Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-microblaze.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Author:
5  *     Jay Schulist <jschlst@samba.org>
6  *
7  * Based on the design of:
8  *     - The Berkeley Packet Filter
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Andi Kleen - Fix a few bad bugs and races.
16  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
17  */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/uaccess.h>
37 #include <asm/unaligned.h>
38 #include <linux/filter.h>
39 #include <linux/reciprocal_div.h>
40 #include <linux/ratelimit.h>
41
42 /* No hurry in this branch
43  *
44  * Exported for the bpf jit load helper.
45  */
46 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
47 {
48         u8 *ptr = NULL;
49
50         if (k >= SKF_NET_OFF)
51                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
52         else if (k >= SKF_LL_OFF)
53                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
54
55         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
56                 return ptr;
57         return NULL;
58 }
59
60 static inline void *load_pointer(const struct sk_buff *skb, int k,
61                                  unsigned int size, void *buffer)
62 {
63         if (k >= 0)
64                 return skb_header_pointer(skb, k, size, buffer);
65         return bpf_internal_load_pointer_neg_helper(skb, k, size);
66 }
67
68 /**
69  *      sk_filter - run a packet through a socket filter
70  *      @sk: sock associated with &sk_buff
71  *      @skb: buffer to filter
72  *
73  * Run the filter code and then cut skb->data to correct size returned by
74  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
75  * than pkt_len we keep whole skb->data. This is the socket level
76  * wrapper to sk_run_filter. It returns 0 if the packet should
77  * be accepted or -EPERM if the packet should be tossed.
78  *
79  */
80 int sk_filter(struct sock *sk, struct sk_buff *skb)
81 {
82         int err;
83         struct sk_filter *filter;
84
85         err = security_sock_rcv_skb(sk, skb);
86         if (err)
87                 return err;
88
89         rcu_read_lock();
90         filter = rcu_dereference(sk->sk_filter);
91         if (filter) {
92                 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
93
94                 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
95         }
96         rcu_read_unlock();
97
98         return err;
99 }
100 EXPORT_SYMBOL(sk_filter);
101
102 /**
103  *      sk_run_filter - run a filter on a socket
104  *      @skb: buffer to run the filter on
105  *      @fentry: filter to apply
106  *
107  * Decode and apply filter instructions to the skb->data.
108  * Return length to keep, 0 for none. @skb is the data we are
109  * filtering, @filter is the array of filter instructions.
110  * Because all jumps are guaranteed to be before last instruction,
111  * and last instruction guaranteed to be a RET, we dont need to check
112  * flen. (We used to pass to this function the length of filter)
113  */
114 unsigned int sk_run_filter(const struct sk_buff *skb,
115                            const struct sock_filter *fentry)
116 {
117         void *ptr;
118         u32 A = 0;                      /* Accumulator */
119         u32 X = 0;                      /* Index Register */
120         u32 mem[BPF_MEMWORDS];          /* Scratch Memory Store */
121         u32 tmp;
122         int k;
123
124         /*
125          * Process array of filter instructions.
126          */
127         for (;; fentry++) {
128 #if defined(CONFIG_X86_32)
129 #define K (fentry->k)
130 #else
131                 const u32 K = fentry->k;
132 #endif
133
134                 switch (fentry->code) {
135                 case BPF_S_ALU_ADD_X:
136                         A += X;
137                         continue;
138                 case BPF_S_ALU_ADD_K:
139                         A += K;
140                         continue;
141                 case BPF_S_ALU_SUB_X:
142                         A -= X;
143                         continue;
144                 case BPF_S_ALU_SUB_K:
145                         A -= K;
146                         continue;
147                 case BPF_S_ALU_MUL_X:
148                         A *= X;
149                         continue;
150                 case BPF_S_ALU_MUL_K:
151                         A *= K;
152                         continue;
153                 case BPF_S_ALU_DIV_X:
154                         if (X == 0)
155                                 return 0;
156                         A /= X;
157                         continue;
158                 case BPF_S_ALU_DIV_K:
159                         A = reciprocal_divide(A, K);
160                         continue;
161                 case BPF_S_ALU_AND_X:
162                         A &= X;
163                         continue;
164                 case BPF_S_ALU_AND_K:
165                         A &= K;
166                         continue;
167                 case BPF_S_ALU_OR_X:
168                         A |= X;
169                         continue;
170                 case BPF_S_ALU_OR_K:
171                         A |= K;
172                         continue;
173                 case BPF_S_ALU_LSH_X:
174                         A <<= X;
175                         continue;
176                 case BPF_S_ALU_LSH_K:
177                         A <<= K;
