Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <net/xfrm.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/ip_fib.h>
65 #include <net/flow.h>
66 #include <net/arp.h>
67 #include <net/ipv6.h>
68 #include <linux/seg6_local.h>
69 #include <net/seg6.h>
70 #include <net/seg6_local.h>
71
72 /**
73  *      sk_filter_trim_cap - run a packet through a socket filter
74  *      @sk: sock associated with &sk_buff
75  *      @skb: buffer to filter
76  *      @cap: limit on how short the eBPF program may trim the packet
77  *
78  * Run the eBPF program and then cut skb->data to correct size returned by
79  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
80  * than pkt_len we keep whole skb->data. This is the socket level
81  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
82  * be accepted or -EPERM if the packet should be tossed.
83  *
84  */
85 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
86 {
87         int err;
88         struct sk_filter *filter;
89
90         /*
91          * If the skb was allocated from pfmemalloc reserves, only
92          * allow SOCK_MEMALLOC sockets to use it as this socket is
93          * helping free memory
94          */
95         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
96                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
97                 return -ENOMEM;
98         }
99         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
100         if (err)
101                 return err;
102
103         err = security_sock_rcv_skb(sk, skb);
104         if (err)
105                 return err;
106
107         rcu_read_lock();
108         filter = rcu_dereference(sk->sk_filter);
109         if (filter) {
110                 struct sock *save_sk = skb->sk;
111                 unsigned int pkt_len;
112
113                 skb->sk = sk;
114                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
115                 skb->sk = save_sk;
116                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
117         }
118         rcu_read_unlock();
119
120         return err;
121 }
122 EXPORT_SYMBOL(sk_filter_trim_cap);
123
124 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
125 {
126         return skb_get_poff(skb);
127 }
128
129 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
130 {
131         struct nlattr *nla;
132
133         if (skb_is_nonlinear(skb))
134                 return 0;
135
136         if (skb->len < sizeof(struct nlattr))
137                 return 0;
138
139         if (a > skb->len - sizeof(struct nlattr))
140                 return 0;
141
142         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
143         if (nla)
144                 return (void *) nla - (void *) skb->data;
145
146         return 0;
147 }
148
149 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
150 {
151         struct nlattr *nla;
152
153         if (skb_is_nonlinear(skb))
154                 return 0;
155
156         if (skb->len < sizeof(struct nlattr))
157                 return 0;
158
159         if (a > skb->len - sizeof(struct nlattr))
160                 return 0;
161
162         nla = (struct nlattr *) &skb->data[a];
163         if (nla->nla_len > skb->len - a)
164                 return 0;
165
166         nla = nla_find_nested(nla, x);
167         if (nla)
168                 return (void *) nla - (void *) skb->data;
169
170         return 0;
171 }
172
173 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
174            data, int, headlen, int, offset)
175 {
176         u8 tmp, *ptr;
177         const int len = sizeof(tmp);
178
179         if (offset >= 0) {
180                 if (headlen - offset >= len)
181                         return *(u8 *)(data + offset);
182                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
183                         return tmp;
184         } else {
185                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
186                 if (likely(ptr))
187                         return *(u8 *)ptr;
188         }
189
190         return -EFAULT;
191 }
192
193 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
194            int, offset)
195 {
196         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
197                                          offset);
198 }
199
200 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
201            data, int, headlen, int, offset)
202 {
203         u16 tmp, *ptr;
204         const int len = sizeof(tmp);
205
206         if (offset >= 0) {
207                 if (headlen - offset >= len)
208                         return get_unaligned_be16(data + offset);
209                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
210                         return be16_to_cpu(tmp);
211         } else {
212                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
213                 if (likely(ptr))
214                         return get_unaligned_be16(ptr);
215         }
216
217         return -EFAULT;
218 }
219
220 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
221            int, offset)
222 {
223         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
224                                           offset);
225 }
226
227 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
228            data, int, headlen, int, offset)
229 {
230         u32 tmp, *ptr;
231         const int len = sizeof(tmp);
232
233         if (likely(offset >= 0)) {
234                 if (headlen - offset >= len)
235                         return get_unaligned_be32(data + offset);
236                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
237                         return be32_to_cpu(tmp);
238         } else {
239                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
240                 if (likely(ptr))
241                         return get_unaligned_be32(ptr);
242         }
243
244         return -EFAULT;
245 }
246
247 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
248            int, offset)
249 {
250         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
251                                           offset);
252 }
253
254 BPF_CALL_0(bpf_get_raw_cpu_id)
255 {
256         return raw_smp_processor_id();
257 }
258
259 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
260         .func           = bpf_get_raw_cpu_id,
261         .gpl_only       = false,
262         .ret_type       = RET_INTEGER,
263 };
264
265 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
266                               struct bpf_insn *insn_buf)
267 {
268         struct bpf_insn *insn = insn_buf;
269
270         switch (skb_field) {
271         case SKF_AD_MARK:
272                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
273
274                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
275                                       offsetof(struct sk_buff, mark));
276                 break;
277
278         case SKF_AD_PKTTYPE:
279                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
280                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
281 #ifdef __BIG_ENDIAN_BITFIELD
282                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
283 #endif
284                 break;
285
286         case SKF_AD_QUEUE:
287                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
288
289                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
290                                       offsetof(struct sk_buff, queue_mapping));
291                 break;
292
293         case SKF_AD_VLAN_TAG:
294         case SKF_AD_VLAN_TAG_PRESENT:
295                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
296                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
297
298                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
299                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, vlan_tci));
301                 if (skb_field == SKF_AD_VLAN_TAG) {
302                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
303                                                 ~VLAN_TAG_PRESENT);
304                 } else {
305                         /* dst_reg >>= 12 */
306                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
307                         /* dst_reg &= 1 */
308                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
309                 }
310                 break;
311         }
312
313         return insn - insn_buf;
314 }
315
316 static bool convert_bpf_extensions(struct sock_filter *fp,
317                                    struct bpf_insn **insnp)
318 {
319         struct bpf_insn *insn = *insnp;
320         u32 cnt;
321
322         switch (fp->k) {
323         case SKF_AD_OFF + SKF_AD_PROTOCOL:
324                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
325
326                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
327                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
328                                       offsetof(struct sk_buff, protocol));
329                 /* A = ntohs(A) [emitting a nop or swap16] */
330                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
331                 break;
332
333         case SKF_AD_OFF + SKF_AD_PKTTYPE:
334                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
335                 insn += cnt - 1;
336                 break;
337
338         case SKF_AD_OFF + SKF_AD_IFINDEX:
339         case SKF_AD_OFF + SKF_AD_HATYPE:
340                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
341                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
342
343                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
344                                       BPF_REG_TMP, BPF_REG_CTX,
345                                       offsetof(struct sk_buff, dev));
346                 /* if (tmp != 0) goto pc + 1 */
347                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
348                 *insn++ = BPF_EXIT_INSN();
349                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
350                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
351                                             offsetof(struct net_device, ifindex));
352                 else
353                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
354                                             offsetof(struct net_device, type));
355                 break;
356
357         case SKF_AD_OFF + SKF_AD_MARK:
358                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
359                 insn += cnt - 1;
360                 break;
361
362         case SKF_AD_OFF + SKF_AD_RXHASH:
363                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
364
365                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
366                                     offsetof(struct sk_buff, hash));
367                 break;
368
369         case SKF_AD_OFF + SKF_AD_QUEUE:
370                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
371                 insn += cnt - 1;
372                 break;
373
374         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
375                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
376                                          BPF_REG_A, BPF_REG_CTX, insn);
377                 insn += cnt - 1;
378                 break;
379
380         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
381                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
382                                          BPF_REG_A, BPF_REG_CTX, insn);
383                 insn += cnt - 1;
384                 break;
385
386         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
387                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
388
389                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
390                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
391                                       offsetof(struct sk_buff, vlan_proto));
392                 /* A = ntohs(A) [emitting a nop or swap16] */
393                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
394                 break;
395
396         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
397         case SKF_AD_OFF + SKF_AD_NLATTR:
398         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
399         case SKF_AD_OFF + SKF_AD_CPU:
400         case SKF_AD_OFF + SKF_AD_RANDOM:
401                 /* arg1 = CTX */
402                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
403                 /* arg2 = A */
404                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
405                 /* arg3 = X */
406                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
407                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
408                 switch (fp->k) {
409                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
410                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
411                         break;
412                 case SKF_AD_OFF + SKF_AD_NLATTR:
413                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
414                         break;
415                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
416                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
417                         break;
418                 case SKF_AD_OFF + SKF_AD_CPU:
419                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
420                         break;
421                 case SKF_AD_OFF + SKF_AD_RANDOM:
422                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
423                         bpf_user_rnd_init_once();
424                         break;
425                 }
426                 break;
427
428         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
429                 /* A ^= X */
430                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
431                 break;
432
433         default:
434                 /* This is just a dummy call to avoid letting the compiler
435                  * evict __bpf_call_base() as an optimization. Placed here
436                  * where no-one bothers.
437                  */
438                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
439                 return false;
440         }
441
442         *insnp = insn;
443         return true;
444 }
445
446 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
447 {
448         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
449         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
450         bool endian = BPF_SIZE(fp->code) == BPF_H ||
451                       BPF_SIZE(fp->code) == BPF_W;
452         bool indirect = BPF_MODE(fp->code) == BPF_IND;
453         const int ip_align = NET_IP_ALIGN;
454         struct bpf_insn *insn = *insnp;
455         int offset = fp->k;
456
457         if (!indirect &&
458             ((unaligned_ok && offset >= 0) ||
459              (!unaligned_ok && offset >= 0 &&
460               offset + ip_align >= 0 &&
461               offset + ip_align % size == 0))) {
462                 bool ldx_off_ok = offset <= S16_MAX;
463
464                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
465                 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
466                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
467                                       size, 2 + endian + (!ldx_off_ok * 2));
468                 if (ldx_off_ok) {
469                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
470                                               BPF_REG_D, offset);
471                 } else {
472                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
473                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
474                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
475                                               BPF_REG_TMP, 0);
476                 }
477                 if (endian)
478                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
479                 *insn++ = BPF_JMP_A(8);
480         }
481
482         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
483         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
484         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
485         if (!indirect) {
486                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
487         } else {
488                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
489                 if (fp->k)
490                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
491         }
492
493         switch (BPF_SIZE(fp->code)) {
494         case BPF_B:
495                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
496                 break;
497         case BPF_H:
498                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
499                 break;
500         case BPF_W:
501                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
502                 break;
503         default:
504                 return false;
505         }
506
507         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
508         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
509         *insn   = BPF_EXIT_INSN();
510
511         *insnp = insn;
512         return true;
513 }
514
515 /**
516  *      bpf_convert_filter - convert filter program
517  *      @prog: the user passed filter program
518  *      @len: the length of the user passed filter program
519  *      @new_prog: allocated 'struct bpf_prog' or NULL
520  *      @new_len: pointer to store length of converted program
521  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
522  *
523  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
524  * style extended BPF (eBPF).
525  * Conversion workflow:
526  *
527  * 1) First pass for calculating the new program length:
528  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
529  *
530  * 2) 2nd pass to remap in two passes: 1st pass finds new
531  *    jump offsets, 2nd pass remapping:
532  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
533  */
534 static int bpf_convert_filter(struct sock_filter *prog, int len,
535                               struct bpf_prog *new_prog, int *new_len,
536                               bool *seen_ld_abs)
537 {
538         int new_flen = 0, pass = 0, target, i, stack_off;
539         struct bpf_insn *new_insn, *first_insn = NULL;
540         struct sock_filter *fp;
541         int *addrs = NULL;
542         u8 bpf_src;
543
544         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
545         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
546
547         if (len <= 0 || len > BPF_MAXINSNS)
548                 return -EINVAL;
549
550         if (new_prog) {
551                 first_insn = new_prog->insnsi;
552                 addrs = kcalloc(len, sizeof(*addrs),
553                                 GFP_KERNEL | __GFP_NOWARN);
554                 if (!addrs)
555                         return -ENOMEM;
556         }
557
558 do_pass:
559         new_insn = first_insn;
560         fp = prog;
561
562         /* Classic BPF related prologue emission. */
563         if (new_prog) {
564                 /* Classic BPF expects A and X to be reset first. These need
565                  * to be guaranteed to be the first two instructions.
566                  */
567                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
568                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
569
570                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
571                  * In eBPF case it's done by the compiler, here we need to
572                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
573                  */
574                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
575                 if (*seen_ld_abs) {
576                         /* For packet access in classic BPF, cache skb->data
577                          * in callee-saved BPF R8 and skb->len - skb->data_len
578                          * (headlen) in BPF R9. Since classic BPF is read-only
579                          * on CTX, we only need to cache it once.
580                          */
581                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
582                                                   BPF_REG_D, BPF_REG_CTX,
583                                                   offsetof(struct sk_buff, data));
584                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
585                                                   offsetof(struct sk_buff, len));
586                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
587                                                   offsetof(struct sk_buff, data_len));
588                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
589                 }
590         } else {
591                 new_insn += 3;
592         }
593
594         for (i = 0; i < len; fp++, i++) {
595                 struct bpf_insn tmp_insns[32] = { };
596                 struct bpf_insn *insn = tmp_insns;
597
598                 if (addrs)
599                         addrs[i] = new_insn - first_insn;
600
601                 switch (fp->code) {
602                 /* All arithmetic insns and skb loads map as-is. */
603                 case BPF_ALU | BPF_ADD | BPF_X:
604                 case BPF_ALU | BPF_ADD | BPF_K:
605                 case BPF_ALU | BPF_SUB | BPF_X:
606                 case BPF_ALU | BPF_SUB | BPF_K:
607                 case BPF_ALU | BPF_AND | BPF_X:
608                 case BPF_ALU | BPF_AND | BPF_K:
609                 case BPF_ALU | BPF_OR | BPF_X:
610                 case BPF_ALU | BPF_OR | BPF_K:
611                 case BPF_ALU | BPF_LSH | BPF_X:
612                 case BPF_ALU | BPF_LSH | BPF_K:
613                 case BPF_ALU | BPF_RSH | BPF_X:
614                 case BPF_ALU | BPF_RSH | BPF_K:
615                 case BPF_ALU | BPF_XOR | BPF_X:
616                 case BPF_ALU | BPF_XOR | BPF_K:
617                 case BPF_ALU | BPF_MUL | BPF_X:
618                 case BPF_ALU | BPF_MUL | BPF_K:
619                 case BPF_ALU | BPF_DIV | BPF_X:
620                 case BPF_ALU | BPF_DIV | BPF_K:
621                 case BPF_ALU | BPF_MOD | BPF_X:
622                 case BPF_ALU | BPF_MOD | BPF_K:
623                 case BPF_ALU | BPF_NEG:
624                 case BPF_LD | BPF_ABS | BPF_W:
625                 case BPF_LD | BPF_ABS | BPF_H:
626                 case BPF_LD | BPF_ABS | BPF_B:
627                 case BPF_LD | BPF_IND | BPF_W:
628                 case BPF_LD | BPF_IND | BPF_H:
629                 case BPF_LD | BPF_IND | BPF_B:
630                         /* Check for overloaded BPF extension and
631                          * directly convert it if found, otherwise
632                          * just move on with mapping.
633                          */
634                         if (BPF_CLASS(fp->code) == BPF_LD &&
635                             BPF_MODE(fp->code) == BPF_ABS &&
636                             convert_bpf_extensions(fp, &insn))
637                                 break;
638                         if (BPF_CLASS(fp->code) == BPF_LD &&
639                             convert_bpf_ld_abs(fp, &insn)) {
640                                 *seen_ld_abs = true;
641                                 break;
642                         }
643
644                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
645                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
646                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
647                                 /* Error with exception code on div/mod by 0.
648                                  * For cBPF programs, this was always return 0.
649                                  */
650                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
651                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
652                                 *insn++ = BPF_EXIT_INSN();
653                         }
654
655                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
656                         break;
657
658                 /* Jump transformation cannot use BPF block macros
659                  * everywhere as offset calculation and target updates
660                  * require a bit more work than the rest, i.e. jump
661                  * opcodes map as-is, but offsets need adjustment.
662                  */
663
664 #define BPF_EMIT_JMP                                                    \
665         do {                                                            \
666                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
667                 s32 off;                                                \
668                                                                         \
669                 if (target >= len || target < 0)                        \
670                         goto err;                                       \
671                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
672                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
673                 off -= insn - tmp_insns;                                \
674                 /* Reject anything not fitting into insn->off. */       \
675                 if (off < off_min || off > off_max)                     \
676                         goto err;                                       \
677                 insn->off = off;                                        \
678         } while (0)
679
680                 case BPF_JMP | BPF_JA:
681                         target = i + fp->k + 1;
682                         insn->code = fp->code;
683                         BPF_EMIT_JMP;
684                         break;
685
686                 case BPF_JMP | BPF_JEQ | BPF_K:
687                 case BPF_JMP | BPF_JEQ | BPF_X:
688                 case BPF_JMP | BPF_JSET | BPF_K:
689                 case BPF_JMP | BPF_JSET | BPF_X:
690                 case BPF_JMP | BPF_JGT | BPF_K:
691                 case BPF_JMP | BPF_JGT | BPF_X:
692                 case BPF_JMP | BPF_JGE | BPF_K:
693                 case BPF_JMP | BPF_JGE | BPF_X:
694                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
695                                 /* BPF immediates are signed, zero extend
696                                  * immediate into tmp register and use it
697                                  * in compare insn.
698                                  */
699                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
700
701                                 insn->dst_reg = BPF_REG_A;
702                                 insn->src_reg = BPF_REG_TMP;
703                                 bpf_src = BPF_X;
704                         } else {
705                                 insn->dst_reg = BPF_REG_A;
706                                 insn->imm = fp->k;
707                                 bpf_src = BPF_SRC(fp->code);
708                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
709                         }
710
711                         /* Common case where 'jump_false' is next insn. */
712                         if (fp->jf == 0) {
713                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
714                                 target = i + fp->jt + 1;
715                                 BPF_EMIT_JMP;
716                                 break;
717                         }
718
719                         /* Convert some jumps when 'jump_true' is next insn. */
720                         if (fp->jt == 0) {
721                                 switch (BPF_OP(fp->code)) {
722                                 case BPF_JEQ:
723                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
724                                         break;
725                                 case BPF_JGT:
726                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
727                                         break;
728                                 case BPF_JGE:
729                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
730                                         break;
731                                 default:
732                                         goto jmp_rest;
733                                 }
734
735                                 target = i + fp->jf + 1;
736                                 BPF_EMIT_JMP;
737                                 break;
738                         }
739 jmp_rest:
740                         /* Other jumps are mapped into two insns: Jxx and JA. */
741                         target = i + fp->jt + 1;
742                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
743                         BPF_EMIT_JMP;
744                         insn++;
745
746                         insn->code = BPF_JMP | BPF_JA;
747                         target = i + fp->jf + 1;
748                         BPF_EMIT_JMP;
749                         break;
750
751                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
752                 case BPF_LDX | BPF_MSH | BPF_B: {
753                         struct sock_filter tmp = {
754                                 .code   = BPF_LD | BPF_ABS | BPF_B,
755                                 .k      = fp->k,
756                         };
757
758                         *seen_ld_abs = true;
759
760                         /* X = A */
761                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
762                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
763                         convert_bpf_ld_abs(&tmp, &insn);
764                         insn++;
765                         /* A &= 0xf */
766                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
767                         /* A <<= 2 */
768                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
769                         /* tmp = X */
770                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
771                         /* X = A */
772                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
773                         /* A = tmp */
774                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
775                         break;
776                 }
777                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
778                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
779                  */
780                 case BPF_RET | BPF_A:
781                 case BPF_RET | BPF_K:
782                         if (BPF_RVAL(fp->code) == BPF_K)
783                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
784                                                         0, fp->k);
785                         *insn = BPF_EXIT_INSN();
786                         break;
787
788                 /* Store to stack. */
789                 case BPF_ST:
790                 case BPF_STX:
791                         stack_off = fp->k * 4  + 4;
792                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
793                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
794                                             -stack_off);
795                         /* check_load_and_stores() verifies that classic BPF can
796                          * load from stack only after write, so tracking
797                          * stack_depth for ST|STX insns is enough
798                          */
799                         if (new_prog && new_prog->aux->stack_depth < stack_off)
800                                 new_prog->aux->stack_depth = stack_off;
801                         break;
802
803                 /* Load from stack. */
804                 case BPF_LD | BPF_MEM:
805                 case BPF_LDX | BPF_MEM:
806                         stack_off = fp->k * 4  + 4;
807                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
808                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
809                                             -stack_off);
810                         break;
811
812                 /* A = K or X = K */
813                 case BPF_LD | BPF_IMM:
814                 case BPF_LDX | BPF_IMM:
815                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
816                                               BPF_REG_A : BPF_REG_X, fp->k);
817                         break;
818
819                 /* X = A */
820                 case BPF_MISC | BPF_TAX:
821                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
822                         break;
823
824                 /* A = X */
825                 case BPF_MISC | BPF_TXA:
826                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
827                         break;
828
829                 /* A = skb->len or X = skb->len */
830                 case BPF_LD | BPF_W | BPF_LEN:
831                 case BPF_LDX | BPF_W | BPF_LEN:
832                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
833                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
834                                             offsetof(struct sk_buff, len));
835                         break;
836
837                 /* Access seccomp_data fields. */
838                 case BPF_LDX | BPF_ABS | BPF_W:
839                         /* A = *(u32 *) (ctx + K) */
840                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
841                         break;
842
843                 /* Unknown instruction. */
844                 default:
845                         goto err;
846                 }
847
848                 insn++;
849                 if (new_prog)
850                         memcpy(new_insn, tmp_insns,
851                                sizeof(*insn) * (insn - tmp_insns));
852                 new_insn += insn - tmp_insns;
853         }
854
855         if (!new_prog) {
856                 /* Only calculating new length. */
857                 *new_len = new_insn - first_insn;
858                 if (*seen_ld_abs)
859                         *new_len += 4; /* Prologue bits. */
860                 return 0;
861         }
862
863         pass++;
864         if (new_flen != new_insn - first_insn) {
865                 new_flen = new_insn - first_insn;
866                 if (pass > 2)
867                         goto err;
868                 goto do_pass;
869         }
870
871         kfree(addrs);
872         BUG_ON(*new_len != new_flen);
873         return 0;
874 err:
875         kfree(addrs);
876         return -EINVAL;
877 }
878
879 /* Security:
880  *
881  * As we dont want to clear mem[] array for each packet going through
882  * __bpf_prog_run(), we check that filter loaded by user never try to read
883  * a cell if not previously written, and we check all branches to be sure
884  * a malicious user doesn't try to abuse us.
885  */
886 static int check_load_and_stores(const struct sock_filter *filter, int flen)
887 {
888         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
889         int pc, ret = 0;
890
891         BUILD_BUG_ON(BPF_MEMWORDS > 16);
892
893         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
894         if (!masks)
895                 return -ENOMEM;
896
897         memset(masks, 0xff, flen * sizeof(*masks));
898
899         for (pc = 0; pc < flen; pc++) {
900                 memvalid &= masks[pc];
901
902                 switch (filter[pc].code) {
903                 case BPF_ST:
904                 case BPF_STX:
905                         memvalid |= (1 << filter[pc].k);
906                         break;
907                 case BPF_LD | BPF_MEM:
908                 case BPF_LDX | BPF_MEM:
909                         if (!(memvalid & (1 << filter[pc].k))) {
910                                 ret = -EINVAL;
911                                 goto error;
912                         }
913                         break;
914                 case BPF_JMP | BPF_JA:
915                         /* A jump must set masks on target */
916                         masks[pc + 1 + filter[pc].k] &= memvalid;
917                         memvalid = ~0;
918                         break;
919                 case BPF_JMP | BPF_JEQ | BPF_K:
920                 case BPF_JMP | BPF_JEQ | BPF_X:
921                 case BPF_JMP | BPF_JGE | BPF_K:
922                 case BPF_JMP | BPF_JGE | BPF_X:
923                 case BPF_JMP | BPF_JGT | BPF_K:
924                 case BPF_JMP | BPF_JGT | BPF_X:
925                 case BPF_JMP | BPF_JSET | BPF_K:
926                 case BPF_JMP | BPF_JSET | BPF_X:
927                         /* A jump must set masks on targets */
928                         masks[pc + 1 + filter[pc].jt] &= memvalid;
929                         masks[pc + 1 + filter[pc].jf] &= memvalid;
930                         memvalid = ~0;
931                         break;
932                 }
933         }
934 error:
935         kfree(masks);
936         return ret;
937 }
938
939 static bool chk_code_allowed(u16 code_to_probe)
940 {
941         static const bool codes[] = {
942                 /* 32 bit ALU operations */
943                 [BPF_ALU | BPF_ADD | BPF_K] = true,
944                 [BPF_ALU | BPF_ADD | BPF_X] = true,
945                 [BPF_ALU | BPF_SUB | BPF_K] = true,
946                 [BPF_ALU | BPF_SUB | BPF_X] = true,
947                 [BPF_ALU | BPF_MUL | BPF_K] = true,
948                 [BPF_ALU | BPF_MUL | BPF_X] = true,
949                 [BPF_ALU | BPF_DIV | BPF_K] = true,
950                 [BPF_ALU | BPF_DIV | BPF_X] = true,
951                 [BPF_ALU | BPF_MOD | BPF_K] = true,
952                 [BPF_ALU | BPF_MOD | BPF_X] = true,
953                 [BPF_ALU | BPF_AND | BPF_K] = true,
954                 [BPF_ALU | BPF_AND | BPF_X] = true,
955                 [BPF_ALU | BPF_OR | BPF_K] = true,
956                 [BPF_ALU | BPF_OR | BPF_X] = true,
957                 [BPF_ALU | BPF_XOR | BPF_K] = true,
958                 [BPF_ALU | BPF_XOR | BPF_X] = true,
959                 [BPF_ALU | BPF_LSH | BPF_K] = true,
960                 [BPF_ALU | BPF_LSH | BPF_X] = true,
961                 [BPF_ALU | BPF_RSH | BPF_K] = true,
962                 [BPF_ALU | BPF_RSH | BPF_X] = true,
963                 [BPF_ALU | BPF_NEG] = true,
964                 /* Load instructions */
965                 [BPF_LD | BPF_W | BPF_ABS] = true,
966                 [BPF_LD | BPF_H | BPF_ABS] = true,
967                 [BPF_LD | BPF_B | BPF_ABS] = true,
968                 [BPF_LD | BPF_W | BPF_LEN] = true,
969                 [BPF_LD | BPF_W | BPF_IND] = true,
970                 [BPF_LD | BPF_H | BPF_IND] = true,
971                 [BPF_LD | BPF_B | BPF_IND] = true,
972                 [BPF_LD | BPF_IMM] = true,
973                 [BPF_LD | BPF_MEM] = true,
974                 [BPF_LDX | BPF_W | BPF_LEN] = true,
975                 [BPF_LDX | BPF_B | BPF_MSH] = true,
976                 [BPF_LDX | BPF_IMM] = true,
977                 [BPF_LDX | BPF_MEM] = true,
978                 /* Store instructions */
979                 [BPF_ST] = true,
980                 [BPF_STX] = true,
981                 /* Misc instructions */
982                 [BPF_MISC | BPF_TAX] = true,
983                 [BPF_MISC | BPF_TXA] = true,
984                 /* Return instructions */
985                 [BPF_RET | BPF_K] = true,
986                 [BPF_RET | BPF_A] = true,
987                 /* Jump instructions */
988                 [BPF_JMP | BPF_JA] = true,
989                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
990                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
991                 [BPF_JMP | BPF_JGE | BPF_K] = true,
992                 [BPF_JMP | BPF_JGE | BPF_X] = true,
993                 [BPF_JMP | BPF_JGT | BPF_K] = true,
994                 [BPF_JMP | BPF_JGT | BPF_X] = true,
995                 [BPF_JMP | BPF_JSET | BPF_K] = true,
996                 [BPF_JMP | BPF_JSET | BPF_X] = true,
997         };
998
999         if (code_to_probe >= ARRAY_SIZE(codes))
1000                 return false;
1001
1002         return codes[code_to_probe];
1003 }
1004
1005 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1006                                 unsigned int flen)
1007 {
1008         if (filter == NULL)
1009                 return false;
1010         if (flen == 0 || flen > BPF_MAXINSNS)
1011                 return false;
1012
1013         return true;
1014 }
1015
1016 /**
1017  *      bpf_check_classic - verify socket filter code
1018  *      @filter: filter to verify
1019  *      @flen: length of filter
1020  *
1021  * Check the user's filter code. If we let some ugly
1022  * filter code slip through kaboom! The filter must contain
1023  * no references or jumps that are out of range, no illegal
1024  * instructions, and must end with a RET instruction.
