONFIG_IPV6)
4067         } else if (level == SOL_IPV6) {
4068                 struct ipv6_pinfo *np = inet6_sk(sk);
4069
4070                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4071                         goto err_clear;
4072
4073                 /* Only some options are supported */
4074                 switch (optname) {
4075                 case IPV6_TCLASS:
4076                         *((int *)optval) = (int)np->tclass;
4077                         break;
4078                 default:
4079                         goto err_clear;
4080                 }
4081 #endif
4082         } else {
4083                 goto err_clear;
4084         }
4085         return 0;
4086 #endif
4087 err_clear:
4088         memset(optval, 0, optlen);
4089         return -EINVAL;
4090 }
4091
4092 static const struct bpf_func_proto bpf_getsockopt_proto = {
4093         .func           = bpf_getsockopt,
4094         .gpl_only       = false,
4095         .ret_type       = RET_INTEGER,
4096         .arg1_type      = ARG_PTR_TO_CTX,
4097         .arg2_type      = ARG_ANYTHING,
4098         .arg3_type      = ARG_ANYTHING,
4099         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4100         .arg5_type      = ARG_CONST_SIZE,
4101 };
4102
4103 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4104            int, argval)
4105 {
4106         struct sock *sk = bpf_sock->sk;
4107         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4108
4109         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4110                 return -EINVAL;
4111
4112         if (val)
4113                 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4114
4115         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4116 }
4117
4118 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4119         .func           = bpf_sock_ops_cb_flags_set,
4120         .gpl_only       = false,
4121         .ret_type       = RET_INTEGER,
4122         .arg1_type      = ARG_PTR_TO_CTX,
4123         .arg2_type      = ARG_ANYTHING,
4124 };
4125
4126 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4127 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4128
4129 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4130            int, addr_len)
4131 {
4132 #ifdef CONFIG_INET
4133         struct sock *sk = ctx->sk;
4134         int err;
4135
4136         /* Binding to port can be expensive so it's prohibited in the helper.
4137          * Only binding to IP is supported.
4138          */
4139         err = -EINVAL;
4140         if (addr->sa_family == AF_INET) {
4141                 if (addr_len < sizeof(struct sockaddr_in))
4142                         return err;
4143                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4144                         return err;
4145                 return __inet_bind(sk, addr, addr_len, true, false);
4146 #if IS_ENABLED(CONFIG_IPV6)
4147         } else if (addr->sa_family == AF_INET6) {
4148                 if (addr_len < SIN6_LEN_RFC2133)
4149                         return err;
4150                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4151                         return err;
4152                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4153                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4154                  */
4155                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4156 #endif /* CONFIG_IPV6 */
4157         }
4158 #endif /* CONFIG_INET */
4159
4160         return -EAFNOSUPPORT;
4161 }
4162
4163 static const struct bpf_func_proto bpf_bind_proto = {
4164         .func           = bpf_bind,
4165         .gpl_only       = false,
4166         .ret_type       = RET_INTEGER,
4167         .arg1_type      = ARG_PTR_TO_CTX,
4168         .arg2_type      = ARG_PTR_TO_MEM,
4169         .arg3_type      = ARG_CONST_SIZE,
4170 };
4171
4172 #ifdef CONFIG_XFRM
4173 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4174            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4175 {
4176         const struct sec_path *sp = skb_sec_path(skb);
4177         const struct xfrm_state *x;
4178
4179         if (!sp || unlikely(index >= sp->len || flags))
4180                 goto err_clear;
4181
4182         x = sp->xvec[index];
4183
4184         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4185                 goto err_clear;
4186
4187         to->reqid = x->props.reqid;
4188         to->spi = x->id.spi;
4189         to->family = x->props.family;
4190         to->ext = 0;
4191
4192         if (to->family == AF_INET6) {
4193                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4194                        sizeof(to->remote_ipv6));
4195         } else {
4196                 to->remote_ipv4 = x->props.saddr.a4;
4197                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4198         }
4199
4200         return 0;
4201 err_clear:
4202         memset(to, 0, size);
4203         return -EINVAL;
4204 }
4205
4206 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4207         .func           = bpf_skb_get_xfrm_state,
4208         .gpl_only       = false,
4209         .ret_type       = RET_INTEGER,
4210         .arg1_type      = ARG_PTR_TO_CTX,
4211         .arg2_type      = ARG_ANYTHING,
4212         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4213         .arg4_type      = ARG_CONST_SIZE,
4214         .arg5_type      = ARG_ANYTHING,
4215 };
4216 #endif
4217
4218 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4219 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4220                                   const struct neighbour *neigh,
4221                                   const struct net_device *dev)
4222 {
4223         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4224         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4225         params->h_vlan_TCI = 0;
4226         params->h_vlan_proto = 0;
4227         params->ifindex = dev->ifindex;
4228
4229         return 0;
4230 }
4231 #endif
4232
4233 #if IS_ENABLED(CONFIG_INET)
4234 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4235                                u32 flags, bool check_mtu)
4236 {
4237         struct in_device *in_dev;
4238         struct neighbour *neigh;
4239         struct net_device *dev;
4240         struct fib_result res;
4241         struct fib_nh *nh;
4242         struct flowi4 fl4;
4243         int err;
4244         u32 mtu;
4245
4246         dev = dev_get_by_index_rcu(net, params->ifindex);
4247         if (unlikely(!dev))
4248                 return -ENODEV;
4249
4250         /* verify forwarding is enabled on this interface */
4251         in_dev = __in_dev_get_rcu(dev);
4252         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4253                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4254
4255         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4256                 fl4.flowi4_iif = 1;
4257                 fl4.flowi4_oif = params->ifindex;
4258         } else {
4259                 fl4.flowi4_iif = params->ifindex;
4260                 fl4.flowi4_oif = 0;
4261         }
4262         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4263         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4264         fl4.flowi4_flags = 0;
4265
4266         fl4.flowi4_proto = params->l4_protocol;
4267         fl4.daddr = params->ipv4_dst;
4268         fl4.saddr = params->ipv4_src;
4269         fl4.fl4_sport = params->sport;
4270         fl4.fl4_dport = params->dport;
4271
4272         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4273                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4274                 struct fib_table *tb;
4275
4276                 tb = fib_get_table(net, tbid);
4277                 if (unlikely(!tb))
4278                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4279
4280                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4281         } else {
4282                 fl4.flowi4_mark = 0;
4283                 fl4.flowi4_secid = 0;
4284                 fl4.flowi4_tun_key.tun_id = 0;
4285                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4286
4287                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4288         }
4289
4290         if (err) {
4291                 /* map fib lookup errors to RTN_ type */
4292                 if (err == -EINVAL)
4293                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4294                 if (err == -EHOSTUNREACH)
4295                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4296                 if (err == -EACCES)
4297                         return BPF_FIB_LKUP_RET_PROHIBIT;
4298
4299                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4300         }
4301
4302         if (res.type != RTN_UNICAST)
4303                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4304
4305         if (res.fi->fib_nhs > 1)
4306                 fib_select_path(net, &res, &fl4, NULL);
4307
4308         if (check_mtu) {
4309                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4310                 if (params->tot_len > mtu)
4311                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4312         }
4313
4314         nh = &res.fi->fib_nh[res.nh_sel];
4315
4316         /* do not handle lwt encaps right now */
4317         if (nh->nh_lwtstate)
4318                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4319
4320         dev = nh->nh_dev;
4321         if (nh->nh_gw)
4322                 params->ipv4_dst = nh->nh_gw;
4323
4324         params->rt_metric = res.fi->fib_priority;
4325
4326         /* xdp and cls_bpf programs are run in RCU-bh so
4327          * rcu_read_lock_bh is not needed here
4328          */
4329         neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4330         if (!neigh)
4331                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4332
4333         return bpf_fib_set_fwd_params(params, neigh, dev);
4334 }
4335 #endif
4336
4337 #if IS_ENABLED(CONFIG_IPV6)
4338 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4339                                u32 flags, bool check_mtu)
4340 {
4341         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4342         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4343         struct neighbour *neigh;
4344         struct net_device *dev;
4345         struct inet6_dev *idev;
4346         struct fib6_info *f6i;
4347         struct flowi6 fl6;
4348         int strict = 0;
4349         int oif;
4350         u32 mtu;
4351
4352         /* link local addresses are never forwarded */
4353         if (rt6_need_strict(dst) || rt6_need_strict(src))
4354                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4355
4356         dev = dev_get_by_index_rcu(net, params->ifindex);
4357         if (unlikely(!dev))
4358                 return -ENODEV;
4359
4360         idev = __in6_dev_get_safely(dev);
4361         if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4362                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4363
4364         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4365                 fl6.flowi6_iif = 1;
4366                 oif = fl6.flowi6_oif = params->ifindex;
4367         } else {
4368                 oif = fl6.flowi6_iif = params->ifindex;
4369                 fl6.flowi6_oif = 0;
4370                 strict = RT6_LOOKUP_F_HAS_SADDR;
4371         }
4372         fl6.flowlabel = params->flowinfo;
4373         fl6.flowi6_scope = 0;
4374         fl6.flowi6_flags = 0;
4375         fl6.mp_hash = 0;
4376
4377         fl6.flowi6_proto = params->l4_protocol;
4378         fl6.daddr = *dst;
4379         fl6.saddr = *src;
4380         fl6.fl6_sport = params->sport;
4381         fl6.fl6_dport = params->dport;
4382
4383         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4384                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4385                 struct fib6_table *tb;
4386
4387                 tb = ipv6_stub->fib6_get_table(net, tbid);
4388                 if (unlikely(!tb))
4389                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4390
4391                 f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4392         } else {
4393                 fl6.flowi6_mark = 0;
4394                 fl6.flowi6_secid = 0;
4395                 fl6.flowi6_tun_key.tun_id = 0;
4396                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4397
4398                 f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4399         }
4400
4401         if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4402                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4403
4404         if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4405                 switch (f6i->fib6_type) {
4406                 case RTN_BLACKHOLE:
4407                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4408                 case RTN_UNREACHABLE:
4409                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4410                 case RTN_PROHIBIT:
4411                         return BPF_FIB_LKUP_RET_PROHIBIT;
4412                 default:
4413                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4414                 }
4415         }
4416
4417         if (f6i->fib6_type != RTN_UNICAST)
4418                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4419
4420         if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4421                 f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4422                                                        fl6.flowi6_oif, NULL,
4423                                                        strict);
4424
4425         if (check_mtu) {
4426                 mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4427                 if (params->tot_len > mtu)
4428                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4429         }
4430
4431         if (f6i->fib6_nh.nh_lwtstate)
4432                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4433
4434         if (f6i->fib6_flags & RTF_GATEWAY)
4435                 *dst = f6i->fib6_nh.nh_gw;
4436
4437         dev = f6i->fib6_nh.nh_dev;
4438         params->rt_metric = f6i->fib6_metric;
4439
4440         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4441          * not needed here. Can not use __ipv6_neigh_lookup_noref here
4442          * because we need to get nd_tbl via the stub
4443          */
4444         neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4445                                       ndisc_hashfn, dst, dev);