178                         continue;
179                 case BPF_S_ALU_RSH_X:
180                         A >>= X;
181                         continue;
182                 case BPF_S_ALU_RSH_K:
183                         A >>= K;
184                         continue;
185                 case BPF_S_ALU_NEG:
186                         A = -A;
187                         continue;
188                 case BPF_S_JMP_JA:
189                         fentry += K;
190                         continue;
191                 case BPF_S_JMP_JGT_K:
192                         fentry += (A > K) ? fentry->jt : fentry->jf;
193                         continue;
194                 case BPF_S_JMP_JGE_K:
195                         fentry += (A >= K) ? fentry->jt : fentry->jf;
196                         continue;
197                 case BPF_S_JMP_JEQ_K:
198                         fentry += (A == K) ? fentry->jt : fentry->jf;
199                         continue;
200                 case BPF_S_JMP_JSET_K:
201                         fentry += (A & K) ? fentry->jt : fentry->jf;
202                         continue;
203                 case BPF_S_JMP_JGT_X:
204                         fentry += (A > X) ? fentry->jt : fentry->jf;
205                         continue;
206                 case BPF_S_JMP_JGE_X:
207                         fentry += (A >= X) ? fentry->jt : fentry->jf;
208                         continue;
209                 case BPF_S_JMP_JEQ_X:
210                         fentry += (A == X) ? fentry->jt : fentry->jf;
211                         continue;
212                 case BPF_S_JMP_JSET_X:
213                         fentry += (A & X) ? fentry->jt : fentry->jf;
214                         continue;
215                 case BPF_S_LD_W_ABS:
216                         k = K;
217 load_w:
218                         ptr = load_pointer(skb, k, 4, &tmp);
219                         if (ptr != NULL) {
220                                 A = get_unaligned_be32(ptr);
221                                 continue;
222                         }
223                         return 0;
224                 case BPF_S_LD_H_ABS:
225                         k = K;
226 load_h:
227                         ptr = load_pointer(skb, k, 2, &tmp);
228                         if (ptr != NULL) {
229                                 A = get_unaligned_be16(ptr);
230                                 continue;
231                         }
232                         return 0;
233                 case BPF_S_LD_B_ABS:
234                         k = K;
235 load_b:
236                         ptr = load_pointer(skb, k, 1, &tmp);
237                         if (ptr != NULL) {
238                                 A = *(u8 *)ptr;
239                                 continue;
240                         }
241                         return 0;
242                 case BPF_S_LD_W_LEN:
243                         A = skb->len;
244                         continue;
245                 case BPF_S_LDX_W_LEN:
246                         X = skb->len;
247                         continue;
248                 case BPF_S_LD_W_IND:
249                         k = X + K;
250                         goto load_w;
251                 case BPF_S_LD_H_IND:
252                         k = X + K;
253                         goto load_h;
254                 case BPF_S_LD_B_IND:
255                         k = X + K;
256                         goto load_b;
257                 case BPF_S_LDX_B_MSH:
258                         ptr = load_pointer(skb, K, 1, &tmp);
259                         if (ptr != NULL) {
260                                 X = (*(u8 *)ptr & 0xf) << 2;
261                                 continue;
262                         }
263                         return 0;
264                 case BPF_S_LD_IMM:
265                         A = K;
266                         continue;
267                 case BPF_S_LDX_IMM:
268                         X = K;
269                         continue;
270                 case BPF_S_LD_MEM:
271                         A = mem[K];
272                         continue;
273                 case BPF_S_LDX_MEM:
274                         X = mem[K];
275                         continue;
276                 case BPF_S_MISC_TAX:
277                         X = A;
278                         continue;
279                 case BPF_S_MISC_TXA:
280                         A = X;
281                         continue;
282                 case BPF_S_RET_K:
283                         return K;
284                 case BPF_S_RET_A:
285                         return A;
286                 case BPF_S_ST:
287                         mem[K] = A;
288                         continue;
289                 case BPF_S_STX:
290                         mem[K] = X;
291                         continue;
292                 case BPF_S_ANC_PROTOCOL:
293                         A = ntohs(skb->protocol);
294                         continue;
295                 case BPF_S_ANC_PKTTYPE:
296                         A = skb->pkt_type;
297                         continue;
298                 case BPF_S_ANC_IFINDEX:
299                         if (!skb->dev)
300                                 return 0;
301                         A = skb->dev->ifindex;
302                         continue;
303                 case BPF_S_ANC_MARK:
304                         A = skb->mark;
305                         continue;