1025  *
1026  * All jumps are forward as they are not signed.
1027  *
1028  * Returns 0 if the rule set is legal or -EINVAL if not.
1029  */
1030 static int bpf_check_classic(const struct sock_filter *filter,
1031                              unsigned int flen)
1032 {
1033         bool anc_found;
1034         int pc;
1035
1036         /* Check the filter code now */
1037         for (pc = 0; pc < flen; pc++) {
1038                 const struct sock_filter *ftest = &filter[pc];
1039
1040                 /* May we actually operate on this code? */
1041                 if (!chk_code_allowed(ftest->code))
1042                         return -EINVAL;
1043
1044                 /* Some instructions need special checks */
1045                 switch (ftest->code) {
1046                 case BPF_ALU | BPF_DIV | BPF_K:
1047                 case BPF_ALU | BPF_MOD | BPF_K:
1048                         /* Check for division by zero */
1049                         if (ftest->k == 0)
1050                                 return -EINVAL;
1051                         break;
1052                 case BPF_ALU | BPF_LSH | BPF_K:
1053                 case BPF_ALU | BPF_RSH | BPF_K:
1054                         if (ftest->k >= 32)
1055                                 return -EINVAL;
1056                         break;
1057                 case BPF_LD | BPF_MEM:
1058                 case BPF_LDX | BPF_MEM:
1059                 case BPF_ST:
1060                 case BPF_STX:
1061                         /* Check for invalid memory addresses */
1062                         if (ftest->k >= BPF_MEMWORDS)
1063                                 return -EINVAL;
1064                         break;
1065                 case BPF_JMP | BPF_JA:
1066                         /* Note, the large ftest->k might cause loops.
1067                          * Compare this with conditional jumps below,
1068                          * where offsets are limited. --ANK (981016)
1069                          */
1070                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1071                                 return -EINVAL;
1072                         break;
1073                 case BPF_JMP | BPF_JEQ | BPF_K:
1074                 case BPF_JMP | BPF_JEQ | BPF_X:
1075                 case BPF_JMP | BPF_JGE | BPF_K:
1076                 case BPF_JMP | BPF_JGE | BPF_X:
1077                 case BPF_JMP | BPF_JGT | BPF_K:
1078                 case BPF_JMP | BPF_JGT | BPF_X:
1079                 case BPF_JMP | BPF_JSET | BPF_K:
1080                 case BPF_JMP | BPF_JSET | BPF_X:
1081                         /* Both conditionals must be safe */
1082                         if (pc + ftest->jt + 1 >= flen ||
1083                             pc + ftest->jf + 1 >= flen)
1084                                 return -EINVAL;
1085                         break;
1086                 case BPF_LD | BPF_W | BPF_ABS:
1087                 case BPF_LD | BPF_H | BPF_ABS:
1088                 case BPF_LD | BPF_B | BPF_ABS:
1089                         anc_found = false;
1090                         if (bpf_anc_helper(ftest) & BPF_ANC)
1091                                 anc_found = true;
1092                         /* Ancillary operation unknown or unsupported */
1093                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1094                                 return -EINVAL;
1095                 }
1096         }
1097
1098         /* Last instruction must be a RET code */
1099         switch (filter[flen - 1].code) {
1100         case BPF_RET | BPF_K:
1101         case BPF_RET | BPF_A:
1102                 return check_load_and_stores(filter, flen);
1103         }
1104
1105         return -EINVAL;
1106 }
1107
1108 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1109                                       const struct sock_fprog *fprog)
1110 {
1111         unsigned int fsize = bpf_classic_proglen(fprog);
1112         struct sock_fprog_kern *fkprog;
1113
1114         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1115         if (!fp->orig_prog)
1116                 return -ENOMEM;
1117
1118         fkprog = fp->orig_prog;
1119         fkprog->len = fprog->len;
1120
1121         fkprog->filter = kmemdup(fp->insns, fsize,
1122                                  GFP_KERNEL | __GFP_NOWARN);
1123         if (!fkprog->filter) {
1124                 kfree(fp->orig_prog);
1125                 return -ENOMEM;
1126         }
1127
1128         return 0;
1129 }
1130
1131 static void bpf_release_orig_filter(struct bpf_prog *fp)
1132 {
1133         struct sock_fprog_kern *fprog = fp->orig_prog;
1134
1135         if (fprog) {
1136                 kfree(fprog->filter);
1137                 kfree(fprog);
1138         }
1139 }
1140
1141 static void __bpf_prog_release(struct bpf_prog *prog)
1142 {
1143         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1144                 bpf_prog_put(prog);
1145         } else {
1146                 bpf_release_orig_filter(prog);
1147                 bpf_prog_free(prog);
1148         }
1149 }
1150
1151 static void __sk_filter_release(struct sk_filter *fp)
1152 {
1153         __bpf_prog_release(fp->prog);
1154         kfree(fp);
1155 }
1156
1157 /**
1158  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1159  *      @rcu: rcu_head that contains the sk_filter to free
1160  */
1161 static void sk_filter_release_rcu(struct rcu_head *rcu)
1162 {
1163         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1164
1165         __sk_filter_release(fp);
1166 }
1167
1168 /**
1169  *      sk_filter_release - release a socket filter
1170  *      @fp: filter to remove
1171  *
1172  *      Remove a filter from a socket and release its resources.
1173  */
1174 static void sk_filter_release(struct sk_filter *fp)
1175 {
1176         if (refcount_dec_and_test(&fp->refcnt))
1177                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1178 }
1179
1180 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1181 {
1182         u32 filter_size = bpf_prog_size(fp->prog->len);
1183
1184         atomic_sub(filter_size, &sk->sk_omem_alloc);
1185         sk_filter_release(fp);
1186 }
1187
1188 /* try to charge the socket memory if there is space available
1189  * return true on success
1190  */
1191 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1192 {
1193         u32 filter_size = bpf_prog_size(fp->prog->len);
1194
1195         /* same check as in sock_kmalloc() */
1196         if (filter_size <= sysctl_optmem_max &&
1197             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1198                 atomic_add(filter_size, &sk->sk_omem_alloc);
1199                 return true;
1200         }
1201         return false;
1202 }
1203
1204 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1205 {
1206         if (!refcount_inc_not_zero(&fp->refcnt))
1207                 return false;
1208
1209         if (!__sk_filter_charge(sk, fp)) {
1210                 sk_filter_release(fp);
1211                 return false;
1212         }
1213         return true;
1214 }
1215
1216 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1217 {
1218         struct sock_filter *old_prog;
1219         struct bpf_prog *old_fp;
1220         int err, new_len, old_len = fp->len;
1221         bool seen_ld_abs = false;
1222
1223         /* We are free to overwrite insns et al right here as it
1224          * won't be used at this point in time anymore internally
1225          * after the migration to the internal BPF instruction
1226          * representation.
1227          */
1228         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1229                      sizeof(struct bpf_insn));
1230
1231         /* Conversion cannot happen on overlapping memory areas,
1232          * so we need to keep the user BPF around until the 2nd
1233          * pass. At this time, the user BPF is stored in fp->insns.
1234          */
1235         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1236                            GFP_KERNEL | __GFP_NOWARN);
1237         if (!old_prog) {
1238                 err = -ENOMEM;
1239                 goto out_err;
1240         }
1241
1242         /* 1st pass: calculate the new program length. */
1243         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1244                                  &seen_ld_abs);
1245         if (err)
1246                 goto out_err_free;
1247
1248         /* Expand fp for appending the new filter representation. */
1249         old_fp = fp;
1250         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1251         if (!fp) {
1252                 /* The old_fp is still around in case we couldn't
1253                  * allocate new memory, so uncharge on that one.
1254                  */
1255                 fp = old_fp;
1256                 err = -ENOMEM;
1257                 goto out_err_free;
1258         }
1259
1260         fp->len = new_len;
1261
1262         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1263         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1264                                  &seen_ld_abs);
1265         if (err)
1266                 /* 2nd bpf_convert_filter() can fail only if it fails
1267                  * to allocate memory, remapping must succeed. Note,
1268                  * that at this time old_fp has already been released
1269                  * by krealloc().
1270                  */
1271                 goto out_err_free;
1272
1273         fp = bpf_prog_select_runtime(fp, &err);
1274         if (err)
1275                 goto out_err_free;
1276
1277         kfree(old_prog);
1278         return fp;
1279
1280 out_err_free:
1281         kfree(old_prog);
1282 out_err:
1283         __bpf_prog_release(fp);
1284         return ERR_PTR(err);
1285 }
1286
1287 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1288                                            bpf_aux_classic_check_t trans)
1289 {
1290         int err;
1291
1292         fp->bpf_func = NULL;
1293         fp->jited = 0;
1294
1295         err = bpf_check_classic(fp->insns, fp->len);
1296         if (err) {
1297                 __bpf_prog_release(fp);
1298                 return ERR_PTR(err);
1299         }
1300
1301         /* There might be additional checks and transformations
1302          * needed on classic filters, f.e. in case of seccomp.
1303          */
1304         if (trans) {
1305                 err = trans(fp->insns, fp->len);
1306                 if (err) {
1307                         __bpf_prog_release(fp);
1308                         return ERR_PTR(err);
1309                 }
1310         }
1311
1312         /* Probe if we can JIT compile the filter and if so, do
1313          * the compilation of the filter.
1314          */
1315         bpf_jit_compile(fp);
1316
1317         /* JIT compiler couldn't process this filter, so do the
1318          * internal BPF translation for the optimized interpreter.
1319          */
1320         if (!fp->jited)
1321                 fp = bpf_migrate_filter(fp);
1322
1323         return fp;
1324 }
1325
1326 /**
1327  *      bpf_prog_create - create an unattached filter
1328  *      @pfp: the unattached filter that is created
1329  *      @fprog: the filter program
1330  *
1331  * Create a filter independent of any socket. We first run some
1332  * sanity checks on it to make sure it does not explode on us later.
1333  * If an error occurs or there is insufficient memory for the filter
1334  * a negative errno code is returned. On success the return is zero.
1335  */
1336 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1337 {
1338         unsigned int fsize = bpf_classic_proglen(fprog);
1339         struct bpf_prog *fp;
1340
1341         /* Make sure new filter is there and in the right amounts. */
1342         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1343                 return -EINVAL;
1344
1345         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1346         if (!fp)
1347                 return -ENOMEM;
1348
1349         memcpy(fp->insns, fprog->filter, fsize);
1350
1351         fp->len = fprog->len;
1352         /* Since unattached filters are not copied back to user
1353          * space through sk_get_filter(), we do not need to hold
1354          * a copy here, and can spare us the work.
1355          */
1356         fp->orig_prog = NULL;
1357
1358         /* bpf_prepare_filter() already takes care of freeing
1359          * memory in case something goes wrong.
1360          */
1361         fp = bpf_prepare_filter(fp, NULL);
1362         if (IS_ERR(fp))
1363                 return PTR_ERR(fp);
1364
1365         *pfp = fp;
1366         return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(bpf_prog_create);
1369
1370 /**
1371  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1372  *      @pfp: the unattached filter that is created
1373  *      @fprog: the filter program
1374  *      @trans: post-classic verifier transformation handler
1375  *      @save_orig: save classic BPF program
1376  *
1377  * This function effectively does the same as bpf_prog_create(), only
1378  * that it builds up its insns buffer from user space provided buffer.
1379  * It also allows for passing a bpf_aux_classic_check_t handler.
1380  */
1381 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1382                               bpf_aux_classic_check_t trans, bool save_orig)
1383 {
1384         unsigned int fsize = bpf_classic_proglen(fprog);
1385         struct bpf_prog *fp;
1386         int err;
1387
1388         /* Make sure new filter is there and in the right amounts. */
1389         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1390                 return -EINVAL;
1391
1392         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1393         if (!fp)
1394                 return -ENOMEM;
1395
1396         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1397                 __bpf_prog_free(fp);
1398                 return -EFAULT;
1399         }
1400
1401         fp->len = fprog->len;
1402         fp->orig_prog = NULL;
1403
1404         if (save_orig) {
1405                 err = bpf_prog_store_orig_filter(fp, fprog);
1406                 if (err) {
1407                         __bpf_prog_free(fp);
1408                         return -ENOMEM;
1409                 }
1410         }
1411
1412         /* bpf_prepare_filter() already takes care of freeing
1413          * memory in case something goes wrong.
1414          */
1415         fp = bpf_prepare_filter(fp, trans);
1416         if (IS_ERR(fp))
1417                 return PTR_ERR(fp);
1418
1419         *pfp = fp;
1420         return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1423
1424 void bpf_prog_destroy(struct bpf_prog *fp)
1425 {
1426         __bpf_prog_release(fp);
1427 }
1428 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1429
1430 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1431 {
1432         struct sk_filter *fp, *old_fp;
1433
1434         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1435         if (!fp)
1436                 return -ENOMEM;
1437
1438         fp->prog = prog;
1439
1440         if (!__sk_filter_charge(sk, fp)) {
1441                 kfree(fp);
1442                 return -ENOMEM;
1443         }
1444         refcount_set(&fp->refcnt, 1);
1445
1446         old_fp = rcu_dereference_protected(sk->sk_filter,
1447                                            lockdep_sock_is_held(sk));
1448         rcu_assign_pointer(sk->sk_filter, fp);
1449
1450         if (old_fp)
1451                 sk_filter_uncharge(sk, old_fp);
1452
1453         return 0;
1454 }
1455
1456 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1457 {
1458         struct bpf_prog *old_prog;
1459         int err;
1460
1461         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1462                 return -ENOMEM;
1463
1464         if (sk_unhashed(sk) && sk->sk_reuseport) {
1465                 err = reuseport_alloc(sk);
1466                 if (err)
1467                         return err;
1468         } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1469                 /* The socket wasn't bound with SO_REUSEPORT */
1470                 return -EINVAL;
1471         }
1472
1473         old_prog = reuseport_attach_prog(sk, prog);
1474         if (old_prog)
1475                 bpf_prog_destroy(old_prog);
1476
1477         return 0;
1478 }
1479
1480 static
1481 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1482 {
1483         unsigned int fsize = bpf_classic_proglen(fprog);
1484         struct bpf_prog *prog;
1485         int err;
1486
1487         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1488                 return ERR_PTR(-EPERM);
1489
1490         /* Make sure new filter is there and in the right amounts. */
1491         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1492                 return ERR_PTR(-EINVAL);
1493
1494         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1495         if (!prog)
1496                 return ERR_PTR(-ENOMEM);
1497
1498         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1499                 __bpf_prog_free(prog);
1500                 return ERR_PTR(-EFAULT);
1501         }
1502
1503         prog->len = fprog->len;
1504
1505         err = bpf_prog_store_orig_filter(prog, fprog);
1506         if (err) {
1507                 __bpf_prog_free(prog);
1508                 return ERR_PTR(-ENOMEM);
1509         }
1510
1511         /* bpf_prepare_filter() already takes care of freeing
1512          * memory in case something goes wrong.
1513          */
1514         return bpf_prepare_filter(prog, NULL);
1515 }
1516
1517 /**
1518  *      sk_attach_filter - attach a socket filter
1519  *      @fprog: the filter program
1520  *      @sk: the socket to use
1521  *
1522  * Attach the user's filter code. We first run some sanity checks on
1523  * it to make sure it does not explode on us later. If an error
1524  * occurs or there is insufficient memory for the filter a negative
1525  * errno code is returned. On success the return is zero.
1526  */
1527 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1528 {
1529         struct bpf_prog *prog = __get_filter(fprog, sk);
1530         int err;
1531
1532         if (IS_ERR(prog))
1533                 return PTR_ERR(prog);
1534
1535         err = __sk_attach_prog(prog, sk);
1536         if (err < 0) {
1537                 __bpf_prog_release(prog);
1538                 return err;
1539         }
1540
1541         return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(sk_attach_filter);
1544
1545 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1546 {
1547         struct bpf_prog *prog = __get_filter(fprog, sk);
1548         int err;
1549
1550         if (IS_ERR(prog))
1551                 return PTR_ERR(prog);
1552
1553         err = __reuseport_attach_prog(prog, sk);
1554         if (err < 0) {
1555                 __bpf_prog_release(prog);
1556                 return err;
1557         }
1558
1559         return 0;
1560 }
1561
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565                 return ERR_PTR(-EPERM);
1566
1567         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572         struct bpf_prog *prog = __get_bpf(ufd, sk);
1573         int err;
1574
1575         if (IS_ERR(prog))
1576                 return PTR_ERR(prog);
1577
1578         err = __sk_attach_prog(prog, sk);
1579         if (err < 0) {
1580                 bpf_prog_put(prog);
1581                 return err;
1582         }
1583
1584         return 0;
1585 }
1586
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589         struct bpf_prog *prog = __get_bpf(ufd, sk);
1590         int err;
1591
1592         if (IS_ERR(prog))
1593                 return PTR_ERR(prog);
1594
1595         err = __reuseport_attach_prog(prog, sk);
1596         if (err < 0) {
1597                 bpf_prog_put(prog);
1598                 return err;
1599         }
1600
1601         return 0;
1602 }
1603
1604 struct bpf_scratchpad {
1605         union {
1606                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1607                 u8     buff[MAX_BPF_STACK];
1608         };
1609 };
1610
1611 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1612
1613 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1614                                           unsigned int write_len)
1615 {
1616         return skb_ensure_writable(skb, write_len);
1617 }
1618
1619 static inline int bpf_try_make_writable(struct sk_buff *skb,
1620                                         unsigned int write_len)
1621 {
1622         int err = __bpf_try_make_writable(skb, write_len);
1623
1624         bpf_compute_data_pointers(skb);
1625         return err;
1626 }
1627
1628 static int bpf_try_make_head_writable(struct sk_buff *skb)
1629 {
1630         return bpf_try_make_writable(skb, skb_headlen(skb));
1631 }
1632
1633 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1634 {
1635         if (skb_at_tc_ingress(skb))
1636                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1637 }
1638
1639 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1640 {
1641         if (skb_at_tc_ingress(skb))
1642                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1643 }
1644
1645 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1646            const void *, from, u32, len, u64, flags)
1647 {
1648         void *ptr;
1649
1650         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1651                 return -EINVAL;
1652         if (unlikely(offset > 0xffff))
1653                 return -EFAULT;
1654         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1655                 return -EFAULT;
1656
1657         ptr = skb->data + offset;
1658         if (flags & BPF_F_RECOMPUTE_CSUM)
1659                 __skb_postpull_rcsum(skb, ptr, len, offset);
1660
1661         memcpy(ptr, from, len);
1662
1663         if (flags & BPF_F_RECOMPUTE_CSUM)
1664                 __skb_postpush_rcsum(skb, ptr, len, offset);
1665         if (flags & BPF_F_INVALIDATE_HASH)
1666                 skb_clear_hash(skb);
1667
1668         return 0;
1669 }
1670
1671 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1672         .func           = bpf_skb_store_bytes,
1673         .gpl_only       = false,
1674         .ret_type       = RET_INTEGER,
1675         .arg1_type      = ARG_PTR_TO_CTX,
1676         .arg2_type      = ARG_ANYTHING,
1677         .arg3_type      = ARG_PTR_TO_MEM,
1678         .arg4_type      = ARG_CONST_SIZE,
1679         .arg5_type      = ARG_ANYTHING,
1680 };
1681
1682 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1683            void *, to, u32, len)
1684 {
1685         void *ptr;
1686
1687         if (unlikely(offset > 0xffff))
1688                 goto err_clear;
1689
1690         ptr = skb_header_pointer(skb, offset, len, to);
1691         if (unlikely(!ptr))
1692                 goto err_clear;
1693         if (ptr != to)
1694                 memcpy(to, ptr, len);
1695
1696         return 0;
1697 err_clear:
1698         memset(to, 0, len);
1699         return -EFAULT;
1700 }
1701
1702 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1703         .func           = bpf_skb_load_bytes,
1704         .gpl_only       = false,
1705         .ret_type       = RET_INTEGER,
1706         .arg1_type      = ARG_PTR_TO_CTX,
1707         .arg2_type      = ARG_ANYTHING,
1708         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1709         .arg4_type      = ARG_CONST_SIZE,
1710 };
1711
1712 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1713            u32, offset, void *, to, u32, len, u32, start_header)
1714 {
1715         u8 *end = skb_tail_pointer(skb);
1716         u8 *net = skb_network_header(skb);
1717         u8 *mac = skb_mac_header(skb);
1718         u8 *ptr;
1719
1720         if (unlikely(offset > 0xffff || len > (end - mac)))
1721                 goto err_clear;
1722
1723         switch (start_header) {
1724         case BPF_HDR_START_MAC:
1725                 ptr = mac + offset;
1726                 break;
1727         case BPF_HDR_START_NET:
1728                 ptr = net + offset;
1729                 break;
1730         default:
1731                 goto err_clear;
1732         }
1733
1734         if (likely(ptr >= mac && ptr + len <= end)) {
1735                 memcpy(to, ptr, len);
1736                 return 0;
1737         }
1738
1739 err_clear:
1740         memset(to, 0, len);
1741         return -EFAULT;
1742 }
1743
1744 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1745         .func           = bpf_skb_load_bytes_relative,
1746         .gpl_only       = false,
1747         .ret_type       = RET_INTEGER,
1748         .arg1_type      = ARG_PTR_TO_CTX,
1749         .arg2_type      = ARG_ANYTHING,
1750         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1751         .arg4_type      = ARG_CONST_SIZE,
1752         .arg5_type      = ARG_ANYTHING,
1753 };
1754
1755 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1756 {
1757         /* Idea is the following: should the needed direct read/write
1758          * test fail during runtime, we can pull in more data and redo
1759          * again, since implicitly, we invalidate previous checks here.
1760          *
1761          * Or, since we know how much we need to make read/writeable,
1762          * this can be done once at the program beginning for direct
1763          * access case. By this we overcome limitations of only current
1764          * headroom being accessible.
1765          */
1766         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1767 }
1768
1769 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1770         .func           = bpf_skb_pull_data,
1771         .gpl_only       = false,
1772         .ret_type       = RET_INTEGER,
1773         .arg1_type      = ARG_PTR_TO_CTX,
1774         .arg2_type      = ARG_ANYTHING,
1775 };
1776
1777 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1778                                            unsigned int write_len)
1779 {
1780         int err = __bpf_try_make_writable(skb, write_len);
1781
1782         bpf_compute_data_end_sk_skb(skb);
1783         return err;
1784 }
1785
1786 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1787 {
1788         /* Idea is the following: should the needed direct read/write
1789          * test fail during runtime, we can pull in more data and redo
1790          * again, since implicitly, we invalidate previous checks here.
1791          *
1792          * Or, since we know how much we need to make read/writeable,
1793          * this can be done once at the program beginning for direct
1794          * access case. By this we overcome limitations of only current
1795          * headroom being accessible.
