powerpc/perf/hv-24x7: Move cpumask file to top folder of hv-24x7 driver
[linux-2.6-microblaze.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79
80 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
81 {
82         if (in_compat_syscall()) {
83                 struct compat_sock_fprog f32;
84
85                 if (len != sizeof(f32))
86                         return -EINVAL;
87                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
88                         return -EFAULT;
89                 memset(dst, 0, sizeof(*dst));
90                 dst->len = f32.len;
91                 dst->filter = compat_ptr(f32.filter);
92         } else {
93                 if (len != sizeof(*dst))
94                         return -EINVAL;
95                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
96                         return -EFAULT;
97         }
98
99         return 0;
100 }
101 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
102
103 /**
104  *      sk_filter_trim_cap - run a packet through a socket filter
105  *      @sk: sock associated with &sk_buff
106  *      @skb: buffer to filter
107  *      @cap: limit on how short the eBPF program may trim the packet
108  *
109  * Run the eBPF program and then cut skb->data to correct size returned by
110  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
111  * than pkt_len we keep whole skb->data. This is the socket level
112  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
113  * be accepted or -EPERM if the packet should be tossed.
114  *
115  */
116 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
117 {
118         int err;
119         struct sk_filter *filter;
120
121         /*
122          * If the skb was allocated from pfmemalloc reserves, only
123          * allow SOCK_MEMALLOC sockets to use it as this socket is
124          * helping free memory
125          */
126         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
127                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
128                 return -ENOMEM;
129         }
130         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
131         if (err)
132                 return err;
133
134         err = security_sock_rcv_skb(sk, skb);
135         if (err)
136                 return err;
137
138         rcu_read_lock();
139         filter = rcu_dereference(sk->sk_filter);
140         if (filter) {
141                 struct sock *save_sk = skb->sk;
142                 unsigned int pkt_len;
143
144                 skb->sk = sk;
145                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
146                 skb->sk = save_sk;
147                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
148         }
149         rcu_read_unlock();
150
151         return err;
152 }
153 EXPORT_SYMBOL(sk_filter_trim_cap);
154
155 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
156 {
157         return skb_get_poff(skb);
158 }
159
160 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
161 {
162         struct nlattr *nla;
163
164         if (skb_is_nonlinear(skb))
165                 return 0;
166
167         if (skb->len < sizeof(struct nlattr))
168                 return 0;
169
170         if (a > skb->len - sizeof(struct nlattr))
171                 return 0;
172
173         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
174         if (nla)
175                 return (void *) nla - (void *) skb->data;
176
177         return 0;
178 }
179
180 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
181 {
182         struct nlattr *nla;
183
184         if (skb_is_nonlinear(skb))
185                 return 0;
186
187         if (skb->len < sizeof(struct nlattr))
188                 return 0;
189
190         if (a > skb->len - sizeof(struct nlattr))
191                 return 0;
192
193         nla = (struct nlattr *) &skb->data[a];
194         if (nla->nla_len > skb->len - a)
195                 return 0;
196
197         nla = nla_find_nested(nla, x);
198         if (nla)
199                 return (void *) nla - (void *) skb->data;
200
201         return 0;
202 }
203
204 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
205            data, int, headlen, int, offset)
206 {
207         u8 tmp, *ptr;
208         const int len = sizeof(tmp);
209
210         if (offset >= 0) {
211                 if (headlen - offset >= len)
212                         return *(u8 *)(data + offset);
213                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
214                         return tmp;
215         } else {
216                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
217                 if (likely(ptr))
218                         return *(u8 *)ptr;
219         }
220
221         return -EFAULT;
222 }
223
224 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
225            int, offset)
226 {
227         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
228                                          offset);
229 }
230
231 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
232            data, int, headlen, int, offset)
233 {
234         u16 tmp, *ptr;
235         const int len = sizeof(tmp);
236
237         if (offset >= 0) {
238                 if (headlen - offset >= len)
239                         return get_unaligned_be16(data + offset);
240                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
241                         return be16_to_cpu(tmp);
242         } else {
243                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
244                 if (likely(ptr))
245                         return get_unaligned_be16(ptr);
246         }
247
248         return -EFAULT;
249 }
250
251 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
252            int, offset)
253 {
254         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
255                                           offset);
256 }
257
258 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
259            data, int, headlen, int, offset)
260 {
261         u32 tmp, *ptr;
262         const int len = sizeof(tmp);
263
264         if (likely(offset >= 0)) {
265                 if (headlen - offset >= len)
266                         return get_unaligned_be32(data + offset);
267                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
268                         return be32_to_cpu(tmp);
269         } else {
270                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
271                 if (likely(ptr))
272                         return get_unaligned_be32(ptr);
273         }
274
275         return -EFAULT;
276 }
277
278 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
279            int, offset)
280 {
281         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
282                                           offset);
283 }
284
285 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
286                               struct bpf_insn *insn_buf)
287 {
288         struct bpf_insn *insn = insn_buf;
289
290         switch (skb_field) {
291         case SKF_AD_MARK:
292                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
293
294                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
295                                       offsetof(struct sk_buff, mark));
296                 break;
297
298         case SKF_AD_PKTTYPE:
299                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
300                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
301 #ifdef __BIG_ENDIAN_BITFIELD
302                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
303 #endif
304                 break;
305
306         case SKF_AD_QUEUE:
307                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
308
309                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
310                                       offsetof(struct sk_buff, queue_mapping));
311                 break;
312
313         case SKF_AD_VLAN_TAG:
314                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
315
316                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
317                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318                                       offsetof(struct sk_buff, vlan_tci));
319                 break;
320         case SKF_AD_VLAN_TAG_PRESENT:
321                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
322                 if (PKT_VLAN_PRESENT_BIT)
323                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
324                 if (PKT_VLAN_PRESENT_BIT < 7)
325                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
326                 break;
327         }
328
329         return insn - insn_buf;
330 }
331
332 static bool convert_bpf_extensions(struct sock_filter *fp,
333                                    struct bpf_insn **insnp)
334 {
335         struct bpf_insn *insn = *insnp;
336         u32 cnt;
337
338         switch (fp->k) {
339         case SKF_AD_OFF + SKF_AD_PROTOCOL:
340                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
341
342                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
343                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
344                                       offsetof(struct sk_buff, protocol));
345                 /* A = ntohs(A) [emitting a nop or swap16] */
346                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
347                 break;
348
349         case SKF_AD_OFF + SKF_AD_PKTTYPE:
350                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
351                 insn += cnt - 1;
352                 break;
353
354         case SKF_AD_OFF + SKF_AD_IFINDEX:
355         case SKF_AD_OFF + SKF_AD_HATYPE:
356                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
357                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
358
359                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
360                                       BPF_REG_TMP, BPF_REG_CTX,
361                                       offsetof(struct sk_buff, dev));
362                 /* if (tmp != 0) goto pc + 1 */
363                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
364                 *insn++ = BPF_EXIT_INSN();
365                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
366                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
367                                             offsetof(struct net_device, ifindex));
368                 else
369                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
370                                             offsetof(struct net_device, type));
371                 break;
372
373         case SKF_AD_OFF + SKF_AD_MARK:
374                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
375                 insn += cnt - 1;
376                 break;
377
378         case SKF_AD_OFF + SKF_AD_RXHASH:
379                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
380
381                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
382                                     offsetof(struct sk_buff, hash));
383                 break;
384
385         case SKF_AD_OFF + SKF_AD_QUEUE:
386                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
387                 insn += cnt - 1;
388                 break;
389
390         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
391                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
392                                          BPF_REG_A, BPF_REG_CTX, insn);
393                 insn += cnt - 1;
394                 break;
395
396         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
397                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
398                                          BPF_REG_A, BPF_REG_CTX, insn);
399                 insn += cnt - 1;
400                 break;
401
402         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
403                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
404
405                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
406                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
407                                       offsetof(struct sk_buff, vlan_proto));
408                 /* A = ntohs(A) [emitting a nop or swap16] */
409                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
410                 break;
411
412         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
413         case SKF_AD_OFF + SKF_AD_NLATTR:
414         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
415         case SKF_AD_OFF + SKF_AD_CPU:
416         case SKF_AD_OFF + SKF_AD_RANDOM:
417                 /* arg1 = CTX */
418                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
419                 /* arg2 = A */
420                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
421                 /* arg3 = X */
422                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
423                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
424                 switch (fp->k) {
425                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
426                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
427                         break;
428                 case SKF_AD_OFF + SKF_AD_NLATTR:
429                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
430                         break;
431                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
432                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
433                         break;
434                 case SKF_AD_OFF + SKF_AD_CPU:
435                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
436                         break;
437                 case SKF_AD_OFF + SKF_AD_RANDOM:
438                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
439                         bpf_user_rnd_init_once();
440                         break;
441                 }
442                 break;
443
444         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
445                 /* A ^= X */
446                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
447                 break;
448
449         default:
450                 /* This is just a dummy call to avoid letting the compiler
451                  * evict __bpf_call_base() as an optimization. Placed here
452                  * where no-one bothers.
453                  */
454                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
455                 return false;
456         }
457
458         *insnp = insn;
459         return true;
460 }
461
462 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
463 {
464         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
465         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
466         bool endian = BPF_SIZE(fp->code) == BPF_H ||
467                       BPF_SIZE(fp->code) == BPF_W;
468         bool indirect = BPF_MODE(fp->code) == BPF_IND;
469         const int ip_align = NET_IP_ALIGN;
470         struct bpf_insn *insn = *insnp;
471         int offset = fp->k;
472
473         if (!indirect &&
474             ((unaligned_ok && offset >= 0) ||
475              (!unaligned_ok && offset >= 0 &&
476               offset + ip_align >= 0 &&
477               offset + ip_align % size == 0))) {
478                 bool ldx_off_ok = offset <= S16_MAX;
479
480                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
481                 if (offset)
482                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
483                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
484                                       size, 2 + endian + (!ldx_off_ok * 2));
485                 if (ldx_off_ok) {
486                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
487                                               BPF_REG_D, offset);
488                 } else {
489                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
490                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
491                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492                                               BPF_REG_TMP, 0);
493                 }
494                 if (endian)
495                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
496                 *insn++ = BPF_JMP_A(8);
497         }
498
499         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
500         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
501         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
502         if (!indirect) {
503                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
504         } else {
505                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
506                 if (fp->k)
507                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
508         }
509
510         switch (BPF_SIZE(fp->code)) {
511         case BPF_B:
512                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
513                 break;
514         case BPF_H:
515                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
516                 break;
517         case BPF_W:
518                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
519                 break;
520         default:
521                 return false;
522         }
523
524         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
525         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
526         *insn   = BPF_EXIT_INSN();
527
528         *insnp = insn;
529         return true;
530 }
531
532 /**
533  *      bpf_convert_filter - convert filter program
534  *      @prog: the user passed filter program
535  *      @len: the length of the user passed filter program
536  *      @new_prog: allocated 'struct bpf_prog' or NULL
537  *      @new_len: pointer to store length of converted program
538  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
539  *
540  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
541  * style extended BPF (eBPF).
542  * Conversion workflow:
543  *
544  * 1) First pass for calculating the new program length:
545  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
546  *
547  * 2) 2nd pass to remap in two passes: 1st pass finds new
548  *    jump offsets, 2nd pass remapping:
549  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
550  */
551 static int bpf_convert_filter(struct sock_filter *prog, int len,
552                               struct bpf_prog *new_prog, int *new_len,
553                               bool *seen_ld_abs)
554 {
555         int new_flen = 0, pass = 0, target, i, stack_off;
556         struct bpf_insn *new_insn, *first_insn = NULL;
557         struct sock_filter *fp;
558         int *addrs = NULL;
559         u8 bpf_src;
560
561         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
562         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
563
564         if (len <= 0 || len > BPF_MAXINSNS)
565                 return -EINVAL;
566
567         if (new_prog) {
568                 first_insn = new_prog->insnsi;
569                 addrs = kcalloc(len, sizeof(*addrs),
570                                 GFP_KERNEL | __GFP_NOWARN);
571                 if (!addrs)
572                         return -ENOMEM;
573         }
574
575 do_pass:
576         new_insn = first_insn;
577         fp = prog;
578
579         /* Classic BPF related prologue emission. */
580         if (new_prog) {
581                 /* Classic BPF expects A and X to be reset first. These need
582                  * to be guaranteed to be the first two instructions.
583                  */
584                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
585                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
586
587                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
588                  * In eBPF case it's done by the compiler, here we need to
589                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
590                  */
591                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
592                 if (*seen_ld_abs) {
593                         /* For packet access in classic BPF, cache skb->data
594                          * in callee-saved BPF R8 and skb->len - skb->data_len
595                          * (headlen) in BPF R9. Since classic BPF is read-only
596                          * on CTX, we only need to cache it once.
597                          */
598                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
599                                                   BPF_REG_D, BPF_REG_CTX,
600                                                   offsetof(struct sk_buff, data));
601                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
602                                                   offsetof(struct sk_buff, len));
603                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
604                                                   offsetof(struct sk_buff, data_len));
605                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
606                 }
607         } else {
608                 new_insn += 3;
609         }
610
611         for (i = 0; i < len; fp++, i++) {
612                 struct bpf_insn tmp_insns[32] = { };
613                 struct bpf_insn *insn = tmp_insns;
614
615                 if (addrs)
616                         addrs[i] = new_insn - first_insn;
617
618                 switch (fp->code) {
619                 /* All arithmetic insns and skb loads map as-is. */
620                 case BPF_ALU | BPF_ADD | BPF_X:
621                 case BPF_ALU | BPF_ADD | BPF_K:
622                 case BPF_ALU | BPF_SUB | BPF_X:
623                 case BPF_ALU | BPF_SUB | BPF_K:
624                 case BPF_ALU | BPF_AND | BPF_X:
625                 case BPF_ALU | BPF_AND | BPF_K:
626                 case BPF_ALU | BPF_OR | BPF_X:
627                 case BPF_ALU | BPF_OR | BPF_K:
628                 case BPF_ALU | BPF_LSH | BPF_X:
629                 case BPF_ALU | BPF_LSH | BPF_K:
630                 case BPF_ALU | BPF_RSH | BPF_X:
631                 case BPF_ALU | BPF_RSH | BPF_K:
632                 case BPF_ALU | BPF_XOR | BPF_X:
633                 case BPF_ALU | BPF_XOR | BPF_K:
634                 case BPF_ALU | BPF_MUL | BPF_X:
635                 case BPF_ALU | BPF_MUL | BPF_K:
636                 case BPF_ALU | BPF_DIV | BPF_X:
637                 case BPF_ALU | BPF_DIV | BPF_K:
638                 case BPF_ALU | BPF_MOD | BPF_X:
639                 case BPF_ALU | BPF_MOD | BPF_K:
640                 case BPF_ALU | BPF_NEG:
641                 case BPF_LD | BPF_ABS | BPF_W:
642                 case BPF_LD | BPF_ABS | BPF_H:
643                 case BPF_LD | BPF_ABS | BPF_B:
644                 case BPF_LD | BPF_IND | BPF_W:
645                 case BPF_LD | BPF_IND | BPF_H:
646                 case BPF_LD | BPF_IND | BPF_B:
647                         /* Check for overloaded BPF extension and
648                          * directly convert it if found, otherwise
649                          * just move on with mapping.
650                          */
651                         if (BPF_CLASS(fp->code) == BPF_LD &&
652                             BPF_MODE(fp->code) == BPF_ABS &&
653                             convert_bpf_extensions(fp, &insn))
654                                 break;
655                         if (BPF_CLASS(fp->code) == BPF_LD &&
656                             convert_bpf_ld_abs(fp, &insn)) {
657                                 *seen_ld_abs = true;
658                                 break;
659                         }
660
661                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
662                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
663                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
664                                 /* Error with exception code on div/mod by 0.
665                                  * For cBPF programs, this was always return 0.
666                                  */
667                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
668                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
669                                 *insn++ = BPF_EXIT_INSN();
670                         }
671
672                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
673                         break;
674
675                 /* Jump transformation cannot use BPF block macros
676                  * everywhere as offset calculation and target updates
677                  * require a bit more work than the rest, i.e. jump
678                  * opcodes map as-is, but offsets need adjustment.
679                  */
680
681 #define BPF_EMIT_JMP                                                    \
682         do {                                                            \
683                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
684                 s32 off;                                                \
685                                                                         \
686                 if (target >= len || target < 0)                        \
687                         goto err;                                       \
688                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
689                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
690                 off -= insn - tmp_insns;                                \
691                 /* Reject anything not fitting into insn->off. */       \
692                 if (off < off_min || off > off_max)                     \
693                         goto err;                                       \
694                 insn->off = off;                                        \
695         } while (0)
696
697                 case BPF_JMP | BPF_JA:
698                         target = i + fp->k + 1;
699                         insn->code = fp->code;
700                         BPF_EMIT_JMP;
701                         break;
702
703                 case BPF_JMP | BPF_JEQ | BPF_K:
704                 case BPF_JMP | BPF_JEQ | BPF_X:
705                 case BPF_JMP | BPF_JSET | BPF_K:
706                 case BPF_JMP | BPF_JSET | BPF_X:
707                 case BPF_JMP | BPF_JGT | BPF_K:
708                 case BPF_JMP | BPF_JGT | BPF_X:
709                 case BPF_JMP | BPF_JGE | BPF_K:
710                 case BPF_JMP | BPF_JGE | BPF_X:
711                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
712                                 /* BPF immediates are signed, zero extend
713                                  * immediate into tmp register and use it
714                                  * in compare insn.
715                                  */
716                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
717
718                                 insn->dst_reg = BPF_REG_A;
719                                 insn->src_reg = BPF_REG_TMP;
720                                 bpf_src = BPF_X;
721                         } else {
722                                 insn->dst_reg = BPF_REG_A;
723                                 insn->imm = fp->k;
724                                 bpf_src = BPF_SRC(fp->code);
725                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
726                         }
727
728                         /* Common case where 'jump_false' is next insn. */
729                         if (fp->jf == 0) {
730                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
731                                 target = i + fp->jt + 1;
732                                 BPF_EMIT_JMP;
733                                 break;
734                         }
735
736                         /* Convert some jumps when 'jump_true' is next insn. */
737                         if (fp->jt == 0) {
738                                 switch (BPF_OP(fp->code)) {
739                                 case BPF_JEQ:
740                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
741                                         break;
742                                 case BPF_JGT:
743                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
744                                         break;
745                                 case BPF_JGE:
746                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
747                                         break;
748                                 default:
749                                         goto jmp_rest;
750                                 }
751
752                                 target = i + fp->jf + 1;
753                                 BPF_EMIT_JMP;
754                                 break;
755                         }
756 jmp_rest:
757                         /* Other jumps are mapped into two insns: Jxx and JA. */
758                         target = i + fp->jt + 1;
759                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
760                         BPF_EMIT_JMP;
761                         insn++;
762
763                         insn->code = BPF_JMP | BPF_JA;
764                         target = i + fp->jf + 1;
765                         BPF_EMIT_JMP;
766                         break;
767
768                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
769                 case BPF_LDX | BPF_MSH | BPF_B: {
770                         struct sock_filter tmp = {
771                                 .code   = BPF_LD | BPF_ABS | BPF_B,
772                                 .k      = fp->k,
773                         };
774
775                         *seen_ld_abs = true;
776
777                         /* X = A */
778                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
779                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
780                         convert_bpf_ld_abs(&tmp, &insn);
781                         insn++;
782                         /* A &= 0xf */
783                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
784                         /* A <<= 2 */
785                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
786                         /* tmp = X */
787                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
788                         /* X = A */
789                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
790                         /* A = tmp */
791                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
792                         break;
793                 }
794                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
795                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
796                  */
797                 case BPF_RET | BPF_A:
798                 case BPF_RET | BPF_K:
799                         if (BPF_RVAL(fp->code) == BPF_K)
800                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
801                                                         0, fp->k);
802                         *insn = BPF_EXIT_INSN();
803                         break;
804
805                 /* Store to stack. */
806                 case BPF_ST:
807                 case BPF_STX:
808                         stack_off = fp->k * 4  + 4;
809                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
810                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
811                                             -stack_off);
812                         /* check_load_and_stores() verifies that classic BPF can
813                          * load from stack only after write, so tracking
814                          * stack_depth for ST|STX insns is enough
815                          */
816                         if (new_prog && new_prog->aux->stack_depth < stack_off)
817                                 new_prog->aux->stack_depth = stack_off;
818                         break;
819
820                 /* Load from stack. */
821                 case BPF_LD | BPF_MEM:
822                 case BPF_LDX | BPF_MEM:
823                         stack_off = fp->k * 4  + 4;
824                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
825                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
826                                             -stack_off);
827                         break;
828
829                 /* A = K or X = K */
830                 case BPF_LD | BPF_IMM:
831                 case BPF_LDX | BPF_IMM:
832                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
833                                               BPF_REG_A : BPF_REG_X, fp->k);
834                         break;
835
836                 /* X = A */
837                 case BPF_MISC | BPF_TAX:
838                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
839                         break;
840
841                 /* A = X */
842                 case BPF_MISC | BPF_TXA:
843                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
844                         break;
845
846                 /* A = skb->len or X = skb->len */
847                 case BPF_LD | BPF_W | BPF_LEN:
848                 case BPF_LDX | BPF_W | BPF_LEN:
849                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
850                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
851                                             offsetof(struct sk_buff, len));
852                         break;
853
854                 /* Access seccomp_data fields. */
855                 case BPF_LDX | BPF_ABS | BPF_W:
856                         /* A = *(u32 *) (ctx + K) */
857                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
858                         break;
859
860                 /* Unknown instruction. */
861                 default:
862                         goto err;
863                 }
864
865                 insn++;
866                 if (new_prog)
867                         memcpy(new_insn, tmp_insns,
868                                sizeof(*insn) * (insn - tmp_insns));
869                 new_insn += insn - tmp_insns;
870         }
871
872         if (!new_prog) {
873                 /* Only calculating new length. */
874                 *new_len = new_insn - first_insn;
875                 if (*seen_ld_abs)
876                         *new_len += 4; /* Prologue bits. */
877                 return 0;
878         }
879
880         pass++;
881         if (new_flen != new_insn - first_insn) {
882                 new_flen = new_insn - first_insn;
883                 if (pass > 2)
884                         goto err;
885                 goto do_pass;
886         }
887
888         kfree(addrs);
889         BUG_ON(*new_len != new_flen);
890         return 0;
891 err:
892         kfree(addrs);
893         return -EINVAL;
894 }
895
896 /* Security:
897  *
898  * As we dont want to clear mem[] array for each packet going through
899  * __bpf_prog_run(), we check that filter loaded by user never try to read
900  * a cell if not previously written, and we check all branches to be sure
901  * a malicious user doesn't try to abuse us.