306                 case BPF_S_ANC_QUEUE:
307                         A = skb->queue_mapping;
308                         continue;
309                 case BPF_S_ANC_HATYPE:
310                         if (!skb->dev)
311                                 return 0;
312                         A = skb->dev->type;
313                         continue;
314                 case BPF_S_ANC_RXHASH:
315                         A = skb->rxhash;
316                         continue;
317                 case BPF_S_ANC_CPU:
318                         A = raw_smp_processor_id();
319                         continue;
320                 case BPF_S_ANC_ALU_XOR_X:
321                         A ^= X;
322                         continue;
323                 case BPF_S_ANC_NLATTR: {
324                         struct nlattr *nla;
325
326                         if (skb_is_nonlinear(skb))
327                                 return 0;
328                         if (A > skb->len - sizeof(struct nlattr))
329                                 return 0;
330
331                         nla = nla_find((struct nlattr *)&skb->data[A],
332                                        skb->len - A, X);
333                         if (nla)
334                                 A = (void *)nla - (void *)skb->data;
335                         else
336                                 A = 0;
337                         continue;
338                 }
339                 case BPF_S_ANC_NLATTR_NEST: {
340                         struct nlattr *nla;
341
342                         if (skb_is_nonlinear(skb))
343                                 return 0;
344                         if (A > skb->len - sizeof(struct nlattr))
345                                 return 0;
346
347                         nla = (struct nlattr *)&skb->data[A];
348                         if (nla->nla_len > A - skb->len)
349                                 return 0;
350
351                         nla = nla_find_nested(nla, X);
352                         if (nla)
353                                 A = (void *)nla - (void *)skb->data;
354                         else
355                                 A = 0;
356                         continue;
357                 }
358                 default:
359                         WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
360                                        fentry->code, fentry->jt,
361                                        fentry->jf, fentry->k);
362                         return 0;
363                 }
364         }
365
366         return 0;
367 }
368 EXPORT_SYMBOL(sk_run_filter);
369
370 /*
371  * Security :
372  * A BPF program is able to use 16 cells of memory to store intermediate
373  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
374  * As we dont want to clear mem[] array for each packet going through
375  * sk_run_filter(), we check that filter loaded by user never try to read
376  * a cell if not previously written, and we check all branches to be sure
377  * a malicious user doesn't try to abuse us.
378  */
379 static int check_load_and_stores(struct sock_filter *filter, int flen)
380 {
381         u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
382         int pc, ret = 0;
383
384         BUILD_BUG_ON(BPF_MEMWORDS > 16);
385         masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
386         if (!masks)
387                 return -ENOMEM;
388         memset(masks, 0xff, flen * sizeof(*masks));
389
390         for (pc = 0; pc < flen; pc++) {
391                 memvalid &= masks[pc];
392
393                 switch (filter[pc].code) {
394                 case BPF_S_ST:
395                 case BPF_S_STX:
396                         memvalid |= (1 << filter[pc].k);
397                         break;
398                 case BPF_S_LD_MEM:
399                 case BPF_S_LDX_MEM:
400                         if (!(memvalid & (1 << filter[pc].k))) {
401                                 ret = -EINVAL;
402                                 goto error;
403                         }
404                         break;
405                 case BPF_S_JMP_JA:
406                         /* a jump must set masks on target */
407                         masks[pc + 1 + filter[pc].k] &= memvalid;
408                         memvalid = ~0;
409                         break;
410                 case BPF_S_JMP_JEQ_K:
411                 case BPF_S_JMP_JEQ_X:
412                 case BPF_S_JMP_JGE_K:
413                 case BPF_S_JMP_JGE_X:
414                 case BPF_S_JMP_JGT_K:
415                 case BPF_S_JMP_JGT_X:
416                 case BPF_S_JMP_JSET_X:
417                 case BPF_S_JMP_JSET_K:
418                         /* a jump must set masks on targets */
419                         masks[pc + 1 + filter[pc].jt] &= memvalid;
420                         masks[pc + 1 + filter[pc].jf] &= memvalid;
421                         memvalid = ~0;
422                         break;
423                 }
424         }
425 error:
426         kfree(masks);
427         return ret;
428 }
429
430 /**
431  *      sk_chk_filter - verify socket filter code
432  *      @filter: filter to verify
433  *      @flen: length of filter
434  *
435  * Check the user's filter code. If we let some ugly
436  * filter code slip through kaboom! The filter must contain
437  * no references or jumps that are out of range, no illegal
438  * instructions, and must end with a RET instruction.