1796          */
1797         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1798 }
1799
1800 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1801         .func           = sk_skb_pull_data,
1802         .gpl_only       = false,
1803         .ret_type       = RET_INTEGER,
1804         .arg1_type      = ARG_PTR_TO_CTX,
1805         .arg2_type      = ARG_ANYTHING,
1806 };
1807
1808 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1809            u64, from, u64, to, u64, flags)
1810 {
1811         __sum16 *ptr;
1812
1813         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1814                 return -EINVAL;
1815         if (unlikely(offset > 0xffff || offset & 1))
1816                 return -EFAULT;
1817         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1818                 return -EFAULT;
1819
1820         ptr = (__sum16 *)(skb->data + offset);
1821         switch (flags & BPF_F_HDR_FIELD_MASK) {
1822         case 0:
1823                 if (unlikely(from != 0))
1824                         return -EINVAL;
1825
1826                 csum_replace_by_diff(ptr, to);
1827                 break;
1828         case 2:
1829                 csum_replace2(ptr, from, to);
1830                 break;
1831         case 4:
1832                 csum_replace4(ptr, from, to);
1833                 break;
1834         default:
1835                 return -EINVAL;
1836         }
1837
1838         return 0;
1839 }
1840
1841 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1842         .func           = bpf_l3_csum_replace,
1843         .gpl_only       = false,
1844         .ret_type       = RET_INTEGER,
1845         .arg1_type      = ARG_PTR_TO_CTX,
1846         .arg2_type      = ARG_ANYTHING,
1847         .arg3_type      = ARG_ANYTHING,
1848         .arg4_type      = ARG_ANYTHING,
1849         .arg5_type      = ARG_ANYTHING,
1850 };
1851
1852 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1853            u64, from, u64, to, u64, flags)
1854 {
1855         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1856         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1857         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1858         __sum16 *ptr;
1859
1860         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1861                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1862                 return -EINVAL;
1863         if (unlikely(offset > 0xffff || offset & 1))
1864                 return -EFAULT;
1865         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1866                 return -EFAULT;
1867
1868         ptr = (__sum16 *)(skb->data + offset);
1869         if (is_mmzero && !do_mforce && !*ptr)
1870                 return 0;
1871
1872         switch (flags & BPF_F_HDR_FIELD_MASK) {
1873         case 0:
1874                 if (unlikely(from != 0))
1875                         return -EINVAL;
1876
1877                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1878                 break;
1879         case 2:
1880                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1881                 break;
1882         case 4:
1883                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1884                 break;
1885         default:
1886                 return -EINVAL;
1887         }
1888
1889         if (is_mmzero && !*ptr)
1890                 *ptr = CSUM_MANGLED_0;
1891         return 0;
1892 }
1893
1894 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1895         .func           = bpf_l4_csum_replace,
1896         .gpl_only       = false,
1897         .ret_type       = RET_INTEGER,
1898         .arg1_type      = ARG_PTR_TO_CTX,
1899         .arg2_type      = ARG_ANYTHING,
1900         .arg3_type      = ARG_ANYTHING,
1901         .arg4_type      = ARG_ANYTHING,
1902         .arg5_type      = ARG_ANYTHING,
1903 };
1904
1905 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1906            __be32 *, to, u32, to_size, __wsum, seed)
1907 {
1908         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1909         u32 diff_size = from_size + to_size;
1910         int i, j = 0;
1911
1912         /* This is quite flexible, some examples:
1913          *
1914          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1915          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1916          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1917          *
1918          * Even for diffing, from_size and to_size don't need to be equal.
1919          */
1920         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1921                      diff_size > sizeof(sp->diff)))
1922                 return -EINVAL;
1923
1924         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1925                 sp->diff[j] = ~from[i];
1926         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1927                 sp->diff[j] = to[i];
1928
1929         return csum_partial(sp->diff, diff_size, seed);
1930 }
1931
1932 static const struct bpf_func_proto bpf_csum_diff_proto = {
1933         .func           = bpf_csum_diff,
1934         .gpl_only       = false,
1935         .pkt_access     = true,
1936         .ret_type       = RET_INTEGER,
1937         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1938         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1939         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
1940         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1941         .arg5_type      = ARG_ANYTHING,
1942 };
1943
1944 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1945 {
1946         /* The interface is to be used in combination with bpf_csum_diff()
1947          * for direct packet writes. csum rotation for alignment as well
1948          * as emulating csum_sub() can be done from the eBPF program.
1949          */
1950         if (skb->ip_summed == CHECKSUM_COMPLETE)
1951                 return (skb->csum = csum_add(skb->csum, csum));
1952
1953         return -ENOTSUPP;
1954 }
1955
1956 static const struct bpf_func_proto bpf_csum_update_proto = {
1957         .func           = bpf_csum_update,
1958         .gpl_only       = false,
1959         .ret_type       = RET_INTEGER,
1960         .arg1_type      = ARG_PTR_TO_CTX,
1961         .arg2_type      = ARG_ANYTHING,
1962 };
1963
1964 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1965 {
1966         return dev_forward_skb(dev, skb);
1967 }
1968
1969 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1970                                       struct sk_buff *skb)
1971 {
1972         int ret = ____dev_forward_skb(dev, skb);
1973
1974         if (likely(!ret)) {
1975                 skb->dev = dev;
1976                 ret = netif_rx(skb);
1977         }
1978
1979         return ret;
1980 }
1981
1982 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1983 {
1984         int ret;
1985
1986         if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1987                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1988                 kfree_skb(skb);
1989                 return -ENETDOWN;
1990         }
1991
1992         skb->dev = dev;
1993
1994         __this_cpu_inc(xmit_recursion);
1995         ret = dev_queue_xmit(skb);
1996         __this_cpu_dec(xmit_recursion);
1997
1998         return ret;
1999 }
2000
2001 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2002                                  u32 flags)
2003 {
2004         /* skb->mac_len is not set on normal egress */
2005         unsigned int mlen = skb->network_header - skb->mac_header;
2006
2007         __skb_pull(skb, mlen);
2008
2009         /* At ingress, the mac header has already been pulled once.
2010          * At egress, skb_pospull_rcsum has to be done in case that
2011          * the skb is originated from ingress (i.e. a forwarded skb)
2012          * to ensure that rcsum starts at net header.
2013          */
2014         if (!skb_at_tc_ingress(skb))
2015                 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2016         skb_pop_mac_header(skb);
2017         skb_reset_mac_len(skb);
2018         return flags & BPF_F_INGRESS ?
2019                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2020 }
2021
2022 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2023                                  u32 flags)
2024 {
2025         /* Verify that a link layer header is carried */
2026         if (unlikely(skb->mac_header >= skb->network_header)) {
2027                 kfree_skb(skb);
2028                 return -ERANGE;
2029         }
2030
2031         bpf_push_mac_rcsum(skb);
2032         return flags & BPF_F_INGRESS ?
2033                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2034 }
2035
2036 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2037                           u32 flags)
2038 {
2039         if (dev_is_mac_header_xmit(dev))
2040                 return __bpf_redirect_common(skb, dev, flags);
2041         else
2042                 return __bpf_redirect_no_mac(skb, dev, flags);
2043 }
2044
2045 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2046 {
2047         struct net_device *dev;
2048         struct sk_buff *clone;
2049         int ret;
2050
2051         if (unlikely(flags & ~(BPF_F_INGRESS)))
2052                 return -EINVAL;
2053
2054         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2055         if (unlikely(!dev))
2056                 return -EINVAL;
2057
2058         clone = skb_clone(skb, GFP_ATOMIC);
2059         if (unlikely(!clone))
2060                 return -ENOMEM;
2061
2062         /* For direct write, we need to keep the invariant that the skbs
2063          * we're dealing with need to be uncloned. Should uncloning fail
2064          * here, we need to free the just generated clone to unclone once
2065          * again.
2066          */
2067         ret = bpf_try_make_head_writable(skb);
2068         if (unlikely(ret)) {
2069                 kfree_skb(clone);
2070                 return -ENOMEM;
2071         }
2072
2073         return __bpf_redirect(clone, dev, flags);
2074 }
2075
2076 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2077         .func           = bpf_clone_redirect,
2078         .gpl_only       = false,
2079         .ret_type       = RET_INTEGER,
2080         .arg1_type      = ARG_PTR_TO_CTX,
2081         .arg2_type      = ARG_ANYTHING,
2082         .arg3_type      = ARG_ANYTHING,
2083 };
2084
2085 struct redirect_info {
2086         u32 ifindex;
2087         u32 flags;
2088         struct bpf_map *map;
2089         struct bpf_map *map_to_flush;
2090         unsigned long   map_owner;
2091 };
2092
2093 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
2094
2095 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2096 {
2097         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2098
2099         if (unlikely(flags & ~(BPF_F_INGRESS)))
2100                 return TC_ACT_SHOT;
2101
2102         ri->ifindex = ifindex;
2103         ri->flags = flags;
2104
2105         return TC_ACT_REDIRECT;
2106 }
2107
2108 int skb_do_redirect(struct sk_buff *skb)
2109 {
2110         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2111         struct net_device *dev;
2112
2113         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2114         ri->ifindex = 0;
2115         if (unlikely(!dev)) {
2116                 kfree_skb(skb);
2117                 return -EINVAL;
2118         }
2119
2120         return __bpf_redirect(skb, dev, ri->flags);
2121 }
2122
2123 static const struct bpf_func_proto bpf_redirect_proto = {
2124         .func           = bpf_redirect,
2125         .gpl_only       = false,
2126         .ret_type       = RET_INTEGER,
2127         .arg1_type      = ARG_ANYTHING,
2128         .arg2_type      = ARG_ANYTHING,
2129 };
2130
2131 BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
2132            struct bpf_map *, map, void *, key, u64, flags)
2133 {
2134         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2135
2136         /* If user passes invalid input drop the packet. */
2137         if (unlikely(flags & ~(BPF_F_INGRESS)))
2138                 return SK_DROP;
2139
2140         tcb->bpf.flags = flags;
2141         tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
2142         if (!tcb->bpf.sk_redir)
2143                 return SK_DROP;
2144
2145         return SK_PASS;
2146 }
2147
2148 static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
2149         .func           = bpf_sk_redirect_hash,
2150         .gpl_only       = false,
2151         .ret_type       = RET_INTEGER,
2152         .arg1_type      = ARG_PTR_TO_CTX,
2153         .arg2_type      = ARG_CONST_MAP_PTR,
2154         .arg3_type      = ARG_PTR_TO_MAP_KEY,
2155         .arg4_type      = ARG_ANYTHING,
2156 };
2157
2158 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
2159            struct bpf_map *, map, u32, key, u64, flags)
2160 {
2161         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2162
2163         /* If user passes invalid input drop the packet. */
2164         if (unlikely(flags & ~(BPF_F_INGRESS)))
2165                 return SK_DROP;
2166
2167         tcb->bpf.flags = flags;
2168         tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
2169         if (!tcb->bpf.sk_redir)
2170                 return SK_DROP;
2171
2172         return SK_PASS;
2173 }
2174
2175 struct sock *do_sk_redirect_map(struct sk_buff *skb)
2176 {
2177         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2178
2179         return tcb->bpf.sk_redir;
2180 }
2181
2182 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
2183         .func           = bpf_sk_redirect_map,
2184         .gpl_only       = false,
2185         .ret_type       = RET_INTEGER,
2186         .arg1_type      = ARG_PTR_TO_CTX,
2187         .arg2_type      = ARG_CONST_MAP_PTR,
2188         .arg3_type      = ARG_ANYTHING,
2189         .arg4_type      = ARG_ANYTHING,
2190 };
2191
2192 BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
2193            struct bpf_map *, map, void *, key, u64, flags)
2194 {
2195         /* If user passes invalid input drop the packet. */
2196         if (unlikely(flags & ~(BPF_F_INGRESS)))
2197                 return SK_DROP;
2198
2199         msg->flags = flags;
2200         msg->sk_redir = __sock_hash_lookup_elem(map, key);
2201         if (!msg->sk_redir)
2202                 return SK_DROP;
2203
2204         return SK_PASS;
2205 }
2206
2207 static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
2208         .func           = bpf_msg_redirect_hash,
2209         .gpl_only       = false,
2210         .ret_type       = RET_INTEGER,
2211         .arg1_type      = ARG_PTR_TO_CTX,
2212         .arg2_type      = ARG_CONST_MAP_PTR,
2213         .arg3_type      = ARG_PTR_TO_MAP_KEY,
2214         .arg4_type      = ARG_ANYTHING,
2215 };
2216
2217 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
2218            struct bpf_map *, map, u32, key, u64, flags)
2219 {
2220         /* If user passes invalid input drop the packet. */
2221         if (unlikely(flags & ~(BPF_F_INGRESS)))
2222                 return SK_DROP;
2223
2224         msg->flags = flags;
2225         msg->sk_redir = __sock_map_lookup_elem(map, key);
2226         if (!msg->sk_redir)
2227                 return SK_DROP;
2228
2229         return SK_PASS;
2230 }
2231
2232 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
2233 {
2234         return msg->sk_redir;
2235 }
2236
2237 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
2238         .func           = bpf_msg_redirect_map,
2239         .gpl_only       = false,
2240         .ret_type       = RET_INTEGER,
2241         .arg1_type      = ARG_PTR_TO_CTX,
2242         .arg2_type      = ARG_CONST_MAP_PTR,
2243         .arg3_type      = ARG_ANYTHING,
2244         .arg4_type      = ARG_ANYTHING,
2245 };
2246
2247 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
2248 {
2249         msg->apply_bytes = bytes;
2250         return 0;
2251 }
2252
2253 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2254         .func           = bpf_msg_apply_bytes,
2255         .gpl_only       = false,
2256         .ret_type       = RET_INTEGER,
2257         .arg1_type      = ARG_PTR_TO_CTX,
2258         .arg2_type      = ARG_ANYTHING,
2259 };
2260
2261 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
2262 {
2263         msg->cork_bytes = bytes;
2264         return 0;
2265 }
2266
2267 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2268         .func           = bpf_msg_cork_bytes,
2269         .gpl_only       = false,
2270         .ret_type       = RET_INTEGER,
2271         .arg1_type      = ARG_PTR_TO_CTX,
2272         .arg2_type      = ARG_ANYTHING,
2273 };
2274
2275 BPF_CALL_4(bpf_msg_pull_data,
2276            struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
2277 {
2278         unsigned int len = 0, offset = 0, copy = 0;
2279         struct scatterlist *sg = msg->sg_data;
2280         int first_sg, last_sg, i, shift;
2281         unsigned char *p, *to, *from;
2282         int bytes = end - start;
2283         struct page *page;
2284
2285         if (unlikely(flags || end <= start))
2286                 return -EINVAL;
2287
2288         /* First find the starting scatterlist element */
2289         i = msg->sg_start;
2290         do {
2291                 len = sg[i].length;
2292                 offset += len;
2293                 if (start < offset + len)
2294                         break;
2295                 i++;
2296                 if (i == MAX_SKB_FRAGS)
2297                         i = 0;
2298         } while (i != msg->sg_end);
2299
2300         if (unlikely(start >= offset + len))
2301                 return -EINVAL;
2302
2303         if (!msg->sg_copy[i] && bytes <= len)
2304                 goto out;
2305
2306         first_sg = i;
2307
2308         /* At this point we need to linearize multiple scatterlist
2309          * elements or a single shared page. Either way we need to
2310          * copy into a linear buffer exclusively owned by BPF. Then
2311          * place the buffer in the scatterlist and fixup the original
2312          * entries by removing the entries now in the linear buffer
2313          * and shifting the remaining entries. For now we do not try
2314          * to copy partial entries to avoid complexity of running out
2315          * of sg_entry slots. The downside is reading a single byte
2316          * will copy the entire sg entry.
2317          */
2318         do {
2319                 copy += sg[i].length;
2320                 i++;
2321                 if (i == MAX_SKB_FRAGS)
2322                         i = 0;
2323                 if (bytes < copy)
2324                         break;
2325         } while (i != msg->sg_end);
2326         last_sg = i;
2327
2328         if (unlikely(copy < end - start))
2329                 return -EINVAL;
2330
2331         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
2332         if (unlikely(!page))
2333                 return -ENOMEM;
2334         p = page_address(page);
2335         offset = 0;
2336
2337         i = first_sg;
2338         do {
2339                 from = sg_virt(&sg[i]);
2340                 len = sg[i].length;
2341                 to = p + offset;
2342
2343                 memcpy(to, from, len);
2344                 offset += len;
2345                 sg[i].length = 0;
2346                 put_page(sg_page(&sg[i]));
2347
2348                 i++;
2349                 if (i == MAX_SKB_FRAGS)
2350                         i = 0;
2351         } while (i != last_sg);
2352
2353         sg[first_sg].length = copy;
2354         sg_set_page(&sg[first_sg], page, copy, 0);
2355
2356         /* To repair sg ring we need to shift entries. If we only
2357          * had a single entry though we can just replace it and
2358          * be done. Otherwise walk the ring and shift the entries.
2359          */
2360         shift = last_sg - first_sg - 1;
2361         if (!shift)
2362                 goto out;
2363
2364         i = first_sg + 1;
2365         do {
2366                 int move_from;
2367
2368                 if (i + shift >= MAX_SKB_FRAGS)
2369                         move_from = i + shift - MAX_SKB_FRAGS;
2370                 else
2371                         move_from = i + shift;
2372
2373                 if (move_from == msg->sg_end)
2374                         break;
2375
2376                 sg[i] = sg[move_from];
2377                 sg[move_from].length = 0;
2378                 sg[move_from].page_link = 0;
2379                 sg[move_from].offset = 0;
2380
2381                 i++;
2382                 if (i == MAX_SKB_FRAGS)
2383                         i = 0;
2384         } while (1);
2385         msg->sg_end -= shift;
2386         if (msg->sg_end < 0)
2387                 msg->sg_end += MAX_SKB_FRAGS;
2388 out:
2389         msg->data = sg_virt(&sg[i]) + start - offset;
2390         msg->data_end = msg->data + bytes;
2391
2392         return 0;
2393 }
2394
2395 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2396         .func           = bpf_msg_pull_data,
2397         .gpl_only       = false,
2398         .ret_type       = RET_INTEGER,
2399         .arg1_type      = ARG_PTR_TO_CTX,
2400         .arg2_type      = ARG_ANYTHING,
2401         .arg3_type      = ARG_ANYTHING,
2402         .arg4_type      = ARG_ANYTHING,
2403 };
2404
2405 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2406 {
2407         return task_get_classid(skb);
2408 }
2409
2410 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2411         .func           = bpf_get_cgroup_classid,
2412         .gpl_only       = false,
2413         .ret_type       = RET_INTEGER,
2414         .arg1_type      = ARG_PTR_TO_CTX,
2415 };
2416
2417 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2418 {
2419         return dst_tclassid(skb);
2420 }
2421
2422 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2423         .func           = bpf_get_route_realm,
2424         .gpl_only       = false,
2425         .ret_type       = RET_INTEGER,
2426         .arg1_type      = ARG_PTR_TO_CTX,
2427 };
2428
2429 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2430 {
2431         /* If skb_clear_hash() was called due to mangling, we can
2432          * trigger SW recalculation here. Later access to hash
2433          * can then use the inline skb->hash via context directly
2434          * instead of calling this helper again.
2435          */
2436         return skb_get_hash(skb);
2437 }
2438
2439 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2440         .func           = bpf_get_hash_recalc,
2441         .gpl_only       = false,
2442         .ret_type       = RET_INTEGER,
2443         .arg1_type      = ARG_PTR_TO_CTX,
2444 };
2445
2446 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2447 {
2448         /* After all direct packet write, this can be used once for
2449          * triggering a lazy recalc on next skb_get_hash() invocation.
2450          */
2451         skb_clear_hash(skb);
2452         return 0;
2453 }
2454
2455 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2456         .func           = bpf_set_hash_invalid,
2457         .gpl_only       = false,
2458         .ret_type       = RET_INTEGER,
2459         .arg1_type      = ARG_PTR_TO_CTX,
2460 };
2461
2462 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2463 {
2464         /* Set user specified hash as L4(+), so that it gets returned
2465          * on skb_get_hash() call unless BPF prog later on triggers a
2466          * skb_clear_hash().
2467          */
2468         __skb_set_sw_hash(skb, hash, true);
2469         return 0;
2470 }
2471
2472 static const struct bpf_func_proto bpf_set_hash_proto = {
2473         .func           = bpf_set_hash,
2474         .gpl_only       = false,
2475         .ret_type       = RET_INTEGER,
2476         .arg1_type      = ARG_PTR_TO_CTX,
2477         .arg2_type      = ARG_ANYTHING,
2478 };
2479
2480 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2481            u16, vlan_tci)
2482 {
2483         int ret;
2484
2485         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2486                      vlan_proto != htons(ETH_P_8021AD)))
2487                 vlan_proto = htons(ETH_P_8021Q);
2488
2489         bpf_push_mac_rcsum(skb);
2490         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2491         bpf_pull_mac_rcsum(skb);
2492
2493         bpf_compute_data_pointers(skb);
2494         return ret;
2495 }
2496
2497 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2498         .func           = bpf_skb_vlan_push,
2499         .gpl_only       = false,
2500         .ret_type       = RET_INTEGER,
2501         .arg1_type      = ARG_PTR_TO_CTX,
2502         .arg2_type      = ARG_ANYTHING,
2503         .arg3_type      = ARG_ANYTHING,
2504 };
2505
2506 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2507 {
2508         int ret;
2509
2510         bpf_push_mac_rcsum(skb);
2511         ret = skb_vlan_pop(skb);
2512         bpf_pull_mac_rcsum(skb);
2513
2514         bpf_compute_data_pointers(skb);
2515         return ret;
2516 }
2517
2518 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2519         .func           = bpf_skb_vlan_pop,
2520         .gpl_only       = false,
2521         .ret_type       = RET_INTEGER,
2522         .arg1_type      = ARG_PTR_TO_CTX,
2523 };
2524
2525 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2526 {
2527         /* Caller already did skb_cow() with len as headroom,
2528          * so no need to do it here.
2529          */
2530         skb_push(skb, len);
2531         memmove(skb->data, skb->data + len, off);
2532         memset(skb->data + off, 0, len);
2533
2534         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2535          * needed here as it does not change the skb->csum
2536          * result for checksum complete when summing over
2537          * zeroed blocks.
2538          */
2539         return 0;
2540 }
2541
2542 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2543 {
2544         /* skb_ensure_writable() is not needed here, as we're
2545          * already working on an uncloned skb.
2546          */
2547         if (unlikely(!pskb_may_pull(skb, off + len)))
2548                 return -ENOMEM;
2549
2550         skb_postpull_rcsum(skb, skb->data + off, len);
2551         memmove(skb->data + len, skb->data, off);
2552         __skb_pull(skb, len);
2553
2554         return 0;
2555 }
2556
2557 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2558 {
2559         bool trans_same = skb->transport_header == skb->network_header;
2560         int ret;
2561
2562         /* There's no need for __skb_push()/__skb_pull() pair to
2563          * get to the start of the mac header as we're guaranteed
2564          * to always start from here under eBPF.
2565          */
2566         ret = bpf_skb_generic_push(skb, off, len);
2567         if (likely(!ret)) {
2568                 skb->mac_header -= len;
2569                 skb->network_header -= len;
2570                 if (trans_same)
2571                         skb->transport_header = skb->network_header;
2572         }
2573
2574         return ret;
2575 }
2576
2577 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2578 {
2579         bool trans_same = skb->transport_header == skb->network_header;
2580         int ret;
2581
2582         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2583         ret = bpf_skb_generic_pop(skb, off, len);
2584         if (likely(!ret)) {
2585                 skb->mac_header += len;
2586                 skb->network_header += len;
2587                 if (trans_same)
2588                         skb->transport_header = skb->network_header;
2589         }
2590
2591         return ret;
2592 }
2593
2594 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2595 {
2596         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2597         u32 off = skb_mac_header_len(skb);
2598         int ret;
2599
2600         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2601         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2602                 return -ENOTSUPP;
2603
2604         ret = skb_cow(skb, len_diff);
2605         if (unlikely(ret < 0))
2606                 return ret;
2607
2608         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2609         if (unlikely(ret < 0))
2610                 return ret;
2611
2612         if (skb_is_gso(skb)) {
2613                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2614
2615                 /* SKB_GSO_TCPV4 needs to be changed into
2616                  * SKB_GSO_TCPV6.
2617                  */
2618                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2619                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2620                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2621                 }
2622
2623                 /* Due to IPv6 header, MSS needs to be downgraded. */
2624                 skb_decrease_gso_size(shinfo, len_diff);
2625                 /* Header must be checked, and gso_segs recomputed. */
2626                 shinfo->gso_type |= SKB_GSO_DODGY;
2627                 shinfo->gso_segs = 0;
2628         }
2629
2630         skb->protocol = htons(ETH_P_IPV6);
2631         skb_clear_hash(skb);
2632
2633         return 0;
2634 }
2635
2636 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2637 {
2638         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2639         u32 off = skb_mac_header_len(skb);
2640         int ret;
2641
2642         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2643         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2644                 return -ENOTSUPP;
2645
2646         ret = skb_unclone(skb, GFP_ATOMIC);
2647         if (unlikely(ret < 0))
2648                 return ret;
2649
2650         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2651         if (unlikely(ret < 0))
2652                 return ret;
2653
2654         if (skb_is_gso(skb)) {
2655                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2656
2657                 /* SKB_GSO_TCPV6 needs to be changed into
2658                  * SKB_GSO_TCPV4.
2659                  */
2660                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2661                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2662                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2663                 }
2664
2665                 /* Due to IPv4 header, MSS can be upgraded. */
2666                 skb_increase_gso_size(shinfo, len_diff);
2667                 /* Header must be checked, and gso_segs recomputed. */
2668                 shinfo->gso_type |= SKB_GSO_DODGY;
2669                 shinfo->gso_segs = 0;
2670         }
2671
2672         skb->protocol = htons(ETH_P_IP);
2673         skb_clear_hash(skb);
2674
2675         return 0;
2676 }
2677
2678 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2679 {
2680         __be16 from_proto = skb->protocol;
2681
2682         if (from_proto == htons(ETH_P_IP) &&
2683               to_proto == htons(ETH_P_IPV6))
2684                 return bpf_skb_proto_4_to_6(skb);
2685
2686         if (from_proto == htons(ETH_P_IPV6) &&
2687               to_proto == htons(ETH_P_IP))
2688                 return bpf_skb_proto_6_to_4(skb);
2689
2690         return -ENOTSUPP;
2691 }
2692
2693 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2694            u64, flags)
2695 {
2696         int ret;
2697
2698         if (unlikely(flags))
2699                 return -EINVAL;
2700
2701         /* General idea is that this helper does the basic groundwork
2702          * needed for changing the protocol, and eBPF program fills the
2703          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2704          * and other helpers, rather than passing a raw buffer here.
2705          *
2706          * The rationale is to keep this minimal and without a need to
2707          * deal with raw packet data. F.e. even if we would pass buffers
2708          * here, the program still needs to call the bpf_lX_csum_replace()
2709          * helpers anyway. Plus, this way we keep also separation of
2710          * concerns, since f.e. bpf_skb_store_bytes() should only take
2711          * care of stores.
2712          *
2713          * Currently, additional options and extension header space are
2714          * not supported, but flags register is reserved so we can adapt
2715          * that. For offloads, we mark packet as dodgy, so that headers
2716          * need to be verified first.