4446         if (!neigh)
4447                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4448
4449         return bpf_fib_set_fwd_params(params, neigh, dev);
4450 }
4451 #endif
4452
4453 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4454            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4455 {
4456         if (plen < sizeof(*params))
4457                 return -EINVAL;
4458
4459         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4460                 return -EINVAL;
4461
4462         switch (params->family) {
4463 #if IS_ENABLED(CONFIG_INET)
4464         case AF_INET:
4465                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4466                                            flags, true);
4467 #endif
4468 #if IS_ENABLED(CONFIG_IPV6)
4469         case AF_INET6:
4470                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4471                                            flags, true);
4472 #endif
4473         }
4474         return -EAFNOSUPPORT;
4475 }
4476
4477 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4478         .func           = bpf_xdp_fib_lookup,
4479         .gpl_only       = true,
4480         .ret_type       = RET_INTEGER,
4481         .arg1_type      = ARG_PTR_TO_CTX,
4482         .arg2_type      = ARG_PTR_TO_MEM,
4483         .arg3_type      = ARG_CONST_SIZE,
4484         .arg4_type      = ARG_ANYTHING,
4485 };
4486
4487 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4488            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4489 {
4490         struct net *net = dev_net(skb->dev);
4491         int rc = -EAFNOSUPPORT;
4492
4493         if (plen < sizeof(*params))
4494                 return -EINVAL;
4495
4496         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4497                 return -EINVAL;
4498
4499         switch (params->family) {
4500 #if IS_ENABLED(CONFIG_INET)
4501         case AF_INET:
4502                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4503                 break;
4504 #endif
4505 #if IS_ENABLED(CONFIG_IPV6)
4506         case AF_INET6:
4507                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4508                 break;
4509 #endif
4510         }
4511
4512         if (!rc) {
4513                 struct net_device *dev;
4514
4515                 dev = dev_get_by_index_rcu(net, params->ifindex);
4516                 if (!is_skb_forwardable(dev, skb))
4517                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4518         }
4519
4520         return rc;
4521 }
4522
4523 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4524         .func           = bpf_skb_fib_lookup,
4525         .gpl_only       = true,
4526         .ret_type       = RET_INTEGER,
4527         .arg1_type      = ARG_PTR_TO_CTX,
4528         .arg2_type      = ARG_PTR_TO_MEM,
4529         .arg3_type      = ARG_CONST_SIZE,
4530         .arg4_type      = ARG_ANYTHING,
4531 };
4532
4533 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4534 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4535 {
4536         int err;
4537         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4538
4539         if (!seg6_validate_srh(srh, len))
4540                 return -EINVAL;
4541
4542         switch (type) {
4543         case BPF_LWT_ENCAP_SEG6_INLINE:
4544                 if (skb->protocol != htons(ETH_P_IPV6))
4545                         return -EBADMSG;
4546
4547                 err = seg6_do_srh_inline(skb, srh);
4548                 break;
4549         case BPF_LWT_ENCAP_SEG6:
4550                 skb_reset_inner_headers(skb);
4551                 skb->encapsulation = 1;
4552                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4553                 break;
4554         default:
4555                 return -EINVAL;
4556         }
4557
4558         bpf_compute_data_pointers(skb);
4559         if (err)
4560                 return err;
4561
4562         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4563         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4564
4565         return seg6_lookup_nexthop(skb, NULL, 0);
4566 }
4567 #endif /* CONFIG_IPV6_SEG6_BPF */
4568
4569 BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4570            u32, len)
4571 {
4572         switch (type) {
4573 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4574         case BPF_LWT_ENCAP_SEG6:
4575         case BPF_LWT_ENCAP_SEG6_INLINE:
4576                 return bpf_push_seg6_encap(skb, type, hdr, len);
4577 #endif
4578         default:
4579                 return -EINVAL;
4580         }
4581 }
4582
4583 static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
4584         .func           = bpf_lwt_push_encap,
4585         .gpl_only       = false,
4586         .ret_type       = RET_INTEGER,
4587         .arg1_type      = ARG_PTR_TO_CTX,
4588         .arg2_type      = ARG_ANYTHING,
4589         .arg3_type      = ARG_PTR_TO_MEM,
4590         .arg4_type      = ARG_CONST_SIZE
4591 };
4592
4593 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4594 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4595            const void *, from, u32, len)
4596 {
4597         struct seg6_bpf_srh_state *srh_state =
4598                 this_cpu_ptr(&seg6_bpf_srh_states);
4599         struct ipv6_sr_hdr *srh = srh_state->srh;
4600         void *srh_tlvs, *srh_end, *ptr;
4601         int srhoff = 0;
4602
4603         if (srh == NULL)
4604                 return -EINVAL;
4605
4606         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4607         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4608
4609         ptr = skb->data + offset;
4610         if (ptr >= srh_tlvs && ptr + len <= srh_end)
4611                 srh_state->valid = false;
4612         else if (ptr < (void *)&srh->flags ||
4613                  ptr + len > (void *)&srh->segments)
4614                 return -EFAULT;
4615
4616         if (unlikely(bpf_try_make_writable(skb, offset + len)))
4617                 return -EFAULT;
4618         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4619                 return -EINVAL;
4620         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4621
4622         memcpy(skb->data + offset, from, len);
4623         return 0;
4624 }
4625
4626 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4627         .func           = bpf_lwt_seg6_store_bytes,
4628         .gpl_only       = false,
4629         .ret_type       = RET_INTEGER,
4630         .arg1_type      = ARG_PTR_TO_CTX,
4631         .arg2_type      = ARG_ANYTHING,
4632         .arg3_type      = ARG_PTR_TO_MEM,
4633         .arg4_type      = ARG_CONST_SIZE
4634 };
4635
4636 static void bpf_update_srh_state(struct sk_buff *skb)
4637 {
4638         struct seg6_bpf_srh_state *srh_state =
4639                 this_cpu_ptr(&seg6_bpf_srh_states);
4640         int srhoff = 0;
4641
4642         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
4643                 srh_state->srh = NULL;
4644         } else {
4645                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4646                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
4647                 srh_state->valid = true;
4648         }
4649 }
4650
4651 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4652            u32, action, void *, param, u32, param_len)
4653 {
4654         struct seg6_bpf_srh_state *srh_state =
4655                 this_cpu_ptr(&seg6_bpf_srh_states);
4656         int hdroff = 0;
4657         int err;
4658
4659         switch (action) {
4660         case SEG6_LOCAL_ACTION_END_X:
4661                 if (!seg6_bpf_has_valid_srh(skb))
4662                         return -EBADMSG;
4663                 if (param_len != sizeof(struct in6_addr))
4664                         return -EINVAL;
4665                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4666         case SEG6_LOCAL_ACTION_END_T:
4667                 if (!seg6_bpf_has_valid_srh(skb))
4668                         return -EBADMSG;
4669                 if (param_len != sizeof(int))
4670                         return -EINVAL;
4671                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4672         case SEG6_LOCAL_ACTION_END_DT6:
4673                 if (!seg6_bpf_has_valid_srh(skb))
4674                         return -EBADMSG;
4675                 if (param_len != sizeof(int))
4676                         return -EINVAL;
4677
4678                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
4679                         return -EBADMSG;
4680                 if (!pskb_pull(skb, hdroff))
4681                         return -EBADMSG;
4682
4683                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
4684                 skb_reset_network_header(skb);
4685                 skb_reset_transport_header(skb);
4686                 skb->encapsulation = 0;
4687
4688                 bpf_compute_data_pointers(skb);
4689                 bpf_update_srh_state(skb);
4690                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4691         case SEG6_LOCAL_ACTION_END_B6:
4692                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4693                         return -EBADMSG;
4694                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4695                                           param, param_len);
4696                 if (!err)
4697                         bpf_update_srh_state(skb);
4698
4699                 return err;
4700         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4701                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4702                         return -EBADMSG;
4703                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4704                                           param, param_len);
4705                 if (!err)
4706                         bpf_update_srh_state(skb);
4707
4708                 return err;
4709         default:
4710                 return -EINVAL;
4711         }
4712 }
4713
4714 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4715         .func           = bpf_lwt_seg6_action,
4716         .gpl_only       = false,
4717         .ret_type       = RET_INTEGER,
4718         .arg1_type      = ARG_PTR_TO_CTX,
4719         .arg2_type      = ARG_ANYTHING,
4720         .arg3_type      = ARG_PTR_TO_MEM,
4721         .arg4_type      = ARG_CONST_SIZE
4722 };
4723
4724 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
4725            s32, len)
4726 {
4727         struct seg6_bpf_srh_state *srh_state =
4728                 this_cpu_ptr(&seg6_bpf_srh_states);
4729         struct ipv6_sr_hdr *srh = srh_state->srh;
4730         void *srh_end, *srh_tlvs, *ptr;
4731         struct ipv6hdr *hdr;
4732         int srhoff = 0;
4733         int ret;
4734
4735         if (unlikely(srh == NULL))
4736                 return -EINVAL;
4737
4738         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
4739                         ((srh->first_segment + 1) << 4));
4740         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
4741                         srh_state->hdrlen);
4742         ptr = skb->data + offset;
4743
4744         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
4745                 return -EFAULT;
4746         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
4747                 return -EFAULT;
4748
4749         if (len > 0) {
4750                 ret = skb_cow_head(skb, len);
4751                 if (unlikely(ret < 0))
4752                         return ret;
4753
4754                 ret = bpf_skb_net_hdr_push(skb, offset, len);
4755         } else {
4756                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
4757         }
4758
4759         bpf_compute_data_pointers(skb);
4760         if (unlikely(ret < 0))
4761                 return ret;
4762
4763         hdr = (struct ipv6hdr *)skb->data;
4764         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4765
4766         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4767                 return -EINVAL;
4768         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4769         srh_state->hdrlen += len;
4770         srh_state->valid = false;
4771         return 0;
4772 }
4773
4774 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
4775         .func           = bpf_lwt_seg6_adjust_srh,
4776         .gpl_only       = false,
4777         .ret_type       = RET_INTEGER,
4778         .arg1_type      = ARG_PTR_TO_CTX,
4779         .arg2_type      = ARG_ANYTHING,
4780         .arg3_type      = ARG_ANYTHING,
4781 };
4782 #endif /* CONFIG_IPV6_SEG6_BPF */
4783
4784 bool bpf_helper_changes_pkt_data(void *func)
4785 {
4786         if (func == bpf_skb_vlan_push ||
4787             func == bpf_skb_vlan_pop ||
4788             func == bpf_skb_store_bytes ||
4789             func == bpf_skb_change_proto ||
4790             func == bpf_skb_change_head ||
4791             func == sk_skb_change_head ||
4792             func == bpf_skb_change_tail ||
4793             func == sk_skb_change_tail ||
4794             func == bpf_skb_adjust_room ||
4795             func == bpf_skb_pull_data ||
4796             func == sk_skb_pull_data ||
4797             func == bpf_clone_redirect ||
4798             func == bpf_l3_csum_replace ||
4799             func == bpf_l4_csum_replace ||
4800             func == bpf_xdp_adjust_head ||
4801             func == bpf_xdp_adjust_meta ||
4802             func == bpf_msg_pull_data ||
4803             func == bpf_xdp_adjust_tail ||
4804 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4805             func == bpf_lwt_seg6_store_bytes ||
4806             func == bpf_lwt_seg6_adjust_srh ||
4807             func == bpf_lwt_seg6_action ||
4808 #endif
4809             func == bpf_lwt_push_encap)
4810                 return true;
4811
4812         return false;
4813 }
4814
4815 static const struct bpf_func_proto *
4816 bpf_base_func_proto(enum bpf_func_id func_id)
4817 {
4818         switch (func_id) {
4819         case BPF_FUNC_map_lookup_elem:
4820                 return &bpf_map_lookup_elem_proto;
4821         case BPF_FUNC_map_update_elem:
4822                 return &bpf_map_update_elem_proto;
4823         case BPF_FUNC_map_delete_elem:
4824                 return &bpf_map_delete_elem_proto;
4825         case BPF_FUNC_get_prandom_u32:
4826                 return &bpf_get_prandom_u32_proto;
4827         case BPF_FUNC_get_smp_processor_id:
4828                 return &bpf_get_raw_smp_processor_id_proto;
4829         case BPF_FUNC_get_numa_node_id:
4830                 return &bpf_get_numa_node_id_proto;
4831         case BPF_FUNC_tail_call:
4832                 return &bpf_tail_call_proto;
4833         case BPF_FUNC_ktime_get_ns:
4834                 return &bpf_ktime_get_ns_proto;
4835         case BPF_FUNC_trace_printk:
4836                 if (capable(CAP_SYS_ADMIN))
4837                         return bpf_get_trace_printk_proto();
4838                 /* else: fall through */
4839         default:
4840                 return NULL;
4841         }
4842 }
4843
4844 static const struct bpf_func_proto *
4845 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4846 {
4847         switch (func_id) {
4848         /* inet and inet6 sockets are created in a process
4849          * context so there is always a valid uid/gid
4850          */
4851         case BPF_FUNC_get_current_uid_gid:
4852                 return &bpf_get_current_uid_gid_proto;
4853         case BPF_FUNC_get_local_storage:
4854                 return &bpf_get_local_storage_proto;
4855         default:
4856                 return bpf_base_func_proto(func_id);
4857         }
4858 }
4859
4860 static const struct bpf_func_proto *
4861 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4862 {
4863         switch (func_id) {
4864         /* inet and inet6 sockets are created in a process
4865          * context so there is always a valid uid/gid
4866          */
4867         case BPF_FUNC_get_current_uid_gid:
4868                 return &bpf_get_current_uid_gid_proto;
4869         case BPF_FUNC_bind:
4870                 switch (prog->expected_attach_type) {
4871                 case BPF_CGROUP_INET4_CONNECT:
4872                 case BPF_CGROUP_INET6_CONNECT:
4873                         return &bpf_bind_proto;
4874                 default:
4875                         return NULL;
4876                 }
4877         case BPF_FUNC_get_socket_cookie:
4878                 return &bpf_get_socket_cookie_sock_addr_proto;
4879         case BPF_FUNC_get_local_storage:
4880                 return &bpf_get_local_storage_proto;
4881         default:
4882                 return bpf_base_func_proto(func_id);
4883         }
4884 }
4885
4886 static const struct bpf_func_proto *
4887 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4888 {
4889         switch (func_id) {
4890         case BPF_FUNC_skb_load_bytes:
4891                 return &bpf_skb_load_bytes_proto;
4892         case BPF_FUNC_skb_load_bytes_relative:
4893                 return &bpf_skb_load_bytes_relative_proto;
4894         case BPF_FUNC_get_socket_cookie:
4895                 return &bpf_get_socket_cookie_proto;
4896         case BPF_FUNC_get_socket_uid:
4897                 return &bpf_get_socket_uid_proto;
4898         default:
4899                 return bpf_base_func_proto(func_id);
4900         }
4901 }
4902
4903 static const struct bpf_func_proto *
4904 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4905 {
4906         switch (func_id) {
4907         case BPF_FUNC_get_local_storage:
4908                 return &bpf_get_local_storage_proto;
4909         default:
4910                 return sk_filter_func_proto(func_id, prog);
4911         }
4912 }
4913
4914 static const struct bpf_func_proto *
4915 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4916 {
4917         switch (func_id) {
4918         case BPF_FUNC_skb_store_bytes:
4919                 return &bpf_skb_store_bytes_proto;
4920         case BPF_FUNC_skb_load_bytes:
4921                 return &bpf_skb_load_bytes_proto;
4922         case BPF_FUNC_skb_load_bytes_relative:
4923                 return &bpf_skb_load_bytes_relative_proto;
4924         case BPF_FUNC_skb_pull_data:
4925                 return &bpf_skb_pull_data_proto;
4926         case BPF_FUNC_csum_diff:
4927                 return &bpf_csum_diff_proto;
4928         case BPF_FUNC_csum_update:
4929                 return &bpf_csum_update_proto;
4930         case BPF_FUNC_l3_csum_replace:
4931                 return &bpf_l3_csum_replace_proto;
4932         case BPF_FUNC_l4_csum_replace:
4933                 return &bpf_l4_csum_replace_proto;
4934         case BPF_FUNC_clone_redirect:
4935                 return &bpf_clone_redirect_proto;
4936         case BPF_FUNC_get_cgroup_classid:
4937                 return &bpf_get_cgroup_classid_proto;
4938         case BPF_FUNC_skb_vlan_push:
4939                 return &bpf_skb_vlan_push_proto;
4940         case BPF_FUNC_skb_vlan_pop:
4941                 return &bpf_skb_vlan_pop_proto;
4942         case BPF_FUNC_skb_change_proto:
4943                 return &bpf_skb_change_proto_proto;
4944         case BPF_FUNC_skb_change_type:
4945                 return &bpf_skb_change_type_proto;
4946         case BPF_FUNC_skb_adjust_room:
4947                 return &bpf_skb_adjust_room_proto;
4948         case BPF_FUNC_skb_change_tail:
4949                 return &bpf_skb_change_tail_proto;
4950         case BPF_FUNC_skb_get_tunnel_key:
4951                 return &bpf_skb_get_tunnel_key_proto;
4952         case BPF_FUNC_skb_set_tunnel_key:
4953                 return bpf_get_skb_set_tunnel_proto(func_id);
4954         case BPF_FUNC_skb_get_tunnel_opt:
4955                 return &bpf_skb_get_tunnel_opt_proto;
4956         case BPF_FUNC_skb_set_tunnel_opt:
4957                 return bpf_get_skb_set_tunnel_proto(func_id);
4958         case BPF_FUNC_redirect:
4959                 return &bpf_redirect_proto;
4960         case BPF_FUNC_get_route_realm:
4961                 return &bpf_get_route_realm_proto;
4962         case BPF_FUNC_get_hash_recalc:
4963                 return &bpf_get_hash_recalc_proto;
4964         case BPF_FUNC_set_hash_invalid:
4965                 return &bpf_set_hash_invalid_proto;
4966         case BPF_FUNC_set_hash:
4967                 return &bpf_set_hash_proto;
4968         case BPF_FUNC_perf_event_output:
4969                 return &bpf_skb_event_output_proto;
4970         case BPF_FUNC_get_smp_processor_id:
4971                 return &bpf_get_smp_processor_id_proto;
4972         case BPF_FUNC_skb_under_cgroup:
4973                 return &bpf_skb_under_cgroup_proto;
4974         case BPF_FUNC_get_socket_cookie:
4975                 return &bpf_get_socket_cookie_proto;
4976         case BPF_FUNC_get_socket_uid:
4977                 return &bpf_get_socket_uid_proto;
4978         case BPF_FUNC_fib_lookup:
4979                 return &bpf_skb_fib_lookup_proto;
4980 #ifdef CONFIG_XFRM
4981         case BPF_FUNC_skb_get_xfrm_state:
4982                 return &bpf_skb_get_xfrm_state_proto;
4983 #endif
4984 #ifdef CONFIG_SOCK_CGROUP_DATA
4985         case BPF_FUNC_skb_cgroup_id:
4986                 return &bpf_skb_cgroup_id_proto;
4987         case BPF_FUNC_skb_ancestor_cgroup_id:
4988                 return &bpf_skb_ancestor_cgroup_id_proto;
4989 #endif
4990         default:
4991                 return bpf_base_func_proto(func_id);
4992         }
4993 }
4994
4995 static const struct bpf_func_proto *
4996 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4997 {
4998         switch (func_id) {
4999         case BPF_FUNC_perf_event_output:
5000                 return &bpf_xdp_event_output_proto;
5001         case BPF_FUNC_get_smp_processor_id:
5002                 return &bpf_get_smp_processor_id_proto;
5003         case BPF_FUNC_csum_diff:
5004                 return &bpf_csum_diff_proto;
5005         case BPF_FUNC_xdp_adjust_head:
5006                 return &bpf_xdp_adjust_head_proto;
5007         case BPF_FUNC_xdp_adjust_meta:
5008                 return &bpf_xdp_adjust_meta_proto;
5009         case BPF_FUNC_redirect:
5010                 return &bpf_xdp_redirect_proto;
5011         case BPF_FUNC_redirect_map:
5012                 return &bpf_xdp_redirect_map_proto;
5013         case BPF_FUNC_xdp_adjust_tail:
5014                 return &bpf_xdp_adjust_tail_proto;
5015         case BPF_FUNC_fib_lookup:
5016                 return &bpf_xdp_fib_lookup_proto;
5017         default:
5018                 return bpf_base_func_proto(func_id);
5019         }
5020 }
5021
5022 static const struct bpf_func_proto *
5023 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5024 {
5025         switch (func_id) {
5026         case BPF_FUNC_setsockopt:
5027                 return &bpf_setsockopt_proto;
5028         case BPF_FUNC_getsockopt:
5029                 return &bpf_getsockopt_proto;
5030         case BPF_FUNC_sock_ops_cb_flags_set:
5031                 return &bpf_sock_ops_cb_flags_set_proto;
5032         case BPF_FUNC_sock_map_update:
5033                 return &bpf_sock_map_update_proto;
5034         case BPF_FUNC_sock_hash_update:
5035                 return &bpf_sock_hash_update_proto;
5036         case BPF_FUNC_get_socket_cookie:
5037                 return &bpf_get_socket_cookie_sock_ops_proto;
5038         case BPF_FUNC_get_local_storage:
5039                 return &bpf_get_local_storage_proto;
5040         default:
5041                 return bpf_base_func_proto(func_id);
5042         }
5043 }
5044
5045 static const struct bpf_func_proto *
5046 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5047 {
5048         switch (func_id) {
5049         case BPF_FUNC_msg_redirect_map:
5050                 return &bpf_msg_redirect_map_proto;
5051         case BPF_FUNC_msg_redirect_hash:
5052                 return &bpf_msg_redirect_hash_proto;
5053         case BPF_FUNC_msg_apply_bytes:
5054                 return &bpf_msg_apply_bytes_proto;
5055         case BPF_FUNC_msg_cork_bytes:
5056                 return &bpf_msg_cork_bytes_proto;
5057         case BPF_FUNC_msg_pull_data:
5058                 return &bpf_msg_pull_data_proto;
5059         case BPF_FUNC_get_local_storage:
5060                 return &bpf_get_local_storage_proto;
5061         default:
5062                 return bpf_base_func_proto(func_id);
5063         }
5064 }
5065
5066 static const struct bpf_func_proto *
5067 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5068 {
5069         switch (func_id) {
5070         case BPF_FUNC_skb_store_bytes:
5071                 return &bpf_skb_store_bytes_proto;
5072         case BPF_FUNC_skb_load_bytes:
5073                 return &bpf_skb_load_bytes_proto;
5074         case BPF_FUNC_skb_pull_data:
5075                 return &sk_skb_pull_data_proto;
5076         case BPF_FUNC_skb_change_tail:
5077                 return &sk_skb_change_tail_proto;
5078         case BPF_FUNC_skb_change_head:
5079                 return &sk_skb_change_head_proto;
5080         case BPF_FUNC_get_socket_cookie:
5081                 return &bpf_get_socket_cookie_proto;
5082         case BPF_FUNC_get_socket_uid:
5083                 return &bpf_get_socket_uid_proto;
5084         case BPF_FUNC_sk_redirect_map:
5085                 return &bpf_sk_redirect_map_proto;
5086         case BPF_FUNC_sk_redirect_hash:
5087                 return &bpf_sk_redirect_hash_proto;
5088         case BPF_FUNC_get_local_storage:
5089                 return &bpf_get_local_storage_proto;
5090         default:
5091                 return bpf_base_func_proto(func_id);
5092         }
5093 }
5094
5095 static const struct bpf_func_proto *
5096 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5097 {
5098         switch (func_id) {
5099         case BPF_FUNC_skb_load_bytes:
5100                 return &bpf_skb_load_bytes_proto;
5101         case BPF_FUNC_skb_pull_data:
5102                 return &bpf_skb_pull_data_proto;
5103         case BPF_FUNC_csum_diff:
5104                 return &bpf_csum_diff_proto;
5105         case BPF_FUNC_get_cgroup_classid:
5106                 return &bpf_get_cgroup_classid_proto;
5107         case BPF_FUNC_get_route_realm:
5108                 return &bpf_get_route_realm_proto;
5109         case BPF_FUNC_get_hash_recalc:
5110                 return &bpf_get_hash_recalc_proto;
5111         case BPF_FUNC_perf_event_output:
5112                 return &bpf_skb_event_output_proto;
5113         case BPF_FUNC_get_smp_processor_id:
5114                 return &bpf_get_smp_processor_id_proto;
5115         case BPF_FUNC_skb_under_cgroup:
5116                 return &bpf_skb_under_cgroup_proto;
5117         default:
5118                 return bpf_base_func_proto(func_id);
5119         }
5120 }
5121
5122 static const struct bpf_func_proto *
5123 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5124 {
5125         switch (func_id) {
5126         case BPF_FUNC_lwt_push_encap:
5127                 return &bpf_lwt_push_encap_proto;
5128         default:
5129                 return lwt_out_func_proto(func_id, prog);
5130         }
5131 }
5132
5133 static const struct bpf_func_proto *
5134 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5135 {
5136         switch (func_id) {
5137         case BPF_FUNC_skb_get_tunnel_key:
5138                 return &bpf_skb_get_tunnel_key_proto;
5139         case BPF_FUNC_skb_set_tunnel_key:
5140                 return bpf_get_skb_set_tunnel_proto(func_id);
5141         case BPF_FUNC_skb_get_tunnel_opt:
5142                 return &bpf_skb_get_tunnel_opt_proto;
5143         case BPF_FUNC_skb_set_tunnel_opt:
5144                 return bpf_get_skb_set_tunnel_proto(func_id);
5145         case BPF_FUNC_redirect:
5146                 return &bpf_redirect_proto;
5147         case BPF_FUNC_clone_redirect:
5148                 return &bpf_clone_redirect_proto;
5149         case BPF_FUNC_skb_change_tail:
5150                 return &bpf_skb_change_tail_proto;
5151         case BPF_FUNC_skb_change_head:
5152                 return &bpf_skb_change_head_proto;
5153         case BPF_FUNC_skb_store_bytes:
5154                 return &bpf_skb_store_bytes_proto;
5155         case BPF_FUNC_csum_update:
5156                 return &bpf_csum_update_proto;
5157         case BPF_FUNC_l3_csum_replace:
5158                 return &bpf_l3_csum_replace_proto;
5159         case BPF_FUNC_l4_csum_replace:
5160                 return &bpf_l4_csum_replace_proto;
5161         case BPF_FUNC_set_hash_invalid:
5162                 return &bpf_set_hash_invalid_proto;
5163         default:
5164                 return lwt_out_func_proto(func_id, prog);
5165         }
5166 }
5167
5168 static const struct bpf_func_proto *
5169 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5170 {
5171         switch (func_id) {
5172 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5173         case BPF_FUNC_lwt_seg6_store_bytes:
5174                 return &bpf_lwt_seg6_store_bytes_proto;
5175         case BPF_FUNC_lwt_seg6_action:
5176                 return &bpf_lwt_seg6_action_proto;
5177         case BPF_FUNC_lwt_seg6_adjust_srh:
5178                 return &bpf_lwt_seg6_adjust_srh_proto;