902  */
903 static int check_load_and_stores(const struct sock_filter *filter, int flen)
904 {
905         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
906         int pc, ret = 0;
907
908         BUILD_BUG_ON(BPF_MEMWORDS > 16);
909
910         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
911         if (!masks)
912                 return -ENOMEM;
913
914         memset(masks, 0xff, flen * sizeof(*masks));
915
916         for (pc = 0; pc < flen; pc++) {
917                 memvalid &= masks[pc];
918
919                 switch (filter[pc].code) {
920                 case BPF_ST:
921                 case BPF_STX:
922                         memvalid |= (1 << filter[pc].k);
923                         break;
924                 case BPF_LD | BPF_MEM:
925                 case BPF_LDX | BPF_MEM:
926                         if (!(memvalid & (1 << filter[pc].k))) {
927                                 ret = -EINVAL;
928                                 goto error;
929                         }
930                         break;
931                 case BPF_JMP | BPF_JA:
932                         /* A jump must set masks on target */
933                         masks[pc + 1 + filter[pc].k] &= memvalid;
934                         memvalid = ~0;
935                         break;
936                 case BPF_JMP | BPF_JEQ | BPF_K:
937                 case BPF_JMP | BPF_JEQ | BPF_X:
938                 case BPF_JMP | BPF_JGE | BPF_K:
939                 case BPF_JMP | BPF_JGE | BPF_X:
940                 case BPF_JMP | BPF_JGT | BPF_K:
941                 case BPF_JMP | BPF_JGT | BPF_X:
942                 case BPF_JMP | BPF_JSET | BPF_K:
943                 case BPF_JMP | BPF_JSET | BPF_X:
944                         /* A jump must set masks on targets */
945                         masks[pc + 1 + filter[pc].jt] &= memvalid;
946                         masks[pc + 1 + filter[pc].jf] &= memvalid;
947                         memvalid = ~0;
948                         break;
949                 }
950         }
951 error:
952         kfree(masks);
953         return ret;
954 }
955
956 static bool chk_code_allowed(u16 code_to_probe)
957 {
958         static const bool codes[] = {
959                 /* 32 bit ALU operations */
960                 [BPF_ALU | BPF_ADD | BPF_K] = true,
961                 [BPF_ALU | BPF_ADD | BPF_X] = true,
962                 [BPF_ALU | BPF_SUB | BPF_K] = true,
963                 [BPF_ALU | BPF_SUB | BPF_X] = true,
964                 [BPF_ALU | BPF_MUL | BPF_K] = true,
965                 [BPF_ALU | BPF_MUL | BPF_X] = true,
966                 [BPF_ALU | BPF_DIV | BPF_K] = true,
967                 [BPF_ALU | BPF_DIV | BPF_X] = true,
968                 [BPF_ALU | BPF_MOD | BPF_K] = true,
969                 [BPF_ALU | BPF_MOD | BPF_X] = true,
970                 [BPF_ALU | BPF_AND | BPF_K] = true,
971                 [BPF_ALU | BPF_AND | BPF_X] = true,
972                 [BPF_ALU | BPF_OR | BPF_K] = true,
973                 [BPF_ALU | BPF_OR | BPF_X] = true,
974                 [BPF_ALU | BPF_XOR | BPF_K] = true,
975                 [BPF_ALU | BPF_XOR | BPF_X] = true,
976                 [BPF_ALU | BPF_LSH | BPF_K] = true,
977                 [BPF_ALU | BPF_LSH | BPF_X] = true,
978                 [BPF_ALU | BPF_RSH | BPF_K] = true,
979                 [BPF_ALU | BPF_RSH | BPF_X] = true,
980                 [BPF_ALU | BPF_NEG] = true,
981                 /* Load instructions */
982                 [BPF_LD | BPF_W | BPF_ABS] = true,
983                 [BPF_LD | BPF_H | BPF_ABS] = true,
984                 [BPF_LD | BPF_B | BPF_ABS] = true,
985                 [BPF_LD | BPF_W | BPF_LEN] = true,
986                 [BPF_LD | BPF_W | BPF_IND] = true,
987                 [BPF_LD | BPF_H | BPF_IND] = true,
988                 [BPF_LD | BPF_B | BPF_IND] = true,
989                 [BPF_LD | BPF_IMM] = true,
990                 [BPF_LD | BPF_MEM] = true,
991                 [BPF_LDX | BPF_W | BPF_LEN] = true,
992                 [BPF_LDX | BPF_B | BPF_MSH] = true,
993                 [BPF_LDX | BPF_IMM] = true,
994                 [BPF_LDX | BPF_MEM] = true,
995                 /* Store instructions */
996                 [BPF_ST] = true,
997                 [BPF_STX] = true,
998                 /* Misc instructions */
999                 [BPF_MISC | BPF_TAX] = true,
1000                 [BPF_MISC | BPF_TXA] = true,
1001                 /* Return instructions */
1002                 [BPF_RET | BPF_K] = true,
1003                 [BPF_RET | BPF_A] = true,
1004                 /* Jump instructions */
1005                 [BPF_JMP | BPF_JA] = true,
1006                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1007                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1008                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1009                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1010                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1011                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1012                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1013                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1014         };
1015
1016         if (code_to_probe >= ARRAY_SIZE(codes))
1017                 return false;
1018
1019         return codes[code_to_probe];
1020 }
1021
1022 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1023                                 unsigned int flen)
1024 {
1025         if (filter == NULL)
1026                 return false;
1027         if (flen == 0 || flen > BPF_MAXINSNS)
1028                 return false;
1029
1030         return true;
1031 }
1032
1033 /**
1034  *      bpf_check_classic - verify socket filter code
1035  *      @filter: filter to verify
1036  *      @flen: length of filter
1037  *
1038  * Check the user's filter code. If we let some ugly
1039  * filter code slip through kaboom! The filter must contain
1040  * no references or jumps that are out of range, no illegal
1041  * instructions, and must end with a RET instruction.
1042  *
1043  * All jumps are forward as they are not signed.
1044  *
1045  * Returns 0 if the rule set is legal or -EINVAL if not.
1046  */
1047 static int bpf_check_classic(const struct sock_filter *filter,
1048                              unsigned int flen)
1049 {
1050         bool anc_found;
1051         int pc;
1052
1053         /* Check the filter code now */
1054         for (pc = 0; pc < flen; pc++) {
1055                 const struct sock_filter *ftest = &filter[pc];
1056
1057                 /* May we actually operate on this code? */
1058                 if (!chk_code_allowed(ftest->code))
1059                         return -EINVAL;
1060
1061                 /* Some instructions need special checks */
1062                 switch (ftest->code) {
1063                 case BPF_ALU | BPF_DIV | BPF_K:
1064                 case BPF_ALU | BPF_MOD | BPF_K:
1065                         /* Check for division by zero */
1066                         if (ftest->k == 0)
1067                                 return -EINVAL;
1068                         break;
1069                 case BPF_ALU | BPF_LSH | BPF_K:
1070                 case BPF_ALU | BPF_RSH | BPF_K:
1071                         if (ftest->k >= 32)
1072                                 return -EINVAL;
1073                         break;
1074                 case BPF_LD | BPF_MEM:
1075                 case BPF_LDX | BPF_MEM:
1076                 case BPF_ST:
1077                 case BPF_STX:
1078                         /* Check for invalid memory addresses */
1079                         if (ftest->k >= BPF_MEMWORDS)
1080                                 return -EINVAL;
1081                         break;
1082                 case BPF_JMP | BPF_JA:
1083                         /* Note, the large ftest->k might cause loops.
1084                          * Compare this with conditional jumps below,
1085                          * where offsets are limited. --ANK (981016)
1086                          */
1087                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1088                                 return -EINVAL;
1089                         break;
1090                 case BPF_JMP | BPF_JEQ | BPF_K:
1091                 case BPF_JMP | BPF_JEQ | BPF_X:
1092                 case BPF_JMP | BPF_JGE | BPF_K:
1093                 case BPF_JMP | BPF_JGE | BPF_X:
1094                 case BPF_JMP | BPF_JGT | BPF_K:
1095                 case BPF_JMP | BPF_JGT | BPF_X:
1096                 case BPF_JMP | BPF_JSET | BPF_K:
1097                 case BPF_JMP | BPF_JSET | BPF_X:
1098                         /* Both conditionals must be safe */
1099                         if (pc + ftest->jt + 1 >= flen ||
1100                             pc + ftest->jf + 1 >= flen)
1101                                 return -EINVAL;
1102                         break;
1103                 case BPF_LD | BPF_W | BPF_ABS:
1104                 case BPF_LD | BPF_H | BPF_ABS:
1105                 case BPF_LD | BPF_B | BPF_ABS:
1106                         anc_found = false;
1107                         if (bpf_anc_helper(ftest) & BPF_ANC)
1108                                 anc_found = true;
1109                         /* Ancillary operation unknown or unsupported */
1110                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1111                                 return -EINVAL;
1112                 }
1113         }
1114
1115         /* Last instruction must be a RET code */
1116         switch (filter[flen - 1].code) {
1117         case BPF_RET | BPF_K:
1118         case BPF_RET | BPF_A:
1119                 return check_load_and_stores(filter, flen);
1120         }
1121
1122         return -EINVAL;
1123 }
1124
1125 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1126                                       const struct sock_fprog *fprog)
1127 {
1128         unsigned int fsize = bpf_classic_proglen(fprog);
1129         struct sock_fprog_kern *fkprog;
1130
1131         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1132         if (!fp->orig_prog)
1133                 return -ENOMEM;
1134
1135         fkprog = fp->orig_prog;
1136         fkprog->len = fprog->len;
1137
1138         fkprog->filter = kmemdup(fp->insns, fsize,
1139                                  GFP_KERNEL | __GFP_NOWARN);
1140         if (!fkprog->filter) {
1141                 kfree(fp->orig_prog);
1142                 return -ENOMEM;
1143         }
1144
1145         return 0;
1146 }
1147
1148 static void bpf_release_orig_filter(struct bpf_prog *fp)
1149 {
1150         struct sock_fprog_kern *fprog = fp->orig_prog;
1151
1152         if (fprog) {
1153                 kfree(fprog->filter);
1154                 kfree(fprog);
1155         }
1156 }
1157
1158 static void __bpf_prog_release(struct bpf_prog *prog)
1159 {
1160         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1161                 bpf_prog_put(prog);
1162         } else {
1163                 bpf_release_orig_filter(prog);
1164                 bpf_prog_free(prog);
1165         }
1166 }
1167
1168 static void __sk_filter_release(struct sk_filter *fp)
1169 {
1170         __bpf_prog_release(fp->prog);
1171         kfree(fp);
1172 }
1173
1174 /**
1175  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1176  *      @rcu: rcu_head that contains the sk_filter to free
1177  */
1178 static void sk_filter_release_rcu(struct rcu_head *rcu)
1179 {
1180         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1181
1182         __sk_filter_release(fp);
1183 }
1184
1185 /**
1186  *      sk_filter_release - release a socket filter
1187  *      @fp: filter to remove
1188  *
1189  *      Remove a filter from a socket and release its resources.
1190  */
1191 static void sk_filter_release(struct sk_filter *fp)
1192 {
1193         if (refcount_dec_and_test(&fp->refcnt))
1194                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1195 }
1196
1197 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1198 {
1199         u32 filter_size = bpf_prog_size(fp->prog->len);
1200
1201         atomic_sub(filter_size, &sk->sk_omem_alloc);
1202         sk_filter_release(fp);
1203 }
1204
1205 /* try to charge the socket memory if there is space available
1206  * return true on success
1207  */
1208 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1209 {
1210         u32 filter_size = bpf_prog_size(fp->prog->len);
1211
1212         /* same check as in sock_kmalloc() */
1213         if (filter_size <= sysctl_optmem_max &&
1214             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1215                 atomic_add(filter_size, &sk->sk_omem_alloc);
1216                 return true;
1217         }
1218         return false;
1219 }
1220
1221 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1222 {
1223         if (!refcount_inc_not_zero(&fp->refcnt))
1224                 return false;
1225
1226         if (!__sk_filter_charge(sk, fp)) {
1227                 sk_filter_release(fp);
1228                 return false;
1229         }
1230         return true;
1231 }
1232
1233 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1234 {
1235         struct sock_filter *old_prog;
1236         struct bpf_prog *old_fp;
1237         int err, new_len, old_len = fp->len;
1238         bool seen_ld_abs = false;
1239
1240         /* We are free to overwrite insns et al right here as it
1241          * won't be used at this point in time anymore internally
1242          * after the migration to the internal BPF instruction
1243          * representation.
1244          */
1245         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1246                      sizeof(struct bpf_insn));
1247
1248         /* Conversion cannot happen on overlapping memory areas,
1249          * so we need to keep the user BPF around until the 2nd
1250          * pass. At this time, the user BPF is stored in fp->insns.
1251          */
1252         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1253                            GFP_KERNEL | __GFP_NOWARN);
1254         if (!old_prog) {
1255                 err = -ENOMEM;
1256                 goto out_err;
1257         }
1258
1259         /* 1st pass: calculate the new program length. */
1260         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1261                                  &seen_ld_abs);
1262         if (err)
1263                 goto out_err_free;
1264
1265         /* Expand fp for appending the new filter representation. */
1266         old_fp = fp;
1267         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1268         if (!fp) {
1269                 /* The old_fp is still around in case we couldn't
1270                  * allocate new memory, so uncharge on that one.
1271                  */
1272                 fp = old_fp;
1273                 err = -ENOMEM;
1274                 goto out_err_free;
1275         }
1276
1277         fp->len = new_len;
1278
1279         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1280         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1281                                  &seen_ld_abs);
1282         if (err)
1283                 /* 2nd bpf_convert_filter() can fail only if it fails
1284                  * to allocate memory, remapping must succeed. Note,
1285                  * that at this time old_fp has already been released
1286                  * by krealloc().
1287                  */
1288                 goto out_err_free;
1289
1290         fp = bpf_prog_select_runtime(fp, &err);
1291         if (err)
1292                 goto out_err_free;
1293
1294         kfree(old_prog);
1295         return fp;
1296
1297 out_err_free:
1298         kfree(old_prog);
1299 out_err:
1300         __bpf_prog_release(fp);
1301         return ERR_PTR(err);
1302 }
1303
1304 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1305                                            bpf_aux_classic_check_t trans)
1306 {
1307         int err;
1308
1309         fp->bpf_func = NULL;
1310         fp->jited = 0;
1311
1312         err = bpf_check_classic(fp->insns, fp->len);
1313         if (err) {
1314                 __bpf_prog_release(fp);
1315                 return ERR_PTR(err);
1316         }
1317
1318         /* There might be additional checks and transformations
1319          * needed on classic filters, f.e. in case of seccomp.
1320          */
1321         if (trans) {
1322                 err = trans(fp->insns, fp->len);
1323                 if (err) {
1324                         __bpf_prog_release(fp);
1325                         return ERR_PTR(err);
1326                 }
1327         }
1328
1329         /* Probe if we can JIT compile the filter and if so, do
1330          * the compilation of the filter.
1331          */
1332         bpf_jit_compile(fp);
1333
1334         /* JIT compiler couldn't process this filter, so do the
1335          * internal BPF translation for the optimized interpreter.
1336          */
1337         if (!fp->jited)
1338                 fp = bpf_migrate_filter(fp);
1339
1340         return fp;
1341 }
1342
1343 /**
1344  *      bpf_prog_create - create an unattached filter
1345  *      @pfp: the unattached filter that is created
1346  *      @fprog: the filter program
1347  *
1348  * Create a filter independent of any socket. We first run some
1349  * sanity checks on it to make sure it does not explode on us later.
1350  * If an error occurs or there is insufficient memory for the filter
1351  * a negative errno code is returned. On success the return is zero.
1352  */
1353 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1354 {
1355         unsigned int fsize = bpf_classic_proglen(fprog);
1356         struct bpf_prog *fp;
1357
1358         /* Make sure new filter is there and in the right amounts. */
1359         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1360                 return -EINVAL;
1361
1362         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1363         if (!fp)
1364                 return -ENOMEM;
1365
1366         memcpy(fp->insns, fprog->filter, fsize);
1367
1368         fp->len = fprog->len;
1369         /* Since unattached filters are not copied back to user
1370          * space through sk_get_filter(), we do not need to hold
1371          * a copy here, and can spare us the work.
1372          */
1373         fp->orig_prog = NULL;
1374
1375         /* bpf_prepare_filter() already takes care of freeing
1376          * memory in case something goes wrong.
1377          */
1378         fp = bpf_prepare_filter(fp, NULL);
1379         if (IS_ERR(fp))
1380                 return PTR_ERR(fp);
1381
1382         *pfp = fp;
1383         return 0;
1384 }
1385 EXPORT_SYMBOL_GPL(bpf_prog_create);
1386
1387 /**
1388  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1389  *      @pfp: the unattached filter that is created
1390  *      @fprog: the filter program
1391  *      @trans: post-classic verifier transformation handler
1392  *      @save_orig: save classic BPF program
1393  *
1394  * This function effectively does the same as bpf_prog_create(), only
1395  * that it builds up its insns buffer from user space provided buffer.
1396  * It also allows for passing a bpf_aux_classic_check_t handler.
1397  */
1398 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1399                               bpf_aux_classic_check_t trans, bool save_orig)
1400 {
1401         unsigned int fsize = bpf_classic_proglen(fprog);
1402         struct bpf_prog *fp;
1403         int err;
1404
1405         /* Make sure new filter is there and in the right amounts. */
1406         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1407                 return -EINVAL;
1408
1409         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1410         if (!fp)
1411                 return -ENOMEM;
1412
1413         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1414                 __bpf_prog_free(fp);
1415                 return -EFAULT;
1416         }
1417
1418         fp->len = fprog->len;
1419         fp->orig_prog = NULL;
1420
1421         if (save_orig) {
1422                 err = bpf_prog_store_orig_filter(fp, fprog);
1423                 if (err) {
1424                         __bpf_prog_free(fp);
1425                         return -ENOMEM;
1426                 }
1427         }
1428
1429         /* bpf_prepare_filter() already takes care of freeing
1430          * memory in case something goes wrong.