2717          */
2718         ret = bpf_skb_proto_xlat(skb, proto);
2719         bpf_compute_data_pointers(skb);
2720         return ret;
2721 }
2722
2723 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2724         .func           = bpf_skb_change_proto,
2725         .gpl_only       = false,
2726         .ret_type       = RET_INTEGER,
2727         .arg1_type      = ARG_PTR_TO_CTX,
2728         .arg2_type      = ARG_ANYTHING,
2729         .arg3_type      = ARG_ANYTHING,
2730 };
2731
2732 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2733 {
2734         /* We only allow a restricted subset to be changed for now. */
2735         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2736                      !skb_pkt_type_ok(pkt_type)))
2737                 return -EINVAL;
2738
2739         skb->pkt_type = pkt_type;
2740         return 0;
2741 }
2742
2743 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2744         .func           = bpf_skb_change_type,
2745         .gpl_only       = false,
2746         .ret_type       = RET_INTEGER,
2747         .arg1_type      = ARG_PTR_TO_CTX,
2748         .arg2_type      = ARG_ANYTHING,
2749 };
2750
2751 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2752 {
2753         switch (skb->protocol) {
2754         case htons(ETH_P_IP):
2755                 return sizeof(struct iphdr);
2756         case htons(ETH_P_IPV6):
2757                 return sizeof(struct ipv6hdr);
2758         default:
2759                 return ~0U;
2760         }
2761 }
2762
2763 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2764 {
2765         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2766         int ret;
2767
2768         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2769         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2770                 return -ENOTSUPP;
2771
2772         ret = skb_cow(skb, len_diff);
2773         if (unlikely(ret < 0))
2774                 return ret;
2775
2776         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2777         if (unlikely(ret < 0))
2778                 return ret;
2779
2780         if (skb_is_gso(skb)) {
2781                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2782
2783                 /* Due to header grow, MSS needs to be downgraded. */
2784                 skb_decrease_gso_size(shinfo, len_diff);
2785                 /* Header must be checked, and gso_segs recomputed. */
2786                 shinfo->gso_type |= SKB_GSO_DODGY;
2787                 shinfo->gso_segs = 0;
2788         }
2789
2790         return 0;
2791 }
2792
2793 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2794 {
2795         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2796         int ret;
2797
2798         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2799         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2800                 return -ENOTSUPP;
2801
2802         ret = skb_unclone(skb, GFP_ATOMIC);
2803         if (unlikely(ret < 0))
2804                 return ret;
2805
2806         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2807         if (unlikely(ret < 0))
2808                 return ret;
2809
2810         if (skb_is_gso(skb)) {
2811                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2812
2813                 /* Due to header shrink, MSS can be upgraded. */
2814                 skb_increase_gso_size(shinfo, len_diff);
2815                 /* Header must be checked, and gso_segs recomputed. */
2816                 shinfo->gso_type |= SKB_GSO_DODGY;
2817                 shinfo->gso_segs = 0;
2818         }
2819
2820         return 0;
2821 }
2822
2823 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2824 {
2825         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
2826                           SKB_MAX_ALLOC;
2827 }
2828
2829 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2830 {
2831         bool trans_same = skb->transport_header == skb->network_header;
2832         u32 len_cur, len_diff_abs = abs(len_diff);
2833         u32 len_min = bpf_skb_net_base_len(skb);
2834         u32 len_max = __bpf_skb_max_len(skb);
2835         __be16 proto = skb->protocol;
2836         bool shrink = len_diff < 0;
2837         int ret;
2838
2839         if (unlikely(len_diff_abs > 0xfffU))
2840                 return -EFAULT;
2841         if (unlikely(proto != htons(ETH_P_IP) &&
2842                      proto != htons(ETH_P_IPV6)))
2843                 return -ENOTSUPP;
2844
2845         len_cur = skb->len - skb_network_offset(skb);
2846         if (skb_transport_header_was_set(skb) && !trans_same)
2847                 len_cur = skb_network_header_len(skb);
2848         if ((shrink && (len_diff_abs >= len_cur ||
2849                         len_cur - len_diff_abs < len_min)) ||
2850             (!shrink && (skb->len + len_diff_abs > len_max &&
2851                          !skb_is_gso(skb))))
2852                 return -ENOTSUPP;
2853
2854         ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2855                        bpf_skb_net_grow(skb, len_diff_abs);
2856
2857         bpf_compute_data_pointers(skb);
2858         return ret;
2859 }
2860
2861 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2862            u32, mode, u64, flags)
2863 {
2864         if (unlikely(flags))
2865                 return -EINVAL;
2866         if (likely(mode == BPF_ADJ_ROOM_NET))
2867                 return bpf_skb_adjust_net(skb, len_diff);
2868
2869         return -ENOTSUPP;
2870 }
2871
2872 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2873         .func           = bpf_skb_adjust_room,
2874         .gpl_only       = false,
2875         .ret_type       = RET_INTEGER,
2876         .arg1_type      = ARG_PTR_TO_CTX,
2877         .arg2_type      = ARG_ANYTHING,
2878         .arg3_type      = ARG_ANYTHING,
2879         .arg4_type      = ARG_ANYTHING,
2880 };
2881
2882 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2883 {
2884         u32 min_len = skb_network_offset(skb);
2885
2886         if (skb_transport_header_was_set(skb))
2887                 min_len = skb_transport_offset(skb);
2888         if (skb->ip_summed == CHECKSUM_PARTIAL)
2889                 min_len = skb_checksum_start_offset(skb) +
2890                           skb->csum_offset + sizeof(__sum16);
2891         return min_len;
2892 }
2893
2894 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2895 {
2896         unsigned int old_len = skb->len;
2897         int ret;
2898
2899         ret = __skb_grow_rcsum(skb, new_len);
2900         if (!ret)
2901                 memset(skb->data + old_len, 0, new_len - old_len);
2902         return ret;
2903 }
2904
2905 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2906 {
2907         return __skb_trim_rcsum(skb, new_len);
2908 }
2909
2910 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
2911                                         u64 flags)
2912 {
2913         u32 max_len = __bpf_skb_max_len(skb);
2914         u32 min_len = __bpf_skb_min_len(skb);
2915         int ret;
2916
2917         if (unlikely(flags || new_len > max_len || new_len < min_len))
2918                 return -EINVAL;
2919         if (skb->encapsulation)
2920                 return -ENOTSUPP;
2921
2922         /* The basic idea of this helper is that it's performing the
2923          * needed work to either grow or trim an skb, and eBPF program
2924          * rewrites the rest via helpers like bpf_skb_store_bytes(),
2925          * bpf_lX_csum_replace() and others rather than passing a raw
2926          * buffer here. This one is a slow path helper and intended
2927          * for replies with control messages.
2928          *
2929          * Like in bpf_skb_change_proto(), we want to keep this rather
2930          * minimal and without protocol specifics so that we are able
2931          * to separate concerns as in bpf_skb_store_bytes() should only
2932          * be the one responsible for writing buffers.
2933          *
2934          * It's really expected to be a slow path operation here for
2935          * control message replies, so we're implicitly linearizing,
2936          * uncloning and drop offloads from the skb by this.
2937          */
2938         ret = __bpf_try_make_writable(skb, skb->len);
2939         if (!ret) {
2940                 if (new_len > skb->len)
2941                         ret = bpf_skb_grow_rcsum(skb, new_len);
2942                 else if (new_len < skb->len)
2943                         ret = bpf_skb_trim_rcsum(skb, new_len);
2944                 if (!ret && skb_is_gso(skb))
2945                         skb_gso_reset(skb);
2946         }
2947         return ret;
2948 }
2949
2950 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2951            u64, flags)
2952 {
2953         int ret = __bpf_skb_change_tail(skb, new_len, flags);
2954
2955         bpf_compute_data_pointers(skb);
2956         return ret;
2957 }
2958
2959 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2960         .func           = bpf_skb_change_tail,
2961         .gpl_only       = false,
2962         .ret_type       = RET_INTEGER,
2963         .arg1_type      = ARG_PTR_TO_CTX,
2964         .arg2_type      = ARG_ANYTHING,
2965         .arg3_type      = ARG_ANYTHING,
2966 };
2967
2968 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2969            u64, flags)
2970 {
2971         int ret = __bpf_skb_change_tail(skb, new_len, flags);
2972
2973         bpf_compute_data_end_sk_skb(skb);
2974         return ret;
2975 }
2976
2977 static const struct bpf_func_proto sk_skb_change_tail_proto = {
2978         .func           = sk_skb_change_tail,
2979         .gpl_only       = false,
2980         .ret_type       = RET_INTEGER,
2981         .arg1_type      = ARG_PTR_TO_CTX,
2982         .arg2_type      = ARG_ANYTHING,
2983         .arg3_type      = ARG_ANYTHING,
2984 };
2985
2986 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
2987                                         u64 flags)
2988 {
2989         u32 max_len = __bpf_skb_max_len(skb);
2990         u32 new_len = skb->len + head_room;
2991         int ret;
2992
2993         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2994                      new_len < skb->len))
2995                 return -EINVAL;
2996
2997         ret = skb_cow(skb, head_room);
2998         if (likely(!ret)) {
2999                 /* Idea for this helper is that we currently only
3000                  * allow to expand on mac header. This means that
3001                  * skb->protocol network header, etc, stay as is.
3002                  * Compared to bpf_skb_change_tail(), we're more
3003                  * flexible due to not needing to linearize or
3004                  * reset GSO. Intention for this helper is to be
3005                  * used by an L3 skb that needs to push mac header
3006                  * for redirection into L2 device.
3007                  */
3008                 __skb_push(skb, head_room);
3009                 memset(skb->data, 0, head_room);
3010                 skb_reset_mac_header(skb);
3011         }
3012
3013         return ret;
3014 }
3015
3016 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3017            u64, flags)
3018 {
3019         int ret = __bpf_skb_change_head(skb, head_room, flags);
3020
3021         bpf_compute_data_pointers(skb);
3022         return ret;
3023 }
3024
3025 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3026         .func           = bpf_skb_change_head,
3027         .gpl_only       = false,
3028         .ret_type       = RET_INTEGER,
3029         .arg1_type      = ARG_PTR_TO_CTX,
3030         .arg2_type      = ARG_ANYTHING,
3031         .arg3_type      = ARG_ANYTHING,
3032 };
3033
3034 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3035            u64, flags)
3036 {
3037         int ret = __bpf_skb_change_head(skb, head_room, flags);
3038
3039         bpf_compute_data_end_sk_skb(skb);
3040         return ret;
3041 }
3042
3043 static const struct bpf_func_proto sk_skb_change_head_proto = {
3044         .func           = sk_skb_change_head,
3045         .gpl_only       = false,
3046         .ret_type       = RET_INTEGER,
3047         .arg1_type      = ARG_PTR_TO_CTX,
3048         .arg2_type      = ARG_ANYTHING,
3049         .arg3_type      = ARG_ANYTHING,
3050 };
3051 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3052 {
3053         return xdp_data_meta_unsupported(xdp) ? 0 :
3054                xdp->data - xdp->data_meta;
3055 }
3056
3057 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3058 {
3059         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3060         unsigned long metalen = xdp_get_metalen(xdp);
3061         void *data_start = xdp_frame_end + metalen;
3062         void *data = xdp->data + offset;
3063
3064         if (unlikely(data < data_start ||
3065                      data > xdp->data_end - ETH_HLEN))
3066                 return -EINVAL;
3067
3068         if (metalen)
3069                 memmove(xdp->data_meta + offset,
3070                         xdp->data_meta, metalen);
3071         xdp->data_meta += offset;
3072         xdp->data = data;
3073
3074         return 0;
3075 }
3076
3077 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3078         .func           = bpf_xdp_adjust_head,
3079         .gpl_only       = false,
3080         .ret_type       = RET_INTEGER,
3081         .arg1_type      = ARG_PTR_TO_CTX,
3082         .arg2_type      = ARG_ANYTHING,
3083 };
3084
3085 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3086 {
3087         void *data_end = xdp->data_end + offset;
3088
3089         /* only shrinking is allowed for now. */
3090         if (unlikely(offset >= 0))
3091                 return -EINVAL;
3092
3093         if (unlikely(data_end < xdp->data + ETH_HLEN))
3094                 return -EINVAL;
3095
3096         xdp->data_end = data_end;
3097
3098         return 0;
3099 }
3100
3101 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3102         .func           = bpf_xdp_adjust_tail,
3103         .gpl_only       = false,
3104         .ret_type       = RET_INTEGER,
3105         .arg1_type      = ARG_PTR_TO_CTX,
3106         .arg2_type      = ARG_ANYTHING,
3107 };
3108
3109 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3110 {
3111         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3112         void *meta = xdp->data_meta + offset;
3113         unsigned long metalen = xdp->data - meta;
3114
3115         if (xdp_data_meta_unsupported(xdp))
3116                 return -ENOTSUPP;
3117         if (unlikely(meta < xdp_frame_end ||
3118                      meta > xdp->data))
3119                 return -EINVAL;
3120         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3121                      (metalen > 32)))
3122                 return -EACCES;
3123
3124         xdp->data_meta = meta;
3125
3126         return 0;
3127 }
3128
3129 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3130         .func           = bpf_xdp_adjust_meta,
3131         .gpl_only       = false,
3132         .ret_type       = RET_INTEGER,
3133         .arg1_type      = ARG_PTR_TO_CTX,
3134         .arg2_type      = ARG_ANYTHING,
3135 };
3136
3137 static int __bpf_tx_xdp(struct net_device *dev,
3138                         struct bpf_map *map,
3139                         struct xdp_buff *xdp,
3140                         u32 index)
3141 {
3142         struct xdp_frame *xdpf;
3143         int err, sent;
3144
3145         if (!dev->netdev_ops->ndo_xdp_xmit) {
3146                 return -EOPNOTSUPP;
3147         }
3148
3149         err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3150         if (unlikely(err))
3151                 return err;
3152
3153         xdpf = convert_to_xdp_frame(xdp);
3154         if (unlikely(!xdpf))
3155                 return -EOVERFLOW;
3156
3157         sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3158         if (sent <= 0)
3159                 return sent;
3160         return 0;
3161 }
3162
3163 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3164                             struct bpf_map *map,
3165                             struct xdp_buff *xdp,
3166                             u32 index)
3167 {
3168         int err;
3169
3170         switch (map->map_type) {
3171         case BPF_MAP_TYPE_DEVMAP: {
3172                 struct bpf_dtab_netdev *dst = fwd;
3173
3174                 err = dev_map_enqueue(dst, xdp, dev_rx);
3175                 if (err)
3176                         return err;
3177                 __dev_map_insert_ctx(map, index);
3178                 break;
3179         }
3180         case BPF_MAP_TYPE_CPUMAP: {
3181                 struct bpf_cpu_map_entry *rcpu = fwd;
3182
3183                 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3184                 if (err)
3185                         return err;
3186                 __cpu_map_insert_ctx(map, index);
3187                 break;
3188         }
3189         case BPF_MAP_TYPE_XSKMAP: {
3190                 struct xdp_sock *xs = fwd;
3191
3192                 err = __xsk_map_redirect(map, xdp, xs);
3193                 return err;
3194         }
3195         default:
3196                 break;
3197         }
3198         return 0;
3199 }
3200
3201 void xdp_do_flush_map(void)
3202 {
3203         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3204         struct bpf_map *map = ri->map_to_flush;
3205
3206         ri->map_to_flush = NULL;
3207         if (map) {
3208                 switch (map->map_type) {
3209                 case BPF_MAP_TYPE_DEVMAP:
3210                         __dev_map_flush(map);
3211                         break;
3212                 case BPF_MAP_TYPE_CPUMAP:
3213                         __cpu_map_flush(map);
3214                         break;
3215                 case BPF_MAP_TYPE_XSKMAP:
3216                         __xsk_map_flush(map);
3217                         break;
3218                 default:
3219                         break;
3220                 }
3221         }
3222 }
3223 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3224
3225 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3226 {
3227         switch (map->map_type) {
3228         case BPF_MAP_TYPE_DEVMAP:
3229                 return __dev_map_lookup_elem(map, index);
3230         case BPF_MAP_TYPE_CPUMAP:
3231                 return __cpu_map_lookup_elem(map, index);
3232         case BPF_MAP_TYPE_XSKMAP:
3233                 return __xsk_map_lookup_elem(map, index);
3234         default:
3235                 return NULL;
3236         }
3237 }
3238
3239 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
3240                                    unsigned long aux)
3241 {
3242         return (unsigned long)xdp_prog->aux != aux;
3243 }
3244
3245 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3246                                struct bpf_prog *xdp_prog)
3247 {
3248         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3249         unsigned long map_owner = ri->map_owner;
3250         struct bpf_map *map = ri->map;
3251         u32 index = ri->ifindex;
3252         void *fwd = NULL;
3253         int err;
3254
3255         ri->ifindex = 0;
3256         ri->map = NULL;
3257         ri->map_owner = 0;
3258
3259         if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3260                 err = -EFAULT;
3261                 map = NULL;
3262                 goto err;
3263         }
3264
3265         fwd = __xdp_map_lookup_elem(map, index);
3266         if (!fwd) {
3267                 err = -EINVAL;
3268                 goto err;
3269         }
3270         if (ri->map_to_flush && ri->map_to_flush != map)
3271                 xdp_do_flush_map();
3272
3273         err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3274         if (unlikely(err))
3275                 goto err;
3276
3277         ri->map_to_flush = map;
3278         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3279         return 0;
3280 err:
3281         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3282         return err;
3283 }
3284
3285 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3286                     struct bpf_prog *xdp_prog)
3287 {
3288         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3289         struct net_device *fwd;
3290         u32 index = ri->ifindex;
3291         int err;
3292
3293         if (ri->map)
3294                 return xdp_do_redirect_map(dev, xdp, xdp_prog);
3295
3296         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3297         ri->ifindex = 0;
3298         if (unlikely(!fwd)) {
3299                 err = -EINVAL;
3300                 goto err;
3301         }
3302
3303         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3304         if (unlikely(err))
3305                 goto err;
3306
3307         _trace_xdp_redirect(dev, xdp_prog, index);
3308         return 0;
3309 err:
3310         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3311         return err;
3312 }
3313 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3314
3315 static int xdp_do_generic_redirect_map(struct net_device *dev,
3316                                        struct sk_buff *skb,
3317                                        struct xdp_buff *xdp,
3318                                        struct bpf_prog *xdp_prog)
3319 {
3320         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3321         unsigned long map_owner = ri->map_owner;
3322         struct bpf_map *map = ri->map;
3323         u32 index = ri->ifindex;
3324         void *fwd = NULL;
3325         int err = 0;
3326
3327         ri->ifindex = 0;
3328         ri->map = NULL;
3329         ri->map_owner = 0;
3330
3331         if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3332                 err = -EFAULT;
3333                 map = NULL;
3334                 goto err;
3335         }
3336         fwd = __xdp_map_lookup_elem(map, index);
3337         if (unlikely(!fwd)) {
3338                 err = -EINVAL;
3339                 goto err;
3340         }
3341
3342         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3343                 struct bpf_dtab_netdev *dst = fwd;
3344
3345                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3346                 if (unlikely(err))
3347                         goto err;
3348         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3349                 struct xdp_sock *xs = fwd;
3350
3351                 err = xsk_generic_rcv(xs, xdp);
3352                 if (err)
3353                         goto err;
3354                 consume_skb(skb);
3355         } else {
3356                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3357                 err = -EBADRQC;
3358                 goto err;
3359         }
3360
3361         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3362         return 0;
3363 err:
3364         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3365         return err;
3366 }
3367
3368 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3369                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3370 {
3371         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3372         u32 index = ri->ifindex;
3373         struct net_device *fwd;
3374         int err = 0;
3375
3376         if (ri->map)
3377                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog);
3378
3379         ri->ifindex = 0;
3380         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3381         if (unlikely(!fwd)) {
3382                 err = -EINVAL;
3383                 goto err;
3384         }
3385
3386         err = xdp_ok_fwd_dev(fwd, skb->len);
3387         if (unlikely(err))
3388                 goto err;
3389
3390         skb->dev = fwd;
3391         _trace_xdp_redirect(dev, xdp_prog, index);
3392         generic_xdp_tx(skb, xdp_prog);
3393         return 0;
3394 err:
3395         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3396         return err;
3397 }
3398 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3399
3400 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3401 {
3402         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3403
3404         if (unlikely(flags))
3405                 return XDP_ABORTED;
3406
3407         ri->ifindex = ifindex;
3408         ri->flags = flags;
3409         ri->map = NULL;
3410         ri->map_owner = 0;
3411
3412         return XDP_REDIRECT;
3413 }
3414
3415 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3416         .func           = bpf_xdp_redirect,
3417         .gpl_only       = false,
3418         .ret_type       = RET_INTEGER,
3419         .arg1_type      = ARG_ANYTHING,
3420         .arg2_type      = ARG_ANYTHING,
3421 };
3422
3423 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3424            unsigned long, map_owner)
3425 {
3426         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3427
3428         if (unlikely(flags))
3429                 return XDP_ABORTED;
3430
3431         ri->ifindex = ifindex;
3432         ri->flags = flags;
3433         ri->map = map;
3434         ri->map_owner = map_owner;
3435
3436         return XDP_REDIRECT;
3437 }
3438
3439 /* Note, arg4 is hidden from users and populated by the verifier
3440  * with the right pointer.
3441  */
3442 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3443         .func           = bpf_xdp_redirect_map,
3444         .gpl_only       = false,
3445         .ret_type       = RET_INTEGER,
3446         .arg1_type      = ARG_CONST_MAP_PTR,
3447         .arg2_type      = ARG_ANYTHING,
3448         .arg3_type      = ARG_ANYTHING,
3449 };
3450
3451 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3452                                   unsigned long off, unsigned long len)
3453 {
3454         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3455
3456         if (unlikely(!ptr))
3457                 return len;
3458         if (ptr != dst_buff)
3459                 memcpy(dst_buff, ptr, len);
3460
3461         return 0;
3462 }
3463
3464 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3465            u64, flags, void *, meta, u64, meta_size)
3466 {
3467         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3468
3469         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3470                 return -EINVAL;
3471         if (unlikely(skb_size > skb->len))
3472                 return -EFAULT;
3473
3474         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3475                                 bpf_skb_copy);
3476 }
3477
3478 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3479         .func           = bpf_skb_event_output,
3480         .gpl_only       = true,
3481         .ret_type       = RET_INTEGER,
3482         .arg1_type      = ARG_PTR_TO_CTX,
3483         .arg2_type      = ARG_CONST_MAP_PTR,
3484         .arg3_type      = ARG_ANYTHING,
3485         .arg4_type      = ARG_PTR_TO_MEM,
3486         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3487 };
3488
3489 static unsigned short bpf_tunnel_key_af(u64 flags)
3490 {
3491         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3492 }
3493
3494 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3495            u32, size, u64, flags)
3496 {
3497         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3498         u8 compat[sizeof(struct bpf_tunnel_key)];
3499         void *to_orig = to;
3500         int err;
3501
3502         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3503                 err = -EINVAL;
3504                 goto err_clear;
3505         }
3506         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3507                 err = -EPROTO;
3508                 goto err_clear;
3509         }
3510         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3511                 err = -EINVAL;
3512                 switch (size) {
3513                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3514                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3515                         goto set_compat;
3516                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3517                         /* Fixup deprecated structure layouts here, so we have
3518                          * a common path later on.
3519                          */
3520                         if (ip_tunnel_info_af(info) != AF_INET)
3521                                 goto err_clear;
3522 set_compat:
3523                         to = (struct bpf_tunnel_key *)compat;
3524                         break;
3525                 default:
3526                         goto err_clear;
3527                 }
3528         }
3529
3530         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3531         to->tunnel_tos = info->key.tos;
3532         to->tunnel_ttl = info->key.ttl;
3533         to->tunnel_ext = 0;
3534
3535         if (flags & BPF_F_TUNINFO_IPV6) {
3536                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3537                        sizeof(to->remote_ipv6));
3538                 to->tunnel_label = be32_to_cpu(info->key.label);
3539         } else {
3540                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3541                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3542                 to->tunnel_label = 0;
3543         }
3544
3545         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3546                 memcpy(to_orig, to, size);
3547
3548         return 0;
3549 err_clear:
3550         memset(to_orig, 0, size);
3551         return err;
3552 }
3553
3554 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3555         .func           = bpf_skb_get_tunnel_key,
3556         .gpl_only       = false,
3557         .ret_type       = RET_INTEGER,
3558         .arg1_type      = ARG_PTR_TO_CTX,
3559         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3560         .arg3_type      = ARG_CONST_SIZE,
3561         .arg4_type      = ARG_ANYTHING,
3562 };
3563
3564 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3565 {
3566         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3567         int err;
3568
3569         if (unlikely(!info ||
3570                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3571                 err = -ENOENT;
3572                 goto err_clear;
3573         }
3574         if (unlikely(size < info->options_len)) {
3575                 err = -ENOMEM;
3576                 goto err_clear;
3577         }
3578
3579         ip_tunnel_info_opts_get(to, info);
3580         if (size > info->options_len)
3581                 memset(to + info->options_len, 0, size - info->options_len);
3582
3583         return info->options_len;
3584 err_clear:
3585         memset(to, 0, size);
3586         return err;
3587 }
3588
3589 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3590         .func           = bpf_skb_get_tunnel_opt,
3591         .gpl_only       = false,
3592         .ret_type       = RET_INTEGER,
3593         .arg1_type      = ARG_PTR_TO_CTX,
3594         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3595         .arg3_type      = ARG_CONST_SIZE,
3596 };
3597
3598 static struct metadata_dst __percpu *md_dst;
3599
3600 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3601            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3602 {
3603         struct metadata_dst *md = this_cpu_ptr(md_dst);
3604         u8 compat[sizeof(struct bpf_tunnel_key)];
3605         struct ip_tunnel_info *info;
3606
3607         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3608                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3609                 return -EINVAL;
3610         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3611                 switch (size) {
3612                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3613                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3614                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3615                         /* Fixup deprecated structure layouts here, so we have
3616                          * a common path later on.