5179 #endif
5180         default:
5181                 return lwt_out_func_proto(func_id, prog);
5182         }
5183 }
5184
5185 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5186                                     const struct bpf_prog *prog,
5187                                     struct bpf_insn_access_aux *info)
5188 {
5189         const int size_default = sizeof(__u32);
5190
5191         if (off < 0 || off >= sizeof(struct __sk_buff))
5192                 return false;
5193
5194         /* The verifier guarantees that size > 0. */
5195         if (off % size != 0)
5196                 return false;
5197
5198         switch (off) {
5199         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5200                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
5201                         return false;
5202                 break;
5203         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
5204         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5205         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5206         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5207         case bpf_ctx_range(struct __sk_buff, data):
5208         case bpf_ctx_range(struct __sk_buff, data_meta):
5209         case bpf_ctx_range(struct __sk_buff, data_end):
5210                 if (size != size_default)
5211                         return false;
5212                 break;
5213         default:
5214                 /* Only narrow read access allowed for now. */
5215                 if (type == BPF_WRITE) {
5216                         if (size != size_default)
5217                                 return false;
5218                 } else {
5219                         bpf_ctx_record_field_size(info, size_default);
5220                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5221                                 return false;
5222                 }
5223         }
5224
5225         return true;
5226 }
5227
5228 static bool sk_filter_is_valid_access(int off, int size,
5229                                       enum bpf_access_type type,
5230                                       const struct bpf_prog *prog,
5231                                       struct bpf_insn_access_aux *info)
5232 {
5233         switch (off) {
5234         case bpf_ctx_range(struct __sk_buff, tc_classid):
5235         case bpf_ctx_range(struct __sk_buff, data):
5236         case bpf_ctx_range(struct __sk_buff, data_meta):
5237         case bpf_ctx_range(struct __sk_buff, data_end):
5238         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5239                 return false;
5240         }
5241
5242         if (type == BPF_WRITE) {
5243                 switch (off) {
5244                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5245                         break;
5246                 default:
5247                         return false;
5248                 }
5249         }
5250
5251         return bpf_skb_is_valid_access(off, size, type, prog, info);
5252 }
5253
5254 static bool lwt_is_valid_access(int off, int size,
5255                                 enum bpf_access_type type,
5256                                 const struct bpf_prog *prog,
5257                                 struct bpf_insn_access_aux *info)
5258 {
5259         switch (off) {
5260         case bpf_ctx_range(struct __sk_buff, tc_classid):
5261         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5262         case bpf_ctx_range(struct __sk_buff, data_meta):
5263                 return false;
5264         }
5265
5266         if (type == BPF_WRITE) {
5267                 switch (off) {
5268                 case bpf_ctx_range(struct __sk_buff, mark):
5269                 case bpf_ctx_range(struct __sk_buff, priority):
5270                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5271                         break;
5272                 default:
5273                         return false;
5274                 }
5275         }
5276
5277         switch (off) {
5278         case bpf_ctx_range(struct __sk_buff, data):
5279                 info->reg_type = PTR_TO_PACKET;
5280                 break;
5281         case bpf_ctx_range(struct __sk_buff, data_end):
5282                 info->reg_type = PTR_TO_PACKET_END;
5283                 break;
5284         }
5285
5286         return bpf_skb_is_valid_access(off, size, type, prog, info);
5287 }
5288
5289 /* Attach type specific accesses */
5290 static bool __sock_filter_check_attach_type(int off,
5291                                             enum bpf_access_type access_type,
5292                                             enum bpf_attach_type attach_type)
5293 {
5294         switch (off) {
5295         case offsetof(struct bpf_sock, bound_dev_if):
5296         case offsetof(struct bpf_sock, mark):
5297         case offsetof(struct bpf_sock, priority):
5298                 switch (attach_type) {
5299                 case BPF_CGROUP_INET_SOCK_CREATE:
5300                         goto full_access;
5301                 default:
5302                         return false;
5303                 }
5304         case bpf_ctx_range(struct bpf_sock, src_ip4):
5305                 switch (attach_type) {
5306                 case BPF_CGROUP_INET4_POST_BIND:
5307                         goto read_only;
5308                 default:
5309                         return false;
5310                 }
5311         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5312                 switch (attach_type) {
5313                 case BPF_CGROUP_INET6_POST_BIND:
5314                         goto read_only;
5315                 default:
5316                         return false;
5317                 }
5318         case bpf_ctx_range(struct bpf_sock, src_port):
5319                 switch (attach_type) {
5320                 case BPF_CGROUP_INET4_POST_BIND:
5321                 case BPF_CGROUP_INET6_POST_BIND:
5322                         goto read_only;
5323                 default:
5324                         return false;
5325                 }
5326         }
5327 read_only:
5328         return access_type == BPF_READ;
5329 full_access:
5330         return true;
5331 }
5332
5333 static bool __sock_filter_check_size(int off, int size,
5334                                      struct bpf_insn_access_aux *info)
5335 {
5336         const int size_default = sizeof(__u32);
5337
5338         switch (off) {
5339         case bpf_ctx_range(struct bpf_sock, src_ip4):
5340         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5341                 bpf_ctx_record_field_size(info, size_default);
5342                 return bpf_ctx_narrow_access_ok(off, size, size_default);
5343         }
5344
5345         return size == size_default;
5346 }
5347
5348 static bool sock_filter_is_valid_access(int off, int size,
5349                                         enum bpf_access_type type,
5350                                         const struct bpf_prog *prog,
5351                                         struct bpf_insn_access_aux *info)
5352 {
5353         if (off < 0 || off >= sizeof(struct bpf_sock))
5354                 return false;
5355         if (off % size != 0)
5356                 return false;
5357         if (!__sock_filter_check_attach_type(off, type,
5358                                              prog->expected_attach_type))
5359                 return false;
5360         if (!__sock_filter_check_size(off, size, info))
5361                 return false;
5362         return true;
5363 }
5364
5365 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
5366                                 const struct bpf_prog *prog, int drop_verdict)
5367 {
5368         struct bpf_insn *insn = insn_buf;
5369
5370         if (!direct_write)
5371                 return 0;
5372
5373         /* if (!skb->cloned)
5374          *       goto start;
5375          *
5376          * (Fast-path, otherwise approximation that we might be
5377          *  a clone, do the rest in helper.)
5378          */
5379         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
5380         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
5381         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
5382
5383         /* ret = bpf_skb_pull_data(skb, 0); */
5384         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
5385         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
5386         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
5387                                BPF_FUNC_skb_pull_data);
5388         /* if (!ret)
5389          *      goto restore;
5390          * return TC_ACT_SHOT;
5391          */
5392         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5393         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5394         *insn++ = BPF_EXIT_INSN();
5395
5396         /* restore: */
5397         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
5398         /* start: */
5399         *insn++ = prog->insnsi[0];
5400
5401         return insn - insn_buf;
5402 }
5403
5404 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
5405                           struct bpf_insn *insn_buf)
5406 {
5407         bool indirect = BPF_MODE(orig->code) == BPF_IND;
5408         struct bpf_insn *insn = insn_buf;
5409
5410         /* We're guaranteed here that CTX is in R6. */
5411         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
5412         if (!indirect) {
5413                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
5414         } else {
5415                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
5416                 if (orig->imm)
5417                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
5418         }
5419
5420         switch (BPF_SIZE(orig->code)) {
5421         case BPF_B:
5422                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
5423                 break;
5424         case BPF_H:
5425                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
5426                 break;
5427         case BPF_W:
5428                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
5429                 break;
5430         }
5431
5432         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
5433         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
5434         *insn++ = BPF_EXIT_INSN();
5435
5436         return insn - insn_buf;
5437 }
5438
5439 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
5440                                const struct bpf_prog *prog)
5441 {
5442         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
5443 }
5444
5445 static bool tc_cls_act_is_valid_access(int off, int size,
5446                                        enum bpf_access_type type,
5447                                        const struct bpf_prog *prog,
5448                                        struct bpf_insn_access_aux *info)
5449 {
5450         if (type == BPF_WRITE) {
5451                 switch (off) {
5452                 case bpf_ctx_range(struct __sk_buff, mark):
5453                 case bpf_ctx_range(struct __sk_buff, tc_index):
5454                 case bpf_ctx_range(struct __sk_buff, priority):
5455                 case bpf_ctx_range(struct __sk_buff, tc_classid):
5456                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5457                         break;
5458                 default:
5459                         return false;
5460                 }
5461         }
5462
5463         switch (off) {
5464         case bpf_ctx_range(struct __sk_buff, data):
5465                 info->reg_type = PTR_TO_PACKET;
5466                 break;
5467         case bpf_ctx_range(struct __sk_buff, data_meta):
5468                 info->reg_type = PTR_TO_PACKET_META;
5469                 break;
5470         case bpf_ctx_range(struct __sk_buff, data_end):
5471                 info->reg_type = PTR_TO_PACKET_END;
5472                 break;
5473         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5474                 return false;
5475         }
5476
5477         return bpf_skb_is_valid_access(off, size, type, prog, info);
5478 }
5479
5480 static bool __is_valid_xdp_access(int off, int size)
5481 {
5482         if (off < 0 || off >= sizeof(struct xdp_md))
5483                 return false;
5484         if (off % size != 0)
5485                 return false;
5486         if (size != sizeof(__u32))
5487                 return false;
5488
5489         return true;
5490 }
5491
5492 static bool xdp_is_valid_access(int off, int size,
5493                                 enum bpf_access_type type,
5494                                 const struct bpf_prog *prog,
5495                                 struct bpf_insn_access_aux *info)
5496 {
5497         if (type == BPF_WRITE) {
5498                 if (bpf_prog_is_dev_bound(prog->aux)) {
5499                         switch (off) {
5500                         case offsetof(struct xdp_md, rx_queue_index):
5501                                 return __is_valid_xdp_access(off, size);
5502                         }
5503                 }
5504                 return false;
5505         }
5506
5507         switch (off) {
5508         case offsetof(struct xdp_md, data):
5509                 info->reg_type = PTR_TO_PACKET;
5510                 break;
5511         case offsetof(struct xdp_md, data_meta):
5512                 info->reg_type = PTR_TO_PACKET_META;
5513                 break;
5514         case offsetof(struct xdp_md, data_end):
5515                 info->reg_type = PTR_TO_PACKET_END;
5516                 break;
5517         }
5518
5519         return __is_valid_xdp_access(off, size);
5520 }
5521
5522 void bpf_warn_invalid_xdp_action(u32 act)
5523 {
5524         const u32 act_max = XDP_REDIRECT;
5525
5526         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
5527                   act > act_max ? "Illegal" : "Driver unsupported",
5528                   act);
5529 }
5530 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
5531
5532 static bool sock_addr_is_valid_access(int off, int size,
5533                                       enum bpf_access_type type,
5534                                       const struct bpf_prog *prog,
5535                                       struct bpf_insn_access_aux *info)
5536 {
5537         const int size_default = sizeof(__u32);
5538
5539         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
5540                 return false;
5541         if (off % size != 0)
5542                 return false;
5543
5544         /* Disallow access to IPv6 fields from IPv4 contex and vise
5545          * versa.