439  *
440  * All jumps are forward as they are not signed.
441  *
442  * Returns 0 if the rule set is legal or -EINVAL if not.
443  */
444 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
445 {
446         /*
447          * Valid instructions are initialized to non-0.
448          * Invalid instructions are initialized to 0.
449          */
450         static const u8 codes[] = {
451                 [BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
452                 [BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
453                 [BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
454                 [BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
455                 [BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
456                 [BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
457                 [BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
458                 [BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
459                 [BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
460                 [BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
461                 [BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
462                 [BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
463                 [BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
464                 [BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
465                 [BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
466                 [BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
467                 [BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
468                 [BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
469                 [BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
470                 [BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
471                 [BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
472                 [BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
473                 [BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
474                 [BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
475                 [BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
476                 [BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
477                 [BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
478                 [BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
479                 [BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
480                 [BPF_RET|BPF_K]          = BPF_S_RET_K,
481                 [BPF_RET|BPF_A]          = BPF_S_RET_A,
482                 [BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
483                 [BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
484                 [BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
485                 [BPF_ST]                 = BPF_S_ST,
486                 [BPF_STX]                = BPF_S_STX,
487                 [BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
488                 [BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
489                 [BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
490                 [BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
491                 [BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
492                 [BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
493                 [BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
494                 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
495                 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
496         };
497         int pc;
498
499         if (flen == 0 || flen > BPF_MAXINSNS)
500                 return -EINVAL;
501
502         /* check the filter code now */
503         for (pc = 0; pc < flen; pc++) {
504                 struct sock_filter *ftest = &filter[pc];
505                 u16 code = ftest->code;
506
507                 if (code >= ARRAY_SIZE(codes))
508                         return -EINVAL;
509                 code = codes[code];
510                 if (!code)
511                         return -EINVAL;
512                 /* Some instructions need special checks */
513                 switch (code) {
514                 case BPF_S_ALU_DIV_K:
515                         /* check for division by zero */
516                         if (ftest->k == 0)
517                                 return -EINVAL;
518                         ftest->k = reciprocal_value(ftest->k);
519                         break;
520                 case BPF_S_LD_MEM:
521                 case BPF_S_LDX_MEM:
522                 case BPF_S_ST:
523                 case BPF_S_STX:
524                         /* check for invalid memory addresses */
525                         if (ftest->k >= BPF_MEMWORDS)
526                                 return -EINVAL;
527                         break;
528                 case BPF_S_JMP_JA:
529                         /*
530                          * Note, the large ftest->k might cause loops.
531                          * Compare this with conditional jumps below,
532                          * where offsets are limited. --ANK (981016)
533                          */
534                         if (ftest->k >= (unsigned)(flen-pc-1))
535                                 return -EINVAL;
536                         break;
537                 case BPF_S_JMP_JEQ_K:
538                 case BPF_S_JMP_JEQ_X:
539                 case BPF_S_JMP_JGE_K:
540                 case BPF_S_JMP_JGE_X:
541                 case BPF_S_JMP_JGT_K:
542                 case BPF_S_JMP_JGT_X:
543                 case BPF_S_JMP_JSET_X:
544                 case BPF_S_JMP_JSET_K:
545                         /* for conditionals both must be safe */