3617                          */
3618                         memcpy(compat, from, size);
3619                         memset(compat + size, 0, sizeof(compat) - size);
3620                         from = (const struct bpf_tunnel_key *) compat;
3621                         break;
3622                 default:
3623                         return -EINVAL;
3624                 }
3625         }
3626         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3627                      from->tunnel_ext))
3628                 return -EINVAL;
3629
3630         skb_dst_drop(skb);
3631         dst_hold((struct dst_entry *) md);
3632         skb_dst_set(skb, (struct dst_entry *) md);
3633
3634         info = &md->u.tun_info;
3635         memset(info, 0, sizeof(*info));
3636         info->mode = IP_TUNNEL_INFO_TX;
3637
3638         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3639         if (flags & BPF_F_DONT_FRAGMENT)
3640                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3641         if (flags & BPF_F_ZERO_CSUM_TX)
3642                 info->key.tun_flags &= ~TUNNEL_CSUM;
3643         if (flags & BPF_F_SEQ_NUMBER)
3644                 info->key.tun_flags |= TUNNEL_SEQ;
3645
3646         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3647         info->key.tos = from->tunnel_tos;
3648         info->key.ttl = from->tunnel_ttl;
3649
3650         if (flags & BPF_F_TUNINFO_IPV6) {
3651                 info->mode |= IP_TUNNEL_INFO_IPV6;
3652                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3653                        sizeof(from->remote_ipv6));
3654                 info->key.label = cpu_to_be32(from->tunnel_label) &
3655                                   IPV6_FLOWLABEL_MASK;
3656         } else {
3657                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3658         }
3659
3660         return 0;
3661 }
3662
3663 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3664         .func           = bpf_skb_set_tunnel_key,
3665         .gpl_only       = false,
3666         .ret_type       = RET_INTEGER,
3667         .arg1_type      = ARG_PTR_TO_CTX,
3668         .arg2_type      = ARG_PTR_TO_MEM,
3669         .arg3_type      = ARG_CONST_SIZE,
3670         .arg4_type      = ARG_ANYTHING,
3671 };
3672
3673 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3674            const u8 *, from, u32, size)
3675 {
3676         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3677         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3678
3679         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3680                 return -EINVAL;
3681         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3682                 return -ENOMEM;
3683
3684         ip_tunnel_info_opts_set(info, from, size);
3685
3686         return 0;
3687 }
3688
3689 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3690         .func           = bpf_skb_set_tunnel_opt,
3691         .gpl_only       = false,
3692         .ret_type       = RET_INTEGER,
3693         .arg1_type      = ARG_PTR_TO_CTX,
3694         .arg2_type      = ARG_PTR_TO_MEM,
3695         .arg3_type      = ARG_CONST_SIZE,
3696 };
3697
3698 static const struct bpf_func_proto *
3699 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3700 {
3701         if (!md_dst) {
3702                 struct metadata_dst __percpu *tmp;
3703
3704                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3705                                                 METADATA_IP_TUNNEL,
3706                                                 GFP_KERNEL);
3707                 if (!tmp)
3708                         return NULL;
3709                 if (cmpxchg(&md_dst, NULL, tmp))
3710                         metadata_dst_free_percpu(tmp);
3711         }
3712
3713         switch (which) {
3714         case BPF_FUNC_skb_set_tunnel_key:
3715                 return &bpf_skb_set_tunnel_key_proto;
3716         case BPF_FUNC_skb_set_tunnel_opt:
3717                 return &bpf_skb_set_tunnel_opt_proto;
3718         default:
3719                 return NULL;
3720         }
3721 }
3722
3723 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3724            u32, idx)
3725 {
3726         struct bpf_array *array = container_of(map, struct bpf_array, map);
3727         struct cgroup *cgrp;
3728         struct sock *sk;
3729
3730         sk = skb_to_full_sk(skb);
3731         if (!sk || !sk_fullsock(sk))
3732                 return -ENOENT;
3733         if (unlikely(idx >= array->map.max_entries))
3734                 return -E2BIG;
3735
3736         cgrp = READ_ONCE(array->ptrs[idx]);
3737         if (unlikely(!cgrp))
3738                 return -EAGAIN;
3739
3740         return sk_under_cgroup_hierarchy(sk, cgrp);
3741 }
3742
3743 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3744         .func           = bpf_skb_under_cgroup,
3745         .gpl_only       = false,
3746         .ret_type       = RET_INTEGER,
3747         .arg1_type      = ARG_PTR_TO_CTX,
3748         .arg2_type      = ARG_CONST_MAP_PTR,
3749         .arg3_type      = ARG_ANYTHING,
3750 };
3751
3752 #ifdef CONFIG_SOCK_CGROUP_DATA
3753 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3754 {
3755         struct sock *sk = skb_to_full_sk(skb);
3756         struct cgroup *cgrp;
3757
3758         if (!sk || !sk_fullsock(sk))
3759                 return 0;
3760
3761         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3762         return cgrp->kn->id.id;
3763 }
3764
3765 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3766         .func           = bpf_skb_cgroup_id,
3767         .gpl_only       = false,
3768         .ret_type       = RET_INTEGER,
3769         .arg1_type      = ARG_PTR_TO_CTX,
3770 };
3771 #endif
3772
3773 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3774                                   unsigned long off, unsigned long len)
3775 {
3776         memcpy(dst_buff, src_buff + off, len);
3777         return 0;
3778 }
3779
3780 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3781            u64, flags, void *, meta, u64, meta_size)
3782 {
3783         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3784
3785         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3786                 return -EINVAL;
3787         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3788                 return -EFAULT;
3789
3790         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3791                                 xdp_size, bpf_xdp_copy);
3792 }
3793
3794 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3795         .func           = bpf_xdp_event_output,
3796         .gpl_only       = true,
3797         .ret_type       = RET_INTEGER,
3798         .arg1_type      = ARG_PTR_TO_CTX,
3799         .arg2_type      = ARG_CONST_MAP_PTR,
3800         .arg3_type      = ARG_ANYTHING,
3801         .arg4_type      = ARG_PTR_TO_MEM,
3802         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3803 };
3804
3805 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3806 {
3807         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3808 }
3809
3810 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3811         .func           = bpf_get_socket_cookie,
3812         .gpl_only       = false,
3813         .ret_type       = RET_INTEGER,
3814         .arg1_type      = ARG_PTR_TO_CTX,
3815 };
3816
3817 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3818 {
3819         struct sock *sk = sk_to_full_sk(skb->sk);
3820         kuid_t kuid;
3821
3822         if (!sk || !sk_fullsock(sk))
3823                 return overflowuid;
3824         kuid = sock_net_uid(sock_net(sk), sk);
3825         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3826 }
3827
3828 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3829         .func           = bpf_get_socket_uid,
3830         .gpl_only       = false,
3831         .ret_type       = RET_INTEGER,
3832         .arg1_type      = ARG_PTR_TO_CTX,
3833 };
3834
3835 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3836            int, level, int, optname, char *, optval, int, optlen)
3837 {
3838         struct sock *sk = bpf_sock->sk;
3839         int ret = 0;
3840         int val;
3841
3842         if (!sk_fullsock(sk))
3843                 return -EINVAL;
3844
3845         if (level == SOL_SOCKET) {
3846                 if (optlen != sizeof(int))
3847                         return -EINVAL;
3848                 val = *((int *)optval);
3849
3850                 /* Only some socketops are supported */
3851                 switch (optname) {
3852                 case SO_RCVBUF:
3853                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3854                         sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3855                         break;
3856                 case SO_SNDBUF:
3857                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3858                         sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3859                         break;
3860                 case SO_MAX_PACING_RATE:
3861                         sk->sk_max_pacing_rate = val;
3862                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3863                                                  sk->sk_max_pacing_rate);
3864                         break;
3865                 case SO_PRIORITY:
3866                         sk->sk_priority = val;
3867                         break;
3868                 case SO_RCVLOWAT:
3869                         if (val < 0)
3870                                 val = INT_MAX;
3871                         sk->sk_rcvlowat = val ? : 1;
3872                         break;
3873                 case SO_MARK:
3874                         sk->sk_mark = val;
3875                         break;
3876                 default:
3877                         ret = -EINVAL;
3878                 }
3879 #ifdef CONFIG_INET
3880         } else if (level == SOL_IP) {
3881                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3882                         return -EINVAL;
3883
3884                 val = *((int *)optval);
3885                 /* Only some options are supported */
3886                 switch (optname) {
3887                 case IP_TOS:
3888                         if (val < -1 || val > 0xff) {
3889                                 ret = -EINVAL;
3890                         } else {
3891                                 struct inet_sock *inet = inet_sk(sk);
3892
3893                                 if (val == -1)
3894                                         val = 0;
3895                                 inet->tos = val;
3896                         }
3897                         break;
3898                 default:
3899                         ret = -EINVAL;
3900                 }
3901 #if IS_ENABLED(CONFIG_IPV6)
3902         } else if (level == SOL_IPV6) {
3903                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3904                         return -EINVAL;
3905
3906                 val = *((int *)optval);
3907                 /* Only some options are supported */
3908                 switch (optname) {
3909                 case IPV6_TCLASS:
3910                         if (val < -1 || val > 0xff) {
3911                                 ret = -EINVAL;
3912                         } else {
3913                                 struct ipv6_pinfo *np = inet6_sk(sk);
3914
3915                                 if (val == -1)
3916                                         val = 0;
3917                                 np->tclass = val;
3918                         }
3919                         break;
3920                 default:
3921                         ret = -EINVAL;
3922                 }
3923 #endif
3924         } else if (level == SOL_TCP &&
3925                    sk->sk_prot->setsockopt == tcp_setsockopt) {
3926                 if (optname == TCP_CONGESTION) {
3927                         char name[TCP_CA_NAME_MAX];
3928                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3929
3930                         strncpy(name, optval, min_t(long, optlen,
3931                                                     TCP_CA_NAME_MAX-1));
3932                         name[TCP_CA_NAME_MAX-1] = 0;
3933                         ret = tcp_set_congestion_control(sk, name, false,
3934                                                          reinit);
3935                 } else {
3936                         struct tcp_sock *tp = tcp_sk(sk);
3937
3938                         if (optlen != sizeof(int))
3939                                 return -EINVAL;
3940
3941                         val = *((int *)optval);
3942                         /* Only some options are supported */
3943                         switch (optname) {
3944                         case TCP_BPF_IW:
3945                                 if (val <= 0 || tp->data_segs_out > 0)
3946                                         ret = -EINVAL;
3947                                 else
3948                                         tp->snd_cwnd = val;
3949                                 break;
3950                         case TCP_BPF_SNDCWND_CLAMP:
3951                                 if (val <= 0) {
3952                                         ret = -EINVAL;
3953                                 } else {
3954                                         tp->snd_cwnd_clamp = val;
3955                                         tp->snd_ssthresh = val;
3956                                 }
3957                                 break;
3958                         default:
3959                                 ret = -EINVAL;
3960                         }
3961                 }
3962 #endif
3963         } else {
3964                 ret = -EINVAL;
3965         }
3966         return ret;
3967 }
3968
3969 static const struct bpf_func_proto bpf_setsockopt_proto = {
3970         .func           = bpf_setsockopt,
3971         .gpl_only       = false,
3972         .ret_type       = RET_INTEGER,
3973         .arg1_type      = ARG_PTR_TO_CTX,
3974         .arg2_type      = ARG_ANYTHING,
3975         .arg3_type      = ARG_ANYTHING,
3976         .arg4_type      = ARG_PTR_TO_MEM,
3977         .arg5_type      = ARG_CONST_SIZE,
3978 };
3979
3980 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3981            int, level, int, optname, char *, optval, int, optlen)
3982 {
3983         struct sock *sk = bpf_sock->sk;
3984
3985         if (!sk_fullsock(sk))
3986                 goto err_clear;
3987
3988 #ifdef CONFIG_INET
3989         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
3990                 if (optname == TCP_CONGESTION) {
3991                         struct inet_connection_sock *icsk = inet_csk(sk);
3992
3993                         if (!icsk->icsk_ca_ops || optlen <= 1)
3994                                 goto err_clear;
3995                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
3996                         optval[optlen - 1] = 0;
3997                 } else {
3998                         goto err_clear;
3999                 }
4000         } else if (level == SOL_IP) {
4001                 struct inet_sock *inet = inet_sk(sk);
4002
4003                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4004                         goto err_clear;
4005
4006                 /* Only some options are supported */
4007                 switch (optname) {
4008                 case IP_TOS:
4009                         *((int *)optval) = (int)inet->tos;
4010                         break;
4011                 default:
4012                         goto err_clear;
4013                 }
4014 #if IS_ENABLED(CONFIG_IPV6)
4015         } else if (level == SOL_IPV6) {
4016                 struct ipv6_pinfo *np = inet6_sk(sk);
4017
4018                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4019                         goto err_clear;
4020
4021                 /* Only some options are supported */
4022                 switch (optname) {
4023                 case IPV6_TCLASS:
4024                         *((int *)optval) = (int)np->tclass;
4025                         break;
4026                 default:
4027                         goto err_clear;
4028                 }
4029 #endif
4030         } else {
4031                 goto err_clear;
4032         }
4033         return 0;
4034 #endif
4035 err_clear:
4036         memset(optval, 0, optlen);
4037         return -EINVAL;
4038 }
4039
4040 static const struct bpf_func_proto bpf_getsockopt_proto = {
4041         .func           = bpf_getsockopt,
4042         .gpl_only       = false,
4043         .ret_type       = RET_INTEGER,
4044         .arg1_type      = ARG_PTR_TO_CTX,
4045         .arg2_type      = ARG_ANYTHING,
4046         .arg3_type      = ARG_ANYTHING,
4047         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4048         .arg5_type      = ARG_CONST_SIZE,
4049 };
4050
4051 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4052            int, argval)
4053 {
4054         struct sock *sk = bpf_sock->sk;
4055         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4056
4057         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4058                 return -EINVAL;
4059
4060         if (val)
4061                 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4062
4063         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4064 }
4065
4066 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4067         .func           = bpf_sock_ops_cb_flags_set,
4068         .gpl_only       = false,
4069         .ret_type       = RET_INTEGER,
4070         .arg1_type      = ARG_PTR_TO_CTX,
4071         .arg2_type      = ARG_ANYTHING,
4072 };
4073
4074 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4075 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4076
4077 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4078            int, addr_len)
4079 {
4080 #ifdef CONFIG_INET
4081         struct sock *sk = ctx->sk;
4082         int err;
4083
4084         /* Binding to port can be expensive so it's prohibited in the helper.
4085          * Only binding to IP is supported.
4086          */
4087         err = -EINVAL;
4088         if (addr->sa_family == AF_INET) {
4089                 if (addr_len < sizeof(struct sockaddr_in))
4090                         return err;
4091                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4092                         return err;
4093                 return __inet_bind(sk, addr, addr_len, true, false);
4094 #if IS_ENABLED(CONFIG_IPV6)
4095         } else if (addr->sa_family == AF_INET6) {
4096                 if (addr_len < SIN6_LEN_RFC2133)
4097                         return err;
4098                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4099                         return err;
4100                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4101                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4102                  */
4103                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4104 #endif /* CONFIG_IPV6 */
4105         }
4106 #endif /* CONFIG_INET */
4107
4108         return -EAFNOSUPPORT;
4109 }
4110
4111 static const struct bpf_func_proto bpf_bind_proto = {
4112         .func           = bpf_bind,
4113         .gpl_only       = false,
4114         .ret_type       = RET_INTEGER,
4115         .arg1_type      = ARG_PTR_TO_CTX,
4116         .arg2_type      = ARG_PTR_TO_MEM,
4117         .arg3_type      = ARG_CONST_SIZE,
4118 };
4119
4120 #ifdef CONFIG_XFRM
4121 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4122            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4123 {
4124         const struct sec_path *sp = skb_sec_path(skb);
4125         const struct xfrm_state *x;
4126
4127         if (!sp || unlikely(index >= sp->len || flags))
4128                 goto err_clear;
4129
4130         x = sp->xvec[index];
4131
4132         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4133                 goto err_clear;
4134
4135         to->reqid = x->props.reqid;
4136         to->spi = x->id.spi;
4137         to->family = x->props.family;
4138         to->ext = 0;
4139
4140         if (to->family == AF_INET6) {
4141                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4142                        sizeof(to->remote_ipv6));
4143         } else {
4144                 to->remote_ipv4 = x->props.saddr.a4;
4145                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4146         }
4147
4148         return 0;
4149 err_clear:
4150         memset(to, 0, size);
4151         return -EINVAL;
4152 }
4153
4154 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4155         .func           = bpf_skb_get_xfrm_state,
4156         .gpl_only       = false,
4157         .ret_type       = RET_INTEGER,
4158         .arg1_type      = ARG_PTR_TO_CTX,
4159         .arg2_type      = ARG_ANYTHING,
4160         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4161         .arg4_type      = ARG_CONST_SIZE,
4162         .arg5_type      = ARG_ANYTHING,
4163 };
4164 #endif
4165
4166 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4167 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4168                                   const struct neighbour *neigh,
4169                                   const struct net_device *dev)
4170 {
4171         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4172         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4173         params->h_vlan_TCI = 0;
4174         params->h_vlan_proto = 0;
4175         params->ifindex = dev->ifindex;
4176
4177         return 0;
4178 }
4179 #endif
4180
4181 #if IS_ENABLED(CONFIG_INET)
4182 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4183                                u32 flags, bool check_mtu)
4184 {
4185         struct in_device *in_dev;
4186         struct neighbour *neigh;
4187         struct net_device *dev;
4188         struct fib_result res;
4189         struct fib_nh *nh;
4190         struct flowi4 fl4;
4191         int err;
4192         u32 mtu;
4193
4194         dev = dev_get_by_index_rcu(net, params->ifindex);
4195         if (unlikely(!dev))
4196                 return -ENODEV;
4197
4198         /* verify forwarding is enabled on this interface */
4199         in_dev = __in_dev_get_rcu(dev);
4200         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4201                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4202
4203         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4204                 fl4.flowi4_iif = 1;
4205                 fl4.flowi4_oif = params->ifindex;
4206         } else {
4207                 fl4.flowi4_iif = params->ifindex;
4208                 fl4.flowi4_oif = 0;
4209         }
4210         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4211         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4212         fl4.flowi4_flags = 0;
4213
4214         fl4.flowi4_proto = params->l4_protocol;
4215         fl4.daddr = params->ipv4_dst;
4216         fl4.saddr = params->ipv4_src;
4217         fl4.fl4_sport = params->sport;
4218         fl4.fl4_dport = params->dport;
4219
4220         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4221                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4222                 struct fib_table *tb;
4223
4224                 tb = fib_get_table(net, tbid);
4225                 if (unlikely(!tb))
4226                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4227
4228                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4229         } else {
4230                 fl4.flowi4_mark = 0;
4231                 fl4.flowi4_secid = 0;
4232                 fl4.flowi4_tun_key.tun_id = 0;
4233                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4234
4235                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4236         }
4237
4238         if (err) {
4239                 /* map fib lookup errors to RTN_ type */
4240                 if (err == -EINVAL)
4241                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4242                 if (err == -EHOSTUNREACH)
4243                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4244                 if (err == -EACCES)
4245                         return BPF_FIB_LKUP_RET_PROHIBIT;
4246
4247                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4248         }
4249
4250         if (res.type != RTN_UNICAST)
4251                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4252
4253         if (res.fi->fib_nhs > 1)
4254                 fib_select_path(net, &res, &fl4, NULL);
4255
4256         if (check_mtu) {
4257                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4258                 if (params->tot_len > mtu)
4259                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4260         }
4261
4262         nh = &res.fi->fib_nh[res.nh_sel];
4263
4264         /* do not handle lwt encaps right now */
4265         if (nh->nh_lwtstate)
4266                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4267
4268         dev = nh->nh_dev;
4269         if (nh->nh_gw)
4270                 params->ipv4_dst = nh->nh_gw;
4271
4272         params->rt_metric = res.fi->fib_priority;
4273
4274         /* xdp and cls_bpf programs are run in RCU-bh so
4275          * rcu_read_lock_bh is not needed here
4276          */
4277         neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4278         if (!neigh)
4279                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4280
4281         return bpf_fib_set_fwd_params(params, neigh, dev);
4282 }
4283 #endif
4284
4285 #if IS_ENABLED(CONFIG_IPV6)
4286 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4287                                u32 flags, bool check_mtu)
4288 {
4289         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4290         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4291         struct neighbour *neigh;
4292         struct net_device *dev;
4293         struct inet6_dev *idev;
4294         struct fib6_info *f6i;
4295         struct flowi6 fl6;
4296         int strict = 0;
4297         int oif;
4298         u32 mtu;
4299
4300         /* link local addresses are never forwarded */
4301         if (rt6_need_strict(dst) || rt6_need_strict(src))
4302                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4303
4304         dev = dev_get_by_index_rcu(net, params->ifindex);
4305         if (unlikely(!dev))
4306                 return -ENODEV;
4307
4308         idev = __in6_dev_get_safely(dev);
4309         if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4310                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4311
4312         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4313                 fl6.flowi6_iif = 1;
4314                 oif = fl6.flowi6_oif = params->ifindex;
4315         } else {
4316                 oif = fl6.flowi6_iif = params->ifindex;
4317                 fl6.flowi6_oif = 0;
4318                 strict = RT6_LOOKUP_F_HAS_SADDR;
4319         }
4320         fl6.flowlabel = params->flowinfo;
4321         fl6.flowi6_scope = 0;
4322         fl6.flowi6_flags = 0;
4323         fl6.mp_hash = 0;
4324
4325         fl6.flowi6_proto = params->l4_protocol;
4326         fl6.daddr = *dst;
4327         fl6.saddr = *src;
4328         fl6.fl6_sport = params->sport;
4329         fl6.fl6_dport = params->dport;
4330
4331         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4332                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4333                 struct fib6_table *tb;
4334
4335                 tb = ipv6_stub->fib6_get_table(net, tbid);
4336                 if (unlikely(!tb))
4337                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4338
4339                 f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4340         } else {
4341                 fl6.flowi6_mark = 0;
4342                 fl6.flowi6_secid = 0;
4343                 fl6.flowi6_tun_key.tun_id = 0;
4344                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4345
4346                 f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4347         }
4348
4349         if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4350                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4351
4352         if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4353                 switch (f6i->fib6_type) {
4354                 case RTN_BLACKHOLE:
4355                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4356                 case RTN_UNREACHABLE:
4357                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4358                 case RTN_PROHIBIT:
4359                         return BPF_FIB_LKUP_RET_PROHIBIT;
4360                 default:
4361                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4362                 }
4363         }
4364
4365         if (f6i->fib6_type != RTN_UNICAST)
4366                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4367
4368         if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4369                 f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4370                                                        fl6.flowi6_oif, NULL,
4371                                                        strict);
4372
4373         if (check_mtu) {
4374                 mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4375                 if (params->tot_len > mtu)
4376                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4377         }
4378
4379         if (f6i->fib6_nh.nh_lwtstate)
4380                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4381
4382         if (f6i->fib6_flags & RTF_GATEWAY)
4383                 *dst = f6i->fib6_nh.nh_gw;
4384
4385         dev = f6i->fib6_nh.nh_dev;
4386         params->rt_metric = f6i->fib6_metric;
4387
4388         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4389          * not needed here. Can not use __ipv6_neigh_lookup_noref here
4390          * because we need to get nd_tbl via the stub
4391          */
4392         neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4393                                       ndisc_hashfn, dst, dev);
4394         if (!neigh)
4395                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4396
4397         return bpf_fib_set_fwd_params(params, neigh, dev);
4398 }
4399 #endif
4400
4401 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4402            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4403 {
4404         if (plen < sizeof(*params))
4405                 return -EINVAL;
4406
4407         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4408                 return -EINVAL;
4409
4410         switch (params->family) {
4411 #if IS_ENABLED(CONFIG_INET)
4412         case AF_INET:
4413                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4414                                            flags, true);
4415 #endif
4416 #if IS_ENABLED(CONFIG_IPV6)
4417         case AF_INET6:
4418                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4419                                            flags, true);
4420 #endif
4421         }
4422         return -EAFNOSUPPORT;
4423 }
4424
4425 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4426         .func           = bpf_xdp_fib_lookup,
4427         .gpl_only       = true,
4428         .ret_type       = RET_INTEGER,
4429         .arg1_type      = ARG_PTR_TO_CTX,
4430         .arg2_type      = ARG_PTR_TO_MEM,
4431         .arg3_type      = ARG_CONST_SIZE,
4432         .arg4_type      = ARG_ANYTHING,
4433 };
4434
4435 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4436            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4437 {
4438         struct net *net = dev_net(skb->dev);
4439         int rc = -EAFNOSUPPORT;
4440
4441         if (plen < sizeof(*params))
4442                 return -EINVAL;
4443
4444         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4445                 return -EINVAL;
4446
4447         switch (params->family) {
4448 #if IS_ENABLED(CONFIG_INET)
4449         case AF_INET:
4450                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4451                 break;
4452 #endif
4453 #if IS_ENABLED(CONFIG_IPV6)
4454         case AF_INET6:
4455                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4456                 break;