1431          */
1432         fp = bpf_prepare_filter(fp, trans);
1433         if (IS_ERR(fp))
1434                 return PTR_ERR(fp);
1435
1436         *pfp = fp;
1437         return 0;
1438 }
1439 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1440
1441 void bpf_prog_destroy(struct bpf_prog *fp)
1442 {
1443         __bpf_prog_release(fp);
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1446
1447 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1448 {
1449         struct sk_filter *fp, *old_fp;
1450
1451         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1452         if (!fp)
1453                 return -ENOMEM;
1454
1455         fp->prog = prog;
1456
1457         if (!__sk_filter_charge(sk, fp)) {
1458                 kfree(fp);
1459                 return -ENOMEM;
1460         }
1461         refcount_set(&fp->refcnt, 1);
1462
1463         old_fp = rcu_dereference_protected(sk->sk_filter,
1464                                            lockdep_sock_is_held(sk));
1465         rcu_assign_pointer(sk->sk_filter, fp);
1466
1467         if (old_fp)
1468                 sk_filter_uncharge(sk, old_fp);
1469
1470         return 0;
1471 }
1472
1473 static
1474 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1475 {
1476         unsigned int fsize = bpf_classic_proglen(fprog);
1477         struct bpf_prog *prog;
1478         int err;
1479
1480         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1481                 return ERR_PTR(-EPERM);
1482
1483         /* Make sure new filter is there and in the right amounts. */
1484         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1485                 return ERR_PTR(-EINVAL);
1486
1487         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1488         if (!prog)
1489                 return ERR_PTR(-ENOMEM);
1490
1491         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1492                 __bpf_prog_free(prog);
1493                 return ERR_PTR(-EFAULT);
1494         }
1495
1496         prog->len = fprog->len;
1497
1498         err = bpf_prog_store_orig_filter(prog, fprog);
1499         if (err) {
1500                 __bpf_prog_free(prog);
1501                 return ERR_PTR(-ENOMEM);
1502         }
1503
1504         /* bpf_prepare_filter() already takes care of freeing
1505          * memory in case something goes wrong.
1506          */
1507         return bpf_prepare_filter(prog, NULL);
1508 }
1509
1510 /**
1511  *      sk_attach_filter - attach a socket filter
1512  *      @fprog: the filter program
1513  *      @sk: the socket to use
1514  *
1515  * Attach the user's filter code. We first run some sanity checks on
1516  * it to make sure it does not explode on us later. If an error
1517  * occurs or there is insufficient memory for the filter a negative
1518  * errno code is returned. On success the return is zero.
1519  */
1520 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1521 {
1522         struct bpf_prog *prog = __get_filter(fprog, sk);
1523         int err;
1524
1525         if (IS_ERR(prog))
1526                 return PTR_ERR(prog);
1527
1528         err = __sk_attach_prog(prog, sk);
1529         if (err < 0) {
1530                 __bpf_prog_release(prog);
1531                 return err;
1532         }
1533
1534         return 0;
1535 }
1536 EXPORT_SYMBOL_GPL(sk_attach_filter);
1537
1538 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1539 {
1540         struct bpf_prog *prog = __get_filter(fprog, sk);
1541         int err;
1542
1543         if (IS_ERR(prog))
1544                 return PTR_ERR(prog);
1545
1546         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1547                 err = -ENOMEM;
1548         else
1549                 err = reuseport_attach_prog(sk, prog);
1550
1551         if (err)
1552                 __bpf_prog_release(prog);
1553
1554         return err;
1555 }
1556
1557 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1558 {
1559         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1560                 return ERR_PTR(-EPERM);
1561
1562         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1563 }
1564
1565 int sk_attach_bpf(u32 ufd, struct sock *sk)
1566 {
1567         struct bpf_prog *prog = __get_bpf(ufd, sk);
1568         int err;
1569
1570         if (IS_ERR(prog))
1571                 return PTR_ERR(prog);
1572
1573         err = __sk_attach_prog(prog, sk);
1574         if (err < 0) {
1575                 bpf_prog_put(prog);
1576                 return err;
1577         }
1578
1579         return 0;
1580 }
1581
1582 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1583 {
1584         struct bpf_prog *prog;
1585         int err;
1586
1587         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1588                 return -EPERM;
1589
1590         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1591         if (PTR_ERR(prog) == -EINVAL)
1592                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1593         if (IS_ERR(prog))
1594                 return PTR_ERR(prog);
1595
1596         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1597                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1598                  * bpf prog (e.g. sockmap).  It depends on the
1599                  * limitation imposed by bpf_prog_load().
1600                  * Hence, sysctl_optmem_max is not checked.
1601                  */
1602                 if ((sk->sk_type != SOCK_STREAM &&
1603                      sk->sk_type != SOCK_DGRAM) ||
1604                     (sk->sk_protocol != IPPROTO_UDP &&
1605                      sk->sk_protocol != IPPROTO_TCP) ||
1606                     (sk->sk_family != AF_INET &&
1607                      sk->sk_family != AF_INET6)) {
1608                         err = -ENOTSUPP;
1609                         goto err_prog_put;
1610                 }
1611         } else {
1612                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1613                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1614                         err = -ENOMEM;
1615                         goto err_prog_put;
1616                 }
1617         }
1618
1619         err = reuseport_attach_prog(sk, prog);
1620 err_prog_put:
1621         if (err)
1622                 bpf_prog_put(prog);
1623
1624         return err;
1625 }
1626
1627 void sk_reuseport_prog_free(struct bpf_prog *prog)
1628 {
1629         if (!prog)
1630                 return;
1631
1632         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1633                 bpf_prog_put(prog);
1634         else
1635                 bpf_prog_destroy(prog);
1636 }
1637
1638 struct bpf_scratchpad {
1639         union {
1640                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1641                 u8     buff[MAX_BPF_STACK];
1642         };
1643 };
1644
1645 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1646
1647 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1648                                           unsigned int write_len)
1649 {
1650         return skb_ensure_writable(skb, write_len);
1651 }
1652
1653 static inline int bpf_try_make_writable(struct sk_buff *skb,
1654                                         unsigned int write_len)
1655 {
1656         int err = __bpf_try_make_writable(skb, write_len);
1657
1658         bpf_compute_data_pointers(skb);
1659         return err;
1660 }
1661
1662 static int bpf_try_make_head_writable(struct sk_buff *skb)
1663 {
1664         return bpf_try_make_writable(skb, skb_headlen(skb));
1665 }
1666
1667 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1668 {
1669         if (skb_at_tc_ingress(skb))
1670                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1671 }
1672
1673 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1674 {
1675         if (skb_at_tc_ingress(skb))
1676                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678
1679 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1680            const void *, from, u32, len, u64, flags)
1681 {
1682         void *ptr;
1683
1684         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1685                 return -EINVAL;
1686         if (unlikely(offset > 0xffff))
1687                 return -EFAULT;
1688         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1689                 return -EFAULT;
1690
1691         ptr = skb->data + offset;
1692         if (flags & BPF_F_RECOMPUTE_CSUM)
1693                 __skb_postpull_rcsum(skb, ptr, len, offset);
1694
1695         memcpy(ptr, from, len);
1696
1697         if (flags & BPF_F_RECOMPUTE_CSUM)
1698                 __skb_postpush_rcsum(skb, ptr, len, offset);
1699         if (flags & BPF_F_INVALIDATE_HASH)
1700                 skb_clear_hash(skb);
1701
1702         return 0;
1703 }
1704
1705 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1706         .func           = bpf_skb_store_bytes,
1707         .gpl_only       = false,
1708         .ret_type       = RET_INTEGER,
1709         .arg1_type      = ARG_PTR_TO_CTX,
1710         .arg2_type      = ARG_ANYTHING,
1711         .arg3_type      = ARG_PTR_TO_MEM,
1712         .arg4_type      = ARG_CONST_SIZE,
1713         .arg5_type      = ARG_ANYTHING,
1714 };
1715
1716 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1717            void *, to, u32, len)
1718 {
1719         void *ptr;
1720
1721         if (unlikely(offset > 0xffff))
1722                 goto err_clear;
1723
1724         ptr = skb_header_pointer(skb, offset, len, to);
1725         if (unlikely(!ptr))
1726                 goto err_clear;
1727         if (ptr != to)
1728                 memcpy(to, ptr, len);
1729
1730         return 0;
1731 err_clear:
1732         memset(to, 0, len);
1733         return -EFAULT;
1734 }
1735
1736 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1737         .func           = bpf_skb_load_bytes,
1738         .gpl_only       = false,
1739         .ret_type       = RET_INTEGER,
1740         .arg1_type      = ARG_PTR_TO_CTX,
1741         .arg2_type      = ARG_ANYTHING,
1742         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1743         .arg4_type      = ARG_CONST_SIZE,
1744 };
1745
1746 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1747            const struct bpf_flow_dissector *, ctx, u32, offset,
1748            void *, to, u32, len)
1749 {
1750         void *ptr;
1751
1752         if (unlikely(offset > 0xffff))
1753                 goto err_clear;
1754
1755         if (unlikely(!ctx->skb))
1756                 goto err_clear;
1757
1758         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1759         if (unlikely(!ptr))
1760                 goto err_clear;
1761         if (ptr != to)
1762                 memcpy(to, ptr, len);
1763
1764         return 0;
1765 err_clear:
1766         memset(to, 0, len);
1767         return -EFAULT;
1768 }
1769
1770 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1771         .func           = bpf_flow_dissector_load_bytes,
1772         .gpl_only       = false,
1773         .ret_type       = RET_INTEGER,
1774         .arg1_type      = ARG_PTR_TO_CTX,
1775         .arg2_type      = ARG_ANYTHING,
1776         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1777         .arg4_type      = ARG_CONST_SIZE,
1778 };
1779
1780 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1781            u32, offset, void *, to, u32, len, u32, start_header)
1782 {
1783         u8 *end = skb_tail_pointer(skb);
1784         u8 *start, *ptr;
1785
1786         if (unlikely(offset > 0xffff))
1787                 goto err_clear;
1788
1789         switch (start_header) {
1790         case BPF_HDR_START_MAC:
1791                 if (unlikely(!skb_mac_header_was_set(skb)))
1792                         goto err_clear;
1793                 start = skb_mac_header(skb);
1794                 break;
1795         case BPF_HDR_START_NET:
1796                 start = skb_network_header(skb);
1797                 break;
1798         default:
1799                 goto err_clear;
1800         }
1801
1802         ptr = start + offset;
1803
1804         if (likely(ptr + len <= end)) {
1805                 memcpy(to, ptr, len);
1806                 return 0;
1807         }
1808
1809 err_clear:
1810         memset(to, 0, len);
1811         return -EFAULT;
1812 }
1813
1814 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1815         .func           = bpf_skb_load_bytes_relative,
1816         .gpl_only       = false,
1817         .ret_type       = RET_INTEGER,
1818         .arg1_type      = ARG_PTR_TO_CTX,
1819         .arg2_type      = ARG_ANYTHING,
1820         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1821         .arg4_type      = ARG_CONST_SIZE,
1822         .arg5_type      = ARG_ANYTHING,
1823 };
1824
1825 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1826 {
1827         /* Idea is the following: should the needed direct read/write
1828          * test fail during runtime, we can pull in more data and redo
1829          * again, since implicitly, we invalidate previous checks here.
1830          *
1831          * Or, since we know how much we need to make read/writeable,
1832          * this can be done once at the program beginning for direct
1833          * access case. By this we overcome limitations of only current
1834          * headroom being accessible.
1835          */
1836         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1837 }
1838
1839 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1840         .func           = bpf_skb_pull_data,
1841         .gpl_only       = false,
1842         .ret_type       = RET_INTEGER,
1843         .arg1_type      = ARG_PTR_TO_CTX,
1844         .arg2_type      = ARG_ANYTHING,
1845 };
1846
1847 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1848 {
1849         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1850 }
1851
1852 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1853         .func           = bpf_sk_fullsock,
1854         .gpl_only       = false,
1855         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1856         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1857 };
1858
1859 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1860                                            unsigned int write_len)
1861 {
1862         int err = __bpf_try_make_writable(skb, write_len);
1863
1864         bpf_compute_data_end_sk_skb(skb);
1865         return err;
1866 }
1867
1868 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870         /* Idea is the following: should the needed direct read/write
1871          * test fail during runtime, we can pull in more data and redo
1872          * again, since implicitly, we invalidate previous checks here.
1873          *
1874          * Or, since we know how much we need to make read/writeable,
1875          * this can be done once at the program beginning for direct
1876          * access case. By this we overcome limitations of only current
1877          * headroom being accessible.
1878          */
1879         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881
1882 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1883         .func           = sk_skb_pull_data,
1884         .gpl_only       = false,
1885         .ret_type       = RET_INTEGER,
1886         .arg1_type      = ARG_PTR_TO_CTX,
1887         .arg2_type      = ARG_ANYTHING,
1888 };
1889
1890 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1891            u64, from, u64, to, u64, flags)
1892 {
1893         __sum16 *ptr;
1894
1895         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1896                 return -EINVAL;
1897         if (unlikely(offset > 0xffff || offset & 1))
1898                 return -EFAULT;
1899         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1900                 return -EFAULT;
1901
1902         ptr = (__sum16 *)(skb->data + offset);
1903         switch (flags & BPF_F_HDR_FIELD_MASK) {
1904         case 0:
1905                 if (unlikely(from != 0))
1906                         return -EINVAL;
1907
1908                 csum_replace_by_diff(ptr, to);
1909                 break;
1910         case 2:
1911                 csum_replace2(ptr, from, to);
1912                 break;
1913         case 4:
1914                 csum_replace4(ptr, from, to);
1915                 break;
1916         default:
1917                 return -EINVAL;
1918         }
1919
1920         return 0;
1921 }
1922
1923 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1924         .func           = bpf_l3_csum_replace,
1925         .gpl_only       = false,
1926         .ret_type       = RET_INTEGER,
1927         .arg1_type      = ARG_PTR_TO_CTX,
1928         .arg2_type      = ARG_ANYTHING,
1929         .arg3_type      = ARG_ANYTHING,
1930         .arg4_type      = ARG_ANYTHING,
1931         .arg5_type      = ARG_ANYTHING,
1932 };
1933
1934 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1935            u64, from, u64, to, u64, flags)
1936 {
1937         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1938         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1939         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1940         __sum16 *ptr;
1941
1942         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1943                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1944                 return -EINVAL;
1945         if (unlikely(offset > 0xffff || offset & 1))
1946                 return -EFAULT;
1947         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1948                 return -EFAULT;
1949
1950         ptr = (__sum16 *)(skb->data + offset);
1951         if (is_mmzero && !do_mforce && !*ptr)
1952                 return 0;
1953
1954         switch (flags & BPF_F_HDR_FIELD_MASK) {
1955         case 0:
1956                 if (unlikely(from != 0))
1957                         return -EINVAL;
1958
1959                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1960                 break;
1961         case 2:
1962                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1963                 break;
1964         case 4:
1965                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1966                 break;
1967         default:
1968                 return -EINVAL;
1969         }
1970
1971         if (is_mmzero && !*ptr)
1972                 *ptr = CSUM_MANGLED_0;
1973         return 0;
1974 }
1975
1976 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1977         .func           = bpf_l4_csum_replace,
1978         .gpl_only       = false,
1979         .ret_type       = RET_INTEGER,
1980         .arg1_type      = ARG_PTR_TO_CTX,
1981         .arg2_type      = ARG_ANYTHING,
1982         .arg3_type      = ARG_ANYTHING,
1983         .arg4_type      = ARG_ANYTHING,
1984         .arg5_type      = ARG_ANYTHING,
1985 };
1986
1987 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1988            __be32 *, to, u32, to_size, __wsum, seed)
1989 {
1990         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1991         u32 diff_size = from_size + to_size;
1992         int i, j = 0;
1993
1994         /* This is quite flexible, some examples:
1995          *
1996          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1997          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1998          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1999          *
2000          * Even for diffing, from_size and to_size don't need to be equal.
2001          */
2002         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2003                      diff_size > sizeof(sp->diff)))
2004                 return -EINVAL;
2005
2006         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2007                 sp->diff[j] = ~from[i];
2008         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2009                 sp->diff[j] = to[i];
2010
2011         return csum_partial(sp->diff, diff_size, seed);
2012 }
2013
2014 static const struct bpf_func_proto bpf_csum_diff_proto = {
2015         .func           = bpf_csum_diff,
2016         .gpl_only       = false,
2017         .pkt_access     = true,
2018         .ret_type       = RET_INTEGER,
2019         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2020         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2021         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2022         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2023         .arg5_type      = ARG_ANYTHING,
2024 };
2025
2026 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2027 {
2028         /* The interface is to be used in combination with bpf_csum_diff()
2029          * for direct packet writes. csum rotation for alignment as well
2030          * as emulating csum_sub() can be done from the eBPF program.
2031          */
2032         if (skb->ip_summed == CHECKSUM_COMPLETE)
2033                 return (skb->csum = csum_add(skb->csum, csum));
2034
2035         return -ENOTSUPP;
2036 }
2037
2038 static const struct bpf_func_proto bpf_csum_update_proto = {
2039         .func           = bpf_csum_update,
2040         .gpl_only       = false,
2041         .ret_type       = RET_INTEGER,
2042         .arg1_type      = ARG_PTR_TO_CTX,
2043         .arg2_type      = ARG_ANYTHING,
2044 };
2045
2046 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2047 {
2048         /* The interface is to be used in combination with bpf_skb_adjust_room()
2049          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2050          * is passed as flags, for example.
2051          */
2052         switch (level) {
2053         case BPF_CSUM_LEVEL_INC:
2054                 __skb_incr_checksum_unnecessary(skb);
2055                 break;
2056         case BPF_CSUM_LEVEL_DEC:
2057                 __skb_decr_checksum_unnecessary(skb);
2058                 break;
2059         case BPF_CSUM_LEVEL_RESET:
2060                 __skb_reset_checksum_unnecessary(skb);
2061                 break;
2062         case BPF_CSUM_LEVEL_QUERY:
2063                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2064                        skb->csum_level : -EACCES;
2065         default:
2066                 return -EINVAL;
2067         }
2068
2069         return 0;
2070 }
2071
2072 static const struct bpf_func_proto bpf_csum_level_proto = {
2073         .func           = bpf_csum_level,
2074         .gpl_only       = false,
2075         .ret_type       = RET_INTEGER,
2076         .arg1_type      = ARG_PTR_TO_CTX,
2077         .arg2_type      = ARG_ANYTHING,
2078 };
2079
2080 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2081 {
2082         return dev_forward_skb(dev, skb);
2083 }
2084
2085 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2086                                       struct sk_buff *skb)
2087 {
2088         int ret = ____dev_forward_skb(dev, skb);
2089
2090         if (likely(!ret)) {
2091                 skb->dev = dev;
2092                 ret = netif_rx(skb);
2093         }
2094
2095         return ret;
2096 }
2097
2098 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2099 {
2100         int ret;
2101
2102         if (dev_xmit_recursion()) {
2103                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2104                 kfree_skb(skb);
2105                 return -ENETDOWN;
2106         }
2107
2108         skb->dev = dev;
2109         skb->tstamp = 0;
2110
2111         dev_xmit_recursion_inc();
2112         ret = dev_queue_xmit(skb);
2113         dev_xmit_recursion_dec();
2114
2115         return ret;
2116 }
2117
2118 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2119                                  u32 flags)
2120 {
2121         unsigned int mlen = skb_network_offset(skb);
2122
2123         if (mlen) {
2124                 __skb_pull(skb, mlen);
2125
2126                 /* At ingress, the mac header has already been pulled once.
2127                  * At egress, skb_pospull_rcsum has to be done in case that
2128                  * the skb is originated from ingress (i.e. a forwarded skb)
2129                  * to ensure that rcsum starts at net header.
2130                  */
2131                 if (!skb_at_tc_ingress(skb))
2132                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2133         }
2134         skb_pop_mac_header(skb);
2135         skb_reset_mac_len(skb);
2136         return flags & BPF_F_INGRESS ?
2137                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2138 }
2139
2140 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2141                                  u32 flags)
2142 {
2143         /* Verify that a link layer header is carried */
2144         if (unlikely(skb->mac_header >= skb->network_header)) {
2145                 kfree_skb(skb);
2146                 return -ERANGE;
2147         }
2148
2149         bpf_push_mac_rcsum(skb);
2150         return flags & BPF_F_INGRESS ?
2151                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153
2154 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2155                           u32 flags)
2156 {
2157         if (dev_is_mac_header_xmit(dev))
2158                 return __bpf_redirect_common(skb, dev, flags);
2159         else
2160                 return __bpf_redirect_no_mac(skb, dev, flags);
2161 }
2162
2163 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2164 {
2165         struct net_device *dev;
2166         struct sk_buff *clone;
2167         int ret;
2168
2169         if (unlikely(flags & ~(BPF_F_INGRESS)))
2170                 return -EINVAL;
2171
2172         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2173         if (unlikely(!dev))
2174                 return -EINVAL;
2175
2176         clone = skb_clone(skb, GFP_ATOMIC);
2177         if (unlikely(!clone))
2178                 return -ENOMEM;
2179
2180         /* For direct write, we need to keep the invariant that the skbs
2181          * we're dealing with need to be uncloned. Should uncloning fail
2182          * here, we need to free the just generated clone to unclone once
2183          * again.