546                         if (pc + ftest->jt + 1 >= flen ||
547                             pc + ftest->jf + 1 >= flen)
548                                 return -EINVAL;
549                         break;
550                 case BPF_S_LD_W_ABS:
551                 case BPF_S_LD_H_ABS:
552                 case BPF_S_LD_B_ABS:
553 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:        \
554                                 code = BPF_S_ANC_##CODE;        \
555                                 break
556                         switch (ftest->k) {
557                         ANCILLARY(PROTOCOL);
558                         ANCILLARY(PKTTYPE);
559                         ANCILLARY(IFINDEX);
560                         ANCILLARY(NLATTR);
561                         ANCILLARY(NLATTR_NEST);
562                         ANCILLARY(MARK);
563                         ANCILLARY(QUEUE);
564                         ANCILLARY(HATYPE);
565                         ANCILLARY(RXHASH);
566                         ANCILLARY(CPU);
567                         ANCILLARY(ALU_XOR_X);
568                         }
569                 }
570                 ftest->code = code;
571         }
572
573         /* last instruction must be a RET code */
574         switch (filter[flen - 1].code) {
575         case BPF_S_RET_K:
576         case BPF_S_RET_A:
577                 return check_load_and_stores(filter, flen);
578         }
579         return -EINVAL;
580 }
581 EXPORT_SYMBOL(sk_chk_filter);
582
583 /**
584  *      sk_filter_release_rcu - Release a socket filter by rcu_head
585  *      @rcu: rcu_head that contains the sk_filter to free
586  */
587 void sk_filter_release_rcu(struct rcu_head *rcu)
588 {
589         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
590
591         bpf_jit_free(fp);
592         kfree(fp);
593 }
594 EXPORT_SYMBOL(sk_filter_release_rcu);
595
596 static int __sk_prepare_filter(struct sk_filter *fp)
597 {
598         int err;
599
600         fp->bpf_func = sk_run_filter;
601
602         err = sk_chk_filter(fp->insns, fp->len);
603         if (err)
604                 return err;
605
606         bpf_jit_compile(fp);
607         return 0;
608 }
609
610 /**
611  *      sk_unattached_filter_create - create an unattached filter
612  *      @fprog: the filter program
613  *      @sk: the socket to use
614  *
615  * Create a filter independent ofr any socket. We first run some
616  * sanity checks on it to make sure it does not explode on us later.
617  * If an error occurs or there is insufficient memory for the filter
618  * a negative errno code is returned. On success the return is zero.
619  */
620 int sk_unattached_filter_create(struct sk_filter **pfp,
621                                 struct sock_fprog *fprog)
622 {
623         struct sk_filter *fp;
624         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
625         int err;
626
627         /* Make sure new filter is there and in the right amounts. */
628         if (fprog->filter == NULL)
629                 return -EINVAL;
630
631         fp = kmalloc(fsize + sizeof(*fp), GFP_KERNEL);
632         if (!fp)
633                 return -ENOMEM;
634         memcpy(fp->insns, fprog->filter, fsize);
635
636         atomic_set(&fp->refcnt, 1);
637         fp->len = fprog->len;
638
639         err = __sk_prepare_filter(fp);
640         if (err)
641                 goto free_mem;
642
643         *pfp = fp;
644         return 0;
645 free_mem:
646         kfree(fp);
647         return err;
648 }
649 EXPORT_SYMBOL_GPL(sk_unattached_filter_create);
650
651 void sk_unattached_filter_destroy(struct sk_filter *fp)
652 {
653         sk_filter_release(fp);
654 }
655 EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);
656
657 /**
658  *      sk_attach_filter - attach a socket filter
659  *      @fprog: the filter program
660  *      @sk: the socket to use
661  *
662  * Attach the user's filter code. We first run some sanity checks on
663  * it to make sure it does not explode on us later. If an error
664  * occurs or there is insufficient memory for the filter a negative
665  * errno code is returned. On success the return is zero.
666  */
667 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
668 {
669         struct sk_filter *fp, *old_fp;
670         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
671         int err;
672
673         /* Make sure new filter is there and in the right amounts. */
674         if (fprog->filter == NULL)
675                 return -EINVAL;
676
677         fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
678         if (!fp)
679                 return -ENOMEM;
680         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
681                 sock_kfree_s(sk, fp, fsize+sizeof(*fp));
682                 return -EFAULT;
683         }
684
685         atomic_set(&fp->refcnt, 1);
686         fp->len = fprog->len;
687
688         err = __sk_prepare_filter(fp);
689         if (err) {
690                 sk_filter_uncharge(sk, fp);
691                 return err;
692         }
693
694         old_fp = rcu_dereference_protected(sk->sk_filter,
695                                            sock_owned_by_user(sk));
696         rcu_assign_pointer(sk->sk_filter, fp);
697
698         if (old_fp)
699                 sk_filter_uncharge(sk, old_fp);
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(sk_attach_filter);
703
704 int sk_detach_filter(struct sock *sk)
705 {
706         int ret = -ENOENT;
707         struct sk_filter *filter;
708
709         filter = rcu_dereference_protected(sk->sk_filter,
710                                            sock_owned_by_user(sk));
711         if (filter) {
712                 RCU_INIT_POINTER(sk->sk_filter, NULL);
713                 sk_filter_uncharge(sk, filter);
714                 ret = 0;
715         }
716         return ret;
717 }
718 EXPORT_SYMBOL_GPL(sk_detach_filter);