4457 #endif
4458         }
4459
4460         if (!rc) {
4461                 struct net_device *dev;
4462
4463                 dev = dev_get_by_index_rcu(net, params->ifindex);
4464                 if (!is_skb_forwardable(dev, skb))
4465                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4466         }
4467
4468         return rc;
4469 }
4470
4471 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4472         .func           = bpf_skb_fib_lookup,
4473         .gpl_only       = true,
4474         .ret_type       = RET_INTEGER,
4475         .arg1_type      = ARG_PTR_TO_CTX,
4476         .arg2_type      = ARG_PTR_TO_MEM,
4477         .arg3_type      = ARG_CONST_SIZE,
4478         .arg4_type      = ARG_ANYTHING,
4479 };
4480
4481 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4482 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4483 {
4484         int err;
4485         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4486
4487         if (!seg6_validate_srh(srh, len))
4488                 return -EINVAL;
4489
4490         switch (type) {
4491         case BPF_LWT_ENCAP_SEG6_INLINE:
4492                 if (skb->protocol != htons(ETH_P_IPV6))
4493                         return -EBADMSG;
4494
4495                 err = seg6_do_srh_inline(skb, srh);
4496                 break;
4497         case BPF_LWT_ENCAP_SEG6:
4498                 skb_reset_inner_headers(skb);
4499                 skb->encapsulation = 1;
4500                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4501                 break;
4502         default:
4503                 return -EINVAL;
4504         }
4505
4506         bpf_compute_data_pointers(skb);
4507         if (err)
4508                 return err;
4509
4510         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4511         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4512
4513         return seg6_lookup_nexthop(skb, NULL, 0);
4514 }
4515 #endif /* CONFIG_IPV6_SEG6_BPF */
4516
4517 BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4518            u32, len)
4519 {
4520         switch (type) {
4521 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4522         case BPF_LWT_ENCAP_SEG6:
4523         case BPF_LWT_ENCAP_SEG6_INLINE:
4524                 return bpf_push_seg6_encap(skb, type, hdr, len);
4525 #endif
4526         default:
4527                 return -EINVAL;
4528         }
4529 }
4530
4531 static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
4532         .func           = bpf_lwt_push_encap,
4533         .gpl_only       = false,
4534         .ret_type       = RET_INTEGER,
4535         .arg1_type      = ARG_PTR_TO_CTX,
4536         .arg2_type      = ARG_ANYTHING,
4537         .arg3_type      = ARG_PTR_TO_MEM,
4538         .arg4_type      = ARG_CONST_SIZE
4539 };
4540
4541 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4542 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4543            const void *, from, u32, len)
4544 {
4545         struct seg6_bpf_srh_state *srh_state =
4546                 this_cpu_ptr(&seg6_bpf_srh_states);
4547         void *srh_tlvs, *srh_end, *ptr;
4548         struct ipv6_sr_hdr *srh;
4549         int srhoff = 0;
4550
4551         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4552                 return -EINVAL;
4553
4554         srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4555         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4556         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4557
4558         ptr = skb->data + offset;
4559         if (ptr >= srh_tlvs && ptr + len <= srh_end)
4560                 srh_state->valid = 0;
4561         else if (ptr < (void *)&srh->flags ||
4562                  ptr + len > (void *)&srh->segments)
4563                 return -EFAULT;
4564
4565         if (unlikely(bpf_try_make_writable(skb, offset + len)))
4566                 return -EFAULT;
4567
4568         memcpy(skb->data + offset, from, len);
4569         return 0;
4570 }
4571
4572 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4573         .func           = bpf_lwt_seg6_store_bytes,
4574         .gpl_only       = false,
4575         .ret_type       = RET_INTEGER,
4576         .arg1_type      = ARG_PTR_TO_CTX,
4577         .arg2_type      = ARG_ANYTHING,
4578         .arg3_type      = ARG_PTR_TO_MEM,
4579         .arg4_type      = ARG_CONST_SIZE
4580 };
4581
4582 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4583            u32, action, void *, param, u32, param_len)
4584 {
4585         struct seg6_bpf_srh_state *srh_state =
4586                 this_cpu_ptr(&seg6_bpf_srh_states);
4587         struct ipv6_sr_hdr *srh;
4588         int srhoff = 0;
4589         int err;
4590
4591         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4592                 return -EINVAL;
4593         srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4594
4595         if (!srh_state->valid) {
4596                 if (unlikely((srh_state->hdrlen & 7) != 0))
4597                         return -EBADMSG;
4598
4599                 srh->hdrlen = (u8)(srh_state->hdrlen >> 3);
4600                 if (unlikely(!seg6_validate_srh(srh, (srh->hdrlen + 1) << 3)))
4601                         return -EBADMSG;
4602
4603                 srh_state->valid = 1;
4604         }
4605
4606         switch (action) {
4607         case SEG6_LOCAL_ACTION_END_X:
4608                 if (param_len != sizeof(struct in6_addr))
4609                         return -EINVAL;
4610                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4611         case SEG6_LOCAL_ACTION_END_T:
4612                 if (param_len != sizeof(int))
4613                         return -EINVAL;
4614                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4615         case SEG6_LOCAL_ACTION_END_B6:
4616                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4617                                           param, param_len);
4618                 if (!err)
4619                         srh_state->hdrlen =
4620                                 ((struct ipv6_sr_hdr *)param)->hdrlen << 3;
4621                 return err;
4622         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4623                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4624                                           param, param_len);
4625                 if (!err)
4626                         srh_state->hdrlen =
4627                                 ((struct ipv6_sr_hdr *)param)->hdrlen << 3;
4628                 return err;
4629         default:
4630                 return -EINVAL;
4631         }
4632 }
4633
4634 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4635         .func           = bpf_lwt_seg6_action,
4636         .gpl_only       = false,
4637         .ret_type       = RET_INTEGER,
4638         .arg1_type      = ARG_PTR_TO_CTX,
4639         .arg2_type      = ARG_ANYTHING,
4640         .arg3_type      = ARG_PTR_TO_MEM,
4641         .arg4_type      = ARG_CONST_SIZE
4642 };
4643
4644 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
4645            s32, len)
4646 {
4647         struct seg6_bpf_srh_state *srh_state =
4648                 this_cpu_ptr(&seg6_bpf_srh_states);
4649         void *srh_end, *srh_tlvs, *ptr;
4650         struct ipv6_sr_hdr *srh;
4651         struct ipv6hdr *hdr;
4652         int srhoff = 0;
4653         int ret;
4654
4655         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4656                 return -EINVAL;
4657         srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4658
4659         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
4660                         ((srh->first_segment + 1) << 4));
4661         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
4662                         srh_state->hdrlen);
4663         ptr = skb->data + offset;
4664
4665         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
4666                 return -EFAULT;
4667         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
4668                 return -EFAULT;
4669
4670         if (len > 0) {
4671                 ret = skb_cow_head(skb, len);
4672                 if (unlikely(ret < 0))
4673                         return ret;
4674
4675                 ret = bpf_skb_net_hdr_push(skb, offset, len);
4676         } else {
4677                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
4678         }
4679
4680         bpf_compute_data_pointers(skb);
4681         if (unlikely(ret < 0))
4682                 return ret;
4683
4684         hdr = (struct ipv6hdr *)skb->data;
4685         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4686
4687         srh_state->hdrlen += len;
4688         srh_state->valid = 0;
4689         return 0;
4690 }
4691
4692 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
4693         .func           = bpf_lwt_seg6_adjust_srh,
4694         .gpl_only       = false,
4695         .ret_type       = RET_INTEGER,
4696         .arg1_type      = ARG_PTR_TO_CTX,
4697         .arg2_type      = ARG_ANYTHING,
4698         .arg3_type      = ARG_ANYTHING,
4699 };
4700 #endif /* CONFIG_IPV6_SEG6_BPF */
4701
4702 bool bpf_helper_changes_pkt_data(void *func)
4703 {
4704         if (func == bpf_skb_vlan_push ||
4705             func == bpf_skb_vlan_pop ||
4706             func == bpf_skb_store_bytes ||
4707             func == bpf_skb_change_proto ||
4708             func == bpf_skb_change_head ||
4709             func == sk_skb_change_head ||
4710             func == bpf_skb_change_tail ||
4711             func == sk_skb_change_tail ||
4712             func == bpf_skb_adjust_room ||
4713             func == bpf_skb_pull_data ||
4714             func == sk_skb_pull_data ||
4715             func == bpf_clone_redirect ||
4716             func == bpf_l3_csum_replace ||
4717             func == bpf_l4_csum_replace ||
4718             func == bpf_xdp_adjust_head ||
4719             func == bpf_xdp_adjust_meta ||
4720             func == bpf_msg_pull_data ||
4721             func == bpf_xdp_adjust_tail ||
4722 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4723             func == bpf_lwt_seg6_store_bytes ||
4724             func == bpf_lwt_seg6_adjust_srh ||
4725             func == bpf_lwt_seg6_action ||
4726 #endif
4727             func == bpf_lwt_push_encap)
4728                 return true;
4729
4730         return false;
4731 }
4732
4733 static const struct bpf_func_proto *
4734 bpf_base_func_proto(enum bpf_func_id func_id)
4735 {
4736         switch (func_id) {
4737         case BPF_FUNC_map_lookup_elem:
4738                 return &bpf_map_lookup_elem_proto;
4739         case BPF_FUNC_map_update_elem:
4740                 return &bpf_map_update_elem_proto;
4741         case BPF_FUNC_map_delete_elem:
4742                 return &bpf_map_delete_elem_proto;
4743         case BPF_FUNC_get_prandom_u32:
4744                 return &bpf_get_prandom_u32_proto;
4745         case BPF_FUNC_get_smp_processor_id:
4746                 return &bpf_get_raw_smp_processor_id_proto;
4747         case BPF_FUNC_get_numa_node_id:
4748                 return &bpf_get_numa_node_id_proto;
4749         case BPF_FUNC_tail_call:
4750                 return &bpf_tail_call_proto;
4751         case BPF_FUNC_ktime_get_ns:
4752                 return &bpf_ktime_get_ns_proto;
4753         case BPF_FUNC_trace_printk:
4754                 if (capable(CAP_SYS_ADMIN))
4755                         return bpf_get_trace_printk_proto();
4756         default:
4757                 return NULL;
4758         }
4759 }
4760
4761 static const struct bpf_func_proto *
4762 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4763 {
4764         switch (func_id) {
4765         /* inet and inet6 sockets are created in a process
4766          * context so there is always a valid uid/gid
4767          */
4768         case BPF_FUNC_get_current_uid_gid:
4769                 return &bpf_get_current_uid_gid_proto;
4770         default:
4771                 return bpf_base_func_proto(func_id);
4772         }
4773 }
4774
4775 static const struct bpf_func_proto *
4776 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4777 {
4778         switch (func_id) {
4779         /* inet and inet6 sockets are created in a process
4780          * context so there is always a valid uid/gid
4781          */
4782         case BPF_FUNC_get_current_uid_gid:
4783                 return &bpf_get_current_uid_gid_proto;
4784         case BPF_FUNC_bind:
4785                 switch (prog->expected_attach_type) {
4786                 case BPF_CGROUP_INET4_CONNECT:
4787                 case BPF_CGROUP_INET6_CONNECT:
4788                         return &bpf_bind_proto;
4789                 default:
4790                         return NULL;
4791                 }
4792         default:
4793                 return bpf_base_func_proto(func_id);
4794         }
4795 }
4796
4797 static const struct bpf_func_proto *
4798 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4799 {
4800         switch (func_id) {
4801         case BPF_FUNC_skb_load_bytes:
4802                 return &bpf_skb_load_bytes_proto;
4803         case BPF_FUNC_skb_load_bytes_relative:
4804                 return &bpf_skb_load_bytes_relative_proto;
4805         case BPF_FUNC_get_socket_cookie:
4806                 return &bpf_get_socket_cookie_proto;
4807         case BPF_FUNC_get_socket_uid:
4808                 return &bpf_get_socket_uid_proto;
4809         default:
4810                 return bpf_base_func_proto(func_id);
4811         }
4812 }
4813
4814 static const struct bpf_func_proto *
4815 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4816 {
4817         switch (func_id) {
4818         case BPF_FUNC_skb_store_bytes:
4819                 return &bpf_skb_store_bytes_proto;
4820         case BPF_FUNC_skb_load_bytes:
4821                 return &bpf_skb_load_bytes_proto;
4822         case BPF_FUNC_skb_load_bytes_relative:
4823                 return &bpf_skb_load_bytes_relative_proto;
4824         case BPF_FUNC_skb_pull_data:
4825                 return &bpf_skb_pull_data_proto;
4826         case BPF_FUNC_csum_diff:
4827                 return &bpf_csum_diff_proto;
4828         case BPF_FUNC_csum_update:
4829                 return &bpf_csum_update_proto;
4830         case BPF_FUNC_l3_csum_replace:
4831                 return &bpf_l3_csum_replace_proto;
4832         case BPF_FUNC_l4_csum_replace:
4833                 return &bpf_l4_csum_replace_proto;
4834         case BPF_FUNC_clone_redirect:
4835                 return &bpf_clone_redirect_proto;
4836         case BPF_FUNC_get_cgroup_classid:
4837                 return &bpf_get_cgroup_classid_proto;
4838         case BPF_FUNC_skb_vlan_push:
4839                 return &bpf_skb_vlan_push_proto;
4840         case BPF_FUNC_skb_vlan_pop:
4841                 return &bpf_skb_vlan_pop_proto;
4842         case BPF_FUNC_skb_change_proto:
4843                 return &bpf_skb_change_proto_proto;
4844         case BPF_FUNC_skb_change_type:
4845                 return &bpf_skb_change_type_proto;
4846         case BPF_FUNC_skb_adjust_room:
4847                 return &bpf_skb_adjust_room_proto;
4848         case BPF_FUNC_skb_change_tail:
4849                 return &bpf_skb_change_tail_proto;
4850         case BPF_FUNC_skb_get_tunnel_key:
4851                 return &bpf_skb_get_tunnel_key_proto;
4852         case BPF_FUNC_skb_set_tunnel_key:
4853                 return bpf_get_skb_set_tunnel_proto(func_id);
4854         case BPF_FUNC_skb_get_tunnel_opt:
4855                 return &bpf_skb_get_tunnel_opt_proto;
4856         case BPF_FUNC_skb_set_tunnel_opt:
4857                 return bpf_get_skb_set_tunnel_proto(func_id);
4858         case BPF_FUNC_redirect:
4859                 return &bpf_redirect_proto;
4860         case BPF_FUNC_get_route_realm:
4861                 return &bpf_get_route_realm_proto;
4862         case BPF_FUNC_get_hash_recalc:
4863                 return &bpf_get_hash_recalc_proto;
4864         case BPF_FUNC_set_hash_invalid:
4865                 return &bpf_set_hash_invalid_proto;
4866         case BPF_FUNC_set_hash:
4867                 return &bpf_set_hash_proto;
4868         case BPF_FUNC_perf_event_output:
4869                 return &bpf_skb_event_output_proto;
4870         case BPF_FUNC_get_smp_processor_id:
4871                 return &bpf_get_smp_processor_id_proto;
4872         case BPF_FUNC_skb_under_cgroup:
4873                 return &bpf_skb_under_cgroup_proto;
4874         case BPF_FUNC_get_socket_cookie:
4875                 return &bpf_get_socket_cookie_proto;
4876         case BPF_FUNC_get_socket_uid:
4877                 return &bpf_get_socket_uid_proto;
4878         case BPF_FUNC_fib_lookup:
4879                 return &bpf_skb_fib_lookup_proto;
4880 #ifdef CONFIG_XFRM
4881         case BPF_FUNC_skb_get_xfrm_state:
4882                 return &bpf_skb_get_xfrm_state_proto;
4883 #endif
4884 #ifdef CONFIG_SOCK_CGROUP_DATA
4885         case BPF_FUNC_skb_cgroup_id:
4886                 return &bpf_skb_cgroup_id_proto;
4887 #endif
4888         default:
4889                 return bpf_base_func_proto(func_id);
4890         }
4891 }
4892
4893 static const struct bpf_func_proto *
4894 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4895 {
4896         switch (func_id) {
4897         case BPF_FUNC_perf_event_output:
4898                 return &bpf_xdp_event_output_proto;
4899         case BPF_FUNC_get_smp_processor_id:
4900                 return &bpf_get_smp_processor_id_proto;
4901         case BPF_FUNC_csum_diff:
4902                 return &bpf_csum_diff_proto;
4903         case BPF_FUNC_xdp_adjust_head:
4904                 return &bpf_xdp_adjust_head_proto;
4905         case BPF_FUNC_xdp_adjust_meta:
4906                 return &bpf_xdp_adjust_meta_proto;
4907         case BPF_FUNC_redirect:
4908                 return &bpf_xdp_redirect_proto;
4909         case BPF_FUNC_redirect_map:
4910                 return &bpf_xdp_redirect_map_proto;
4911         case BPF_FUNC_xdp_adjust_tail:
4912                 return &bpf_xdp_adjust_tail_proto;
4913         case BPF_FUNC_fib_lookup:
4914                 return &bpf_xdp_fib_lookup_proto;
4915         default:
4916                 return bpf_base_func_proto(func_id);
4917         }
4918 }
4919
4920 static const struct bpf_func_proto *
4921 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4922 {
4923         switch (func_id) {
4924         case BPF_FUNC_setsockopt:
4925                 return &bpf_setsockopt_proto;
4926         case BPF_FUNC_getsockopt:
4927                 return &bpf_getsockopt_proto;
4928         case BPF_FUNC_sock_ops_cb_flags_set:
4929                 return &bpf_sock_ops_cb_flags_set_proto;
4930         case BPF_FUNC_sock_map_update:
4931                 return &bpf_sock_map_update_proto;
4932         case BPF_FUNC_sock_hash_update:
4933                 return &bpf_sock_hash_update_proto;
4934         default:
4935                 return bpf_base_func_proto(func_id);
4936         }
4937 }
4938
4939 static const struct bpf_func_proto *
4940 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4941 {
4942         switch (func_id) {
4943         case BPF_FUNC_msg_redirect_map:
4944                 return &bpf_msg_redirect_map_proto;
4945         case BPF_FUNC_msg_redirect_hash:
4946                 return &bpf_msg_redirect_hash_proto;
4947         case BPF_FUNC_msg_apply_bytes:
4948                 return &bpf_msg_apply_bytes_proto;
4949         case BPF_FUNC_msg_cork_bytes:
4950                 return &bpf_msg_cork_bytes_proto;
4951         case BPF_FUNC_msg_pull_data:
4952                 return &bpf_msg_pull_data_proto;
4953         default:
4954                 return bpf_base_func_proto(func_id);
4955         }
4956 }
4957
4958 static const struct bpf_func_proto *
4959 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4960 {
4961         switch (func_id) {
4962         case BPF_FUNC_skb_store_bytes:
4963                 return &bpf_skb_store_bytes_proto;
4964         case BPF_FUNC_skb_load_bytes:
4965                 return &bpf_skb_load_bytes_proto;
4966         case BPF_FUNC_skb_pull_data:
4967                 return &sk_skb_pull_data_proto;
4968         case BPF_FUNC_skb_change_tail:
4969                 return &sk_skb_change_tail_proto;
4970         case BPF_FUNC_skb_change_head:
4971                 return &sk_skb_change_head_proto;
4972         case BPF_FUNC_get_socket_cookie:
4973                 return &bpf_get_socket_cookie_proto;
4974         case BPF_FUNC_get_socket_uid:
4975                 return &bpf_get_socket_uid_proto;
4976         case BPF_FUNC_sk_redirect_map:
4977                 return &bpf_sk_redirect_map_proto;
4978         case BPF_FUNC_sk_redirect_hash:
4979                 return &bpf_sk_redirect_hash_proto;
4980         default:
4981                 return bpf_base_func_proto(func_id);
4982         }
4983 }
4984
4985 static const struct bpf_func_proto *
4986 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4987 {
4988         switch (func_id) {
4989         case BPF_FUNC_skb_load_bytes:
4990                 return &bpf_skb_load_bytes_proto;
4991         case BPF_FUNC_skb_pull_data:
4992                 return &bpf_skb_pull_data_proto;
4993         case BPF_FUNC_csum_diff:
4994                 return &bpf_csum_diff_proto;
4995         case BPF_FUNC_get_cgroup_classid:
4996                 return &bpf_get_cgroup_classid_proto;
4997         case BPF_FUNC_get_route_realm:
4998                 return &bpf_get_route_realm_proto;
4999         case BPF_FUNC_get_hash_recalc:
5000                 return &bpf_get_hash_recalc_proto;
5001         case BPF_FUNC_perf_event_output:
5002                 return &bpf_skb_event_output_proto;
5003         case BPF_FUNC_get_smp_processor_id:
5004                 return &bpf_get_smp_processor_id_proto;
5005         case BPF_FUNC_skb_under_cgroup:
5006                 return &bpf_skb_under_cgroup_proto;
5007         default:
5008                 return bpf_base_func_proto(func_id);
5009         }
5010 }
5011
5012 static const struct bpf_func_proto *
5013 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5014 {
5015         switch (func_id) {
5016         case BPF_FUNC_lwt_push_encap:
5017                 return &bpf_lwt_push_encap_proto;
5018         default:
5019                 return lwt_out_func_proto(func_id, prog);
5020         }
5021 }
5022
5023 static const struct bpf_func_proto *
5024 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5025 {
5026         switch (func_id) {
5027         case BPF_FUNC_skb_get_tunnel_key:
5028                 return &bpf_skb_get_tunnel_key_proto;
5029         case BPF_FUNC_skb_set_tunnel_key:
5030                 return bpf_get_skb_set_tunnel_proto(func_id);
5031         case BPF_FUNC_skb_get_tunnel_opt:
5032                 return &bpf_skb_get_tunnel_opt_proto;
5033         case BPF_FUNC_skb_set_tunnel_opt:
5034                 return bpf_get_skb_set_tunnel_proto(func_id);
5035         case BPF_FUNC_redirect:
5036                 return &bpf_redirect_proto;
5037         case BPF_FUNC_clone_redirect:
5038                 return &bpf_clone_redirect_proto;
5039         case BPF_FUNC_skb_change_tail:
5040                 return &bpf_skb_change_tail_proto;
5041         case BPF_FUNC_skb_change_head:
5042                 return &bpf_skb_change_head_proto;
5043         case BPF_FUNC_skb_store_bytes:
5044                 return &bpf_skb_store_bytes_proto;
5045         case BPF_FUNC_csum_update:
5046                 return &bpf_csum_update_proto;
5047         case BPF_FUNC_l3_csum_replace:
5048                 return &bpf_l3_csum_replace_proto;
5049         case BPF_FUNC_l4_csum_replace:
5050                 return &bpf_l4_csum_replace_proto;
5051         case BPF_FUNC_set_hash_invalid:
5052                 return &bpf_set_hash_invalid_proto;
5053         default:
5054                 return lwt_out_func_proto(func_id, prog);
5055         }
5056 }
5057
5058 static const struct bpf_func_proto *
5059 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5060 {
5061         switch (func_id) {
5062 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5063         case BPF_FUNC_lwt_seg6_store_bytes:
5064                 return &bpf_lwt_seg6_store_bytes_proto;
5065         case BPF_FUNC_lwt_seg6_action:
5066                 return &bpf_lwt_seg6_action_proto;
5067         case BPF_FUNC_lwt_seg6_adjust_srh:
5068                 return &bpf_lwt_seg6_adjust_srh_proto;
5069 #endif
5070         default:
5071                 return lwt_out_func_proto(func_id, prog);
5072         }
5073 }
5074
5075 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5076                                     const struct bpf_prog *prog,
5077                                     struct bpf_insn_access_aux *info)
5078 {
5079         const int size_default = sizeof(__u32);
5080
5081         if (off < 0 || off >= sizeof(struct __sk_buff))
5082                 return false;
5083
5084         /* The verifier guarantees that size > 0. */
5085         if (off % size != 0)
5086                 return false;
5087
5088         switch (off) {
5089         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5090                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
5091                         return false;
5092                 break;
5093         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
5094         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5095         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5096         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5097         case bpf_ctx_range(struct __sk_buff, data):
5098         case bpf_ctx_range(struct __sk_buff, data_meta):
5099         case bpf_ctx_range(struct __sk_buff, data_end):
5100                 if (size != size_default)
5101                         return false;
5102                 break;
5103         default:
5104                 /* Only narrow read access allowed for now. */
5105                 if (type == BPF_WRITE) {
5106                         if (size != size_default)
5107                                 return false;
5108                 } else {
5109                         bpf_ctx_record_field_size(info, size_default);
5110                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5111                                 return false;
5112                 }
5113         }
5114
5115         return true;
5116 }
5117
5118 static bool sk_filter_is_valid_access(int off, int size,
5119                                       enum bpf_access_type type,
5120                                       const struct bpf_prog *prog,
5121                                       struct bpf_insn_access_aux *info)
5122 {
5123         switch (off) {
5124         case bpf_ctx_range(struct __sk_buff, tc_classid):
5125         case bpf_ctx_range(struct __sk_buff, data):
5126         case bpf_ctx_range(struct __sk_buff, data_meta):
5127         case bpf_ctx_range(struct __sk_buff, data_end):
5128         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5129                 return false;
5130         }
5131
5132         if (type == BPF_WRITE) {
5133                 switch (off) {
5134                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5135                         break;
5136                 default:
5137                         return false;
5138                 }
5139         }
5140
5141         return bpf_skb_is_valid_access(off, size, type, prog, info);
5142 }
5143
5144 static bool lwt_is_valid_access(int off, int size,
5145                                 enum bpf_access_type type,
5146                                 const struct bpf_prog *prog,
5147                                 struct bpf_insn_access_aux *info)
5148 {
5149         switch (off) {
5150         case bpf_ctx_range(struct __sk_buff, tc_classid):
5151         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5152         case bpf_ctx_range(struct __sk_buff, data_meta):
5153                 return false;
5154         }
5155
5156         if (type == BPF_WRITE) {
5157                 switch (off) {
5158                 case bpf_ctx_range(struct __sk_buff, mark):
5159                 case bpf_ctx_range(struct __sk_buff, priority):
5160                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5161                         break;
5162                 default:
5163                         return false;
5164                 }
5165         }
5166
5167         switch (off) {
5168         case bpf_ctx_range(struct __sk_buff, data):
5169                 info->reg_type = PTR_TO_PACKET;
5170                 break;
5171         case bpf_ctx_range(struct __sk_buff, data_end):
5172                 info->reg_type = PTR_TO_PACKET_END;
5173                 break;
5174         }
5175
5176         return bpf_skb_is_valid_access(off, size, type, prog, info);
5177 }
5178
5179 /* Attach type specific accesses */
5180 static bool __sock_filter_check_attach_type(int off,
5181                                             enum bpf_access_type access_type,
5182                                             enum bpf_attach_type attach_type)
5183 {
5184         switch (off) {
5185         case offsetof(struct bpf_sock, bound_dev_if):
5186         case offsetof(struct bpf_sock, mark):
5187         case offsetof(struct bpf_sock, priority):
5188                 switch (attach_type) {
5189                 case BPF_CGROUP_INET_SOCK_CREATE:
5190                         goto full_access;
5191                 default:
5192                         return false;
5193                 }
5194         case bpf_ctx_range(struct bpf_sock, src_ip4):
5195                 switch (attach_type) {
5196                 case BPF_CGROUP_INET4_POST_BIND:
5197                         goto read_only;
5198                 default:
5199                         return false;
5200                 }
5201         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5202                 switch (attach_type) {
5203                 case BPF_CGROUP_INET6_POST_BIND:
5204                         goto read_only;
5205                 default:
5206                         return false;
5207                 }
5208         case bpf_ctx_range(struct bpf_sock, src_port):
5209                 switch (attach_type) {
5210                 case BPF_CGROUP_INET4_POST_BIND:
5211                 case BPF_CGROUP_INET6_POST_BIND:
5212                         goto read_only;
5213                 default:
5214                         return false;
5215                 }
5216         }
5217 read_only:
5218         return access_type == BPF_READ;
5219 full_access:
5220         return true;
5221 }
5222
5223 static bool __sock_filter_check_size(int off, int size,
5224                                      struct bpf_insn_access_aux *info)
5225 {
5226         const int size_default = sizeof(__u32);
5227
5228         switch (off) {
5229         case bpf_ctx_range(struct bpf_sock, src_ip4):
5230         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5231                 bpf_ctx_record_field_size(info, size_default);
5232                 return bpf_ctx_narrow_access_ok(off, size, size_default);
5233         }
5234
5235         return size == size_default;
5236 }
5237
5238 static bool sock_filter_is_valid_access(int off, int size,
5239                                         enum bpf_access_type type,
5240                                         const struct bpf_prog *prog,
5241                                         struct bpf_insn_access_aux *info)
5242 {
5243         if (off < 0 || off >= sizeof(struct bpf_sock))
5244                 return false;
5245         if (off % size != 0)
5246                 return false;
5247         if (!__sock_filter_check_attach_type(off, type,
5248                                              prog->expected_attach_type))
5249                 return false;
5250         if (!__sock_filter_check_size(off, size, info))
5251                 return false;
5252         return true;
5253 }
5254
5255 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
5256                                 const struct bpf_prog *prog, int drop_verdict)
5257 {
5258         struct bpf_insn *insn = insn_buf;
5259
5260         if (!direct_write)
5261                 return 0;
5262
5263         /* if (!skb->cloned)
5264          *       goto start;
5265          *
5266          * (Fast-path, otherwise approximation that we might be
5267          *  a clone, do the rest in helper.)