2184          */
2185         ret = bpf_try_make_head_writable(skb);
2186         if (unlikely(ret)) {
2187                 kfree_skb(clone);
2188                 return -ENOMEM;
2189         }
2190
2191         return __bpf_redirect(clone, dev, flags);
2192 }
2193
2194 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2195         .func           = bpf_clone_redirect,
2196         .gpl_only       = false,
2197         .ret_type       = RET_INTEGER,
2198         .arg1_type      = ARG_PTR_TO_CTX,
2199         .arg2_type      = ARG_ANYTHING,
2200         .arg3_type      = ARG_ANYTHING,
2201 };
2202
2203 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2204 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2205
2206 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2207 {
2208         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2209
2210         if (unlikely(flags & ~(BPF_F_INGRESS)))
2211                 return TC_ACT_SHOT;
2212
2213         ri->flags = flags;
2214         ri->tgt_index = ifindex;
2215
2216         return TC_ACT_REDIRECT;
2217 }
2218
2219 int skb_do_redirect(struct sk_buff *skb)
2220 {
2221         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2222         struct net_device *dev;
2223
2224         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2225         ri->tgt_index = 0;
2226         if (unlikely(!dev)) {
2227                 kfree_skb(skb);
2228                 return -EINVAL;
2229         }
2230
2231         return __bpf_redirect(skb, dev, ri->flags);
2232 }
2233
2234 static const struct bpf_func_proto bpf_redirect_proto = {
2235         .func           = bpf_redirect,
2236         .gpl_only       = false,
2237         .ret_type       = RET_INTEGER,
2238         .arg1_type      = ARG_ANYTHING,
2239         .arg2_type      = ARG_ANYTHING,
2240 };
2241
2242 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2243 {
2244         msg->apply_bytes = bytes;
2245         return 0;
2246 }
2247
2248 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2249         .func           = bpf_msg_apply_bytes,
2250         .gpl_only       = false,
2251         .ret_type       = RET_INTEGER,
2252         .arg1_type      = ARG_PTR_TO_CTX,
2253         .arg2_type      = ARG_ANYTHING,
2254 };
2255
2256 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2257 {
2258         msg->cork_bytes = bytes;
2259         return 0;
2260 }
2261
2262 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2263         .func           = bpf_msg_cork_bytes,
2264         .gpl_only       = false,
2265         .ret_type       = RET_INTEGER,
2266         .arg1_type      = ARG_PTR_TO_CTX,
2267         .arg2_type      = ARG_ANYTHING,
2268 };
2269
2270 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2271            u32, end, u64, flags)
2272 {
2273         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2274         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2275         struct scatterlist *sge;
2276         u8 *raw, *to, *from;
2277         struct page *page;
2278
2279         if (unlikely(flags || end <= start))
2280                 return -EINVAL;
2281
2282         /* First find the starting scatterlist element */
2283         i = msg->sg.start;
2284         do {
2285                 offset += len;
2286                 len = sk_msg_elem(msg, i)->length;
2287                 if (start < offset + len)
2288                         break;
2289                 sk_msg_iter_var_next(i);
2290         } while (i != msg->sg.end);
2291
2292         if (unlikely(start >= offset + len))
2293                 return -EINVAL;
2294
2295         first_sge = i;
2296         /* The start may point into the sg element so we need to also
2297          * account for the headroom.
2298          */
2299         bytes_sg_total = start - offset + bytes;
2300         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2301                 goto out;
2302
2303         /* At this point we need to linearize multiple scatterlist
2304          * elements or a single shared page. Either way we need to
2305          * copy into a linear buffer exclusively owned by BPF. Then
2306          * place the buffer in the scatterlist and fixup the original
2307          * entries by removing the entries now in the linear buffer
2308          * and shifting the remaining entries. For now we do not try
2309          * to copy partial entries to avoid complexity of running out
2310          * of sg_entry slots. The downside is reading a single byte
2311          * will copy the entire sg entry.
2312          */
2313         do {
2314                 copy += sk_msg_elem(msg, i)->length;
2315                 sk_msg_iter_var_next(i);
2316                 if (bytes_sg_total <= copy)
2317                         break;
2318         } while (i != msg->sg.end);
2319         last_sge = i;
2320
2321         if (unlikely(bytes_sg_total > copy))
2322                 return -EINVAL;
2323
2324         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2325                            get_order(copy));
2326         if (unlikely(!page))
2327                 return -ENOMEM;
2328
2329         raw = page_address(page);
2330         i = first_sge;
2331         do {
2332                 sge = sk_msg_elem(msg, i);
2333                 from = sg_virt(sge);
2334                 len = sge->length;
2335                 to = raw + poffset;
2336
2337                 memcpy(to, from, len);
2338                 poffset += len;
2339                 sge->length = 0;
2340                 put_page(sg_page(sge));
2341
2342                 sk_msg_iter_var_next(i);
2343         } while (i != last_sge);
2344
2345         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2346
2347         /* To repair sg ring we need to shift entries. If we only
2348          * had a single entry though we can just replace it and
2349          * be done. Otherwise walk the ring and shift the entries.
2350          */
2351         WARN_ON_ONCE(last_sge == first_sge);
2352         shift = last_sge > first_sge ?
2353                 last_sge - first_sge - 1 :
2354                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2355         if (!shift)
2356                 goto out;
2357
2358         i = first_sge;
2359         sk_msg_iter_var_next(i);
2360         do {
2361                 u32 move_from;
2362
2363                 if (i + shift >= NR_MSG_FRAG_IDS)
2364                         move_from = i + shift - NR_MSG_FRAG_IDS;
2365                 else
2366                         move_from = i + shift;
2367                 if (move_from == msg->sg.end)
2368                         break;
2369
2370                 msg->sg.data[i] = msg->sg.data[move_from];
2371                 msg->sg.data[move_from].length = 0;
2372                 msg->sg.data[move_from].page_link = 0;
2373                 msg->sg.data[move_from].offset = 0;
2374                 sk_msg_iter_var_next(i);
2375         } while (1);
2376
2377         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2378                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2379                       msg->sg.end - shift;
2380 out:
2381         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2382         msg->data_end = msg->data + bytes;
2383         return 0;
2384 }
2385
2386 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2387         .func           = bpf_msg_pull_data,
2388         .gpl_only       = false,
2389         .ret_type       = RET_INTEGER,
2390         .arg1_type      = ARG_PTR_TO_CTX,
2391         .arg2_type      = ARG_ANYTHING,
2392         .arg3_type      = ARG_ANYTHING,
2393         .arg4_type      = ARG_ANYTHING,
2394 };
2395
2396 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2397            u32, len, u64, flags)
2398 {
2399         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2400         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2401         u8 *raw, *to, *from;
2402         struct page *page;
2403
2404         if (unlikely(flags))
2405                 return -EINVAL;
2406
2407         /* First find the starting scatterlist element */
2408         i = msg->sg.start;
2409         do {
2410                 offset += l;
2411                 l = sk_msg_elem(msg, i)->length;
2412
2413                 if (start < offset + l)
2414                         break;
2415                 sk_msg_iter_var_next(i);
2416         } while (i != msg->sg.end);
2417
2418         if (start >= offset + l)
2419                 return -EINVAL;
2420
2421         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2422
2423         /* If no space available will fallback to copy, we need at
2424          * least one scatterlist elem available to push data into
2425          * when start aligns to the beginning of an element or two
2426          * when it falls inside an element. We handle the start equals
2427          * offset case because its the common case for inserting a
2428          * header.
2429          */
2430         if (!space || (space == 1 && start != offset))
2431                 copy = msg->sg.data[i].length;
2432
2433         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2434                            get_order(copy + len));
2435         if (unlikely(!page))
2436                 return -ENOMEM;
2437
2438         if (copy) {
2439                 int front, back;
2440
2441                 raw = page_address(page);
2442
2443                 psge = sk_msg_elem(msg, i);
2444                 front = start - offset;
2445                 back = psge->length - front;
2446                 from = sg_virt(psge);
2447
2448                 if (front)
2449                         memcpy(raw, from, front);
2450
2451                 if (back) {
2452                         from += front;
2453                         to = raw + front + len;
2454
2455                         memcpy(to, from, back);
2456                 }
2457
2458                 put_page(sg_page(psge));
2459         } else if (start - offset) {
2460                 psge = sk_msg_elem(msg, i);
2461                 rsge = sk_msg_elem_cpy(msg, i);
2462
2463                 psge->length = start - offset;
2464                 rsge.length -= psge->length;
2465                 rsge.offset += start;
2466
2467                 sk_msg_iter_var_next(i);
2468                 sg_unmark_end(psge);
2469                 sg_unmark_end(&rsge);
2470                 sk_msg_iter_next(msg, end);
2471         }
2472
2473         /* Slot(s) to place newly allocated data */
2474         new = i;
2475
2476         /* Shift one or two slots as needed */
2477         if (!copy) {
2478                 sge = sk_msg_elem_cpy(msg, i);
2479
2480                 sk_msg_iter_var_next(i);
2481                 sg_unmark_end(&sge);
2482                 sk_msg_iter_next(msg, end);
2483
2484                 nsge = sk_msg_elem_cpy(msg, i);
2485                 if (rsge.length) {
2486                         sk_msg_iter_var_next(i);
2487                         nnsge = sk_msg_elem_cpy(msg, i);
2488                 }
2489
2490                 while (i != msg->sg.end) {
2491                         msg->sg.data[i] = sge;
2492                         sge = nsge;
2493                         sk_msg_iter_var_next(i);
2494                         if (rsge.length) {
2495                                 nsge = nnsge;
2496                                 nnsge = sk_msg_elem_cpy(msg, i);
2497                         } else {
2498                                 nsge = sk_msg_elem_cpy(msg, i);
2499                         }
2500                 }
2501         }
2502
2503         /* Place newly allocated data buffer */
2504         sk_mem_charge(msg->sk, len);
2505         msg->sg.size += len;
2506         __clear_bit(new, &msg->sg.copy);
2507         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2508         if (rsge.length) {
2509                 get_page(sg_page(&rsge));
2510                 sk_msg_iter_var_next(new);
2511                 msg->sg.data[new] = rsge;
2512         }
2513
2514         sk_msg_compute_data_pointers(msg);
2515         return 0;
2516 }
2517
2518 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2519         .func           = bpf_msg_push_data,
2520         .gpl_only       = false,
2521         .ret_type       = RET_INTEGER,
2522         .arg1_type      = ARG_PTR_TO_CTX,
2523         .arg2_type      = ARG_ANYTHING,
2524         .arg3_type      = ARG_ANYTHING,
2525         .arg4_type      = ARG_ANYTHING,
2526 };
2527
2528 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2529 {
2530         int prev;
2531
2532         do {
2533                 prev = i;
2534                 sk_msg_iter_var_next(i);
2535                 msg->sg.data[prev] = msg->sg.data[i];
2536         } while (i != msg->sg.end);
2537
2538         sk_msg_iter_prev(msg, end);
2539 }
2540
2541 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2542 {
2543         struct scatterlist tmp, sge;
2544
2545         sk_msg_iter_next(msg, end);
2546         sge = sk_msg_elem_cpy(msg, i);
2547         sk_msg_iter_var_next(i);
2548         tmp = sk_msg_elem_cpy(msg, i);
2549
2550         while (i != msg->sg.end) {
2551                 msg->sg.data[i] = sge;
2552                 sk_msg_iter_var_next(i);
2553                 sge = tmp;
2554                 tmp = sk_msg_elem_cpy(msg, i);
2555         }
2556 }
2557
2558 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2559            u32, len, u64, flags)
2560 {
2561         u32 i = 0, l = 0, space, offset = 0;
2562         u64 last = start + len;
2563         int pop;
2564
2565         if (unlikely(flags))
2566                 return -EINVAL;
2567
2568         /* First find the starting scatterlist element */
2569         i = msg->sg.start;
2570         do {
2571                 offset += l;
2572                 l = sk_msg_elem(msg, i)->length;
2573
2574                 if (start < offset + l)
2575                         break;
2576                 sk_msg_iter_var_next(i);
2577         } while (i != msg->sg.end);
2578
2579         /* Bounds checks: start and pop must be inside message */
2580         if (start >= offset + l || last >= msg->sg.size)
2581                 return -EINVAL;
2582
2583         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2584
2585         pop = len;
2586         /* --------------| offset
2587          * -| start      |-------- len -------|
2588          *
2589          *  |----- a ----|-------- pop -------|----- b ----|
2590          *  |______________________________________________| length
2591          *
2592          *
2593          * a:   region at front of scatter element to save
2594          * b:   region at back of scatter element to save when length > A + pop
2595          * pop: region to pop from element, same as input 'pop' here will be
2596          *      decremented below per iteration.
2597          *
2598          * Two top-level cases to handle when start != offset, first B is non
2599          * zero and second B is zero corresponding to when a pop includes more
2600          * than one element.
2601          *
2602          * Then if B is non-zero AND there is no space allocate space and
2603          * compact A, B regions into page. If there is space shift ring to
2604          * the rigth free'ing the next element in ring to place B, leaving
2605          * A untouched except to reduce length.
2606          */
2607         if (start != offset) {
2608                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2609                 int a = start;
2610                 int b = sge->length - pop - a;
2611
2612                 sk_msg_iter_var_next(i);
2613
2614                 if (pop < sge->length - a) {
2615                         if (space) {
2616                                 sge->length = a;
2617                                 sk_msg_shift_right(msg, i);
2618                                 nsge = sk_msg_elem(msg, i);
2619                                 get_page(sg_page(sge));
2620                                 sg_set_page(nsge,
2621                                             sg_page(sge),
2622                                             b, sge->offset + pop + a);
2623                         } else {
2624                                 struct page *page, *orig;
2625                                 u8 *to, *from;
2626
2627                                 page = alloc_pages(__GFP_NOWARN |
2628                                                    __GFP_COMP   | GFP_ATOMIC,
2629                                                    get_order(a + b));
2630                                 if (unlikely(!page))
2631                                         return -ENOMEM;
2632
2633                                 sge->length = a;
2634                                 orig = sg_page(sge);
2635                                 from = sg_virt(sge);
2636                                 to = page_address(page);
2637                                 memcpy(to, from, a);
2638                                 memcpy(to + a, from + a + pop, b);
2639                                 sg_set_page(sge, page, a + b, 0);
2640                                 put_page(orig);
2641                         }
2642                         pop = 0;
2643                 } else if (pop >= sge->length - a) {
2644                         pop -= (sge->length - a);
2645                         sge->length = a;
2646                 }
2647         }
2648
2649         /* From above the current layout _must_ be as follows,
2650          *
2651          * -| offset
2652          * -| start
2653          *
2654          *  |---- pop ---|---------------- b ------------|
2655          *  |____________________________________________| length
2656          *
2657          * Offset and start of the current msg elem are equal because in the
2658          * previous case we handled offset != start and either consumed the
2659          * entire element and advanced to the next element OR pop == 0.
2660          *
2661          * Two cases to handle here are first pop is less than the length
2662          * leaving some remainder b above. Simply adjust the element's layout
2663          * in this case. Or pop >= length of the element so that b = 0. In this
2664          * case advance to next element decrementing pop.
2665          */
2666         while (pop) {
2667                 struct scatterlist *sge = sk_msg_elem(msg, i);
2668
2669                 if (pop < sge->length) {
2670                         sge->length -= pop;
2671                         sge->offset += pop;
2672                         pop = 0;
2673                 } else {
2674                         pop -= sge->length;
2675                         sk_msg_shift_left(msg, i);
2676                 }
2677                 sk_msg_iter_var_next(i);
2678         }
2679
2680         sk_mem_uncharge(msg->sk, len - pop);
2681         msg->sg.size -= (len - pop);
2682         sk_msg_compute_data_pointers(msg);
2683         return 0;
2684 }
2685
2686 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2687         .func           = bpf_msg_pop_data,
2688         .gpl_only       = false,
2689         .ret_type       = RET_INTEGER,
2690         .arg1_type      = ARG_PTR_TO_CTX,
2691         .arg2_type      = ARG_ANYTHING,
2692         .arg3_type      = ARG_ANYTHING,
2693         .arg4_type      = ARG_ANYTHING,
2694 };
2695
2696 #ifdef CONFIG_CGROUP_NET_CLASSID
2697 BPF_CALL_0(bpf_get_cgroup_classid_curr)
2698 {
2699         return __task_get_classid(current);
2700 }
2701
2702 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
2703         .func           = bpf_get_cgroup_classid_curr,
2704         .gpl_only       = false,
2705         .ret_type       = RET_INTEGER,
2706 };
2707 #endif
2708
2709 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2710 {
2711         return task_get_classid(skb);
2712 }
2713
2714 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2715         .func           = bpf_get_cgroup_classid,
2716         .gpl_only       = false,
2717         .ret_type       = RET_INTEGER,
2718         .arg1_type      = ARG_PTR_TO_CTX,
2719 };
2720
2721 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2722 {
2723         return dst_tclassid(skb);
2724 }
2725
2726 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2727         .func           = bpf_get_route_realm,
2728         .gpl_only       = false,
2729         .ret_type       = RET_INTEGER,
2730         .arg1_type      = ARG_PTR_TO_CTX,
2731 };
2732
2733 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2734 {
2735         /* If skb_clear_hash() was called due to mangling, we can
2736          * trigger SW recalculation here. Later access to hash
2737          * can then use the inline skb->hash via context directly
2738          * instead of calling this helper again.
2739          */
2740         return skb_get_hash(skb);
2741 }
2742
2743 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2744         .func           = bpf_get_hash_recalc,
2745         .gpl_only       = false,
2746         .ret_type       = RET_INTEGER,
2747         .arg1_type      = ARG_PTR_TO_CTX,
2748 };
2749
2750 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2751 {
2752         /* After all direct packet write, this can be used once for
2753          * triggering a lazy recalc on next skb_get_hash() invocation.
2754          */
2755         skb_clear_hash(skb);
2756         return 0;
2757 }
2758
2759 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2760         .func           = bpf_set_hash_invalid,
2761         .gpl_only       = false,
2762         .ret_type       = RET_INTEGER,
2763         .arg1_type      = ARG_PTR_TO_CTX,
2764 };
2765
2766 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2767 {
2768         /* Set user specified hash as L4(+), so that it gets returned
2769          * on skb_get_hash() call unless BPF prog later on triggers a
2770          * skb_clear_hash().
2771          */
2772         __skb_set_sw_hash(skb, hash, true);
2773         return 0;
2774 }
2775
2776 static const struct bpf_func_proto bpf_set_hash_proto = {
2777         .func           = bpf_set_hash,
2778         .gpl_only       = false,
2779         .ret_type       = RET_INTEGER,
2780         .arg1_type      = ARG_PTR_TO_CTX,
2781         .arg2_type      = ARG_ANYTHING,
2782 };
2783
2784 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2785            u16, vlan_tci)
2786 {
2787         int ret;
2788
2789         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2790                      vlan_proto != htons(ETH_P_8021AD)))
2791                 vlan_proto = htons(ETH_P_8021Q);
2792
2793         bpf_push_mac_rcsum(skb);
2794         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2795         bpf_pull_mac_rcsum(skb);
2796
2797         bpf_compute_data_pointers(skb);
2798         return ret;
2799 }
2800
2801 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2802         .func           = bpf_skb_vlan_push,
2803         .gpl_only       = false,
2804         .ret_type       = RET_INTEGER,
2805         .arg1_type      = ARG_PTR_TO_CTX,
2806         .arg2_type      = ARG_ANYTHING,
2807         .arg3_type      = ARG_ANYTHING,
2808 };
2809
2810 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2811 {
2812         int ret;
2813
2814         bpf_push_mac_rcsum(skb);
2815         ret = skb_vlan_pop(skb);
2816         bpf_pull_mac_rcsum(skb);
2817
2818         bpf_compute_data_pointers(skb);
2819         return ret;
2820 }
2821
2822 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2823         .func           = bpf_skb_vlan_pop,
2824         .gpl_only       = false,
2825         .ret_type       = RET_INTEGER,
2826         .arg1_type      = ARG_PTR_TO_CTX,
2827 };
2828
2829 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2830 {
2831         /* Caller already did skb_cow() with len as headroom,
2832          * so no need to do it here.
2833          */
2834         skb_push(skb, len);
2835         memmove(skb->data, skb->data + len, off);
2836         memset(skb->data + off, 0, len);
2837
2838         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2839          * needed here as it does not change the skb->csum
2840          * result for checksum complete when summing over
2841          * zeroed blocks.
2842          */
2843         return 0;
2844 }
2845
2846 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2847 {
2848         /* skb_ensure_writable() is not needed here, as we're
2849          * already working on an uncloned skb.
2850          */
2851         if (unlikely(!pskb_may_pull(skb, off + len)))
2852                 return -ENOMEM;
2853
2854         skb_postpull_rcsum(skb, skb->data + off, len);
2855         memmove(skb->data + len, skb->data, off);
2856         __skb_pull(skb, len);
2857
2858         return 0;
2859 }
2860
2861 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2862 {
2863         bool trans_same = skb->transport_header == skb->network_header;
2864         int ret;
2865
2866         /* There's no need for __skb_push()/__skb_pull() pair to
2867          * get to the start of the mac header as we're guaranteed
2868          * to always start from here under eBPF.