5546          */
5547         switch (off) {
5548         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5549                 switch (prog->expected_attach_type) {
5550                 case BPF_CGROUP_INET4_BIND:
5551                 case BPF_CGROUP_INET4_CONNECT:
5552                 case BPF_CGROUP_UDP4_SENDMSG:
5553                         break;
5554                 default:
5555                         return false;
5556                 }
5557                 break;
5558         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5559                 switch (prog->expected_attach_type) {
5560                 case BPF_CGROUP_INET6_BIND:
5561                 case BPF_CGROUP_INET6_CONNECT:
5562                 case BPF_CGROUP_UDP6_SENDMSG:
5563                         break;
5564                 default:
5565                         return false;
5566                 }
5567                 break;
5568         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5569                 switch (prog->expected_attach_type) {
5570                 case BPF_CGROUP_UDP4_SENDMSG:
5571                         break;
5572                 default:
5573                         return false;
5574                 }
5575                 break;
5576         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5577                                 msg_src_ip6[3]):
5578                 switch (prog->expected_attach_type) {
5579                 case BPF_CGROUP_UDP6_SENDMSG:
5580                         break;
5581                 default:
5582                         return false;
5583                 }
5584                 break;
5585         }
5586
5587         switch (off) {
5588         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5589         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5590         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5591         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5592                                 msg_src_ip6[3]):
5593                 /* Only narrow read access allowed for now. */
5594                 if (type == BPF_READ) {
5595                         bpf_ctx_record_field_size(info, size_default);
5596                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5597                                 return false;
5598                 } else {
5599                         if (size != size_default)
5600                                 return false;
5601                 }
5602                 break;
5603         case bpf_ctx_range(struct bpf_sock_addr, user_port):
5604                 if (size != size_default)
5605                         return false;
5606                 break;
5607         default:
5608                 if (type == BPF_READ) {
5609                         if (size != size_default)
5610                                 return false;
5611                 } else {
5612                         return false;
5613                 }
5614         }
5615
5616         return true;
5617 }
5618
5619 static bool sock_ops_is_valid_access(int off, int size,
5620                                      enum bpf_access_type type,
5621                                      const struct bpf_prog *prog,
5622                                      struct bpf_insn_access_aux *info)
5623 {
5624         const int size_default = sizeof(__u32);
5625
5626         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
5627                 return false;
5628
5629         /* The verifier guarantees that size > 0. */
5630         if (off % size != 0)
5631                 return false;
5632
5633         if (type == BPF_WRITE) {
5634                 switch (off) {
5635                 case offsetof(struct bpf_sock_ops, reply):
5636                 case offsetof(struct bpf_sock_ops, sk_txhash):
5637                         if (size != size_default)
5638                                 return false;
5639                         break;
5640                 default:
5641                         return false;
5642                 }
5643         } else {
5644                 switch (off) {
5645                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
5646                                         bytes_acked):
5647                         if (size != sizeof(__u64))
5648                                 return false;
5649                         break;
5650                 default:
5651                         if (size != size_default)
5652                                 return false;
5653                         break;
5654                 }
5655         }
5656
5657         return true;
5658 }
5659
5660 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
5661                            const struct bpf_prog *prog)
5662 {
5663         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5664 }
5665
5666 static bool sk_skb_is_valid_access(int off, int size,
5667                                    enum bpf_access_type type,
5668                                    const struct bpf_prog *prog,
5669                                    struct bpf_insn_access_aux *info)
5670 {
5671         switch (off) {
5672         case bpf_ctx_range(struct __sk_buff, tc_classid):
5673         case bpf_ctx_range(struct __sk_buff, data_meta):
5674                 return false;
5675         }
5676
5677         if (type == BPF_WRITE) {
5678                 switch (off) {
5679                 case bpf_ctx_range(struct __sk_buff, tc_index):
5680                 case bpf_ctx_range(struct __sk_buff, priority):
5681                         break;
5682                 default:
5683                         return false;
5684                 }
5685         }
5686
5687         switch (off) {
5688         case bpf_ctx_range(struct __sk_buff, mark):
5689                 return false;
5690         case bpf_ctx_range(struct __sk_buff, data):
5691                 info->reg_type = PTR_TO_PACKET;
5692                 break;
5693         case bpf_ctx_range(struct __sk_buff, data_end):
5694                 info->reg_type = PTR_TO_PACKET_END;
5695                 break;
5696         }
5697
5698         return bpf_skb_is_valid_access(off, size, type, prog, info);
5699 }
5700
5701 static bool sk_msg_is_valid_access(int off, int size,
5702                                    enum bpf_access_type type,
5703                                    const struct bpf_prog *prog,
5704                                    struct bpf_insn_access_aux *info)
5705 {
5706         if (type == BPF_WRITE)
5707                 return false;
5708
5709         switch (off) {
5710         case offsetof(struct sk_msg_md, data):
5711                 info->reg_type = PTR_TO_PACKET;
5712                 if (size != sizeof(__u64))
5713                         return false;
5714                 break;
5715         case offsetof(struct sk_msg_md, data_end):
5716                 info->reg_type = PTR_TO_PACKET_END;
5717                 if (size != sizeof(__u64))
5718                         return false;
5719                 break;
5720         default:
5721                 if (size != sizeof(__u32))
5722                         return false;
5723         }
5724
5725         if (off < 0 || off >= sizeof(struct sk_msg_md))
5726                 return false;
5727         if (off % size != 0)
5728                 return false;
5729
5730         return true;
5731 }
5732
5733 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
5734                                   const struct bpf_insn *si,
5735                                   struct bpf_insn *insn_buf,
5736                                   struct bpf_prog *prog, u32 *target_size)
5737 {
5738         struct bpf_insn *insn = insn_buf;
5739         int off;
5740
5741         switch (si->off) {
5742         case offsetof(struct __sk_buff, len):
5743                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5744                                       bpf_target_off(struct sk_buff, len, 4,
5745                                                      target_size));
5746                 break;
5747
5748         case offsetof(struct __sk_buff, protocol):
5749                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5750                                       bpf_target_off(struct sk_buff, protocol, 2,
5751                                                      target_size));
5752                 break;
5753
5754         case offsetof(struct __sk_buff, vlan_proto):
5755                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5756                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
5757                                                      target_size));
5758                 break;
5759
5760         case offsetof(struct __sk_buff, priority):
5761                 if (type == BPF_WRITE)
5762                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5763                                               bpf_target_off(struct sk_buff, priority, 4,
5764                                                              target_size));
5765                 else
5766                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5767                                               bpf_target_off(struct sk_buff, priority, 4,
5768                                                              target_size));
5769                 break;
5770
5771         case offsetof(struct __sk_buff, ingress_ifindex):
5772                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5773                                       bpf_target_off(struct sk_buff, skb_iif, 4,
5774                                                      target_size));
5775                 break;
5776
5777         case offsetof(struct __sk_buff, ifindex):
5778                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5779                                       si->dst_reg, si->src_reg,
5780                                       offsetof(struct sk_buff, dev));
5781                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
5782                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5783                                       bpf_target_off(struct net_device, ifindex, 4,
5784                                                      target_size));
5785                 break;
5786
5787         case offsetof(struct __sk_buff, hash):
5788                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5789                                       bpf_target_off(struct sk_buff, hash, 4,
5790                                                      target_size));
5791                 break;
5792
5793         case offsetof(struct __sk_buff, mark):
5794                 if (type == BPF_WRITE)
5795                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5796                                               bpf_target_off(struct sk_buff, mark, 4,
5797                                                              target_size));
5798                 else
5799                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5800                                               bpf_target_off(struct sk_buff, mark, 4,
5801                                                              target_size));
5802                 break;
5803
5804         case offsetof(struct __sk_buff, pkt_type):
5805                 *target_size = 1;
5806                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
5807                                       PKT_TYPE_OFFSET());
5808                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
5809 #ifdef __BIG_ENDIAN_BITFIELD
5810                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
5811 #endif
5812                 break;
5813
5814         case offsetof(struct __sk_buff, queue_mapping):
5815                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5816                                       bpf_target_off(struct sk_buff, queue_mapping, 2,
5817                                                      target_size));
5818                 break;
5819
5820         case offsetof(struct __sk_buff, vlan_present):
5821         case offsetof(struct __sk_buff, vlan_tci):
5822                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
5823
5824                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5825                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
5826                                                      target_size));
5827                 if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
5828                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
5829                                                 ~VLAN_TAG_PRESENT);
5830                 } else {
5831                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
5832                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
5833                 }
5834                 break;
5835
5836         case offsetof(struct __sk_buff, cb[0]) ...
5837              offsetofend(struct __sk_buff, cb[4]) - 1:
5838                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5839                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
5840                               offsetof(struct qdisc_skb_cb, data)) %
5841                              sizeof(__u64));
5842
5843                 prog->cb_access = 1;
5844                 off  = si->off;
5845                 off -= offsetof(struct __sk_buff, cb[0]);
5846                 off += offsetof(struct sk_buff, cb);
5847                 off += offsetof(struct qdisc_skb_cb, data);
5848                 if (type == BPF_WRITE)
5849                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5850                                               si->src_reg, off);
5851                 else
5852                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5853                                               si->src_reg, off);
5854                 break;
5855
5856         case offsetof(struct __sk_buff, tc_classid):
5857                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
5858
5859                 off  = si->off;
5860                 off -= offsetof(struct __sk_buff, tc_classid);
5861                 off += offsetof(struct sk_buff, cb);
5862                 off += offsetof(struct qdisc_skb_cb, tc_classid);
5863                 *target_size = 2;
5864                 if (type == BPF_WRITE)
5865                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
5866                                               si->src_reg, off);
5867                 else
5868                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
5869                                               si->src_reg, off);
5870                 break;
5871
5872         case offsetof(struct __sk_buff, data):
5873                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5874                                       si->dst_reg, si->src_reg,
5875                                       offsetof(struct sk_buff, data));
5876                 break;
5877
5878         case offsetof(struct __sk_buff, data_meta):
5879                 off  = si->off;
5880                 off -= offsetof(struct __sk_buff, data_meta);
5881                 off += offsetof(struct sk_buff, cb);
5882                 off += offsetof(struct bpf_skb_data_end, data_meta);
5883                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5884                                       si->src_reg, off);
5885                 break;
5886
5887         case offsetof(struct __sk_buff, data_end):
5888                 off  = si->off;
5889                 off -= offsetof(struct __sk_buff, data_end);
5890                 off += offsetof(struct sk_buff, cb);
5891                 off += offsetof(struct bpf_skb_data_end, data_end);
5892                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5893                                       si->src_reg, off);
5894                 break;
5895
5896         case offsetof(struct __sk_buff, tc_index):
5897 #ifdef CONFIG_NET_SCHED
5898                 if (type == BPF_WRITE)
5899                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5900                                               bpf_target_off(struct sk_buff, tc_index, 2,
5901                                                              target_size));
5902                 else
5903                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5904                                               bpf_target_off(struct sk_buff, tc_index, 2,
5905                                                              target_size));
5906 #else
5907                 *target_size = 2;
5908                 if (type == BPF_WRITE)
5909                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5910                 else
5911                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5912 #endif
5913                 break;
5914
5915         case offsetof(struct __sk_buff, napi_id):
5916 #if defined(CONFIG_NET_RX_BUSY_POLL)
5917                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5918                                       bpf_target_off(struct sk_buff, napi_id, 4,
5919                                                      target_size));
5920                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
5921                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5922 #else
5923                 *target_size = 4;
5924                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5925 #endif
5926                 break;
5927         case offsetof(struct __sk_buff, family):
5928                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5929
5930                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5931                                       si->dst_reg, si->src_reg,
5932                                       offsetof(struct sk_buff, sk));
5933                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5934                                       bpf_target_off(struct sock_common,
5935                                                      skc_family,
5936                                                      2, target_size));
5937                 break;
5938         case offsetof(struct __sk_buff, remote_ip4):
5939                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5940
5941                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5942                                       si->dst_reg, si->src_reg,
5943                                       offsetof(struct sk_buff, sk));
5944                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5945                                       bpf_target_off(struct sock_common,
5946                                                      skc_daddr,
5947                                                      4, target_size));
5948                 break;
5949         case offsetof(struct __sk_buff, local_ip4):
5950                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5951                                           skc_rcv_saddr) != 4);
5952
5953                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5954                                       si->dst_reg, si->src_reg,
5955                                       offsetof(struct sk_buff, sk));
5956                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5957                                       bpf_target_off(struct sock_common,
5958                                                      skc_rcv_saddr,
5959                                                      4, target_size));
5960                 break;
5961         case offsetof(struct __sk_buff, remote_ip6[0]) ...
5962              offsetof(struct __sk_buff, remote_ip6[3]):
5963 #if IS_ENABLED(CONFIG_IPV6)
5964                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5965                                           skc_v6_daddr.s6_addr32[0]) != 4);
5966
5967                 off = si->off;
5968                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
5969
5970                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5971                                       si->dst_reg, si->src_reg,
5972                                       offsetof(struct sk_buff, sk));
5973                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5974                                       offsetof(struct sock_common,
5975                                                skc_v6_daddr.s6_addr32[0]) +
5976                                       off);
5977 #else
5978                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5979 #endif
5980                 break;
5981         case offsetof(struct __sk_buff, local_ip6[0]) ...