5268          */
5269         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
5270         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
5271         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
5272
5273         /* ret = bpf_skb_pull_data(skb, 0); */
5274         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
5275         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
5276         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
5277                                BPF_FUNC_skb_pull_data);
5278         /* if (!ret)
5279          *      goto restore;
5280          * return TC_ACT_SHOT;
5281          */
5282         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5283         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5284         *insn++ = BPF_EXIT_INSN();
5285
5286         /* restore: */
5287         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
5288         /* start: */
5289         *insn++ = prog->insnsi[0];
5290
5291         return insn - insn_buf;
5292 }
5293
5294 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
5295                           struct bpf_insn *insn_buf)
5296 {
5297         bool indirect = BPF_MODE(orig->code) == BPF_IND;
5298         struct bpf_insn *insn = insn_buf;
5299
5300         /* We're guaranteed here that CTX is in R6. */
5301         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
5302         if (!indirect) {
5303                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
5304         } else {
5305                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
5306                 if (orig->imm)
5307                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
5308         }
5309
5310         switch (BPF_SIZE(orig->code)) {
5311         case BPF_B:
5312                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
5313                 break;
5314         case BPF_H:
5315                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
5316                 break;
5317         case BPF_W:
5318                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
5319                 break;
5320         }
5321
5322         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
5323         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
5324         *insn++ = BPF_EXIT_INSN();
5325
5326         return insn - insn_buf;
5327 }
5328
5329 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
5330                                const struct bpf_prog *prog)
5331 {
5332         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
5333 }
5334
5335 static bool tc_cls_act_is_valid_access(int off, int size,
5336                                        enum bpf_access_type type,
5337                                        const struct bpf_prog *prog,
5338                                        struct bpf_insn_access_aux *info)
5339 {
5340         if (type == BPF_WRITE) {
5341                 switch (off) {
5342                 case bpf_ctx_range(struct __sk_buff, mark):
5343                 case bpf_ctx_range(struct __sk_buff, tc_index):
5344                 case bpf_ctx_range(struct __sk_buff, priority):
5345                 case bpf_ctx_range(struct __sk_buff, tc_classid):
5346                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5347                         break;
5348                 default:
5349                         return false;
5350                 }
5351         }
5352
5353         switch (off) {
5354         case bpf_ctx_range(struct __sk_buff, data):
5355                 info->reg_type = PTR_TO_PACKET;
5356                 break;
5357         case bpf_ctx_range(struct __sk_buff, data_meta):
5358                 info->reg_type = PTR_TO_PACKET_META;
5359                 break;
5360         case bpf_ctx_range(struct __sk_buff, data_end):
5361                 info->reg_type = PTR_TO_PACKET_END;
5362                 break;
5363         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5364                 return false;
5365         }
5366
5367         return bpf_skb_is_valid_access(off, size, type, prog, info);
5368 }
5369
5370 static bool __is_valid_xdp_access(int off, int size)
5371 {
5372         if (off < 0 || off >= sizeof(struct xdp_md))
5373                 return false;
5374         if (off % size != 0)
5375                 return false;
5376         if (size != sizeof(__u32))
5377                 return false;
5378
5379         return true;
5380 }
5381
5382 static bool xdp_is_valid_access(int off, int size,
5383                                 enum bpf_access_type type,
5384                                 const struct bpf_prog *prog,
5385                                 struct bpf_insn_access_aux *info)
5386 {
5387         if (type == BPF_WRITE) {
5388                 if (bpf_prog_is_dev_bound(prog->aux)) {
5389                         switch (off) {
5390                         case offsetof(struct xdp_md, rx_queue_index):
5391                                 return __is_valid_xdp_access(off, size);
5392                         }
5393                 }
5394                 return false;
5395         }
5396
5397         switch (off) {
5398         case offsetof(struct xdp_md, data):
5399                 info->reg_type = PTR_TO_PACKET;
5400                 break;
5401         case offsetof(struct xdp_md, data_meta):
5402                 info->reg_type = PTR_TO_PACKET_META;
5403                 break;
5404         case offsetof(struct xdp_md, data_end):
5405                 info->reg_type = PTR_TO_PACKET_END;
5406                 break;
5407         }
5408
5409         return __is_valid_xdp_access(off, size);
5410 }
5411
5412 void bpf_warn_invalid_xdp_action(u32 act)
5413 {
5414         const u32 act_max = XDP_REDIRECT;
5415
5416         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
5417                   act > act_max ? "Illegal" : "Driver unsupported",
5418                   act);
5419 }
5420 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
5421
5422 static bool sock_addr_is_valid_access(int off, int size,
5423                                       enum bpf_access_type type,
5424                                       const struct bpf_prog *prog,
5425                                       struct bpf_insn_access_aux *info)
5426 {
5427         const int size_default = sizeof(__u32);
5428
5429         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
5430                 return false;
5431         if (off % size != 0)
5432                 return false;
5433
5434         /* Disallow access to IPv6 fields from IPv4 contex and vise
5435          * versa.
5436          */
5437         switch (off) {
5438         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5439                 switch (prog->expected_attach_type) {
5440                 case BPF_CGROUP_INET4_BIND:
5441                 case BPF_CGROUP_INET4_CONNECT:
5442                 case BPF_CGROUP_UDP4_SENDMSG:
5443                         break;
5444                 default:
5445                         return false;
5446                 }
5447                 break;
5448         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5449                 switch (prog->expected_attach_type) {
5450                 case BPF_CGROUP_INET6_BIND:
5451                 case BPF_CGROUP_INET6_CONNECT:
5452                 case BPF_CGROUP_UDP6_SENDMSG:
5453                         break;
5454                 default:
5455                         return false;
5456                 }
5457                 break;
5458         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5459                 switch (prog->expected_attach_type) {
5460                 case BPF_CGROUP_UDP4_SENDMSG:
5461                         break;
5462                 default:
5463                         return false;
5464                 }
5465                 break;
5466         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5467                                 msg_src_ip6[3]):
5468                 switch (prog->expected_attach_type) {
5469                 case BPF_CGROUP_UDP6_SENDMSG:
5470                         break;
5471                 default:
5472                         return false;
5473                 }
5474                 break;
5475         }
5476
5477         switch (off) {
5478         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5479         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5480         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5481         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5482                                 msg_src_ip6[3]):
5483                 /* Only narrow read access allowed for now. */
5484                 if (type == BPF_READ) {
5485                         bpf_ctx_record_field_size(info, size_default);
5486                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5487                                 return false;
5488                 } else {
5489                         if (size != size_default)
5490                                 return false;
5491                 }
5492                 break;
5493         case bpf_ctx_range(struct bpf_sock_addr, user_port):
5494                 if (size != size_default)
5495                         return false;
5496                 break;
5497         default:
5498                 if (type == BPF_READ) {
5499                         if (size != size_default)
5500                                 return false;
5501                 } else {
5502                         return false;
5503                 }
5504         }
5505
5506         return true;
5507 }
5508
5509 static bool sock_ops_is_valid_access(int off, int size,
5510                                      enum bpf_access_type type,
5511                                      const struct bpf_prog *prog,
5512                                      struct bpf_insn_access_aux *info)
5513 {
5514         const int size_default = sizeof(__u32);
5515
5516         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
5517                 return false;
5518
5519         /* The verifier guarantees that size > 0. */
5520         if (off % size != 0)
5521                 return false;
5522
5523         if (type == BPF_WRITE) {
5524                 switch (off) {
5525                 case offsetof(struct bpf_sock_ops, reply):
5526                 case offsetof(struct bpf_sock_ops, sk_txhash):
5527                         if (size != size_default)
5528                                 return false;
5529                         break;
5530                 default:
5531                         return false;
5532                 }
5533         } else {
5534                 switch (off) {
5535                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
5536                                         bytes_acked):
5537                         if (size != sizeof(__u64))
5538                                 return false;
5539                         break;
5540                 default:
5541                         if (size != size_default)
5542                                 return false;
5543                         break;
5544                 }
5545         }
5546
5547         return true;
5548 }
5549
5550 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
5551                            const struct bpf_prog *prog)
5552 {
5553         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5554 }
5555
5556 static bool sk_skb_is_valid_access(int off, int size,
5557                                    enum bpf_access_type type,
5558                                    const struct bpf_prog *prog,
5559                                    struct bpf_insn_access_aux *info)
5560 {
5561         switch (off) {
5562         case bpf_ctx_range(struct __sk_buff, tc_classid):
5563         case bpf_ctx_range(struct __sk_buff, data_meta):
5564                 return false;
5565         }
5566
5567         if (type == BPF_WRITE) {
5568                 switch (off) {
5569                 case bpf_ctx_range(struct __sk_buff, tc_index):
5570                 case bpf_ctx_range(struct __sk_buff, priority):
5571                         break;
5572                 default:
5573                         return false;
5574                 }
5575         }
5576
5577         switch (off) {
5578         case bpf_ctx_range(struct __sk_buff, mark):
5579                 return false;
5580         case bpf_ctx_range(struct __sk_buff, data):
5581                 info->reg_type = PTR_TO_PACKET;
5582                 break;
5583         case bpf_ctx_range(struct __sk_buff, data_end):
5584                 info->reg_type = PTR_TO_PACKET_END;
5585                 break;
5586         }
5587
5588         return bpf_skb_is_valid_access(off, size, type, prog, info);
5589 }
5590
5591 static bool sk_msg_is_valid_access(int off, int size,
5592                                    enum bpf_access_type type,
5593                                    const struct bpf_prog *prog,
5594                                    struct bpf_insn_access_aux *info)
5595 {
5596         if (type == BPF_WRITE)
5597                 return false;
5598
5599         switch (off) {
5600         case offsetof(struct sk_msg_md, data):
5601                 info->reg_type = PTR_TO_PACKET;
5602                 if (size != sizeof(__u64))
5603                         return false;
5604                 break;
5605         case offsetof(struct sk_msg_md, data_end):
5606                 info->reg_type = PTR_TO_PACKET_END;
5607                 if (size != sizeof(__u64))
5608                         return false;
5609                 break;
5610         default:
5611                 if (size != sizeof(__u32))
5612                         return false;
5613         }
5614
5615         if (off < 0 || off >= sizeof(struct sk_msg_md))
5616                 return false;
5617         if (off % size != 0)
5618                 return false;
5619
5620         return true;
5621 }
5622
5623 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
5624                                   const struct bpf_insn *si,
5625                                   struct bpf_insn *insn_buf,
5626                                   struct bpf_prog *prog, u32 *target_size)
5627 {
5628         struct bpf_insn *insn = insn_buf;
5629         int off;
5630
5631         switch (si->off) {
5632         case offsetof(struct __sk_buff, len):
5633                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5634                                       bpf_target_off(struct sk_buff, len, 4,
5635                                                      target_size));
5636                 break;
5637
5638         case offsetof(struct __sk_buff, protocol):
5639                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5640                                       bpf_target_off(struct sk_buff, protocol, 2,
5641                                                      target_size));
5642                 break;
5643
5644         case offsetof(struct __sk_buff, vlan_proto):
5645                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5646                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
5647                                                      target_size));
5648                 break;
5649
5650         case offsetof(struct __sk_buff, priority):
5651                 if (type == BPF_WRITE)
5652                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5653                                               bpf_target_off(struct sk_buff, priority, 4,
5654                                                              target_size));
5655                 else
5656                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5657                                               bpf_target_off(struct sk_buff, priority, 4,
5658                                                              target_size));
5659                 break;
5660
5661         case offsetof(struct __sk_buff, ingress_ifindex):
5662                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5663                                       bpf_target_off(struct sk_buff, skb_iif, 4,
5664                                                      target_size));
5665                 break;
5666
5667         case offsetof(struct __sk_buff, ifindex):
5668                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5669                                       si->dst_reg, si->src_reg,
5670                                       offsetof(struct sk_buff, dev));
5671                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
5672                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5673                                       bpf_target_off(struct net_device, ifindex, 4,
5674                                                      target_size));
5675                 break;
5676
5677         case offsetof(struct __sk_buff, hash):
5678                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5679                                       bpf_target_off(struct sk_buff, hash, 4,
5680                                                      target_size));
5681                 break;
5682
5683         case offsetof(struct __sk_buff, mark):
5684                 if (type == BPF_WRITE)
5685                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5686                                               bpf_target_off(struct sk_buff, mark, 4,
5687                                                              target_size));
5688                 else
5689                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5690                                               bpf_target_off(struct sk_buff, mark, 4,
5691                                                              target_size));
5692                 break;
5693
5694         case offsetof(struct __sk_buff, pkt_type):
5695                 *target_size = 1;
5696                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
5697                                       PKT_TYPE_OFFSET());
5698                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
5699 #ifdef __BIG_ENDIAN_BITFIELD
5700                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
5701 #endif
5702                 break;
5703
5704         case offsetof(struct __sk_buff, queue_mapping):
5705                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5706                                       bpf_target_off(struct sk_buff, queue_mapping, 2,
5707                                                      target_size));
5708                 break;
5709
5710         case offsetof(struct __sk_buff, vlan_present):
5711         case offsetof(struct __sk_buff, vlan_tci):
5712                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
5713
5714                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5715                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
5716                                                      target_size));
5717                 if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
5718                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
5719                                                 ~VLAN_TAG_PRESENT);
5720                 } else {
5721                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
5722                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
5723                 }
5724                 break;
5725
5726         case offsetof(struct __sk_buff, cb[0]) ...
5727              offsetofend(struct __sk_buff, cb[4]) - 1:
5728                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5729                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
5730                               offsetof(struct qdisc_skb_cb, data)) %
5731                              sizeof(__u64));
5732
5733                 prog->cb_access = 1;
5734                 off  = si->off;
5735                 off -= offsetof(struct __sk_buff, cb[0]);
5736                 off += offsetof(struct sk_buff, cb);
5737                 off += offsetof(struct qdisc_skb_cb, data);
5738                 if (type == BPF_WRITE)
5739                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5740                                               si->src_reg, off);
5741                 else
5742                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5743                                               si->src_reg, off);
5744                 break;
5745
5746         case offsetof(struct __sk_buff, tc_classid):
5747                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
5748
5749                 off  = si->off;
5750                 off -= offsetof(struct __sk_buff, tc_classid);
5751                 off += offsetof(struct sk_buff, cb);
5752                 off += offsetof(struct qdisc_skb_cb, tc_classid);
5753                 *target_size = 2;
5754                 if (type == BPF_WRITE)
5755                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
5756                                               si->src_reg, off);
5757                 else
5758                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
5759                                               si->src_reg, off);
5760                 break;
5761
5762         case offsetof(struct __sk_buff, data):
5763                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5764                                       si->dst_reg, si->src_reg,
5765                                       offsetof(struct sk_buff, data));
5766                 break;
5767
5768         case offsetof(struct __sk_buff, data_meta):
5769                 off  = si->off;
5770                 off -= offsetof(struct __sk_buff, data_meta);
5771                 off += offsetof(struct sk_buff, cb);
5772                 off += offsetof(struct bpf_skb_data_end, data_meta);
5773                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5774                                       si->src_reg, off);
5775                 break;
5776
5777         case offsetof(struct __sk_buff, data_end):
5778                 off  = si->off;
5779                 off -= offsetof(struct __sk_buff, data_end);
5780                 off += offsetof(struct sk_buff, cb);
5781                 off += offsetof(struct bpf_skb_data_end, data_end);
5782                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5783                                       si->src_reg, off);
5784                 break;
5785
5786         case offsetof(struct __sk_buff, tc_index):
5787 #ifdef CONFIG_NET_SCHED
5788                 if (type == BPF_WRITE)
5789                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5790                                               bpf_target_off(struct sk_buff, tc_index, 2,
5791                                                              target_size));
5792                 else
5793                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5794                                               bpf_target_off(struct sk_buff, tc_index, 2,
5795                                                              target_size));
5796 #else
5797                 *target_size = 2;
5798                 if (type == BPF_WRITE)
5799                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5800                 else
5801                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5802 #endif
5803                 break;
5804
5805         case offsetof(struct __sk_buff, napi_id):
5806 #if defined(CONFIG_NET_RX_BUSY_POLL)
5807                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5808                                       bpf_target_off(struct sk_buff, napi_id, 4,
5809                                                      target_size));
5810                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
5811                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5812 #else
5813                 *target_size = 4;
5814                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5815 #endif
5816                 break;
5817         case offsetof(struct __sk_buff, family):
5818                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5819
5820                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5821                                       si->dst_reg, si->src_reg,
5822                                       offsetof(struct sk_buff, sk));
5823                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5824                                       bpf_target_off(struct sock_common,
5825                                                      skc_family,
5826                                                      2, target_size));
5827                 break;
5828         case offsetof(struct __sk_buff, remote_ip4):
5829                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5830
5831                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5832                                       si->dst_reg, si->src_reg,
5833                                       offsetof(struct sk_buff, sk));
5834                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5835                                       bpf_target_off(struct sock_common,
5836                                                      skc_daddr,
5837                                                      4, target_size));
5838                 break;
5839         case offsetof(struct __sk_buff, local_ip4):
5840                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5841                                           skc_rcv_saddr) != 4);
5842
5843                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5844                                       si->dst_reg, si->src_reg,
5845                                       offsetof(struct sk_buff, sk));
5846                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5847                                       bpf_target_off(struct sock_common,
5848                                                      skc_rcv_saddr,
5849                                                      4, target_size));
5850                 break;
5851         case offsetof(struct __sk_buff, remote_ip6[0]) ...
5852              offsetof(struct __sk_buff, remote_ip6[3]):
5853 #if IS_ENABLED(CONFIG_IPV6)
5854                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5855                                           skc_v6_daddr.s6_addr32[0]) != 4);
5856
5857                 off = si->off;
5858                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
5859
5860                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5861                                       si->dst_reg, si->src_reg,
5862                                       offsetof(struct sk_buff, sk));
5863                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5864                                       offsetof(struct sock_common,
5865                                                skc_v6_daddr.s6_addr32[0]) +
5866                                       off);
5867 #else
5868                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5869 #endif
5870                 break;
5871         case offsetof(struct __sk_buff, local_ip6[0]) ...
5872              offsetof(struct __sk_buff, local_ip6[3]):
5873 #if IS_ENABLED(CONFIG_IPV6)
5874                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5875                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5876
5877                 off = si->off;
5878                 off -= offsetof(struct __sk_buff, local_ip6[0]);
5879
5880                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5881                                       si->dst_reg, si->src_reg,
5882                                       offsetof(struct sk_buff, sk));
5883                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5884                                       offsetof(struct sock_common,
5885                                                skc_v6_rcv_saddr.s6_addr32[0]) +
5886                                       off);
5887 #else
5888                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5889 #endif
5890                 break;
5891
5892         case offsetof(struct __sk_buff, remote_port):
5893                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
5894
5895                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5896                                       si->dst_reg, si->src_reg,
5897                                       offsetof(struct sk_buff, sk));
5898                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5899                                       bpf_target_off(struct sock_common,
5900                                                      skc_dport,
5901                                                      2, target_size));
5902 #ifndef __BIG_ENDIAN_BITFIELD
5903                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
5904 #endif
5905                 break;
5906
5907         case offsetof(struct __sk_buff, local_port):
5908                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
5909
5910                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5911                                       si->dst_reg, si->src_reg,
5912                                       offsetof(struct sk_buff, sk));
5913                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5914                                       bpf_target_off(struct sock_common,
5915                                                      skc_num, 2, target_size));
5916                 break;
5917         }
5918
5919         return insn - insn_buf;
5920 }
5921
5922 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
5923                                           const struct bpf_insn *si,
5924                                           struct bpf_insn *insn_buf,
5925                                           struct bpf_prog *prog, u32 *target_size)
5926 {
5927         struct bpf_insn *insn = insn_buf;
5928         int off;
5929
5930         switch (si->off) {
5931         case offsetof(struct bpf_sock, bound_dev_if):
5932                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
5933
5934                 if (type == BPF_WRITE)
5935                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5936                                         offsetof(struct sock, sk_bound_dev_if));
5937                 else
5938                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5939                                       offsetof(struct sock, sk_bound_dev_if));
5940                 break;
5941
5942         case offsetof(struct bpf_sock, mark):
5943                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
5944
5945                 if (type == BPF_WRITE)
5946                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5947                                         offsetof(struct sock, sk_mark));
5948                 else
5949                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5950                                       offsetof(struct sock, sk_mark));
5951                 break;
5952
5953         case offsetof(struct bpf_sock, priority):
5954                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
5955
5956                 if (type == BPF_WRITE)
5957                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5958                                         offsetof(struct sock, sk_priority));
5959                 else
5960                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5961                                       offsetof(struct sock, sk_priority));
5962                 break;
5963
5964         case offsetof(struct bpf_sock, family):
5965                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
5966
5967                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5968                                       offsetof(struct sock, sk_family));
5969                 break;
5970
5971         case offsetof(struct bpf_sock, type):
5972                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5973                                       offsetof(struct sock, __sk_flags_offset));
5974                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
5975                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
5976                 break;
5977
5978         case offsetof(struct bpf_sock, protocol):
5979                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5980                                       offsetof(struct sock, __sk_flags_offset));
5981                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
5982                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
5983                 break;
5984
5985         case offsetof(struct bpf_sock, src_ip4):
5986                 *insn++ = BPF_LDX_MEM(
5987                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
5988                         bpf_target_off(struct sock_common, skc_rcv_saddr,
5989                                        FIELD_SIZEOF(struct sock_common,
5990                                                     skc_rcv_saddr),
5991                                        target_size));
5992                 break;
5993
5994         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5995 #if IS_ENABLED(CONFIG_IPV6)
5996                 off = si->off;
5997                 off -= offsetof(struct bpf_sock, src_ip6[0]);
5998                 *insn++ = BPF_LDX_MEM(
5999                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6000                         bpf_target_off(
6001                                 struct sock_common,
6002                                 skc_v6_rcv_saddr.s6_addr32[0],
6003                                 FIELD_SIZEOF(struct sock_common,
6004                                              skc_v6_rcv_saddr.s6_addr32[0]),
6005                                 target_size) + off);
6006 #else
6007                 (void)off;
6008                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6009 #endif
6010                 break;
6011
6012         case offsetof(struct bpf_sock, src_port):
6013                 *insn++ = BPF_LDX_MEM(
6014                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
6015                         si->dst_reg, si->src_reg,
6016                         bpf_target_off(struct sock_common, skc_num,
6017                                        FIELD_SIZEOF(struct sock_common,
6018                                                     skc_num),
6019                                        target_size));
6020                 break;
6021         }
6022
6023         return insn - insn_buf;
6024 }
6025
6026 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
6027                                          const struct bpf_insn *si,
6028                                          struct bpf_insn *insn_buf,
6029                                          struct bpf_prog *prog, u32 *target_size)
6030 {
6031         struct bpf_insn *insn = insn_buf;
6032
6033         switch (si->off) {
6034         case offsetof(struct __sk_buff, ifindex):
6035                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6036                                       si->dst_reg, si->src_reg,
6037                                       offsetof(struct sk_buff, dev));
6038                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6039                                       bpf_target_off(struct net_device, ifindex, 4,
6040                                                      target_size));
6041                 break;
6042         default:
6043                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6044                                               target_size);
6045         }
6046
6047         return insn - insn_buf;
6048 }
6049
6050 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
6051                                   const struct bpf_insn *si,
6052                                   struct bpf_insn *insn_buf,
6053                                   struct bpf_prog *prog, u32 *target_size)
6054 {
6055         struct bpf_insn *insn = insn_buf;
6056
6057         switch (si->off) {
6058         case offsetof(struct xdp_md, data):
6059                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6060                                       si->dst_reg, si->src_reg,
6061                                       offsetof(struct xdp_buff, data));
6062                 break;
6063         case offsetof(struct xdp_md, data_meta):
6064                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
6065                                       si->dst_reg, si->src_reg,
6066                                       offsetof(struct xdp_buff, data_meta));
6067                 break;
6068         case offsetof(struct xdp_md, data_end):
6069                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6070                                       si->dst_reg, si->src_reg,
6071                                       offsetof(struct xdp_buff, data_end));
6072                 break;
6073         case offsetof(struct xdp_md, ingress_ifindex):
6074                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6075                                       si->dst_reg, si->src_reg,
6076                                       offsetof(struct xdp_buff, rxq));
6077                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
6078                                       si->dst_reg, si->dst_reg,
6079                                       offsetof(struct xdp_rxq_info, dev));
6080                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6081                                       offsetof(struct net_device, ifindex));
6082                 break;
6083         case offsetof(struct xdp_md, rx_queue_index):
6084                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6085                                       si->dst_reg, si->src_reg,
6086                                       offsetof(struct xdp_buff, rxq));
6087                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6088                                       offsetof(struct xdp_rxq_info,
6089                                                queue_index));
6090                 break;
6091         }
6092
6093         return insn - insn_buf;
6094 }
6095
6096 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
6097  * context Structure, F is Field in context structure that contains a pointer
6098  * to Nested Structure of type NS that has the field NF.
6099  *
6100  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
6101  * sure that SIZE is not greater than actual size of S.F.NF.
6102  *
6103  * If offset OFF is provided, the load happens from that offset relative to
6104  * offset of NF.
6105  */
6106 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
6107         do {                                                                   \
6108                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
6109                                       si->src_reg, offsetof(S, F));            \
6110                 *insn++ = BPF_LDX_MEM(                                         \
6111                         SIZE, si->dst_reg, si->dst_reg,                        \
6112                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6113                                        target_size)                            \
6114                                 + OFF);                                        \
6115         } while (0)
6116
6117 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
6118         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
6119                                              BPF_FIELD_SIZEOF(NS, NF), 0)
6120
6121 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
6122  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
6123  *
6124  * It doesn't support SIZE argument though since narrow stores are not
6125  * supported for now.