2869          */
2870         ret = bpf_skb_generic_push(skb, off, len);
2871         if (likely(!ret)) {
2872                 skb->mac_header -= len;
2873                 skb->network_header -= len;
2874                 if (trans_same)
2875                         skb->transport_header = skb->network_header;
2876         }
2877
2878         return ret;
2879 }
2880
2881 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2882 {
2883         bool trans_same = skb->transport_header == skb->network_header;
2884         int ret;
2885
2886         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2887         ret = bpf_skb_generic_pop(skb, off, len);
2888         if (likely(!ret)) {
2889                 skb->mac_header += len;
2890                 skb->network_header += len;
2891                 if (trans_same)
2892                         skb->transport_header = skb->network_header;
2893         }
2894
2895         return ret;
2896 }
2897
2898 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2899 {
2900         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2901         u32 off = skb_mac_header_len(skb);
2902         int ret;
2903
2904         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2905                 return -ENOTSUPP;
2906
2907         ret = skb_cow(skb, len_diff);
2908         if (unlikely(ret < 0))
2909                 return ret;
2910
2911         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2912         if (unlikely(ret < 0))
2913                 return ret;
2914
2915         if (skb_is_gso(skb)) {
2916                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2917
2918                 /* SKB_GSO_TCPV4 needs to be changed into
2919                  * SKB_GSO_TCPV6.
2920                  */
2921                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2922                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2923                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2924                 }
2925
2926                 /* Due to IPv6 header, MSS needs to be downgraded. */
2927                 skb_decrease_gso_size(shinfo, len_diff);
2928                 /* Header must be checked, and gso_segs recomputed. */
2929                 shinfo->gso_type |= SKB_GSO_DODGY;
2930                 shinfo->gso_segs = 0;
2931         }
2932
2933         skb->protocol = htons(ETH_P_IPV6);
2934         skb_clear_hash(skb);
2935
2936         return 0;
2937 }
2938
2939 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2940 {
2941         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2942         u32 off = skb_mac_header_len(skb);
2943         int ret;
2944
2945         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2946                 return -ENOTSUPP;
2947
2948         ret = skb_unclone(skb, GFP_ATOMIC);
2949         if (unlikely(ret < 0))
2950                 return ret;
2951
2952         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2953         if (unlikely(ret < 0))
2954                 return ret;
2955
2956         if (skb_is_gso(skb)) {
2957                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2958
2959                 /* SKB_GSO_TCPV6 needs to be changed into
2960                  * SKB_GSO_TCPV4.
2961                  */
2962                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2963                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2964                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2965                 }
2966
2967                 /* Due to IPv4 header, MSS can be upgraded. */
2968                 skb_increase_gso_size(shinfo, len_diff);
2969                 /* Header must be checked, and gso_segs recomputed. */
2970                 shinfo->gso_type |= SKB_GSO_DODGY;
2971                 shinfo->gso_segs = 0;
2972         }
2973
2974         skb->protocol = htons(ETH_P_IP);
2975         skb_clear_hash(skb);
2976
2977         return 0;
2978 }
2979
2980 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2981 {
2982         __be16 from_proto = skb->protocol;
2983
2984         if (from_proto == htons(ETH_P_IP) &&
2985               to_proto == htons(ETH_P_IPV6))
2986                 return bpf_skb_proto_4_to_6(skb);
2987
2988         if (from_proto == htons(ETH_P_IPV6) &&
2989               to_proto == htons(ETH_P_IP))
2990                 return bpf_skb_proto_6_to_4(skb);
2991
2992         return -ENOTSUPP;
2993 }
2994
2995 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2996            u64, flags)
2997 {
2998         int ret;
2999
3000         if (unlikely(flags))
3001                 return -EINVAL;
3002
3003         /* General idea is that this helper does the basic groundwork
3004          * needed for changing the protocol, and eBPF program fills the
3005          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3006          * and other helpers, rather than passing a raw buffer here.
3007          *
3008          * The rationale is to keep this minimal and without a need to
3009          * deal with raw packet data. F.e. even if we would pass buffers
3010          * here, the program still needs to call the bpf_lX_csum_replace()
3011          * helpers anyway. Plus, this way we keep also separation of
3012          * concerns, since f.e. bpf_skb_store_bytes() should only take
3013          * care of stores.
3014          *
3015          * Currently, additional options and extension header space are
3016          * not supported, but flags register is reserved so we can adapt
3017          * that. For offloads, we mark packet as dodgy, so that headers
3018          * need to be verified first.
3019          */
3020         ret = bpf_skb_proto_xlat(skb, proto);
3021         bpf_compute_data_pointers(skb);
3022         return ret;
3023 }
3024
3025 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3026         .func           = bpf_skb_change_proto,
3027         .gpl_only       = false,
3028         .ret_type       = RET_INTEGER,
3029         .arg1_type      = ARG_PTR_TO_CTX,
3030         .arg2_type      = ARG_ANYTHING,
3031         .arg3_type      = ARG_ANYTHING,
3032 };
3033
3034 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3035 {
3036         /* We only allow a restricted subset to be changed for now. */
3037         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3038                      !skb_pkt_type_ok(pkt_type)))
3039                 return -EINVAL;
3040
3041         skb->pkt_type = pkt_type;
3042         return 0;
3043 }
3044
3045 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3046         .func           = bpf_skb_change_type,
3047         .gpl_only       = false,
3048         .ret_type       = RET_INTEGER,
3049         .arg1_type      = ARG_PTR_TO_CTX,
3050         .arg2_type      = ARG_ANYTHING,
3051 };
3052
3053 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3054 {
3055         switch (skb->protocol) {
3056         case htons(ETH_P_IP):
3057                 return sizeof(struct iphdr);
3058         case htons(ETH_P_IPV6):
3059                 return sizeof(struct ipv6hdr);
3060         default:
3061                 return ~0U;
3062         }
3063 }
3064
3065 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3066                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3067
3068 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3069                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3070                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3071                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3072                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3073                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3074
3075 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3076                             u64 flags)
3077 {
3078         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3079         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3080         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3081         unsigned int gso_type = SKB_GSO_DODGY;
3082         int ret;
3083
3084         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3085                 /* udp gso_size delineates datagrams, only allow if fixed */
3086                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3087                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3088                         return -ENOTSUPP;
3089         }
3090
3091         ret = skb_cow_head(skb, len_diff);
3092         if (unlikely(ret < 0))
3093                 return ret;
3094
3095         if (encap) {
3096                 if (skb->protocol != htons(ETH_P_IP) &&
3097                     skb->protocol != htons(ETH_P_IPV6))
3098                         return -ENOTSUPP;
3099
3100                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3101                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3102                         return -EINVAL;
3103
3104                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3105                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3106                         return -EINVAL;
3107
3108                 if (skb->encapsulation)
3109                         return -EALREADY;
3110
3111                 mac_len = skb->network_header - skb->mac_header;
3112                 inner_net = skb->network_header;
3113                 if (inner_mac_len > len_diff)
3114                         return -EINVAL;
3115                 inner_trans = skb->transport_header;
3116         }
3117
3118         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3119         if (unlikely(ret < 0))
3120                 return ret;
3121
3122         if (encap) {
3123                 skb->inner_mac_header = inner_net - inner_mac_len;
3124                 skb->inner_network_header = inner_net;
3125                 skb->inner_transport_header = inner_trans;
3126                 skb_set_inner_protocol(skb, skb->protocol);
3127
3128                 skb->encapsulation = 1;
3129                 skb_set_network_header(skb, mac_len);
3130
3131                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3132                         gso_type |= SKB_GSO_UDP_TUNNEL;
3133                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3134                         gso_type |= SKB_GSO_GRE;
3135                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3136                         gso_type |= SKB_GSO_IPXIP6;
3137                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3138                         gso_type |= SKB_GSO_IPXIP4;
3139
3140                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3141                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3142                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3143                                         sizeof(struct ipv6hdr) :
3144                                         sizeof(struct iphdr);
3145
3146                         skb_set_transport_header(skb, mac_len + nh_len);
3147                 }
3148
3149                 /* Match skb->protocol to new outer l3 protocol */
3150                 if (skb->protocol == htons(ETH_P_IP) &&
3151                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3152                         skb->protocol = htons(ETH_P_IPV6);
3153                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3154                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3155                         skb->protocol = htons(ETH_P_IP);
3156         }
3157
3158         if (skb_is_gso(skb)) {
3159                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3160
3161                 /* Due to header grow, MSS needs to be downgraded. */
3162                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3163                         skb_decrease_gso_size(shinfo, len_diff);
3164
3165                 /* Header must be checked, and gso_segs recomputed. */
3166                 shinfo->gso_type |= gso_type;
3167                 shinfo->gso_segs = 0;
3168         }
3169
3170         return 0;
3171 }
3172
3173 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3174                               u64 flags)
3175 {
3176         int ret;
3177
3178         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3179                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3180                 return -EINVAL;
3181
3182         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3183                 /* udp gso_size delineates datagrams, only allow if fixed */
3184                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3185                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3186                         return -ENOTSUPP;
3187         }
3188
3189         ret = skb_unclone(skb, GFP_ATOMIC);
3190         if (unlikely(ret < 0))
3191                 return ret;
3192
3193         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3194         if (unlikely(ret < 0))
3195                 return ret;
3196
3197         if (skb_is_gso(skb)) {
3198                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3199
3200                 /* Due to header shrink, MSS can be upgraded. */
3201                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3202                         skb_increase_gso_size(shinfo, len_diff);
3203
3204                 /* Header must be checked, and gso_segs recomputed. */
3205                 shinfo->gso_type |= SKB_GSO_DODGY;
3206                 shinfo->gso_segs = 0;
3207         }
3208
3209         return 0;
3210 }
3211
3212 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3213 {
3214         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3215                           SKB_MAX_ALLOC;
3216 }
3217
3218 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3219            u32, mode, u64, flags)
3220 {
3221         u32 len_cur, len_diff_abs = abs(len_diff);
3222         u32 len_min = bpf_skb_net_base_len(skb);
3223         u32 len_max = __bpf_skb_max_len(skb);
3224         __be16 proto = skb->protocol;
3225         bool shrink = len_diff < 0;
3226         u32 off;
3227         int ret;
3228
3229         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3230                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3231                 return -EINVAL;
3232         if (unlikely(len_diff_abs > 0xfffU))
3233                 return -EFAULT;
3234         if (unlikely(proto != htons(ETH_P_IP) &&
3235                      proto != htons(ETH_P_IPV6)))
3236                 return -ENOTSUPP;
3237
3238         off = skb_mac_header_len(skb);
3239         switch (mode) {
3240         case BPF_ADJ_ROOM_NET:
3241                 off += bpf_skb_net_base_len(skb);
3242                 break;
3243         case BPF_ADJ_ROOM_MAC:
3244                 break;
3245         default:
3246                 return -ENOTSUPP;
3247         }
3248
3249         len_cur = skb->len - skb_network_offset(skb);
3250         if ((shrink && (len_diff_abs >= len_cur ||
3251                         len_cur - len_diff_abs < len_min)) ||
3252             (!shrink && (skb->len + len_diff_abs > len_max &&
3253                          !skb_is_gso(skb))))
3254                 return -ENOTSUPP;
3255
3256         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3257                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3258         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3259                 __skb_reset_checksum_unnecessary(skb);
3260
3261         bpf_compute_data_pointers(skb);
3262         return ret;
3263 }
3264
3265 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3266         .func           = bpf_skb_adjust_room,
3267         .gpl_only       = false,
3268         .ret_type       = RET_INTEGER,
3269         .arg1_type      = ARG_PTR_TO_CTX,
3270         .arg2_type      = ARG_ANYTHING,
3271         .arg3_type      = ARG_ANYTHING,
3272         .arg4_type      = ARG_ANYTHING,
3273 };
3274
3275 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3276 {
3277         u32 min_len = skb_network_offset(skb);
3278
3279         if (skb_transport_header_was_set(skb))
3280                 min_len = skb_transport_offset(skb);
3281         if (skb->ip_summed == CHECKSUM_PARTIAL)
3282                 min_len = skb_checksum_start_offset(skb) +
3283                           skb->csum_offset + sizeof(__sum16);
3284         return min_len;
3285 }
3286
3287 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3288 {
3289         unsigned int old_len = skb->len;
3290         int ret;
3291
3292         ret = __skb_grow_rcsum(skb, new_len);
3293         if (!ret)
3294                 memset(skb->data + old_len, 0, new_len - old_len);
3295         return ret;
3296 }
3297
3298 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3299 {
3300         return __skb_trim_rcsum(skb, new_len);
3301 }
3302
3303 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3304                                         u64 flags)
3305 {
3306         u32 max_len = __bpf_skb_max_len(skb);
3307         u32 min_len = __bpf_skb_min_len(skb);
3308         int ret;
3309
3310         if (unlikely(flags || new_len > max_len || new_len < min_len))
3311                 return -EINVAL;
3312         if (skb->encapsulation)
3313                 return -ENOTSUPP;
3314
3315         /* The basic idea of this helper is that it's performing the
3316          * needed work to either grow or trim an skb, and eBPF program
3317          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3318          * bpf_lX_csum_replace() and others rather than passing a raw
3319          * buffer here. This one is a slow path helper and intended
3320          * for replies with control messages.
3321          *
3322          * Like in bpf_skb_change_proto(), we want to keep this rather
3323          * minimal and without protocol specifics so that we are able
3324          * to separate concerns as in bpf_skb_store_bytes() should only
3325          * be the one responsible for writing buffers.
3326          *
3327          * It's really expected to be a slow path operation here for
3328          * control message replies, so we're implicitly linearizing,
3329          * uncloning and drop offloads from the skb by this.
3330          */
3331         ret = __bpf_try_make_writable(skb, skb->len);
3332         if (!ret) {
3333                 if (new_len > skb->len)
3334                         ret = bpf_skb_grow_rcsum(skb, new_len);
3335                 else if (new_len < skb->len)
3336                         ret = bpf_skb_trim_rcsum(skb, new_len);
3337                 if (!ret && skb_is_gso(skb))
3338                         skb_gso_reset(skb);
3339         }
3340         return ret;
3341 }
3342
3343 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3344            u64, flags)
3345 {
3346         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3347
3348         bpf_compute_data_pointers(skb);
3349         return ret;
3350 }
3351
3352 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3353         .func           = bpf_skb_change_tail,
3354         .gpl_only       = false,
3355         .ret_type       = RET_INTEGER,
3356         .arg1_type      = ARG_PTR_TO_CTX,
3357         .arg2_type      = ARG_ANYTHING,
3358         .arg3_type      = ARG_ANYTHING,
3359 };
3360
3361 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3362            u64, flags)
3363 {
3364         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3365
3366         bpf_compute_data_end_sk_skb(skb);
3367         return ret;
3368 }
3369
3370 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3371         .func           = sk_skb_change_tail,
3372         .gpl_only       = false,
3373         .ret_type       = RET_INTEGER,
3374         .arg1_type      = ARG_PTR_TO_CTX,
3375         .arg2_type      = ARG_ANYTHING,
3376         .arg3_type      = ARG_ANYTHING,
3377 };
3378
3379 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3380                                         u64 flags)
3381 {
3382         u32 max_len = __bpf_skb_max_len(skb);
3383         u32 new_len = skb->len + head_room;
3384         int ret;
3385
3386         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3387                      new_len < skb->len))
3388                 return -EINVAL;
3389
3390         ret = skb_cow(skb, head_room);
3391         if (likely(!ret)) {
3392                 /* Idea for this helper is that we currently only
3393                  * allow to expand on mac header. This means that
3394                  * skb->protocol network header, etc, stay as is.
3395                  * Compared to bpf_skb_change_tail(), we're more
3396                  * flexible due to not needing to linearize or
3397                  * reset GSO. Intention for this helper is to be
3398                  * used by an L3 skb that needs to push mac header
3399                  * for redirection into L2 device.
3400                  */
3401                 __skb_push(skb, head_room);
3402                 memset(skb->data, 0, head_room);
3403                 skb_reset_mac_header(skb);
3404         }
3405
3406         return ret;
3407 }
3408
3409 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3410            u64, flags)
3411 {
3412         int ret = __bpf_skb_change_head(skb, head_room, flags);
3413
3414         bpf_compute_data_pointers(skb);
3415         return ret;
3416 }
3417
3418 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3419         .func           = bpf_skb_change_head,
3420         .gpl_only       = false,
3421         .ret_type       = RET_INTEGER,
3422         .arg1_type      = ARG_PTR_TO_CTX,
3423         .arg2_type      = ARG_ANYTHING,
3424         .arg3_type      = ARG_ANYTHING,
3425 };
3426
3427 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3428            u64, flags)
3429 {
3430         int ret = __bpf_skb_change_head(skb, head_room, flags);
3431
3432         bpf_compute_data_end_sk_skb(skb);
3433         return ret;
3434 }
3435
3436 static const struct bpf_func_proto sk_skb_change_head_proto = {
3437         .func           = sk_skb_change_head,
3438         .gpl_only       = false,
3439         .ret_type       = RET_INTEGER,
3440         .arg1_type      = ARG_PTR_TO_CTX,
3441         .arg2_type      = ARG_ANYTHING,
3442         .arg3_type      = ARG_ANYTHING,
3443 };
3444 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3445 {
3446         return xdp_data_meta_unsupported(xdp) ? 0 :
3447                xdp->data - xdp->data_meta;
3448 }
3449
3450 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3451 {
3452         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3453         unsigned long metalen = xdp_get_metalen(xdp);
3454         void *data_start = xdp_frame_end + metalen;
3455         void *data = xdp->data + offset;
3456
3457         if (unlikely(data < data_start ||
3458                      data > xdp->data_end - ETH_HLEN))
3459                 return -EINVAL;
3460
3461         if (metalen)
3462                 memmove(xdp->data_meta + offset,
3463                         xdp->data_meta, metalen);
3464         xdp->data_meta += offset;
3465         xdp->data = data;
3466
3467         return 0;
3468 }
3469
3470 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3471         .func           = bpf_xdp_adjust_head,
3472         .gpl_only       = false,
3473         .ret_type       = RET_INTEGER,
3474         .arg1_type      = ARG_PTR_TO_CTX,
3475         .arg2_type      = ARG_ANYTHING,
3476 };
3477
3478 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3479 {
3480         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3481         void *data_end = xdp->data_end + offset;
3482
3483         /* Notice that xdp_data_hard_end have reserved some tailroom */
3484         if (unlikely(data_end > data_hard_end))
3485                 return -EINVAL;
3486
3487         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3488         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3489                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3490                 return -EINVAL;
3491         }
3492
3493         if (unlikely(data_end < xdp->data + ETH_HLEN))
3494                 return -EINVAL;
3495
3496         /* Clear memory area on grow, can contain uninit kernel memory */
3497         if (offset > 0)
3498                 memset(xdp->data_end, 0, offset);
3499
3500         xdp->data_end = data_end;
3501
3502         return 0;
3503 }
3504
3505 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3506         .func           = bpf_xdp_adjust_tail,
3507         .gpl_only       = false,
3508         .ret_type       = RET_INTEGER,
3509         .arg1_type      = ARG_PTR_TO_CTX,
3510         .arg2_type      = ARG_ANYTHING,
3511 };
3512
3513 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3514 {
3515         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3516         void *meta = xdp->data_meta + offset;
3517         unsigned long metalen = xdp->data - meta;
3518
3519         if (xdp_data_meta_unsupported(xdp))
3520                 return -ENOTSUPP;
3521         if (unlikely(meta < xdp_frame_end ||
3522                      meta > xdp->data))
3523                 return -EINVAL;
3524         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3525                      (metalen > 32)))
3526                 return -EACCES;
3527
3528         xdp->data_meta = meta;
3529
3530         return 0;
3531 }
3532
3533 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3534         .func           = bpf_xdp_adjust_meta,
3535         .gpl_only       = false,
3536         .ret_type       = RET_INTEGER,
3537         .arg1_type      = ARG_PTR_TO_CTX,
3538         .arg2_type      = ARG_ANYTHING,
3539 };
3540
3541 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3542                             struct bpf_map *map, struct xdp_buff *xdp)
3543 {
3544         switch (map->map_type) {
3545         case BPF_MAP_TYPE_DEVMAP:
3546         case BPF_MAP_TYPE_DEVMAP_HASH:
3547                 return dev_map_enqueue(fwd, xdp, dev_rx);
3548         case BPF_MAP_TYPE_CPUMAP:
3549                 return cpu_map_enqueue(fwd, xdp, dev_rx);
3550         case BPF_MAP_TYPE_XSKMAP:
3551                 return __xsk_map_redirect(fwd, xdp);
3552         default:
3553                 return -EBADRQC;
3554         }
3555         return 0;
3556 }
3557
3558 void xdp_do_flush(void)
3559 {
3560         __dev_flush();
3561         __cpu_map_flush();
3562         __xsk_map_flush();
3563 }
3564 EXPORT_SYMBOL_GPL(xdp_do_flush);
3565
3566 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3567 {
3568         switch (map->map_type) {
3569         case BPF_MAP_TYPE_DEVMAP:
3570                 return __dev_map_lookup_elem(map, index);
3571         case BPF_MAP_TYPE_DEVMAP_HASH:
3572                 return __dev_map_hash_lookup_elem(map, index);
3573         case BPF_MAP_TYPE_CPUMAP:
3574                 return __cpu_map_lookup_elem(map, index);
3575         case BPF_MAP_TYPE_XSKMAP:
3576                 return __xsk_map_lookup_elem(map, index);
3577         default:
3578                 return NULL;
3579         }
3580 }
3581
3582 void bpf_clear_redirect_map(struct bpf_map *map)
3583 {
3584         struct bpf_redirect_info *ri;
3585         int cpu;
3586
3587         for_each_possible_cpu(cpu) {
3588                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3589                 /* Avoid polluting remote cacheline due to writes if
3590                  * not needed. Once we pass this test, we need the
3591                  * cmpxchg() to make sure it hasn't been changed in
3592                  * the meantime by remote CPU.