5982              offsetof(struct __sk_buff, local_ip6[3]):
5983 #if IS_ENABLED(CONFIG_IPV6)
5984                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5985                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5986
5987                 off = si->off;
5988                 off -= offsetof(struct __sk_buff, local_ip6[0]);
5989
5990                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5991                                       si->dst_reg, si->src_reg,
5992                                       offsetof(struct sk_buff, sk));
5993                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5994                                       offsetof(struct sock_common,
5995                                                skc_v6_rcv_saddr.s6_addr32[0]) +
5996                                       off);
5997 #else
5998                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5999 #endif
6000                 break;
6001
6002         case offsetof(struct __sk_buff, remote_port):
6003                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6004
6005                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6006                                       si->dst_reg, si->src_reg,
6007                                       offsetof(struct sk_buff, sk));
6008                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6009                                       bpf_target_off(struct sock_common,
6010                                                      skc_dport,
6011                                                      2, target_size));
6012 #ifndef __BIG_ENDIAN_BITFIELD
6013                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6014 #endif
6015                 break;
6016
6017         case offsetof(struct __sk_buff, local_port):
6018                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6019
6020                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6021                                       si->dst_reg, si->src_reg,
6022                                       offsetof(struct sk_buff, sk));
6023                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6024                                       bpf_target_off(struct sock_common,
6025                                                      skc_num, 2, target_size));
6026                 break;
6027         }
6028
6029         return insn - insn_buf;
6030 }
6031
6032 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
6033                                           const struct bpf_insn *si,
6034                                           struct bpf_insn *insn_buf,
6035                                           struct bpf_prog *prog, u32 *target_size)
6036 {
6037         struct bpf_insn *insn = insn_buf;
6038         int off;
6039
6040         switch (si->off) {
6041         case offsetof(struct bpf_sock, bound_dev_if):
6042                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
6043
6044                 if (type == BPF_WRITE)
6045                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6046                                         offsetof(struct sock, sk_bound_dev_if));
6047                 else
6048                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6049                                       offsetof(struct sock, sk_bound_dev_if));
6050                 break;
6051
6052         case offsetof(struct bpf_sock, mark):
6053                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
6054
6055                 if (type == BPF_WRITE)
6056                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6057                                         offsetof(struct sock, sk_mark));
6058                 else
6059                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6060                                       offsetof(struct sock, sk_mark));
6061                 break;
6062
6063         case offsetof(struct bpf_sock, priority):
6064                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
6065
6066                 if (type == BPF_WRITE)
6067                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6068                                         offsetof(struct sock, sk_priority));
6069                 else
6070                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6071                                       offsetof(struct sock, sk_priority));
6072                 break;
6073
6074         case offsetof(struct bpf_sock, family):
6075                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
6076
6077                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6078                                       offsetof(struct sock, sk_family));
6079                 break;
6080
6081         case offsetof(struct bpf_sock, type):
6082                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6083                                       offsetof(struct sock, __sk_flags_offset));
6084                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6085                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6086                 break;
6087
6088         case offsetof(struct bpf_sock, protocol):
6089                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6090                                       offsetof(struct sock, __sk_flags_offset));
6091                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6092                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
6093                 break;
6094
6095         case offsetof(struct bpf_sock, src_ip4):
6096                 *insn++ = BPF_LDX_MEM(
6097                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6098                         bpf_target_off(struct sock_common, skc_rcv_saddr,
6099                                        FIELD_SIZEOF(struct sock_common,
6100                                                     skc_rcv_saddr),
6101                                        target_size));
6102                 break;
6103
6104         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6105 #if IS_ENABLED(CONFIG_IPV6)
6106                 off = si->off;
6107                 off -= offsetof(struct bpf_sock, src_ip6[0]);
6108                 *insn++ = BPF_LDX_MEM(
6109                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6110                         bpf_target_off(
6111                                 struct sock_common,
6112                                 skc_v6_rcv_saddr.s6_addr32[0],
6113                                 FIELD_SIZEOF(struct sock_common,
6114                                              skc_v6_rcv_saddr.s6_addr32[0]),
6115                                 target_size) + off);
6116 #else
6117                 (void)off;
6118                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6119 #endif
6120                 break;
6121
6122         case offsetof(struct bpf_sock, src_port):
6123                 *insn++ = BPF_LDX_MEM(
6124                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
6125                         si->dst_reg, si->src_reg,
6126                         bpf_target_off(struct sock_common, skc_num,
6127                                        FIELD_SIZEOF(struct sock_common,
6128                                                     skc_num),
6129                                        target_size));
6130                 break;
6131         }
6132
6133         return insn - insn_buf;
6134 }
6135
6136 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
6137                                          const struct bpf_insn *si,
6138                                          struct bpf_insn *insn_buf,
6139                                          struct bpf_prog *prog, u32 *target_size)
6140 {
6141         struct bpf_insn *insn = insn_buf;
6142
6143         switch (si->off) {
6144         case offsetof(struct __sk_buff, ifindex):
6145                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6146                                       si->dst_reg, si->src_reg,
6147                                       offsetof(struct sk_buff, dev));
6148                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6149                                       bpf_target_off(struct net_device, ifindex, 4,
6150                                                      target_size));
6151                 break;
6152         default:
6153                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6154                                               target_size);
6155         }
6156
6157         return insn - insn_buf;
6158 }
6159
6160 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
6161                                   const struct bpf_insn *si,
6162                                   struct bpf_insn *insn_buf,
6163                                   struct bpf_prog *prog, u32 *target_size)
6164 {
6165         struct bpf_insn *insn = insn_buf;
6166
6167         switch (si->off) {
6168         case offsetof(struct xdp_md, data):
6169                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6170                                       si->dst_reg, si->src_reg,
6171                                       offsetof(struct xdp_buff, data));
6172                 break;
6173         case offsetof(struct xdp_md, data_meta):
6174                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
6175                                       si->dst_reg, si->src_reg,
6176                                       offsetof(struct xdp_buff, data_meta));
6177                 break;
6178         case offsetof(struct xdp_md, data_end):
6179                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6180                                       si->dst_reg, si->src_reg,
6181                                       offsetof(struct xdp_buff, data_end));
6182                 break;
6183         case offsetof(struct xdp_md, ingress_ifindex):
6184                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6185                                       si->dst_reg, si->src_reg,
6186                                       offsetof(struct xdp_buff, rxq));
6187                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
6188                                       si->dst_reg, si->dst_reg,
6189                                       offsetof(struct xdp_rxq_info, dev));
6190                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6191                                       offsetof(struct net_device, ifindex));
6192                 break;
6193         case offsetof(struct xdp_md, rx_queue_index):
6194                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6195                                       si->dst_reg, si->src_reg,
6196                                       offsetof(struct xdp_buff, rxq));
6197                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6198                                       offsetof(struct xdp_rxq_info,
6199                                                queue_index));
6200                 break;
6201         }
6202
6203         return insn - insn_buf;
6204 }
6205
6206 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
6207  * context Structure, F is Field in context structure that contains a pointer
6208  * to Nested Structure of type NS that has the field NF.
6209  *
6210  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
6211  * sure that SIZE is not greater than actual size of S.F.NF.
6212  *
6213  * If offset OFF is provided, the load happens from that offset relative to
6214  * offset of NF.
6215  */
6216 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
6217         do {                                                                   \
6218                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
6219                                       si->src_reg, offsetof(S, F));            \
6220                 *insn++ = BPF_LDX_MEM(                                         \
6221                         SIZE, si->dst_reg, si->dst_reg,                        \
6222                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6223                                        target_size)                            \
6224                                 + OFF);                                        \
6225         } while (0)
6226
6227 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
6228         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
6229                                              BPF_FIELD_SIZEOF(NS, NF), 0)
6230
6231 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
6232  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
6233  *
6234  * It doesn't support SIZE argument though since narrow stores are not
6235  * supported for now.
6236  *
6237  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
6238  * "register" since two registers available in convert_ctx_access are not
6239  * enough: we can't override neither SRC, since it contains value to store, nor
6240  * DST since it contains pointer to context that may be used by later
6241  * instructions. But we need a temporary place to save pointer to nested
6242  * structure whose field we want to store to.
6243  */
6244 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)                \
6245         do {                                                                   \
6246                 int tmp_reg = BPF_REG_9;                                       \
6247                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6248                         --tmp_reg;                                             \
6249                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6250                         --tmp_reg;                                             \
6251                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
6252                                       offsetof(S, TF));                        \
6253                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
6254                                       si->dst_reg, offsetof(S, F));            \
6255                 *insn++ = BPF_STX_MEM(                                         \
6256                         BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,        \
6257                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6258                                        target_size)                            \
6259                                 + OFF);                                        \
6260                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
6261                                       offsetof(S, TF));                        \
6262         } while (0)
6263
6264 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
6265                                                       TF)                      \
6266         do {                                                                   \
6267                 if (type == BPF_WRITE) {                                       \
6268                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
6269                                                          TF);                  \
6270                 } else {                                                       \
6271                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
6272                                 S, NS, F, NF, SIZE, OFF);  \
6273                 }                                                              \
6274         } while (0)
6275
6276 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
6277         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
6278                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
6279
6280 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
6281                                         const struct bpf_insn *si,
6282                                         struct bpf_insn *insn_buf,
6283                                         struct bpf_prog *prog, u32 *target_size)
6284 {
6285         struct bpf_insn *insn = insn_buf;
6286         int off;
6287
6288         switch (si->off) {
6289         case offsetof(struct bpf_sock_addr, user_family):
6290                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6291                                             struct sockaddr, uaddr, sa_family);
6292                 break;
6293
6294         case offsetof(struct bpf_sock_addr, user_ip4):
6295                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6296                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
6297                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
6298                 break;
6299
6300         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6301                 off = si->off;
6302                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
6303                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6304                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
6305                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
6306                         tmp_reg);
6307                 break;
6308
6309         case offsetof(struct bpf_sock_addr, user_port):
6310                 /* To get port we need to know sa_family first and then treat
6311                  * sockaddr as either sockaddr_in or sockaddr_in6.
6312                  * Though we can simplify since port field has same offset and
6313                  * size in both structures.
6314                  * Here we check this invariant and use just one of the
6315                  * structures if it's true.
6316                  */
6317                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
6318                              offsetof(struct sockaddr_in6, sin6_port));
6319                 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
6320                              FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
6321                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
6322                                                      struct sockaddr_in6, uaddr,
6323                                                      sin6_port, tmp_reg);
6324                 break;
6325
6326         case offsetof(struct bpf_sock_addr, family):
6327                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6328                                             struct sock, sk, sk_family);
6329                 break;
6330
6331         case offsetof(struct bpf_sock_addr, type):
6332                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6333                         struct bpf_sock_addr_kern, struct sock, sk,
6334                         __sk_flags_offset, BPF_W, 0);
6335                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6336                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6337                 break;
6338
6339         case offsetof(struct bpf_sock_addr, protocol):
6340                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6341                         struct bpf_sock_addr_kern, struct sock, sk,
6342                         __sk_flags_offset, BPF_W, 0);
6343                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6344                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
6345                                         SK_FL_PROTO_SHIFT);
6346                 break;
6347
6348         case offsetof(struct bpf_sock_addr, msg_src_ip4):
6349                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
6350                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6351                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
6352                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
6353                 break;
6354
6355         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6356                                 msg_src_ip6[3]):
6357                 off = si->off;
6358                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
6359                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
6360                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6361                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
6362                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
6363                 break;
6364         }
6365
6366         return insn - insn_buf;
6367 }
6368
6369 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
6370                                        const struct bpf_insn *si,
6371                                        struct bpf_insn *insn_buf,
6372                                        struct bpf_prog *prog,
6373                                        u32 *target_size)
6374 {
6375         struct bpf_insn *insn = insn_buf;
6376         int off;
6377
6378         switch (si->off) {
6379         case offsetof(struct bpf_sock_ops, op) ...
6380              offsetof(struct bpf_sock_ops, replylong[3]):
6381                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
6382                              FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
6383                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
6384                              FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
6385                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
6386                              FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
6387                 off = si->off;
6388                 off -= offsetof(struct bpf_sock_ops, op);
6389                 off += offsetof(struct bpf_sock_ops_kern, op);
6390                 if (type == BPF_WRITE)
6391                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6392                                               off);
6393                 else
6394                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6395                                               off);
6396                 break;
6397
6398         case offsetof(struct bpf_sock_ops, family):
6399                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6400
6401                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6402                                               struct bpf_sock_ops_kern, sk),
6403                                       si->dst_reg, si->src_reg,
6404                                       offsetof(struct bpf_sock_ops_kern, sk));
6405                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6406                                       offsetof(struct sock_common, skc_family));
6407                 break;
6408
6409         case offsetof(struct bpf_sock_ops, remote_ip4):
6410                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6411
6412                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6413                                                 struct bpf_sock_ops_kern, sk),
6414                                       si->dst_reg, si->src_reg,
6415                                       offsetof(struct bpf_sock_ops_kern, sk));
6416                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6417                                       offsetof(struct sock_common, skc_daddr));
6418                 break;
6419
6420         case offsetof(struct bpf_sock_ops, local_ip4):
6421                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6422                                           skc_rcv_saddr) != 4);
6423
6424                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6425                                               struct bpf_sock_ops_kern, sk),
6426                                       si->dst_reg, si->src_reg,
6427                                       offsetof(struct bpf_sock_ops_kern, sk));
6428                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6429                                       offsetof(struct sock_common,
6430                                                skc_rcv_saddr));
6431                 break;
6432
6433         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
6434              offsetof(struct bpf_sock_ops, remote_ip6[3]):
6435 #if IS_ENABLED(CONFIG_IPV6)
6436                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6437                                           skc_v6_daddr.s6_addr32[0]) != 4);
6438
6439                 off = si->off;
6440                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
6441                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6442                                                 struct bpf_sock_ops_kern, sk),
6443                                       si->dst_reg, si->src_reg,
6444                                       offsetof(struct bpf_sock_ops_kern, sk));
6445                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6446                                       offsetof(struct sock_common,
6447                                                skc_v6_daddr.s6_addr32[0]) +
6448                                       off);
6449 #else
6450                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6451 #endif
6452                 break;
6453
6454         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
6455              offsetof(struct bpf_sock_ops, local_ip6[3]):
6456 #if IS_ENABLED(CONFIG_IPV6)
6457                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6458                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6459
6460                 off = si->off;
6461                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
6462                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6463                                                 struct bpf_sock_ops_kern, sk),
6464                                       si->dst_reg, si->src_reg,
6465                                       offsetof(struct bpf_sock_ops_kern, sk));
6466                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6467                                       offsetof(struct sock_common,
6468                                                skc_v6_rcv_saddr.s6_addr32[0]) +
6469                                       off);
6470 #else
6471                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6472 #endif
6473                 break;
6474
6475         case offsetof(struct bpf_sock_ops, remote_port):
6476                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6477
6478                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6479                                                 struct bpf_sock_ops_kern, sk),
6480                                       si->dst_reg, si->src_reg,
6481                                       offsetof(struct bpf_sock_ops_kern, sk));
6482                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6483                                       offsetof(struct sock_common, skc_dport));
6484 #ifndef __BIG_ENDIAN_BITFIELD
6485                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6486 #endif
6487                 break;
6488
6489         case offsetof(struct bpf_sock_ops, local_port):
6490                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6491
6492                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6493                                                 struct bpf_sock_ops_kern, sk),
6494                                       si->dst_reg, si->src_reg,
6495                                       offsetof(struct bpf_sock_ops_kern, sk));
6496                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6497                                       offsetof(struct sock_common, skc_num));
6498                 break;
6499
6500         case offsetof(struct bpf_sock_ops, is_fullsock):
6501                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6502                                                 struct bpf_sock_ops_kern,
6503                                                 is_fullsock),
6504                                       si->dst_reg, si->src_reg,
6505                                       offsetof(struct bpf_sock_ops_kern,
6506                                                is_fullsock));
6507                 break;
6508
6509         case offsetof(struct bpf_sock_ops, state):
6510                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
6511
6512                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6513                                                 struct bpf_sock_ops_kern, sk),
6514                                       si->dst_reg, si->src_reg,
6515                                       offsetof(struct bpf_sock_ops_kern, sk));
6516                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
6517                                       offsetof(struct sock_common, skc_state));
6518                 break;
6519
6520         case offsetof(struct bpf_sock_ops, rtt_min):
6521                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
6522                              sizeof(struct minmax));
6523                 BUILD_BUG_ON(sizeof(struct minmax) <
6524                              sizeof(struct minmax_sample));
6525
6526                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6527                                                 struct bpf_sock_ops_kern, sk),
6528                                       si->dst_reg, si->src_reg,
6529                                       offsetof(struct bpf_sock_ops_kern, sk));
6530                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6531                                       offsetof(struct tcp_sock, rtt_min) +
6532                                       FIELD_SIZEOF(struct minmax_sample, t));
6533                 break;
6534
6535 /* Helper macro for adding read access to tcp_sock or sock fields. */
6536 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
6537         do {                                                                  \
6538                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
6539                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6540                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6541                                                 struct bpf_sock_ops_kern,     \
6542                                                 is_fullsock),                 \
6543                                       si->dst_reg, si->src_reg,               \
6544                                       offsetof(struct bpf_sock_ops_kern,      \
6545                                                is_fullsock));                 \
6546                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
6547                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6548                                                 struct bpf_sock_ops_kern, sk),\
6549                                       si->dst_reg, si->src_reg,               \
6550                                       offsetof(struct bpf_sock_ops_kern, sk));\
6551                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
6552                                                        OBJ_FIELD),            \
6553                                       si->dst_reg, si->dst_reg,               \
6554                                       offsetof(OBJ, OBJ_FIELD));              \
6555         } while (0)
6556
6557 /* Helper macro for adding write access to tcp_sock or sock fields.