6126  *
6127  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
6128  * "register" since two registers available in convert_ctx_access are not
6129  * enough: we can't override neither SRC, since it contains value to store, nor
6130  * DST since it contains pointer to context that may be used by later
6131  * instructions. But we need a temporary place to save pointer to nested
6132  * structure whose field we want to store to.
6133  */
6134 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)                \
6135         do {                                                                   \
6136                 int tmp_reg = BPF_REG_9;                                       \
6137                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6138                         --tmp_reg;                                             \
6139                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6140                         --tmp_reg;                                             \
6141                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
6142                                       offsetof(S, TF));                        \
6143                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
6144                                       si->dst_reg, offsetof(S, F));            \
6145                 *insn++ = BPF_STX_MEM(                                         \
6146                         BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,        \
6147                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6148                                        target_size)                            \
6149                                 + OFF);                                        \
6150                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
6151                                       offsetof(S, TF));                        \
6152         } while (0)
6153
6154 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
6155                                                       TF)                      \
6156         do {                                                                   \
6157                 if (type == BPF_WRITE) {                                       \
6158                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
6159                                                          TF);                  \
6160                 } else {                                                       \
6161                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
6162                                 S, NS, F, NF, SIZE, OFF);  \
6163                 }                                                              \
6164         } while (0)
6165
6166 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
6167         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
6168                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
6169
6170 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
6171                                         const struct bpf_insn *si,
6172                                         struct bpf_insn *insn_buf,
6173                                         struct bpf_prog *prog, u32 *target_size)
6174 {
6175         struct bpf_insn *insn = insn_buf;
6176         int off;
6177
6178         switch (si->off) {
6179         case offsetof(struct bpf_sock_addr, user_family):
6180                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6181                                             struct sockaddr, uaddr, sa_family);
6182                 break;
6183
6184         case offsetof(struct bpf_sock_addr, user_ip4):
6185                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6186                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
6187                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
6188                 break;
6189
6190         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6191                 off = si->off;
6192                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
6193                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6194                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
6195                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
6196                         tmp_reg);
6197                 break;
6198
6199         case offsetof(struct bpf_sock_addr, user_port):
6200                 /* To get port we need to know sa_family first and then treat
6201                  * sockaddr as either sockaddr_in or sockaddr_in6.
6202                  * Though we can simplify since port field has same offset and
6203                  * size in both structures.
6204                  * Here we check this invariant and use just one of the
6205                  * structures if it's true.
6206                  */
6207                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
6208                              offsetof(struct sockaddr_in6, sin6_port));
6209                 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
6210                              FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
6211                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
6212                                                      struct sockaddr_in6, uaddr,
6213                                                      sin6_port, tmp_reg);
6214                 break;
6215
6216         case offsetof(struct bpf_sock_addr, family):
6217                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6218                                             struct sock, sk, sk_family);
6219                 break;
6220
6221         case offsetof(struct bpf_sock_addr, type):
6222                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6223                         struct bpf_sock_addr_kern, struct sock, sk,
6224                         __sk_flags_offset, BPF_W, 0);
6225                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6226                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6227                 break;
6228
6229         case offsetof(struct bpf_sock_addr, protocol):
6230                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6231                         struct bpf_sock_addr_kern, struct sock, sk,
6232                         __sk_flags_offset, BPF_W, 0);
6233                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6234                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
6235                                         SK_FL_PROTO_SHIFT);
6236                 break;
6237
6238         case offsetof(struct bpf_sock_addr, msg_src_ip4):
6239                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
6240                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6241                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
6242                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
6243                 break;
6244
6245         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6246                                 msg_src_ip6[3]):
6247                 off = si->off;
6248                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
6249                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
6250                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6251                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
6252                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
6253                 break;
6254         }
6255
6256         return insn - insn_buf;
6257 }
6258
6259 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
6260                                        const struct bpf_insn *si,
6261                                        struct bpf_insn *insn_buf,
6262                                        struct bpf_prog *prog,
6263                                        u32 *target_size)
6264 {
6265         struct bpf_insn *insn = insn_buf;
6266         int off;
6267
6268         switch (si->off) {
6269         case offsetof(struct bpf_sock_ops, op) ...
6270              offsetof(struct bpf_sock_ops, replylong[3]):
6271                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
6272                              FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
6273                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
6274                              FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
6275                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
6276                              FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
6277                 off = si->off;
6278                 off -= offsetof(struct bpf_sock_ops, op);
6279                 off += offsetof(struct bpf_sock_ops_kern, op);
6280                 if (type == BPF_WRITE)
6281                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6282                                               off);
6283                 else
6284                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6285                                               off);
6286                 break;
6287
6288         case offsetof(struct bpf_sock_ops, family):
6289                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6290
6291                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6292                                               struct bpf_sock_ops_kern, sk),
6293                                       si->dst_reg, si->src_reg,
6294                                       offsetof(struct bpf_sock_ops_kern, sk));
6295                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6296                                       offsetof(struct sock_common, skc_family));
6297                 break;
6298
6299         case offsetof(struct bpf_sock_ops, remote_ip4):
6300                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6301
6302                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6303                                                 struct bpf_sock_ops_kern, sk),
6304                                       si->dst_reg, si->src_reg,
6305                                       offsetof(struct bpf_sock_ops_kern, sk));
6306                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6307                                       offsetof(struct sock_common, skc_daddr));
6308                 break;
6309
6310         case offsetof(struct bpf_sock_ops, local_ip4):
6311                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6312                                           skc_rcv_saddr) != 4);
6313
6314                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6315                                               struct bpf_sock_ops_kern, sk),
6316                                       si->dst_reg, si->src_reg,
6317                                       offsetof(struct bpf_sock_ops_kern, sk));
6318                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6319                                       offsetof(struct sock_common,
6320                                                skc_rcv_saddr));
6321                 break;
6322
6323         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
6324              offsetof(struct bpf_sock_ops, remote_ip6[3]):
6325 #if IS_ENABLED(CONFIG_IPV6)
6326                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6327                                           skc_v6_daddr.s6_addr32[0]) != 4);
6328
6329                 off = si->off;
6330                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
6331                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6332                                                 struct bpf_sock_ops_kern, sk),
6333                                       si->dst_reg, si->src_reg,
6334                                       offsetof(struct bpf_sock_ops_kern, sk));
6335                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6336                                       offsetof(struct sock_common,
6337                                                skc_v6_daddr.s6_addr32[0]) +
6338                                       off);
6339 #else
6340                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6341 #endif
6342                 break;
6343
6344         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
6345              offsetof(struct bpf_sock_ops, local_ip6[3]):
6346 #if IS_ENABLED(CONFIG_IPV6)
6347                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6348                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6349
6350                 off = si->off;
6351                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
6352                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6353                                                 struct bpf_sock_ops_kern, sk),
6354                                       si->dst_reg, si->src_reg,
6355                                       offsetof(struct bpf_sock_ops_kern, sk));
6356                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6357                                       offsetof(struct sock_common,
6358                                                skc_v6_rcv_saddr.s6_addr32[0]) +
6359                                       off);
6360 #else
6361                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6362 #endif
6363                 break;
6364
6365         case offsetof(struct bpf_sock_ops, remote_port):
6366                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6367
6368                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6369                                                 struct bpf_sock_ops_kern, sk),
6370                                       si->dst_reg, si->src_reg,
6371                                       offsetof(struct bpf_sock_ops_kern, sk));
6372                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6373                                       offsetof(struct sock_common, skc_dport));
6374 #ifndef __BIG_ENDIAN_BITFIELD
6375                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6376 #endif
6377                 break;
6378
6379         case offsetof(struct bpf_sock_ops, local_port):
6380                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6381
6382                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6383                                                 struct bpf_sock_ops_kern, sk),
6384                                       si->dst_reg, si->src_reg,
6385                                       offsetof(struct bpf_sock_ops_kern, sk));
6386                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6387                                       offsetof(struct sock_common, skc_num));
6388                 break;
6389
6390         case offsetof(struct bpf_sock_ops, is_fullsock):
6391                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6392                                                 struct bpf_sock_ops_kern,
6393                                                 is_fullsock),
6394                                       si->dst_reg, si->src_reg,
6395                                       offsetof(struct bpf_sock_ops_kern,
6396                                                is_fullsock));
6397                 break;
6398
6399         case offsetof(struct bpf_sock_ops, state):
6400                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
6401
6402                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6403                                                 struct bpf_sock_ops_kern, sk),
6404                                       si->dst_reg, si->src_reg,
6405                                       offsetof(struct bpf_sock_ops_kern, sk));
6406                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
6407                                       offsetof(struct sock_common, skc_state));
6408                 break;
6409
6410         case offsetof(struct bpf_sock_ops, rtt_min):
6411                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
6412                              sizeof(struct minmax));
6413                 BUILD_BUG_ON(sizeof(struct minmax) <
6414                              sizeof(struct minmax_sample));
6415
6416                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6417                                                 struct bpf_sock_ops_kern, sk),
6418                                       si->dst_reg, si->src_reg,
6419                                       offsetof(struct bpf_sock_ops_kern, sk));
6420                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6421                                       offsetof(struct tcp_sock, rtt_min) +
6422                                       FIELD_SIZEOF(struct minmax_sample, t));
6423                 break;
6424
6425 /* Helper macro for adding read access to tcp_sock or sock fields. */
6426 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
6427         do {                                                                  \
6428                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
6429                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6431                                                 struct bpf_sock_ops_kern,     \
6432                                                 is_fullsock),                 \
6433                                       si->dst_reg, si->src_reg,               \
6434                                       offsetof(struct bpf_sock_ops_kern,      \
6435                                                is_fullsock));                 \
6436                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
6437                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6438                                                 struct bpf_sock_ops_kern, sk),\
6439                                       si->dst_reg, si->src_reg,               \
6440                                       offsetof(struct bpf_sock_ops_kern, sk));\
6441                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
6442                                                        OBJ_FIELD),            \
6443                                       si->dst_reg, si->dst_reg,               \
6444                                       offsetof(OBJ, OBJ_FIELD));              \
6445         } while (0)
6446
6447 /* Helper macro for adding write access to tcp_sock or sock fields.
6448  * The macro is called with two registers, dst_reg which contains a pointer
6449  * to ctx (context) and src_reg which contains the value that should be
6450  * stored. However, we need an additional register since we cannot overwrite
6451  * dst_reg because it may be used later in the program.
6452  * Instead we "borrow" one of the other register. We first save its value
6453  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
6454  * it at the end of the macro.
6455  */
6456 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
6457         do {                                                                  \
6458                 int reg = BPF_REG_9;                                          \
6459                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
6460                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6461                 if (si->dst_reg == reg || si->src_reg == reg)                 \
6462                         reg--;                                                \
6463                 if (si->dst_reg == reg || si->src_reg == reg)                 \
6464                         reg--;                                                \
6465                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
6466                                       offsetof(struct bpf_sock_ops_kern,      \
6467                                                temp));                        \
6468                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6469                                                 struct bpf_sock_ops_kern,     \
6470                                                 is_fullsock),                 \
6471                                       reg, si->dst_reg,                       \
6472                                       offsetof(struct bpf_sock_ops_kern,      \
6473                                                is_fullsock));                 \
6474                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
6475                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
6476                                                 struct bpf_sock_ops_kern, sk),\
6477                                       reg, si->dst_reg,                       \
6478                                       offsetof(struct bpf_sock_ops_kern, sk));\
6479                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
6480                                       reg, si->src_reg,                       \
6481                                       offsetof(OBJ, OBJ_FIELD));              \
6482                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
6483                                       offsetof(struct bpf_sock_ops_kern,      \
6484                                                temp));                        \
6485         } while (0)
6486
6487 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
6488         do {                                                                  \
6489                 if (TYPE == BPF_WRITE)                                        \
6490                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
6491                 else                                                          \
6492                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
6493         } while (0)
6494
6495         case offsetof(struct bpf_sock_ops, snd_cwnd):
6496                 SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6497                 break;
6498
6499         case offsetof(struct bpf_sock_ops, srtt_us):
6500                 SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6501                 break;
6502
6503         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
6504                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
6505                                    struct tcp_sock);
6506                 break;
6507
6508         case offsetof(struct bpf_sock_ops, snd_ssthresh):
6509                 SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
6510                 break;
6511
6512         case offsetof(struct bpf_sock_ops, rcv_nxt):
6513                 SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
6514                 break;
6515
6516         case offsetof(struct bpf_sock_ops, snd_nxt):
6517                 SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
6518                 break;
6519
6520         case offsetof(struct bpf_sock_ops, snd_una):
6521                 SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
6522                 break;
6523
6524         case offsetof(struct bpf_sock_ops, mss_cache):
6525                 SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
6526                 break;
6527
6528         case offsetof(struct bpf_sock_ops, ecn_flags):
6529                 SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
6530                 break;
6531
6532         case offsetof(struct bpf_sock_ops, rate_delivered):
6533                 SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
6534                                    struct tcp_sock);
6535                 break;
6536
6537         case offsetof(struct bpf_sock_ops, rate_interval_us):
6538                 SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
6539                                    struct tcp_sock);
6540                 break;
6541
6542         case offsetof(struct bpf_sock_ops, packets_out):
6543                 SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
6544                 break;
6545
6546         case offsetof(struct bpf_sock_ops, retrans_out):
6547                 SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
6548                 break;
6549
6550         case offsetof(struct bpf_sock_ops, total_retrans):
6551                 SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
6552                                    struct tcp_sock);
6553                 break;
6554
6555         case offsetof(struct bpf_sock_ops, segs_in):
6556                 SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
6557                 break;
6558
6559         case offsetof(struct bpf_sock_ops, data_segs_in):
6560                 SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
6561                 break;
6562
6563         case offsetof(struct bpf_sock_ops, segs_out):
6564                 SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
6565                 break;
6566
6567         case offsetof(struct bpf_sock_ops, data_segs_out):
6568                 SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
6569                                    struct tcp_sock);
6570                 break;
6571
6572         case offsetof(struct bpf_sock_ops, lost_out):
6573                 SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
6574                 break;
6575
6576         case offsetof(struct bpf_sock_ops, sacked_out):
6577                 SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
6578                 break;
6579
6580         case offsetof(struct bpf_sock_ops, sk_txhash):
6581                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
6582                                           struct sock, type);
6583                 break;
6584
6585         case offsetof(struct bpf_sock_ops, bytes_received):
6586                 SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
6587                                    struct tcp_sock);
6588                 break;
6589
6590         case offsetof(struct bpf_sock_ops, bytes_acked):
6591                 SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
6592                 break;
6593
6594         }
6595         return insn - insn_buf;
6596 }
6597
6598 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
6599                                      const struct bpf_insn *si,
6600                                      struct bpf_insn *insn_buf,
6601                                      struct bpf_prog *prog, u32 *target_size)
6602 {
6603         struct bpf_insn *insn = insn_buf;
6604         int off;
6605
6606         switch (si->off) {
6607         case offsetof(struct __sk_buff, data_end):
6608                 off  = si->off;
6609                 off -= offsetof(struct __sk_buff, data_end);
6610                 off += offsetof(struct sk_buff, cb);
6611                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
6612                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6613                                       si->src_reg, off);
6614                 break;
6615         default:
6616                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6617                                               target_size);
6618         }
6619
6620         return insn - insn_buf;
6621 }
6622
6623 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
6624                                      const struct bpf_insn *si,
6625                                      struct bpf_insn *insn_buf,
6626                                      struct bpf_prog *prog, u32 *target_size)
6627 {
6628         struct bpf_insn *insn = insn_buf;
6629 #if IS_ENABLED(CONFIG_IPV6)
6630         int off;
6631 #endif
6632
6633         switch (si->off) {
6634         case offsetof(struct sk_msg_md, data):
6635                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
6636                                       si->dst_reg, si->src_reg,
6637                                       offsetof(struct sk_msg_buff, data));
6638                 break;
6639         case offsetof(struct sk_msg_md, data_end):
6640                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
6641                                       si->dst_reg, si->src_reg,
6642                                       offsetof(struct sk_msg_buff, data_end));
6643                 break;
6644         case offsetof(struct sk_msg_md, family):
6645                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6646
6647                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6648                                               struct sk_msg_buff, sk),
6649                                       si->dst_reg, si->src_reg,
6650                                       offsetof(struct sk_msg_buff, sk));
6651                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6652                                       offsetof(struct sock_common, skc_family));
6653                 break;
6654
6655         case offsetof(struct sk_msg_md, remote_ip4):
6656                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6657
6658                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6659                                                 struct sk_msg_buff, sk),
6660                                       si->dst_reg, si->src_reg,
6661                                       offsetof(struct sk_msg_buff, sk));
6662                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6663                                       offsetof(struct sock_common, skc_daddr));
6664                 break;
6665
6666         case offsetof(struct sk_msg_md, local_ip4):
6667                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6668                                           skc_rcv_saddr) != 4);
6669
6670                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6671                                               struct sk_msg_buff, sk),
6672                                       si->dst_reg, si->src_reg,
6673                                       offsetof(struct sk_msg_buff, sk));
6674                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6675                                       offsetof(struct sock_common,
6676                                                skc_rcv_saddr));
6677                 break;
6678
6679         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
6680              offsetof(struct sk_msg_md, remote_ip6[3]):
6681 #if IS_ENABLED(CONFIG_IPV6)
6682                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6683                                           skc_v6_daddr.s6_addr32[0]) != 4);
6684
6685                 off = si->off;
6686                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
6687                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6688                                                 struct sk_msg_buff, sk),
6689                                       si->dst_reg, si->src_reg,
6690                                       offsetof(struct sk_msg_buff, sk));
6691                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6692                                       offsetof(struct sock_common,
6693                                                skc_v6_daddr.s6_addr32[0]) +
6694                                       off);
6695 #else
6696                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6697 #endif
6698                 break;
6699
6700         case offsetof(struct sk_msg_md, local_ip6[0]) ...
6701              offsetof(struct sk_msg_md, local_ip6[3]):
6702 #if IS_ENABLED(CONFIG_IPV6)
6703                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6704                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6705
6706                 off = si->off;
6707                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
6708                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6709                                                 struct sk_msg_buff, sk),
6710                                       si->dst_reg, si->src_reg,
6711                                       offsetof(struct sk_msg_buff, sk));
6712                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6713                                       offsetof(struct sock_common,
6714                                                skc_v6_rcv_saddr.s6_addr32[0]) +
6715                                       off);
6716 #else
6717                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6718 #endif
6719                 break;
6720
6721         case offsetof(struct sk_msg_md, remote_port):
6722                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6723
6724                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6725                                                 struct sk_msg_buff, sk),
6726                                       si->dst_reg, si->src_reg,
6727                                       offsetof(struct sk_msg_buff, sk));
6728                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6729                                       offsetof(struct sock_common, skc_dport));
6730 #ifndef __BIG_ENDIAN_BITFIELD
6731                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6732 #endif
6733                 break;
6734
6735         case offsetof(struct sk_msg_md, local_port):
6736                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6737
6738                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6739                                                 struct sk_msg_buff, sk),
6740                                       si->dst_reg, si->src_reg,
6741                                       offsetof(struct sk_msg_buff, sk));
6742                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6743                                       offsetof(struct sock_common, skc_num));
6744                 break;
6745         }
6746
6747         return insn - insn_buf;
6748 }
6749
6750 const struct bpf_verifier_ops sk_filter_verifier_ops = {
6751         .get_func_proto         = sk_filter_func_proto,
6752         .is_valid_access        = sk_filter_is_valid_access,
6753         .convert_ctx_access     = bpf_convert_ctx_access,
6754         .gen_ld_abs             = bpf_gen_ld_abs,
6755 };
6756
6757 const struct bpf_prog_ops sk_filter_prog_ops = {
6758         .test_run               = bpf_prog_test_run_skb,
6759 };
6760
6761 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6762         .get_func_proto         = tc_cls_act_func_proto,
6763         .is_valid_access        = tc_cls_act_is_valid_access,
6764         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
6765         .gen_prologue           = tc_cls_act_prologue,
6766         .gen_ld_abs             = bpf_gen_ld_abs,
6767 };
6768
6769 const struct bpf_prog_ops tc_cls_act_prog_ops = {
6770         .test_run               = bpf_prog_test_run_skb,
6771 };
6772
6773 const struct bpf_verifier_ops xdp_verifier_ops = {
6774         .get_func_proto         = xdp_func_proto,
6775         .is_valid_access        = xdp_is_valid_access,
6776         .convert_ctx_access     = xdp_convert_ctx_access,
6777 };
6778
6779 const struct bpf_prog_ops xdp_prog_ops = {
6780         .test_run               = bpf_prog_test_run_xdp,
6781 };
6782
6783 const struct bpf_verifier_ops cg_skb_verifier_ops = {
6784         .get_func_proto         = sk_filter_func_proto,
6785         .is_valid_access        = sk_filter_is_valid_access,
6786         .convert_ctx_access     = bpf_convert_ctx_access,
6787 };
6788
6789 const struct bpf_prog_ops cg_skb_prog_ops = {
6790         .test_run               = bpf_prog_test_run_skb,
6791 };
6792
6793 const struct bpf_verifier_ops lwt_in_verifier_ops = {
6794         .get_func_proto         = lwt_in_func_proto,
6795         .is_valid_access        = lwt_is_valid_access,
6796         .convert_ctx_access     = bpf_convert_ctx_access,
6797 };
6798
6799 const struct bpf_prog_ops lwt_in_prog_ops = {
6800         .test_run               = bpf_prog_test_run_skb,
6801 };
6802
6803 const struct bpf_verifier_ops lwt_out_verifier_ops = {
6804         .get_func_proto         = lwt_out_func_proto,
6805         .is_valid_access        = lwt_is_valid_access,
6806         .convert_ctx_access     = bpf_convert_ctx_access,
6807 };
6808
6809 const struct bpf_prog_ops lwt_out_prog_ops = {
6810         .test_run               = bpf_prog_test_run_skb,
6811 };
6812
6813 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6814         .get_func_proto         = lwt_xmit_func_proto,
6815         .is_valid_access        = lwt_is_valid_access,
6816         .convert_ctx_access     = bpf_convert_ctx_access,
6817         .gen_prologue           = tc_cls_act_prologue,
6818 };
6819
6820 const struct bpf_prog_ops lwt_xmit_prog_ops = {
6821         .test_run               = bpf_prog_test_run_skb,
6822 };
6823
6824 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
6825         .get_func_proto         = lwt_seg6local_func_proto,
6826         .is_valid_access        = lwt_is_valid_access,
6827         .convert_ctx_access     = bpf_convert_ctx_access,
6828 };
6829
6830 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
6831         .test_run               = bpf_prog_test_run_skb,
6832 };
6833
6834 const struct bpf_verifier_ops cg_sock_verifier_ops = {
6835         .get_func_proto         = sock_filter_func_proto,
6836         .is_valid_access        = sock_filter_is_valid_access,
6837         .convert_ctx_access     = sock_filter_convert_ctx_access,
6838 };
6839
6840 const struct bpf_prog_ops cg_sock_prog_ops = {
6841 };
6842
6843 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
6844         .get_func_proto         = sock_addr_func_proto,
6845         .is_valid_access        = sock_addr_is_valid_access,
6846         .convert_ctx_access     = sock_addr_convert_ctx_access,
6847 };
6848
6849 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
6850 };
6851
6852 const struct bpf_verifier_ops sock_ops_verifier_ops = {
6853         .get_func_proto         = sock_ops_func_proto,
6854         .is_valid_access        = sock_ops_is_valid_access,
6855         .convert_ctx_access     = sock_ops_convert_ctx_access,
6856 };
6857
6858 const struct bpf_prog_ops sock_ops_prog_ops = {
6859 };
6860
6861 const struct bpf_verifier_ops sk_skb_verifier_ops = {
6862         .get_func_proto         = sk_skb_func_proto,
6863         .is_valid_access        = sk_skb_is_valid_access,
6864         .convert_ctx_access     = sk_skb_convert_ctx_access,
6865         .gen_prologue           = sk_skb_prologue,
6866 };
6867
6868 const struct bpf_prog_ops sk_skb_prog_ops = {
6869 };
6870
6871 const struct bpf_verifier_ops sk_msg_verifier_ops = {
6872         .get_func_proto         = sk_msg_func_proto,
6873         .is_valid_access        = sk_msg_is_valid_access,
6874         .convert_ctx_access     = sk_msg_convert_ctx_access,
6875 };
6876
6877 const struct bpf_prog_ops sk_msg_prog_ops = {
6878 };
6879
6880 int sk_detach_filter(struct sock *sk)
6881 {
6882         int ret = -ENOENT;
6883         struct sk_filter *filter;
6884
6885         if (sock_flag(sk, SOCK_FILTER_LOCKED))
6886                 return -EPERM;
6887
6888         filter = rcu_dereference_protected(sk->sk_filter,
6889                                            lockdep_sock_is_held(sk));
6890         if (filter) {
6891                 RCU_INIT_POINTER(sk->sk_filter, NULL);
6892                 sk_filter_uncharge(sk, filter);
6893                 ret = 0;
6894         }
6895
6896         return ret;
6897 }
6898 EXPORT_SYMBOL_GPL(sk_detach_filter);
6899
6900 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
6901                   unsigned int len)
6902 {
6903         struct sock_fprog_kern *fprog;
6904         struct sk_filter *filter;
6905         int ret = 0;
6906
6907         lock_sock(sk);
6908         filter = rcu_dereference_protected(sk->sk_filter,
6909                                            lockdep_sock_is_held(sk));
6910         if (!filter)
6911                 goto out;
6912
6913         /* We're copying the filter that has been originally attached,
6914          * so no conversion/decode needed anymore. eBPF programs that
6915          * have no original program cannot be dumped through this.
6916          */
6917         ret = -EACCES;
6918         fprog = filter->prog->orig_prog;
6919         if (!fprog)
6920                 goto out;
6921
6922         ret = fprog->len;
6923         if (!len)
6924                 /* User space only enquires number of filter blocks. */
6925                 goto out;
6926
6927         ret = -EINVAL;
6928         if (len < fprog->len)
6929                 goto out;
6930
6931         ret = -EFAULT;
6932         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
6933                 goto out;
6934
6935         /* Instead of bytes, the API requests to return the number
6936          * of filter blocks.
6937          */
6938         ret = fprog->len;
6939 out:
6940         release_sock(sk);
6941         return ret;
6942 }