3593                  */
3594                 if (unlikely(READ_ONCE(ri->map) == map))
3595                         cmpxchg(&ri->map, map, NULL);
3596         }
3597 }
3598
3599 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3600                     struct bpf_prog *xdp_prog)
3601 {
3602         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3603         struct bpf_map *map = READ_ONCE(ri->map);
3604         u32 index = ri->tgt_index;
3605         void *fwd = ri->tgt_value;
3606         int err;
3607
3608         ri->tgt_index = 0;
3609         ri->tgt_value = NULL;
3610         WRITE_ONCE(ri->map, NULL);
3611
3612         if (unlikely(!map)) {
3613                 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3614                 if (unlikely(!fwd)) {
3615                         err = -EINVAL;
3616                         goto err;
3617                 }
3618
3619                 err = dev_xdp_enqueue(fwd, xdp, dev);
3620         } else {
3621                 err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3622         }
3623
3624         if (unlikely(err))
3625                 goto err;
3626
3627         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3628         return 0;
3629 err:
3630         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3631         return err;
3632 }
3633 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3634
3635 static int xdp_do_generic_redirect_map(struct net_device *dev,
3636                                        struct sk_buff *skb,
3637                                        struct xdp_buff *xdp,
3638                                        struct bpf_prog *xdp_prog,
3639                                        struct bpf_map *map)
3640 {
3641         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3642         u32 index = ri->tgt_index;
3643         void *fwd = ri->tgt_value;
3644         int err = 0;
3645
3646         ri->tgt_index = 0;
3647         ri->tgt_value = NULL;
3648         WRITE_ONCE(ri->map, NULL);
3649
3650         if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3651             map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3652                 struct bpf_dtab_netdev *dst = fwd;
3653
3654                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3655                 if (unlikely(err))
3656                         goto err;
3657         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3658                 struct xdp_sock *xs = fwd;
3659
3660                 err = xsk_generic_rcv(xs, xdp);
3661                 if (err)
3662                         goto err;
3663                 consume_skb(skb);
3664         } else {
3665                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3666                 err = -EBADRQC;
3667                 goto err;
3668         }
3669
3670         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3671         return 0;
3672 err:
3673         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3674         return err;
3675 }
3676
3677 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3678                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3679 {
3680         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3681         struct bpf_map *map = READ_ONCE(ri->map);
3682         u32 index = ri->tgt_index;
3683         struct net_device *fwd;
3684         int err = 0;
3685
3686         if (map)
3687                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3688                                                    map);
3689         ri->tgt_index = 0;
3690         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3691         if (unlikely(!fwd)) {
3692                 err = -EINVAL;
3693                 goto err;
3694         }
3695
3696         err = xdp_ok_fwd_dev(fwd, skb->len);
3697         if (unlikely(err))
3698                 goto err;
3699
3700         skb->dev = fwd;
3701         _trace_xdp_redirect(dev, xdp_prog, index);
3702         generic_xdp_tx(skb, xdp_prog);
3703         return 0;
3704 err:
3705         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3706         return err;
3707 }
3708
3709 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3710 {
3711         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3712
3713         if (unlikely(flags))
3714                 return XDP_ABORTED;
3715
3716         ri->flags = flags;
3717         ri->tgt_index = ifindex;
3718         ri->tgt_value = NULL;
3719         WRITE_ONCE(ri->map, NULL);
3720
3721         return XDP_REDIRECT;
3722 }
3723
3724 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3725         .func           = bpf_xdp_redirect,
3726         .gpl_only       = false,
3727         .ret_type       = RET_INTEGER,
3728         .arg1_type      = ARG_ANYTHING,
3729         .arg2_type      = ARG_ANYTHING,
3730 };
3731
3732 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3733            u64, flags)
3734 {
3735         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3736
3737         /* Lower bits of the flags are used as return code on lookup failure */
3738         if (unlikely(flags > XDP_TX))
3739                 return XDP_ABORTED;
3740
3741         ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3742         if (unlikely(!ri->tgt_value)) {
3743                 /* If the lookup fails we want to clear out the state in the
3744                  * redirect_info struct completely, so that if an eBPF program
3745                  * performs multiple lookups, the last one always takes
3746                  * precedence.
3747                  */
3748                 WRITE_ONCE(ri->map, NULL);
3749                 return flags;
3750         }
3751
3752         ri->flags = flags;
3753         ri->tgt_index = ifindex;
3754         WRITE_ONCE(ri->map, map);
3755
3756         return XDP_REDIRECT;
3757 }
3758
3759 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3760         .func           = bpf_xdp_redirect_map,
3761         .gpl_only       = false,
3762         .ret_type       = RET_INTEGER,
3763         .arg1_type      = ARG_CONST_MAP_PTR,
3764         .arg2_type      = ARG_ANYTHING,
3765         .arg3_type      = ARG_ANYTHING,
3766 };
3767
3768 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3769                                   unsigned long off, unsigned long len)
3770 {
3771         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3772
3773         if (unlikely(!ptr))
3774                 return len;
3775         if (ptr != dst_buff)
3776                 memcpy(dst_buff, ptr, len);
3777
3778         return 0;
3779 }
3780
3781 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3782            u64, flags, void *, meta, u64, meta_size)
3783 {
3784         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3785
3786         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3787                 return -EINVAL;
3788         if (unlikely(!skb || skb_size > skb->len))
3789                 return -EFAULT;
3790
3791         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3792                                 bpf_skb_copy);
3793 }
3794
3795 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3796         .func           = bpf_skb_event_output,
3797         .gpl_only       = true,
3798         .ret_type       = RET_INTEGER,
3799         .arg1_type      = ARG_PTR_TO_CTX,
3800         .arg2_type      = ARG_CONST_MAP_PTR,
3801         .arg3_type      = ARG_ANYTHING,
3802         .arg4_type      = ARG_PTR_TO_MEM,
3803         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3804 };
3805
3806 BTF_ID_LIST(bpf_skb_output_btf_ids)
3807 BTF_ID(struct, sk_buff)
3808
3809 const struct bpf_func_proto bpf_skb_output_proto = {
3810         .func           = bpf_skb_event_output,
3811         .gpl_only       = true,
3812         .ret_type       = RET_INTEGER,
3813         .arg1_type      = ARG_PTR_TO_BTF_ID,
3814         .arg2_type      = ARG_CONST_MAP_PTR,
3815         .arg3_type      = ARG_ANYTHING,
3816         .arg4_type      = ARG_PTR_TO_MEM,
3817         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3818         .btf_id         = bpf_skb_output_btf_ids,
3819 };
3820
3821 static unsigned short bpf_tunnel_key_af(u64 flags)
3822 {
3823         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3824 }
3825
3826 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3827            u32, size, u64, flags)
3828 {
3829         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3830         u8 compat[sizeof(struct bpf_tunnel_key)];
3831         void *to_orig = to;
3832         int err;
3833
3834         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3835                 err = -EINVAL;
3836                 goto err_clear;
3837         }
3838         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3839                 err = -EPROTO;
3840                 goto err_clear;
3841         }
3842         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3843                 err = -EINVAL;
3844                 switch (size) {
3845                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3846                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3847                         goto set_compat;
3848                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3849                         /* Fixup deprecated structure layouts here, so we have
3850                          * a common path later on.
3851                          */
3852                         if (ip_tunnel_info_af(info) != AF_INET)
3853                                 goto err_clear;
3854 set_compat:
3855                         to = (struct bpf_tunnel_key *)compat;
3856                         break;
3857                 default:
3858                         goto err_clear;
3859                 }
3860         }
3861
3862         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3863         to->tunnel_tos = info->key.tos;
3864         to->tunnel_ttl = info->key.ttl;
3865         to->tunnel_ext = 0;
3866
3867         if (flags & BPF_F_TUNINFO_IPV6) {
3868                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3869                        sizeof(to->remote_ipv6));
3870                 to->tunnel_label = be32_to_cpu(info->key.label);
3871         } else {
3872                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3873                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3874                 to->tunnel_label = 0;
3875         }
3876
3877         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3878                 memcpy(to_orig, to, size);
3879
3880         return 0;
3881 err_clear:
3882         memset(to_orig, 0, size);
3883         return err;
3884 }
3885
3886 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3887         .func           = bpf_skb_get_tunnel_key,
3888         .gpl_only       = false,
3889         .ret_type       = RET_INTEGER,
3890         .arg1_type      = ARG_PTR_TO_CTX,
3891         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3892         .arg3_type      = ARG_CONST_SIZE,
3893         .arg4_type      = ARG_ANYTHING,
3894 };
3895
3896 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3897 {
3898         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3899         int err;
3900
3901         if (unlikely(!info ||
3902                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3903                 err = -ENOENT;
3904                 goto err_clear;
3905         }
3906         if (unlikely(size < info->options_len)) {
3907                 err = -ENOMEM;
3908                 goto err_clear;
3909         }
3910
3911         ip_tunnel_info_opts_get(to, info);
3912         if (size > info->options_len)
3913                 memset(to + info->options_len, 0, size - info->options_len);
3914
3915         return info->options_len;
3916 err_clear:
3917         memset(to, 0, size);
3918         return err;
3919 }
3920
3921 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3922         .func           = bpf_skb_get_tunnel_opt,
3923         .gpl_only       = false,
3924         .ret_type       = RET_INTEGER,
3925         .arg1_type      = ARG_PTR_TO_CTX,
3926         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3927         .arg3_type      = ARG_CONST_SIZE,
3928 };
3929
3930 static struct metadata_dst __percpu *md_dst;
3931
3932 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3933            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3934 {
3935         struct metadata_dst *md = this_cpu_ptr(md_dst);
3936         u8 compat[sizeof(struct bpf_tunnel_key)];
3937         struct ip_tunnel_info *info;
3938
3939         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3940                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3941                 return -EINVAL;
3942         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3943                 switch (size) {
3944                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3945                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3946                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3947                         /* Fixup deprecated structure layouts here, so we have
3948                          * a common path later on.
3949                          */
3950                         memcpy(compat, from, size);
3951                         memset(compat + size, 0, sizeof(compat) - size);
3952                         from = (const struct bpf_tunnel_key *) compat;
3953                         break;
3954                 default:
3955                         return -EINVAL;
3956                 }
3957         }
3958         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3959                      from->tunnel_ext))
3960                 return -EINVAL;
3961
3962         skb_dst_drop(skb);
3963         dst_hold((struct dst_entry *) md);
3964         skb_dst_set(skb, (struct dst_entry *) md);
3965
3966         info = &md->u.tun_info;
3967         memset(info, 0, sizeof(*info));
3968         info->mode = IP_TUNNEL_INFO_TX;
3969
3970         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3971         if (flags & BPF_F_DONT_FRAGMENT)
3972                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3973         if (flags & BPF_F_ZERO_CSUM_TX)
3974                 info->key.tun_flags &= ~TUNNEL_CSUM;
3975         if (flags & BPF_F_SEQ_NUMBER)
3976                 info->key.tun_flags |= TUNNEL_SEQ;
3977
3978         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3979         info->key.tos = from->tunnel_tos;
3980         info->key.ttl = from->tunnel_ttl;
3981
3982         if (flags & BPF_F_TUNINFO_IPV6) {
3983                 info->mode |= IP_TUNNEL_INFO_IPV6;
3984                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3985                        sizeof(from->remote_ipv6));
3986                 info->key.label = cpu_to_be32(from->tunnel_label) &
3987                                   IPV6_FLOWLABEL_MASK;
3988         } else {
3989                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3990         }
3991
3992         return 0;
3993 }
3994
3995 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3996         .func           = bpf_skb_set_tunnel_key,
3997         .gpl_only       = false,
3998         .ret_type       = RET_INTEGER,
3999         .arg1_type      = ARG_PTR_TO_CTX,
4000         .arg2_type      = ARG_PTR_TO_MEM,
4001         .arg3_type      = ARG_CONST_SIZE,
4002         .arg4_type      = ARG_ANYTHING,
4003 };
4004
4005 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4006            const u8 *, from, u32, size)
4007 {
4008         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4009         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4010
4011         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4012                 return -EINVAL;
4013         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4014                 return -ENOMEM;
4015
4016         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4017
4018         return 0;
4019 }
4020
4021 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4022         .func           = bpf_skb_set_tunnel_opt,
4023         .gpl_only       = false,
4024         .ret_type       = RET_INTEGER,
4025         .arg1_type      = ARG_PTR_TO_CTX,
4026         .arg2_type      = ARG_PTR_TO_MEM,
4027         .arg3_type      = ARG_CONST_SIZE,
4028 };
4029
4030 static const struct bpf_func_proto *
4031 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4032 {
4033         if (!md_dst) {
4034                 struct metadata_dst __percpu *tmp;
4035
4036                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4037                                                 METADATA_IP_TUNNEL,
4038                                                 GFP_KERNEL);
4039                 if (!tmp)
4040                         return NULL;
4041                 if (cmpxchg(&md_dst, NULL, tmp))
4042                         metadata_dst_free_percpu(tmp);
4043         }
4044
4045         switch (which) {
4046         case BPF_FUNC_skb_set_tunnel_key:
4047                 return &bpf_skb_set_tunnel_key_proto;
4048         case BPF_FUNC_skb_set_tunnel_opt:
4049                 return &bpf_skb_set_tunnel_opt_proto;
4050         default:
4051                 return NULL;
4052         }
4053 }
4054
4055 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4056            u32, idx)
4057 {
4058         struct bpf_array *array = container_of(map, struct bpf_array, map);
4059         struct cgroup *cgrp;
4060         struct sock *sk;
4061
4062         sk = skb_to_full_sk(skb);
4063         if (!sk || !sk_fullsock(sk))
4064                 return -ENOENT;
4065         if (unlikely(idx >= array->map.max_entries))
4066                 return -E2BIG;
4067
4068         cgrp = READ_ONCE(array->ptrs[idx]);
4069         if (unlikely(!cgrp))
4070                 return -EAGAIN;
4071
4072         return sk_under_cgroup_hierarchy(sk, cgrp);
4073 }
4074
4075 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4076         .func           = bpf_skb_under_cgroup,
4077         .gpl_only       = false,
4078         .ret_type       = RET_INTEGER,
4079         .arg1_type      = ARG_PTR_TO_CTX,
4080         .arg2_type      = ARG_CONST_MAP_PTR,
4081         .arg3_type      = ARG_ANYTHING,
4082 };
4083
4084 #ifdef CONFIG_SOCK_CGROUP_DATA
4085 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4086 {
4087         struct cgroup *cgrp;
4088
4089         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4090         return cgroup_id(cgrp);
4091 }
4092
4093 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4094 {
4095         struct sock *sk = skb_to_full_sk(skb);
4096
4097         if (!sk || !sk_fullsock(sk))
4098                 return 0;
4099
4100         return __bpf_sk_cgroup_id(sk);
4101 }
4102
4103 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4104         .func           = bpf_skb_cgroup_id,
4105         .gpl_only       = false,
4106         .ret_type       = RET_INTEGER,
4107         .arg1_type      = ARG_PTR_TO_CTX,
4108 };
4109
4110 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4111                                               int ancestor_level)
4112 {
4113         struct cgroup *ancestor;
4114         struct cgroup *cgrp;
4115
4116         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4117         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4118         if (!ancestor)
4119                 return 0;
4120
4121         return cgroup_id(ancestor);
4122 }
4123
4124 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4125            ancestor_level)
4126 {
4127         struct sock *sk = skb_to_full_sk(skb);
4128
4129         if (!sk || !sk_fullsock(sk))
4130                 return 0;
4131
4132         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4133 }
4134
4135 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4136         .func           = bpf_skb_ancestor_cgroup_id,
4137         .gpl_only       = false,
4138         .ret_type       = RET_INTEGER,
4139         .arg1_type      = ARG_PTR_TO_CTX,
4140         .arg2_type      = ARG_ANYTHING,
4141 };
4142
4143 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4144 {
4145         return __bpf_sk_cgroup_id(sk);
4146 }
4147
4148 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4149         .func           = bpf_sk_cgroup_id,
4150         .gpl_only       = false,
4151         .ret_type       = RET_INTEGER,
4152         .arg1_type      = ARG_PTR_TO_SOCKET,
4153 };
4154
4155 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4156 {
4157         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4158 }
4159
4160 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4161         .func           = bpf_sk_ancestor_cgroup_id,
4162         .gpl_only       = false,
4163         .ret_type       = RET_INTEGER,
4164         .arg1_type      = ARG_PTR_TO_SOCKET,
4165         .arg2_type      = ARG_ANYTHING,
4166 };
4167 #endif
4168
4169 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4170                                   unsigned long off, unsigned long len)
4171 {
4172         memcpy(dst_buff, src_buff + off, len);
4173         return 0;
4174 }
4175
4176 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4177            u64, flags, void *, meta, u64, meta_size)
4178 {
4179         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4180
4181         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4182                 return -EINVAL;
4183         if (unlikely(!xdp ||
4184                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4185                 return -EFAULT;
4186
4187         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4188                                 xdp_size, bpf_xdp_copy);
4189 }
4190
4191 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4192         .func           = bpf_xdp_event_output,
4193         .gpl_only       = true,
4194         .ret_type       = RET_INTEGER,
4195         .arg1_type      = ARG_PTR_TO_CTX,
4196         .arg2_type      = ARG_CONST_MAP_PTR,
4197         .arg3_type      = ARG_ANYTHING,
4198         .arg4_type      = ARG_PTR_TO_MEM,
4199         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4200 };
4201
4202 BTF_ID_LIST(bpf_xdp_output_btf_ids)
4203 BTF_ID(struct, xdp_buff)
4204
4205 const struct bpf_func_proto bpf_xdp_output_proto = {
4206         .func           = bpf_xdp_event_output,
4207         .gpl_only       = true,
4208         .ret_type       = RET_INTEGER,
4209         .arg1_type      = ARG_PTR_TO_BTF_ID,
4210         .arg2_type      = ARG_CONST_MAP_PTR,
4211         .arg3_type      = ARG_ANYTHING,
4212         .arg4_type      = ARG_PTR_TO_MEM,
4213         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4214         .btf_id         = bpf_xdp_output_btf_ids,
4215 };
4216
4217 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4218 {
4219         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4220 }
4221
4222 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4223         .func           = bpf_get_socket_cookie,
4224         .gpl_only       = false,
4225         .ret_type       = RET_INTEGER,
4226         .arg1_type      = ARG_PTR_TO_CTX,
4227 };
4228
4229 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4230 {
4231         return sock_gen_cookie(ctx->sk);
4232 }
4233
4234 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4235         .func           = bpf_get_socket_cookie_sock_addr,
4236         .gpl_only       = false,
4237         .ret_type       = RET_INTEGER,
4238         .arg1_type      = ARG_PTR_TO_CTX,
4239 };
4240
4241 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4242 {
4243         return sock_gen_cookie(ctx);
4244 }
4245
4246 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4247         .func           = bpf_get_socket_cookie_sock,
4248         .gpl_only       = false,
4249         .ret_type       = RET_INTEGER,
4250         .arg1_type      = ARG_PTR_TO_CTX,
4251 };
4252
4253 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4254 {
4255         return sock_gen_cookie(ctx->sk);
4256 }
4257
4258 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4259         .func           = bpf_get_socket_cookie_sock_ops,
4260         .gpl_only       = false,
4261         .ret_type       = RET_INTEGER,
4262         .arg1_type      = ARG_PTR_TO_CTX,
4263 };
4264
4265 static u64 __bpf_get_netns_cookie(struct sock *sk)
4266 {
4267 #ifdef CONFIG_NET_NS
4268         return net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4269 #else
4270         return 0;
4271 #endif
4272 }
4273
4274 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4275 {
4276         return __bpf_get_netns_cookie(ctx);
4277 }
4278
4279 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4280         .func           = bpf_get_netns_cookie_sock,
4281         .gpl_only       = false,
4282         .ret_type       = RET_INTEGER,
4283         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4284 };
4285
4286 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4287 {
4288         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4289 }
4290
4291 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4292         .func           = bpf_get_netns_cookie_sock_addr,
4293         .gpl_only       = false,
4294         .ret_type       = RET_INTEGER,
4295         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4296 };
4297
4298 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4299 {
4300         struct sock *sk = sk_to_full_sk(skb->sk);
4301         kuid_t kuid;
4302
4303         if (!sk || !sk_fullsock(sk))
4304                 return overflowuid;
4305         kuid = sock_net_uid(sock_net(sk), sk);
4306         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4307 }
4308
4309 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4310         .func           = bpf_get_socket_uid,
4311         .gpl_only       = false,
4312         .ret_type       = RET_INTEGER,
4313         .arg1_type      = ARG_PTR_TO_CTX,
4314 };
4315
4316 #define SOCKOPT_CC_REINIT (1 << 0)
4317
4318 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4319                            char *optval, int optlen, u32 flags)
4320 {
4321         char devname[IFNAMSIZ];
4322         int val, valbool;
4323         struct net *net;
4324         int ifindex;
4325         int ret = 0;
4326
4327         if (!sk_fullsock(sk))
4328                 return -EINVAL;
4329
4330         sock_owned_by_me(sk);
4331
4332         if (level == SOL_SOCKET) {
4333                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4334                         return -EINVAL;
4335                 val = *((int *)optval);
4336                 valbool = val ? 1 : 0;
4337
4338                 /* Only some socketops are supported */
4339                 switch (optname) {
4340                 case SO_RCVBUF:
4341                         val = min_t(u32, val, sysctl_rmem_max);
4342                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4343                         WRITE_ONCE(sk->sk_rcvbuf,
4344                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4345                         break;
4346                 case SO_SNDBUF:
4347                         val = min_t(u32, val, sysctl_wmem_max);
4348                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4349                         WRITE_ONCE(sk->sk_sndbuf,