6558  * The macro is called with two registers, dst_reg which contains a pointer
6559  * to ctx (context) and src_reg which contains the value that should be
6560  * stored. However, we need an additional register since we cannot overwrite
6561  * dst_reg because it may be used later in the program.
6562  * Instead we "borrow" one of the other register. We first save its value
6563  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
6564  * it at the end of the macro.
6565  */
6566 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
6567         do {                                                                  \
6568                 int reg = BPF_REG_9;                                          \
6569                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
6570                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6571                 if (si->dst_reg == reg || si->src_reg == reg)                 \
6572                         reg--;                                                \
6573                 if (si->dst_reg == reg || si->src_reg == reg)                 \
6574                         reg--;                                                \
6575                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
6576                                       offsetof(struct bpf_sock_ops_kern,      \
6577                                                temp));                        \
6578                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6579                                                 struct bpf_sock_ops_kern,     \
6580                                                 is_fullsock),                 \
6581                                       reg, si->dst_reg,                       \
6582                                       offsetof(struct bpf_sock_ops_kern,      \
6583                                                is_fullsock));                 \
6584                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
6585                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6586                                                 struct bpf_sock_ops_kern, sk),\
6587                                       reg, si->dst_reg,                       \
6588                                       offsetof(struct bpf_sock_ops_kern, sk));\
6589                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
6590                                       reg, si->src_reg,                       \
6591                                       offsetof(OBJ, OBJ_FIELD));              \
6592                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
6593                                       offsetof(struct bpf_sock_ops_kern,      \
6594                                                temp));                        \
6595         } while (0)
6596
6597 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
6598         do {                                                                  \
6599                 if (TYPE == BPF_WRITE)                                        \
6600                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
6601                 else                                                          \
6602                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
6603         } while (0)
6604
6605         case offsetof(struct bpf_sock_ops, snd_cwnd):
6606                 SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6607                 break;
6608
6609         case offsetof(struct bpf_sock_ops, srtt_us):
6610                 SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6611                 break;
6612
6613         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
6614                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
6615                                    struct tcp_sock);
6616                 break;
6617
6618         case offsetof(struct bpf_sock_ops, snd_ssthresh):
6619                 SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
6620                 break;
6621
6622         case offsetof(struct bpf_sock_ops, rcv_nxt):
6623                 SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
6624                 break;
6625
6626         case offsetof(struct bpf_sock_ops, snd_nxt):
6627                 SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
6628                 break;
6629
6630         case offsetof(struct bpf_sock_ops, snd_una):
6631                 SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
6632                 break;
6633
6634         case offsetof(struct bpf_sock_ops, mss_cache):
6635                 SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
6636                 break;
6637
6638         case offsetof(struct bpf_sock_ops, ecn_flags):
6639                 SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
6640                 break;
6641
6642         case offsetof(struct bpf_sock_ops, rate_delivered):
6643                 SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
6644                                    struct tcp_sock);
6645                 break;
6646
6647         case offsetof(struct bpf_sock_ops, rate_interval_us):
6648                 SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
6649                                    struct tcp_sock);
6650                 break;
6651
6652         case offsetof(struct bpf_sock_ops, packets_out):
6653                 SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
6654                 break;
6655
6656         case offsetof(struct bpf_sock_ops, retrans_out):
6657                 SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
6658                 break;
6659
6660         case offsetof(struct bpf_sock_ops, total_retrans):
6661                 SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
6662                                    struct tcp_sock);
6663                 break;
6664
6665         case offsetof(struct bpf_sock_ops, segs_in):
6666                 SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
6667                 break;
6668
6669         case offsetof(struct bpf_sock_ops, data_segs_in):
6670                 SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
6671                 break;
6672
6673         case offsetof(struct bpf_sock_ops, segs_out):
6674                 SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
6675                 break;
6676
6677         case offsetof(struct bpf_sock_ops, data_segs_out):
6678                 SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
6679                                    struct tcp_sock);
6680                 break;
6681
6682         case offsetof(struct bpf_sock_ops, lost_out):
6683                 SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
6684                 break;
6685
6686         case offsetof(struct bpf_sock_ops, sacked_out):
6687                 SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
6688                 break;
6689
6690         case offsetof(struct bpf_sock_ops, sk_txhash):
6691                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
6692                                           struct sock, type);
6693                 break;
6694
6695         case offsetof(struct bpf_sock_ops, bytes_received):
6696                 SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
6697                                    struct tcp_sock);
6698                 break;
6699
6700         case offsetof(struct bpf_sock_ops, bytes_acked):
6701                 SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
6702                 break;
6703
6704         }
6705         return insn - insn_buf;
6706 }
6707
6708 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
6709                                      const struct bpf_insn *si,
6710                                      struct bpf_insn *insn_buf,
6711                                      struct bpf_prog *prog, u32 *target_size)
6712 {
6713         struct bpf_insn *insn = insn_buf;
6714         int off;
6715
6716         switch (si->off) {
6717         case offsetof(struct __sk_buff, data_end):
6718                 off  = si->off;
6719                 off -= offsetof(struct __sk_buff, data_end);
6720                 off += offsetof(struct sk_buff, cb);
6721                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
6722                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6723                                       si->src_reg, off);
6724                 break;
6725         default:
6726                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6727                                               target_size);
6728         }
6729
6730         return insn - insn_buf;
6731 }
6732
6733 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
6734                                      const struct bpf_insn *si,
6735                                      struct bpf_insn *insn_buf,
6736                                      struct bpf_prog *prog, u32 *target_size)
6737 {
6738         struct bpf_insn *insn = insn_buf;
6739 #if IS_ENABLED(CONFIG_IPV6)
6740         int off;
6741 #endif
6742
6743         switch (si->off) {
6744         case offsetof(struct sk_msg_md, data):
6745                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
6746                                       si->dst_reg, si->src_reg,
6747                                       offsetof(struct sk_msg_buff, data));
6748                 break;
6749         case offsetof(struct sk_msg_md, data_end):
6750                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
6751                                       si->dst_reg, si->src_reg,
6752                                       offsetof(struct sk_msg_buff, data_end));
6753                 break;
6754         case offsetof(struct sk_msg_md, family):
6755                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6756
6757                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6758                                               struct sk_msg_buff, sk),
6759                                       si->dst_reg, si->src_reg,
6760                                       offsetof(struct sk_msg_buff, sk));
6761                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6762                                       offsetof(struct sock_common, skc_family));
6763                 break;
6764
6765         case offsetof(struct sk_msg_md, remote_ip4):
6766                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6767
6768                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6769                                                 struct sk_msg_buff, sk),
6770                                       si->dst_reg, si->src_reg,
6771                                       offsetof(struct sk_msg_buff, sk));
6772                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6773                                       offsetof(struct sock_common, skc_daddr));
6774                 break;
6775
6776         case offsetof(struct sk_msg_md, local_ip4):
6777                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6778                                           skc_rcv_saddr) != 4);
6779
6780                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6781                                               struct sk_msg_buff, sk),
6782                                       si->dst_reg, si->src_reg,
6783                                       offsetof(struct sk_msg_buff, sk));
6784                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6785                                       offsetof(struct sock_common,
6786                                                skc_rcv_saddr));
6787                 break;
6788
6789         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
6790              offsetof(struct sk_msg_md, remote_ip6[3]):
6791 #if IS_ENABLED(CONFIG_IPV6)
6792                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6793                                           skc_v6_daddr.s6_addr32[0]) != 4);
6794
6795                 off = si->off;
6796                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
6797                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6798                                                 struct sk_msg_buff, sk),
6799                                       si->dst_reg, si->src_reg,
6800                                       offsetof(struct sk_msg_buff, sk));
6801                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6802                                       offsetof(struct sock_common,
6803                                                skc_v6_daddr.s6_addr32[0]) +
6804                                       off);
6805 #else
6806                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6807 #endif
6808                 break;
6809
6810         case offsetof(struct sk_msg_md, local_ip6[0]) ...
6811              offsetof(struct sk_msg_md, local_ip6[3]):
6812 #if IS_ENABLED(CONFIG_IPV6)
6813                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6814                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6815
6816                 off = si->off;
6817                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
6818                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6819                                                 struct sk_msg_buff, sk),
6820                                       si->dst_reg, si->src_reg,
6821                                       offsetof(struct sk_msg_buff, sk));
6822                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6823                                       offsetof(struct sock_common,
6824                                                skc_v6_rcv_saddr.s6_addr32[0]) +
6825                                       off);
6826 #else
6827                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6828 #endif
6829                 break;
6830
6831         case offsetof(struct sk_msg_md, remote_port):
6832                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6833
6834                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6835                                                 struct sk_msg_buff, sk),
6836                                       si->dst_reg, si->src_reg,
6837                                       offsetof(struct sk_msg_buff, sk));
6838                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6839                                       offsetof(struct sock_common, skc_dport));
6840 #ifndef __BIG_ENDIAN_BITFIELD
6841                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6842 #endif
6843                 break;
6844
6845         case offsetof(struct sk_msg_md, local_port):
6846                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6847
6848                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6849                                                 struct sk_msg_buff, sk),
6850                                       si->dst_reg, si->src_reg,
6851                                       offsetof(struct sk_msg_buff, sk));
6852                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6853                                       offsetof(struct sock_common, skc_num));
6854                 break;
6855         }
6856
6857         return insn - insn_buf;
6858 }
6859
6860 const struct bpf_verifier_ops sk_filter_verifier_ops = {
6861         .get_func_proto         = sk_filter_func_proto,
6862         .is_valid_access        = sk_filter_is_valid_access,
6863         .convert_ctx_access     = bpf_convert_ctx_access,
6864         .gen_ld_abs             = bpf_gen_ld_abs,
6865 };
6866
6867 const struct bpf_prog_ops sk_filter_prog_ops = {
6868         .test_run               = bpf_prog_test_run_skb,
6869 };
6870
6871 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6872         .get_func_proto         = tc_cls_act_func_proto,
6873         .is_valid_access        = tc_cls_act_is_valid_access,
6874         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
6875         .gen_prologue           = tc_cls_act_prologue,
6876         .gen_ld_abs             = bpf_gen_ld_abs,
6877 };
6878
6879 const struct bpf_prog_ops tc_cls_act_prog_ops = {
6880         .test_run               = bpf_prog_test_run_skb,
6881 };
6882
6883 const struct bpf_verifier_ops xdp_verifier_ops = {
6884         .get_func_proto         = xdp_func_proto,
6885         .is_valid_access        = xdp_is_valid_access,
6886         .convert_ctx_access     = xdp_convert_ctx_access,
6887 };
6888
6889 const struct bpf_prog_ops xdp_prog_ops = {
6890         .test_run               = bpf_prog_test_run_xdp,
6891 };
6892
6893 const struct bpf_verifier_ops cg_skb_verifier_ops = {
6894         .get_func_proto         = cg_skb_func_proto,
6895         .is_valid_access        = sk_filter_is_valid_access,
6896         .convert_ctx_access     = bpf_convert_ctx_access,
6897 };
6898
6899 const struct bpf_prog_ops cg_skb_prog_ops = {
6900         .test_run               = bpf_prog_test_run_skb,
6901 };
6902
6903 const struct bpf_verifier_ops lwt_in_verifier_ops = {
6904         .get_func_proto         = lwt_in_func_proto,
6905         .is_valid_access        = lwt_is_valid_access,
6906         .convert_ctx_access     = bpf_convert_ctx_access,
6907 };
6908
6909 const struct bpf_prog_ops lwt_in_prog_ops = {
6910         .test_run               = bpf_prog_test_run_skb,
6911 };
6912
6913 const struct bpf_verifier_ops lwt_out_verifier_ops = {
6914         .get_func_proto         = lwt_out_func_proto,
6915         .is_valid_access        = lwt_is_valid_access,
6916         .convert_ctx_access     = bpf_convert_ctx_access,
6917 };
6918
6919 const struct bpf_prog_ops lwt_out_prog_ops = {
6920         .test_run               = bpf_prog_test_run_skb,
6921 };
6922
6923 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6924         .get_func_proto         = lwt_xmit_func_proto,
6925         .is_valid_access        = lwt_is_valid_access,
6926         .convert_ctx_access     = bpf_convert_ctx_access,
6927         .gen_prologue           = tc_cls_act_prologue,
6928 };
6929
6930 const struct bpf_prog_ops lwt_xmit_prog_ops = {
6931         .test_run               = bpf_prog_test_run_skb,
6932 };
6933
6934 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
6935         .get_func_proto         = lwt_seg6local_func_proto,
6936         .is_valid_access        = lwt_is_valid_access,
6937         .convert_ctx_access     = bpf_convert_ctx_access,
6938 };
6939
6940 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
6941         .test_run               = bpf_prog_test_run_skb,
6942 };
6943
6944 const struct bpf_verifier_ops cg_sock_verifier_ops = {
6945         .get_func_proto         = sock_filter_func_proto,
6946         .is_valid_access        = sock_filter_is_valid_access,
6947         .convert_ctx_access     = sock_filter_convert_ctx_access,
6948 };
6949
6950 const struct bpf_prog_ops cg_sock_prog_ops = {
6951 };
6952
6953 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
6954         .get_func_proto         = sock_addr_func_proto,
6955         .is_valid_access        = sock_addr_is_valid_access,
6956         .convert_ctx_access     = sock_addr_convert_ctx_access,
6957 };
6958
6959 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
6960 };
6961
6962 const struct bpf_verifier_ops sock_ops_verifier_ops = {
6963         .get_func_proto         = sock_ops_func_proto,
6964         .is_valid_access        = sock_ops_is_valid_access,
6965         .convert_ctx_access     = sock_ops_convert_ctx_access,
6966 };
6967
6968 const struct bpf_prog_ops sock_ops_prog_ops = {
6969 };
6970
6971 const struct bpf_verifier_ops sk_skb_verifier_ops = {
6972         .get_func_proto         = sk_skb_func_proto,
6973         .is_valid_access        = sk_skb_is_valid_access,
6974         .convert_ctx_access     = sk_skb_convert_ctx_access,
6975         .gen_prologue           = sk_skb_prologue,
6976 };
6977
6978 const struct bpf_prog_ops sk_skb_prog_ops = {
6979 };
6980
6981 const struct bpf_verifier_ops sk_msg_verifier_ops = {
6982         .get_func_proto         = sk_msg_func_proto,
6983         .is_valid_access        = sk_msg_is_valid_access,
6984         .convert_ctx_access     = sk_msg_convert_ctx_access,
6985 };
6986
6987 const struct bpf_prog_ops sk_msg_prog_ops = {
6988 };
6989
6990 int sk_detach_filter(struct sock *sk)
6991 {
6992         int ret = -ENOENT;
6993         struct sk_filter *filter;
6994
6995         if (sock_flag(sk, SOCK_FILTER_LOCKED))
6996                 return -EPERM;
6997
6998         filter = rcu_dereference_protected(sk->sk_filter,
6999                                            lockdep_sock_is_held(sk));
7000         if (filter) {
7001                 RCU_INIT_POINTER(sk->sk_filter, NULL);
7002                 sk_filter_uncharge(sk, filter);
7003                 ret = 0;
7004         }
7005
7006         return ret;
7007 }
7008 EXPORT_SYMBOL_GPL(sk_detach_filter);
7009
7010 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
7011                   unsigned int len)
7012 {
7013         struct sock_fprog_kern *fprog;
7014         struct sk_filter *filter;
7015         int ret = 0;
7016
7017         lock_sock(sk);
7018         filter = rcu_dereference_protected(sk->sk_filter,
7019                                            lockdep_sock_is_held(sk));
7020         if (!filter)
7021                 goto out;
7022
7023         /* We're copying the filter that has been originally attached,
7024          * so no conversion/decode needed anymore. eBPF programs that
7025          * have no original program cannot be dumped through this.