4350                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4351                         break;
4352                 case SO_MAX_PACING_RATE: /* 32bit version */
4353                         if (val != ~0U)
4354                                 cmpxchg(&sk->sk_pacing_status,
4355                                         SK_PACING_NONE,
4356                                         SK_PACING_NEEDED);
4357                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4358                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4359                                                  sk->sk_max_pacing_rate);
4360                         break;
4361                 case SO_PRIORITY:
4362                         sk->sk_priority = val;
4363                         break;
4364                 case SO_RCVLOWAT:
4365                         if (val < 0)
4366                                 val = INT_MAX;
4367                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4368                         break;
4369                 case SO_MARK:
4370                         if (sk->sk_mark != val) {
4371                                 sk->sk_mark = val;
4372                                 sk_dst_reset(sk);
4373                         }
4374                         break;
4375                 case SO_BINDTODEVICE:
4376                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4377                         strncpy(devname, optval, optlen);
4378                         devname[optlen] = 0;
4379
4380                         ifindex = 0;
4381                         if (devname[0] != '\0') {
4382                                 struct net_device *dev;
4383
4384                                 ret = -ENODEV;
4385
4386                                 net = sock_net(sk);
4387                                 dev = dev_get_by_name(net, devname);
4388                                 if (!dev)
4389                                         break;
4390                                 ifindex = dev->ifindex;
4391                                 dev_put(dev);
4392                         }
4393                         ret = sock_bindtoindex(sk, ifindex, false);
4394                         break;
4395                 case SO_KEEPALIVE:
4396                         if (sk->sk_prot->keepalive)
4397                                 sk->sk_prot->keepalive(sk, valbool);
4398                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4399                         break;
4400                 default:
4401                         ret = -EINVAL;
4402                 }
4403 #ifdef CONFIG_INET
4404         } else if (level == SOL_IP) {
4405                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4406                         return -EINVAL;
4407
4408                 val = *((int *)optval);
4409                 /* Only some options are supported */
4410                 switch (optname) {
4411                 case IP_TOS:
4412                         if (val < -1 || val > 0xff) {
4413                                 ret = -EINVAL;
4414                         } else {
4415                                 struct inet_sock *inet = inet_sk(sk);
4416
4417                                 if (val == -1)
4418                                         val = 0;
4419                                 inet->tos = val;
4420                         }
4421                         break;
4422                 default:
4423                         ret = -EINVAL;
4424                 }
4425 #if IS_ENABLED(CONFIG_IPV6)
4426         } else if (level == SOL_IPV6) {
4427                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4428                         return -EINVAL;
4429
4430                 val = *((int *)optval);
4431                 /* Only some options are supported */
4432                 switch (optname) {
4433                 case IPV6_TCLASS:
4434                         if (val < -1 || val > 0xff) {
4435                                 ret = -EINVAL;
4436                         } else {
4437                                 struct ipv6_pinfo *np = inet6_sk(sk);
4438
4439                                 if (val == -1)
4440                                         val = 0;
4441                                 np->tclass = val;
4442                         }
4443                         break;
4444                 default:
4445                         ret = -EINVAL;
4446                 }
4447 #endif
4448         } else if (level == SOL_TCP &&
4449                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4450                 if (optname == TCP_CONGESTION) {
4451                         char name[TCP_CA_NAME_MAX];
4452                         bool reinit = flags & SOCKOPT_CC_REINIT;
4453
4454                         strncpy(name, optval, min_t(long, optlen,
4455                                                     TCP_CA_NAME_MAX-1));
4456                         name[TCP_CA_NAME_MAX-1] = 0;
4457                         ret = tcp_set_congestion_control(sk, name, false,
4458                                                          reinit, true);
4459                 } else {
4460                         struct inet_connection_sock *icsk = inet_csk(sk);
4461                         struct tcp_sock *tp = tcp_sk(sk);
4462
4463                         if (optlen != sizeof(int))
4464                                 return -EINVAL;
4465
4466                         val = *((int *)optval);
4467                         /* Only some options are supported */
4468                         switch (optname) {
4469                         case TCP_BPF_IW:
4470                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4471                                         ret = -EINVAL;
4472                                 else
4473                                         tp->snd_cwnd = val;
4474                                 break;
4475                         case TCP_BPF_SNDCWND_CLAMP:
4476                                 if (val <= 0) {
4477                                         ret = -EINVAL;
4478                                 } else {
4479                                         tp->snd_cwnd_clamp = val;
4480                                         tp->snd_ssthresh = val;
4481                                 }
4482                                 break;
4483                         case TCP_SAVE_SYN:
4484                                 if (val < 0 || val > 1)
4485                                         ret = -EINVAL;
4486                                 else
4487                                         tp->save_syn = val;
4488                                 break;
4489                         case TCP_KEEPIDLE:
4490                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4491                                 break;
4492                         case TCP_KEEPINTVL:
4493                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4494                                         ret = -EINVAL;
4495                                 else
4496                                         tp->keepalive_intvl = val * HZ;
4497                                 break;
4498                         case TCP_KEEPCNT:
4499                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4500                                         ret = -EINVAL;
4501                                 else
4502                                         tp->keepalive_probes = val;
4503                                 break;
4504                         case TCP_SYNCNT:
4505                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4506                                         ret = -EINVAL;
4507                                 else
4508                                         icsk->icsk_syn_retries = val;
4509                                 break;
4510                         case TCP_USER_TIMEOUT:
4511                                 if (val < 0)
4512                                         ret = -EINVAL;
4513                                 else
4514                                         icsk->icsk_user_timeout = val;
4515                                 break;
4516                         default:
4517                                 ret = -EINVAL;
4518                         }
4519                 }
4520 #endif
4521         } else {
4522                 ret = -EINVAL;
4523         }
4524         return ret;
4525 }
4526
4527 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4528                            char *optval, int optlen)
4529 {
4530         if (!sk_fullsock(sk))
4531                 goto err_clear;
4532
4533         sock_owned_by_me(sk);
4534
4535 #ifdef CONFIG_INET
4536         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4537                 struct inet_connection_sock *icsk;
4538                 struct tcp_sock *tp;
4539
4540                 switch (optname) {
4541                 case TCP_CONGESTION:
4542                         icsk = inet_csk(sk);
4543
4544                         if (!icsk->icsk_ca_ops || optlen <= 1)
4545                                 goto err_clear;
4546                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4547                         optval[optlen - 1] = 0;
4548                         break;
4549                 case TCP_SAVED_SYN:
4550                         tp = tcp_sk(sk);
4551
4552                         if (optlen <= 0 || !tp->saved_syn ||
4553                             optlen > tp->saved_syn[0])
4554                                 goto err_clear;
4555                         memcpy(optval, tp->saved_syn + 1, optlen);
4556                         break;
4557                 default:
4558                         goto err_clear;
4559                 }
4560         } else if (level == SOL_IP) {
4561                 struct inet_sock *inet = inet_sk(sk);
4562
4563                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4564                         goto err_clear;
4565
4566                 /* Only some options are supported */
4567                 switch (optname) {
4568                 case IP_TOS:
4569                         *((int *)optval) = (int)inet->tos;
4570                         break;
4571                 default:
4572                         goto err_clear;
4573                 }
4574 #if IS_ENABLED(CONFIG_IPV6)
4575         } else if (level == SOL_IPV6) {
4576                 struct ipv6_pinfo *np = inet6_sk(sk);
4577
4578                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4579                         goto err_clear;
4580
4581                 /* Only some options are supported */
4582                 switch (optname) {
4583                 case IPV6_TCLASS:
4584                         *((int *)optval) = (int)np->tclass;
4585                         break;
4586                 default:
4587                         goto err_clear;
4588                 }
4589 #endif
4590         } else {
4591                 goto err_clear;
4592         }
4593         return 0;
4594 #endif
4595 err_clear:
4596         memset(optval, 0, optlen);
4597         return -EINVAL;
4598 }
4599
4600 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4601            int, level, int, optname, char *, optval, int, optlen)
4602 {
4603         u32 flags = 0;
4604         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen,
4605                                flags);
4606 }
4607
4608 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
4609         .func           = bpf_sock_addr_setsockopt,
4610         .gpl_only       = false,
4611         .ret_type       = RET_INTEGER,
4612         .arg1_type      = ARG_PTR_TO_CTX,
4613         .arg2_type      = ARG_ANYTHING,
4614         .arg3_type      = ARG_ANYTHING,
4615         .arg4_type      = ARG_PTR_TO_MEM,
4616         .arg5_type      = ARG_CONST_SIZE,
4617 };
4618
4619 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
4620            int, level, int, optname, char *, optval, int, optlen)
4621 {
4622         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
4623 }
4624
4625 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
4626         .func           = bpf_sock_addr_getsockopt,
4627         .gpl_only       = false,
4628         .ret_type       = RET_INTEGER,
4629         .arg1_type      = ARG_PTR_TO_CTX,
4630         .arg2_type      = ARG_ANYTHING,
4631         .arg3_type      = ARG_ANYTHING,
4632         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4633         .arg5_type      = ARG_CONST_SIZE,
4634 };
4635
4636 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4637            int, level, int, optname, char *, optval, int, optlen)
4638 {
4639         u32 flags = 0;
4640         if (bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN)
4641                 flags |= SOCKOPT_CC_REINIT;
4642         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen,
4643                                flags);
4644 }
4645
4646 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
4647         .func           = bpf_sock_ops_setsockopt,
4648         .gpl_only       = false,
4649         .ret_type       = RET_INTEGER,
4650         .arg1_type      = ARG_PTR_TO_CTX,
4651         .arg2_type      = ARG_ANYTHING,
4652         .arg3_type      = ARG_ANYTHING,
4653         .arg4_type      = ARG_PTR_TO_MEM,
4654         .arg5_type      = ARG_CONST_SIZE,
4655 };
4656
4657 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4658            int, level, int, optname, char *, optval, int, optlen)
4659 {
4660         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
4661 }
4662
4663 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
4664         .func           = bpf_sock_ops_getsockopt,
4665         .gpl_only       = false,
4666         .ret_type       = RET_INTEGER,
4667         .arg1_type      = ARG_PTR_TO_CTX,
4668         .arg2_type      = ARG_ANYTHING,
4669         .arg3_type      = ARG_ANYTHING,
4670         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4671         .arg5_type      = ARG_CONST_SIZE,
4672 };
4673
4674 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4675            int, argval)
4676 {
4677         struct sock *sk = bpf_sock->sk;
4678         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4679
4680         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4681                 return -EINVAL;
4682
4683         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4684
4685         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4686 }
4687
4688 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4689         .func           = bpf_sock_ops_cb_flags_set,
4690         .gpl_only       = false,
4691         .ret_type       = RET_INTEGER,
4692         .arg1_type      = ARG_PTR_TO_CTX,
4693         .arg2_type      = ARG_ANYTHING,
4694 };
4695
4696 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4697 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4698
4699 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4700            int, addr_len)
4701 {
4702 #ifdef CONFIG_INET
4703         struct sock *sk = ctx->sk;
4704         u32 flags = BIND_FROM_BPF;
4705         int err;
4706
4707         err = -EINVAL;
4708         if (addr_len < offsetofend(struct sockaddr, sa_family))
4709                 return err;
4710         if (addr->sa_family == AF_INET) {
4711                 if (addr_len < sizeof(struct sockaddr_in))
4712                         return err;
4713                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
4714                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
4715                 return __inet_bind(sk, addr, addr_len, flags);
4716 #if IS_ENABLED(CONFIG_IPV6)
4717         } else if (addr->sa_family == AF_INET6) {
4718                 if (addr_len < SIN6_LEN_RFC2133)
4719                         return err;
4720                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
4721                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
4722                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4723                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4724                  */
4725                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
4726 #endif /* CONFIG_IPV6 */
4727         }
4728 #endif /* CONFIG_INET */
4729
4730         return -EAFNOSUPPORT;
4731 }
4732
4733 static const struct bpf_func_proto bpf_bind_proto = {
4734         .func           = bpf_bind,
4735         .gpl_only       = false,
4736         .ret_type       = RET_INTEGER,
4737         .arg1_type      = ARG_PTR_TO_CTX,
4738         .arg2_type      = ARG_PTR_TO_MEM,
4739         .arg3_type      = ARG_CONST_SIZE,
4740 };
4741
4742 #ifdef CONFIG_XFRM
4743 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4744            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4745 {
4746         const struct sec_path *sp = skb_sec_path(skb);
4747         const struct xfrm_state *x;
4748
4749         if (!sp || unlikely(index >= sp->len || flags))
4750                 goto err_clear;
4751
4752         x = sp->xvec[index];
4753
4754         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4755                 goto err_clear;
4756
4757         to->reqid = x->props.reqid;
4758         to->spi = x->id.spi;
4759         to->family = x->props.family;
4760         to->ext = 0;
4761
4762         if (to->family == AF_INET6) {
4763                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4764                        sizeof(to->remote_ipv6));
4765         } else {
4766                 to->remote_ipv4 = x->props.saddr.a4;
4767                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4768         }
4769
4770         return 0;
4771 err_clear:
4772         memset(to, 0, size);
4773         return -EINVAL;
4774 }
4775
4776 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4777         .func           = bpf_skb_get_xfrm_state,
4778         .gpl_only       = false,
4779         .ret_type       = RET_INTEGER,
4780         .arg1_type      = ARG_PTR_TO_CTX,
4781         .arg2_type      = ARG_ANYTHING,
4782         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4783         .arg4_type      = ARG_CONST_SIZE,
4784         .arg5_type      = ARG_ANYTHING,
4785 };
4786 #endif
4787
4788 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4789 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4790                                   const struct neighbour *neigh,
4791                                   const struct net_device *dev)
4792 {
4793         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4794         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4795         params->h_vlan_TCI = 0;
4796         params->h_vlan_proto = 0;
4797         params->ifindex = dev->ifindex;
4798
4799         return 0;
4800 }
4801 #endif
4802
4803 #if IS_ENABLED(CONFIG_INET)
4804 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4805                                u32 flags, bool check_mtu)
4806 {
4807         struct fib_nh_common *nhc;
4808         struct in_device *in_dev;
4809         struct neighbour *neigh;
4810         struct net_device *dev;
4811         struct fib_result res;
4812         struct flowi4 fl4;
4813         int err;
4814         u32 mtu;
4815
4816         dev = dev_get_by_index_rcu(net, params->ifindex);
4817         if (unlikely(!dev))
4818                 return -ENODEV;
4819
4820         /* verify forwarding is enabled on this interface */
4821         in_dev = __in_dev_get_rcu(dev);
4822         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4823                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4824
4825         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4826                 fl4.flowi4_iif = 1;
4827                 fl4.flowi4_oif = params->ifindex;
4828         } else {
4829                 fl4.flowi4_iif = params->ifindex;
4830                 fl4.flowi4_oif = 0;
4831         }
4832         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4833         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4834         fl4.flowi4_flags = 0;
4835
4836         fl4.flowi4_proto = params->l4_protocol;
4837         fl4.daddr = params->ipv4_dst;
4838         fl4.saddr = params->ipv4_src;
4839         fl4.fl4_sport = params->sport;
4840         fl4.fl4_dport = params->dport;
4841
4842         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4843                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4844                 struct fib_table *tb;
4845
4846                 tb = fib_get_table(net, tbid);
4847                 if (unlikely(!tb))
4848                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4849
4850                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4851         } else {
4852                 fl4.flowi4_mark = 0;
4853                 fl4.flowi4_secid = 0;
4854                 fl4.flowi4_tun_key.tun_id = 0;
4855                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4856
4857                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4858         }
4859
4860         if (err) {
4861                 /* map fib lookup errors to RTN_ type */
4862                 if (err == -EINVAL)
4863                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4864                 if (err == -EHOSTUNREACH)
4865                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4866                 if (err == -EACCES)
4867                         return BPF_FIB_LKUP_RET_PROHIBIT;
4868
4869                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4870         }
4871
4872         if (res.type != RTN_UNICAST)
4873                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4874
4875         if (fib_info_num_path(res.fi) > 1)
4876                 fib_select_path(net, &res, &fl4, NULL);
4877
4878         if (check_mtu) {
4879                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4880                 if (params->tot_len > mtu)
4881                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4882         }
4883
4884         nhc = res.nhc;
4885
4886         /* do not handle lwt encaps right now */
4887         if (nhc->nhc_lwtstate)
4888                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4889
4890         dev = nhc->nhc_dev;
4891
4892         params->rt_metric = res.fi->fib_priority;
4893
4894         /* xdp and cls_bpf programs are run in RCU-bh so
4895          * rcu_read_lock_bh is not needed here
4896          */
4897         if (likely(nhc->nhc_gw_family != AF_INET6)) {
4898                 if (nhc->nhc_gw_family)
4899                         params->ipv4_dst = nhc->nhc_gw.ipv4;
4900
4901                 neigh = __ipv4_neigh_lookup_noref(dev,
4902                                                  (__force u32)params->ipv4_dst);
4903         } else {
4904                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4905
4906                 params->family = AF_INET6;
4907                 *dst = nhc->nhc_gw.ipv6;
4908                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4909         }
4910
4911         if (!neigh)
4912                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4913
4914         return bpf_fib_set_fwd_params(params, neigh, dev);
4915 }
4916 #endif
4917
4918 #if IS_ENABLED(CONFIG_IPV6)
4919 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4920                                u32 flags, bool check_mtu)
4921 {
4922         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4923         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4924         struct fib6_result res = {};
4925         struct neighbour *neigh;
4926         struct net_device *dev;
4927         struct inet6_dev *idev;
4928         struct flowi6 fl6;
4929         int strict = 0;
4930         int oif, err;
4931         u32 mtu;
4932
4933         /* link local addresses are never forwarded */
4934         if (rt6_need_strict(dst) || rt6_need_strict(src))
4935                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4936
4937         dev = dev_get_by_index_rcu(net, params->ifindex);
4938         if (unlikely(!dev))
4939                 return -ENODEV;
4940
4941         idev = __in6_dev_get_safely(dev);
4942         if (unlikely(!idev || !idev->cnf.forwarding))
4943                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4944
4945         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4946                 fl6.flowi6_iif = 1;
4947                 oif = fl6.flowi6_oif = params->ifindex;
4948         } else {
4949                 oif = fl6.flowi6_iif = params->ifindex;
4950                 fl6.flowi6_oif = 0;
4951                 strict = RT6_LOOKUP_F_HAS_SADDR;
4952         }
4953         fl6.flowlabel = params->flowinfo;
4954         fl6.flowi6_scope = 0;
4955         fl6.flowi6_flags = 0;
4956         fl6.mp_hash = 0;
4957
4958         fl6.flowi6_proto = params->l4_protocol;
4959         fl6.daddr = *dst;
4960         fl6.saddr = *src;
4961         fl6.fl6_sport = params->sport;
4962         fl6.fl6_dport = params->dport;
4963
4964         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4965                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4966                 struct fib6_table *tb;
4967
4968                 tb = ipv6_stub->fib6_get_table(net, tbid);
4969                 if (unlikely(!tb))
4970                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4971
4972                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4973                                                    strict);
4974         } else {
4975                 fl6.flowi6_mark = 0;
4976                 fl6.flowi6_secid = 0;
4977                 fl6.flowi6_tun_key.tun_id = 0;
4978                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4979
4980                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4981         }
4982
4983         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4984                      res.f6i == net->ipv6.fib6_null_entry))
4985                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4986
4987         switch (res.fib6_type) {
4988         /* only unicast is forwarded */
4989         case RTN_UNICAST:
4990                 break;
4991         case RTN_BLACKHOLE:
4992                 return BPF_FIB_LKUP_RET_BLACKHOLE;
4993         case RTN_UNREACHABLE:
4994                 return BPF_FIB_LKUP_RET_UNREACHABLE;
4995         case RTN_PROHIBIT:
4996                 return BPF_FIB_LKUP_RET_PROHIBIT;
4997         default:
4998                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4999         }
5000
5001         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5002                                     fl6.flowi6_oif != 0, NULL, strict);
5003
5004         if (check_mtu) {
5005                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5006                 if (params->tot_len > mtu)
5007                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5008         }
5009
5010         if (res.nh->fib_nh_lws)
5011                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5012
5013         if (res.nh->fib_nh_gw_family)
5014                 *dst = res.nh->fib_nh_gw6;
5015
5016         dev = res.nh->fib_nh_dev;
5017         params->rt_metric = res.f6i->fib6_metric;
5018
5019         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5020          * not needed here.