7026          */
7027         ret = -EACCES;
7028         fprog = filter->prog->orig_prog;
7029         if (!fprog)
7030                 goto out;
7031
7032         ret = fprog->len;
7033         if (!len)
7034                 /* User space only enquires number of filter blocks. */
7035                 goto out;
7036
7037         ret = -EINVAL;
7038         if (len < fprog->len)
7039                 goto out;
7040
7041         ret = -EFAULT;
7042         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
7043                 goto out;
7044
7045         /* Instead of bytes, the API requests to return the number
7046          * of filter blocks.
7047          */
7048         ret = fprog->len;
7049 out:
7050         release_sock(sk);
7051         return ret;
7052 }
7053
7054 #ifdef CONFIG_INET
7055 struct sk_reuseport_kern {
7056         struct sk_buff *skb;
7057         struct sock *sk;
7058         struct sock *selected_sk;
7059         void *data_end;
7060         u32 hash;
7061         u32 reuseport_id;
7062         bool bind_inany;
7063 };
7064
7065 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
7066                                     struct sock_reuseport *reuse,
7067                                     struct sock *sk, struct sk_buff *skb,
7068                                     u32 hash)
7069 {
7070         reuse_kern->skb = skb;
7071         reuse_kern->sk = sk;
7072         reuse_kern->selected_sk = NULL;
7073         reuse_kern->data_end = skb->data + skb_headlen(skb);
7074         reuse_kern->hash = hash;
7075         reuse_kern->reuseport_id = reuse->reuseport_id;
7076         reuse_kern->bind_inany = reuse->bind_inany;
7077 }
7078
7079 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
7080                                   struct bpf_prog *prog, struct sk_buff *skb,
7081                                   u32 hash)
7082 {
7083         struct sk_reuseport_kern reuse_kern;
7084         enum sk_action action;
7085
7086         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
7087         action = BPF_PROG_RUN(prog, &reuse_kern);
7088
7089         if (action == SK_PASS)
7090                 return reuse_kern.selected_sk;
7091         else
7092                 return ERR_PTR(-ECONNREFUSED);
7093 }
7094
7095 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
7096            struct bpf_map *, map, void *, key, u32, flags)
7097 {
7098         struct sock_reuseport *reuse;
7099         struct sock *selected_sk;
7100
7101         selected_sk = map->ops->map_lookup_elem(map, key);
7102         if (!selected_sk)
7103                 return -ENOENT;
7104
7105         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
7106         if (!reuse)
7107                 /* selected_sk is unhashed (e.g. by close()) after the
7108                  * above map_lookup_elem().  Treat selected_sk has already
7109                  * been removed from the map.
7110                  */
7111                 return -ENOENT;
7112
7113         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
7114                 struct sock *sk;
7115
7116                 if (unlikely(!reuse_kern->reuseport_id))
7117                         /* There is a small race between adding the
7118                          * sk to the map and setting the
7119                          * reuse_kern->reuseport_id.
7120                          * Treat it as the sk has not been added to
7121                          * the bpf map yet.
7122                          */
7123                         return -ENOENT;
7124
7125                 sk = reuse_kern->sk;
7126                 if (sk->sk_protocol != selected_sk->sk_protocol)
7127                         return -EPROTOTYPE;
7128                 else if (sk->sk_family != selected_sk->sk_family)
7129                         return -EAFNOSUPPORT;
7130
7131                 /* Catch all. Likely bound to a different sockaddr. */
7132                 return -EBADFD;
7133         }
7134
7135         reuse_kern->selected_sk = selected_sk;
7136
7137         return 0;
7138 }
7139
7140 static const struct bpf_func_proto sk_select_reuseport_proto = {
7141         .func           = sk_select_reuseport,
7142         .gpl_only       = false,
7143         .ret_type       = RET_INTEGER,
7144         .arg1_type      = ARG_PTR_TO_CTX,
7145         .arg2_type      = ARG_CONST_MAP_PTR,
7146         .arg3_type      = ARG_PTR_TO_MAP_KEY,
7147         .arg4_type      = ARG_ANYTHING,
7148 };
7149
7150 BPF_CALL_4(sk_reuseport_load_bytes,
7151            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7152            void *, to, u32, len)
7153 {
7154         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
7155 }
7156
7157 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
7158         .func           = sk_reuseport_load_bytes,
7159         .gpl_only       = false,
7160         .ret_type       = RET_INTEGER,
7161         .arg1_type      = ARG_PTR_TO_CTX,
7162         .arg2_type      = ARG_ANYTHING,
7163         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
7164         .arg4_type      = ARG_CONST_SIZE,
7165 };
7166
7167 BPF_CALL_5(sk_reuseport_load_bytes_relative,
7168            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7169            void *, to, u32, len, u32, start_header)
7170 {
7171         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
7172                                                len, start_header);
7173 }
7174
7175 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
7176         .func           = sk_reuseport_load_bytes_relative,
7177         .gpl_only       = false,
7178         .ret_type       = RET_INTEGER,
7179         .arg1_type      = ARG_PTR_TO_CTX,
7180         .arg2_type      = ARG_ANYTHING,
7181         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
7182         .arg4_type      = ARG_CONST_SIZE,
7183         .arg5_type      = ARG_ANYTHING,
7184 };
7185
7186 static const struct bpf_func_proto *
7187 sk_reuseport_func_proto(enum bpf_func_id func_id,
7188                         const struct bpf_prog *prog)
7189 {
7190         switch (func_id) {
7191         case BPF_FUNC_sk_select_reuseport:
7192                 return &sk_select_reuseport_proto;
7193         case BPF_FUNC_skb_load_bytes:
7194                 return &sk_reuseport_load_bytes_proto;
7195         case BPF_FUNC_skb_load_bytes_relative:
7196                 return &sk_reuseport_load_bytes_relative_proto;
7197         default:
7198                 return bpf_base_func_proto(func_id);
7199         }
7200 }
7201
7202 static bool
7203 sk_reuseport_is_valid_access(int off, int size,
7204                              enum bpf_access_type type,
7205                              const struct bpf_prog *prog,
7206                              struct bpf_insn_access_aux *info)
7207 {
7208         const u32 size_default = sizeof(__u32);
7209
7210         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
7211             off % size || type != BPF_READ)
7212                 return false;
7213
7214         switch (off) {
7215         case offsetof(struct sk_reuseport_md, data):
7216                 info->reg_type = PTR_TO_PACKET;
7217                 return size == sizeof(__u64);
7218
7219         case offsetof(struct sk_reuseport_md, data_end):
7220                 info->reg_type = PTR_TO_PACKET_END;
7221                 return size == sizeof(__u64);
7222
7223         case offsetof(struct sk_reuseport_md, hash):
7224                 return size == size_default;
7225
7226         /* Fields that allow narrowing */
7227         case offsetof(struct sk_reuseport_md, eth_protocol):
7228                 if (size < FIELD_SIZEOF(struct sk_buff, protocol))
7229                         return false;
7230                 /* fall through */
7231         case offsetof(struct sk_reuseport_md, ip_protocol):
7232         case offsetof(struct sk_reuseport_md, bind_inany):
7233         case offsetof(struct sk_reuseport_md, len):
7234                 bpf_ctx_record_field_size(info, size_default);
7235                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7236
7237         default:
7238                 return false;
7239         }
7240 }
7241
7242 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
7243         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7244                               si->dst_reg, si->src_reg,                 \
7245                               bpf_target_off(struct sk_reuseport_kern, F, \
7246                                              FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7247                                              target_size));             \
7248         })
7249
7250 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
7251         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
7252                                     struct sk_buff,                     \
7253                                     skb,                                \
7254                                     SKB_FIELD)
7255
7256 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
7257         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,  \
7258                                              struct sock,               \
7259                                              sk,                        \
7260                                              SK_FIELD, BPF_SIZE, EXTRA_OFF)
7261
7262 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
7263                                            const struct bpf_insn *si,
7264                                            struct bpf_insn *insn_buf,
7265                                            struct bpf_prog *prog,
7266                                            u32 *target_size)
7267 {
7268         struct bpf_insn *insn = insn_buf;
7269
7270         switch (si->off) {
7271         case offsetof(struct sk_reuseport_md, data):
7272                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
7273                 break;
7274
7275         case offsetof(struct sk_reuseport_md, len):
7276                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
7277                 break;
7278
7279         case offsetof(struct sk_reuseport_md, eth_protocol):
7280                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
7281                 break;
7282
7283         case offsetof(struct sk_reuseport_md, ip_protocol):
7284                 BUILD_BUG_ON(hweight_long(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7285                 SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
7286                                                     BPF_W, 0);
7287                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7288                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7289                                         SK_FL_PROTO_SHIFT);
7290                 /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
7291                  * aware.  No further narrowing or masking is needed.
7292                  */
7293                 *target_size = 1;
7294                 break;
7295
7296         case offsetof(struct sk_reuseport_md, data_end):
7297                 SK_REUSEPORT_LOAD_FIELD(data_end);
7298                 break;
7299
7300         case offsetof(struct sk_reuseport_md, hash):
7301                 SK_REUSEPORT_LOAD_FIELD(hash);
7302                 break;
7303
7304         case offsetof(struct sk_reuseport_md, bind_inany):
7305                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
7306                 break;
7307         }
7308
7309         return insn - insn_buf;
7310 }
7311
7312 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
7313         .get_func_proto         = sk_reuseport_func_proto,
7314         .is_valid_access        = sk_reuseport_is_valid_access,
7315         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
7316 };
7317
7318 const struct bpf_prog_ops sk_reuseport_prog_ops = {
7319 };
7320 #endif /* CONFIG_INET */