5021          */
5022         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5023         if (!neigh)
5024                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5025
5026         return bpf_fib_set_fwd_params(params, neigh, dev);
5027 }
5028 #endif
5029
5030 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5031            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5032 {
5033         if (plen < sizeof(*params))
5034                 return -EINVAL;
5035
5036         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5037                 return -EINVAL;
5038
5039         switch (params->family) {
5040 #if IS_ENABLED(CONFIG_INET)
5041         case AF_INET:
5042                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5043                                            flags, true);
5044 #endif
5045 #if IS_ENABLED(CONFIG_IPV6)
5046         case AF_INET6:
5047                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5048                                            flags, true);
5049 #endif
5050         }
5051         return -EAFNOSUPPORT;
5052 }
5053
5054 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5055         .func           = bpf_xdp_fib_lookup,
5056         .gpl_only       = true,
5057         .ret_type       = RET_INTEGER,
5058         .arg1_type      = ARG_PTR_TO_CTX,
5059         .arg2_type      = ARG_PTR_TO_MEM,
5060         .arg3_type      = ARG_CONST_SIZE,
5061         .arg4_type      = ARG_ANYTHING,
5062 };
5063
5064 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5065            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5066 {
5067         struct net *net = dev_net(skb->dev);
5068         int rc = -EAFNOSUPPORT;
5069
5070         if (plen < sizeof(*params))
5071                 return -EINVAL;
5072
5073         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5074                 return -EINVAL;
5075
5076         switch (params->family) {
5077 #if IS_ENABLED(CONFIG_INET)
5078         case AF_INET:
5079                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5080                 break;
5081 #endif
5082 #if IS_ENABLED(CONFIG_IPV6)
5083         case AF_INET6:
5084                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5085                 break;
5086 #endif
5087         }
5088
5089         if (!rc) {
5090                 struct net_device *dev;
5091
5092                 dev = dev_get_by_index_rcu(net, params->ifindex);
5093                 if (!is_skb_forwardable(dev, skb))
5094                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5095         }
5096
5097         return rc;
5098 }
5099
5100 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5101         .func           = bpf_skb_fib_lookup,
5102         .gpl_only       = true,
5103         .ret_type       = RET_INTEGER,
5104         .arg1_type      = ARG_PTR_TO_CTX,
5105         .arg2_type      = ARG_PTR_TO_MEM,
5106         .arg3_type      = ARG_CONST_SIZE,
5107         .arg4_type      = ARG_ANYTHING,
5108 };
5109
5110 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5111 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5112 {
5113         int err;
5114         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5115
5116         if (!seg6_validate_srh(srh, len, false))
5117                 return -EINVAL;
5118
5119         switch (type) {
5120         case BPF_LWT_ENCAP_SEG6_INLINE:
5121                 if (skb->protocol != htons(ETH_P_IPV6))
5122                         return -EBADMSG;
5123
5124                 err = seg6_do_srh_inline(skb, srh);
5125                 break;
5126         case BPF_LWT_ENCAP_SEG6:
5127                 skb_reset_inner_headers(skb);
5128                 skb->encapsulation = 1;
5129                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5130                 break;
5131         default:
5132                 return -EINVAL;
5133         }
5134
5135         bpf_compute_data_pointers(skb);
5136         if (err)
5137                 return err;
5138
5139         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5140         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5141
5142         return seg6_lookup_nexthop(skb, NULL, 0);
5143 }
5144 #endif /* CONFIG_IPV6_SEG6_BPF */
5145
5146 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5147 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5148                              bool ingress)
5149 {
5150         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5151 }
5152 #endif
5153
5154 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5155            u32, len)
5156 {
5157         switch (type) {
5158 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5159         case BPF_LWT_ENCAP_SEG6:
5160         case BPF_LWT_ENCAP_SEG6_INLINE:
5161                 return bpf_push_seg6_encap(skb, type, hdr, len);
5162 #endif
5163 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5164         case BPF_LWT_ENCAP_IP:
5165                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5166 #endif
5167         default:
5168                 return -EINVAL;
5169         }
5170 }
5171
5172 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5173            void *, hdr, u32, len)
5174 {
5175         switch (type) {
5176 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5177         case BPF_LWT_ENCAP_IP:
5178                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5179 #endif
5180         default:
5181                 return -EINVAL;
5182         }
5183 }
5184
5185 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5186         .func           = bpf_lwt_in_push_encap,
5187         .gpl_only       = false,
5188         .ret_type       = RET_INTEGER,
5189         .arg1_type      = ARG_PTR_TO_CTX,
5190         .arg2_type      = ARG_ANYTHING,
5191         .arg3_type      = ARG_PTR_TO_MEM,
5192         .arg4_type      = ARG_CONST_SIZE
5193 };
5194
5195 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5196         .func           = bpf_lwt_xmit_push_encap,
5197         .gpl_only       = false,
5198         .ret_type       = RET_INTEGER,
5199         .arg1_type      = ARG_PTR_TO_CTX,
5200         .arg2_type      = ARG_ANYTHING,
5201         .arg3_type      = ARG_PTR_TO_MEM,
5202         .arg4_type      = ARG_CONST_SIZE
5203 };
5204
5205 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5206 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5207            const void *, from, u32, len)
5208 {
5209         struct seg6_bpf_srh_state *srh_state =
5210                 this_cpu_ptr(&seg6_bpf_srh_states);
5211         struct ipv6_sr_hdr *srh = srh_state->srh;
5212         void *srh_tlvs, *srh_end, *ptr;
5213         int srhoff = 0;
5214
5215         if (srh == NULL)
5216                 return -EINVAL;
5217
5218         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5219         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5220
5221         ptr = skb->data + offset;
5222         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5223                 srh_state->valid = false;
5224         else if (ptr < (void *)&srh->flags ||
5225                  ptr + len > (void *)&srh->segments)
5226                 return -EFAULT;
5227
5228         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5229                 return -EFAULT;
5230         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5231                 return -EINVAL;
5232         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5233
5234         memcpy(skb->data + offset, from, len);
5235         return 0;
5236 }
5237
5238 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5239         .func           = bpf_lwt_seg6_store_bytes,
5240         .gpl_only       = false,
5241         .ret_type       = RET_INTEGER,
5242         .arg1_type      = ARG_PTR_TO_CTX,
5243         .arg2_type      = ARG_ANYTHING,
5244         .arg3_type      = ARG_PTR_TO_MEM,
5245         .arg4_type      = ARG_CONST_SIZE
5246 };
5247
5248 static void bpf_update_srh_state(struct sk_buff *skb)
5249 {
5250         struct seg6_bpf_srh_state *srh_state =
5251                 this_cpu_ptr(&seg6_bpf_srh_states);
5252         int srhoff = 0;
5253
5254         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5255                 srh_state->srh = NULL;
5256         } else {
5257                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5258                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5259                 srh_state->valid = true;
5260         }
5261 }
5262
5263 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5264            u32, action, void *, param, u32, param_len)
5265 {
5266         struct seg6_bpf_srh_state *srh_state =
5267                 this_cpu_ptr(&seg6_bpf_srh_states);
5268         int hdroff = 0;
5269         int err;
5270
5271         switch (action) {
5272         case SEG6_LOCAL_ACTION_END_X:
5273                 if (!seg6_bpf_has_valid_srh(skb))
5274                         return -EBADMSG;
5275                 if (param_len != sizeof(struct in6_addr))
5276                         return -EINVAL;
5277                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5278         case SEG6_LOCAL_ACTION_END_T:
5279                 if (!seg6_bpf_has_valid_srh(skb))
5280                         return -EBADMSG;
5281                 if (param_len != sizeof(int))
5282                         return -EINVAL;
5283                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5284         case SEG6_LOCAL_ACTION_END_DT6:
5285                 if (!seg6_bpf_has_valid_srh(skb))
5286                         return -EBADMSG;
5287                 if (param_len != sizeof(int))
5288                         return -EINVAL;
5289
5290                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5291                         return -EBADMSG;
5292                 if (!pskb_pull(skb, hdroff))
5293                         return -EBADMSG;
5294
5295                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5296                 skb_reset_network_header(skb);
5297                 skb_reset_transport_header(skb);
5298                 skb->encapsulation = 0;
5299
5300                 bpf_compute_data_pointers(skb);
5301                 bpf_update_srh_state(skb);
5302                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5303         case SEG6_LOCAL_ACTION_END_B6:
5304                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5305                         return -EBADMSG;
5306                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5307                                           param, param_len);
5308                 if (!err)
5309                         bpf_update_srh_state(skb);
5310
5311                 return err;
5312         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5313                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5314                         return -EBADMSG;
5315                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5316                                           param, param_len);
5317                 if (!err)
5318                         bpf_update_srh_state(skb);
5319
5320                 return err;
5321         default:
5322                 return -EINVAL;
5323         }
5324 }
5325
5326 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5327         .func           = bpf_lwt_seg6_action,
5328         .gpl_only       = false,
5329         .ret_type       = RET_INTEGER,
5330         .arg1_type      = ARG_PTR_TO_CTX,
5331         .arg2_type      = ARG_ANYTHING,
5332         .arg3_type      = ARG_PTR_TO_MEM,
5333         .arg4_type      = ARG_CONST_SIZE
5334 };
5335
5336 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5337            s32, len)
5338 {
5339         struct seg6_bpf_srh_state *srh_state =
5340                 this_cpu_ptr(&seg6_bpf_srh_states);
5341         struct ipv6_sr_hdr *srh = srh_state->srh;
5342         void *srh_end, *srh_tlvs, *ptr;
5343         struct ipv6hdr *hdr;
5344         int srhoff = 0;
5345         int ret;
5346
5347         if (unlikely(srh == NULL))
5348                 return -EINVAL;
5349
5350         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5351                         ((srh->first_segment + 1) << 4));
5352         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5353                         srh_state->hdrlen);
5354         ptr = skb->data + offset;
5355
5356         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5357                 return -EFAULT;
5358         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5359                 return -EFAULT;
5360
5361         if (len > 0) {
5362                 ret = skb_cow_head(skb, len);
5363                 if (unlikely(ret < 0))
5364                         return ret;
5365
5366                 ret = bpf_skb_net_hdr_push(skb, offset, len);
5367         } else {
5368                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5369         }
5370
5371         bpf_compute_data_pointers(skb);
5372         if (unlikely(ret < 0))
5373                 return ret;
5374
5375         hdr = (struct ipv6hdr *)skb->data;
5376         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5377
5378         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5379                 return -EINVAL;
5380         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5381         srh_state->hdrlen += len;
5382         srh_state->valid = false;
5383         return 0;
5384 }
5385
5386 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5387         .func           = bpf_lwt_seg6_adjust_srh,
5388         .gpl_only       = false,
5389         .ret_type       = RET_INTEGER,
5390         .arg1_type      = ARG_PTR_TO_CTX,
5391         .arg2_type      = ARG_ANYTHING,
5392         .arg3_type      = ARG_ANYTHING,
5393 };
5394 #endif /* CONFIG_IPV6_SEG6_BPF */
5395
5396 #ifdef CONFIG_INET
5397 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5398                               int dif, int sdif, u8 family, u8 proto)
5399 {
5400         bool refcounted = false;
5401         struct sock *sk = NULL;
5402
5403         if (family == AF_INET) {
5404                 __be32 src4 = tuple->ipv4.saddr;
5405                 __be32 dst4 = tuple->ipv4.daddr;
5406
5407                 if (proto == IPPROTO_TCP)
5408                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5409                                            src4, tuple->ipv4.sport,
5410                                            dst4, tuple->ipv4.dport,
5411                                            dif, sdif, &refcounted);
5412                 else
5413                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5414                                                dst4, tuple->ipv4.dport,
5415                                                dif, sdif, &udp_table, NULL);
5416 #if IS_ENABLED(CONFIG_IPV6)
5417         } else {
5418                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5419                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5420
5421                 if (proto == IPPROTO_TCP)
5422                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5423                                             src6, tuple->ipv6.sport,
5424                                             dst6, ntohs(tuple->ipv6.dport),
5425                                             dif, sdif, &refcounted);
5426                 else if (likely(ipv6_bpf_stub))
5427                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5428                                                             src6, tuple->ipv6.sport,
5429                                                             dst6, tuple->ipv6.dport,
5430                                                             dif, sdif,
5431                                                             &udp_table, NULL);
5432 #endif
5433         }
5434
5435         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5436                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5437                 sk = NULL;
5438         }
5439         return sk;
5440 }
5441
5442 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5443  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5444  * Returns the socket as an 'unsigned long' to simplify the casting in the
5445  * callers to satisfy BPF_CALL declarations.
5446  */
5447 static struct sock *
5448 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5449                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5450                  u64 flags)
5451 {
5452         struct sock *sk = NULL;
5453         u8 family = AF_UNSPEC;
5454         struct net *net;
5455         int sdif;
5456
5457         if (len == sizeof(tuple->ipv4))
5458                 family = AF_INET;
5459         else if (len == sizeof(tuple->ipv6))
5460                 family = AF_INET6;
5461         else
5462                 return NULL;
5463
5464         if (unlikely(family == AF_UNSPEC || flags ||
5465                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5466                 goto out;
5467
5468         if (family == AF_INET)
5469                 sdif = inet_sdif(skb);
5470         else
5471                 sdif = inet6_sdif(skb);
5472
5473         if ((s32)netns_id < 0) {
5474                 net = caller_net;
5475                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5476         } else {
5477                 net = get_net_ns_by_id(caller_net, netns_id);
5478                 if (unlikely(!net))
5479                         goto out;
5480                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5481                 put_net(net);
5482         }
5483
5484 out:
5485         return sk;
5486 }
5487
5488 static struct sock *
5489 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5490                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5491                 u64 flags)
5492 {
5493         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5494                                            ifindex, proto, netns_id, flags);
5495
5496         if (sk) {
5497                 sk = sk_to_full_sk(sk);
5498                 if (!sk_fullsock(sk)) {
5499                         sock_gen_put(sk);
5500                         return NULL;
5501                 }
5502         }
5503
5504         return sk;
5505 }
5506
5507 static struct sock *
5508 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5509                u8 proto, u64 netns_id, u64 flags)
5510 {
5511         struct net *caller_net;
5512         int ifindex;
5513
5514         if (skb->dev) {
5515                 caller_net = dev_net(skb->dev);
5516                 ifindex = skb->dev->ifindex;
5517         } else {
5518                 caller_net = sock_net(skb->sk);
5519                 ifindex = 0;
5520         }
5521
5522         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5523                                 netns_id, flags);
5524 }
5525
5526 static struct sock *
5527 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5528               u8 proto, u64 netns_id, u64 flags)
5529 {
5530         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5531                                          flags);
5532
5533         if (sk) {
5534                 sk = sk_to_full_sk(sk);
5535                 if (!sk_fullsock(sk)) {
5536                         sock_gen_put(sk);
5537                         return NULL;
5538                 }
5539         }
5540
5541         return sk;
5542 }
5543
5544 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5545            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5546 {
5547         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5548                                              netns_id, flags);
5549 }
5550
5551 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5552         .func           = bpf_skc_lookup_tcp,
5553         .gpl_only       = false,
5554         .pkt_access     = true,
5555         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5556         .arg1_type      = ARG_PTR_TO_CTX,
5557         .arg2_type      = ARG_PTR_TO_MEM,
5558         .arg3_type      = ARG_CONST_SIZE,
5559         .arg4_type      = ARG_ANYTHING,
5560         .arg5_type      = ARG_ANYTHING,
5561 };
5562
5563 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5564            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5565 {
5566         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5567                                             netns_id, flags);
5568 }
5569
5570 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5571         .func           = bpf_sk_lookup_tcp,
5572         .gpl_only       = false,
5573         .pkt_access     = true,
5574         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5575         .arg1_type      = ARG_PTR_TO_CTX,
5576         .arg2_type      = ARG_PTR_TO_MEM,
5577         .arg3_type      = ARG_CONST_SIZE,
5578         .arg4_type      = ARG_ANYTHING,
5579         .arg5_type      = ARG_ANYTHING,
5580 };
5581
5582 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5583            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5584 {
5585         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5586                                             netns_id, flags);
5587 }
5588
5589 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5590         .func           = bpf_sk_lookup_udp,
5591         .gpl_only       = false,
5592         .pkt_access     = true,
5593         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5594         .arg1_type      = ARG_PTR_TO_CTX,
5595         .arg2_type      = ARG_PTR_TO_MEM,
5596         .arg3_type      = ARG_CONST_SIZE,
5597         .arg4_type      = ARG_ANYTHING,
5598         .arg5_type      = ARG_ANYTHING,
5599 };
5600
5601 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5602 {
5603         if (sk_is_refcounted(sk))
5604                 sock_gen_put(sk);
5605         return 0;
5606 }
5607
5608 static const struct bpf_func_proto bpf_sk_release_proto = {
5609         .func           = bpf_sk_release,
5610         .gpl_only       = false,
5611         .ret_type       = RET_INTEGER,
5612         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5613 };
5614
5615 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5616            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5617 {
5618         struct net *caller_net = dev_net(ctx->rxq->dev);
5619         int ifindex = ctx->rxq->dev->ifindex;
5620
5621         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5622                                               ifindex, IPPROTO_UDP, netns_id,
5623                                               flags);
5624 }
5625
5626 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5627         .func           = bpf_xdp_sk_lookup_udp,
5628         .gpl_only       = false,
5629         .pkt_access     = true,
5630         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5631         .arg1_type      = ARG_PTR_TO_CTX,
5632         .arg2_type      = ARG_PTR_TO_MEM,
5633         .arg3_type      = ARG_CONST_SIZE,
5634         .arg4_type      = ARG_ANYTHING,
5635         .arg5_type      = ARG_ANYTHING,
5636 };
5637
5638 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5639            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5640 {
5641         struct net *caller_net = dev_net(ctx->rxq->dev);
5642         int ifindex = ctx->rxq->dev->ifindex;
5643
5644         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5645                                                ifindex, IPPROTO_TCP, netns_id,
5646                                                flags);
5647 }
5648
5649 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5650         .func           = bpf_xdp_skc_lookup_tcp,
5651         .gpl_only       = false,
5652         .pkt_access     = true,
5653         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5654         .arg1_type      = ARG_PTR_TO_CTX,
5655         .arg2_type      = ARG_PTR_TO_MEM,
5656         .arg3_type      = ARG_CONST_SIZE,
5657         .arg4_type      = ARG_ANYTHING,
5658         .arg5_type      = ARG_ANYTHING,
5659 };
5660
5661 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5662            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5663 {
5664         struct net *caller_net = dev_net(ctx->rxq->dev);
5665         int ifindex = ctx->rxq->dev->ifindex;
5666
5667         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5668                                               ifindex, IPPROTO_TCP, netns_id,
5669                                               flags);
5670 }
5671
5672 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5673         .func           = bpf_xdp_sk_lookup_tcp,
5674         .gpl_only       = false,
5675         .pkt_access     = true,
5676         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5677         .arg1_type      = ARG_PTR_TO_CTX,
5678         .arg2_type      = ARG_PTR_TO_MEM,
5679         .arg3_type      = ARG_CONST_SIZE,
5680         .arg4_type      = ARG_ANYTHING,
5681         .arg5_type      = ARG_ANYTHING,
5682 };
5683
5684 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5685            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5686 {
5687         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5688                                                sock_net(ctx->sk), 0,
5689                                                IPPROTO_TCP, netns_id, flags);
5690 }
5691
5692 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5693         .func           = bpf_sock_addr_skc_lookup_tcp,
5694         .gpl_only       = false,
5695         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5696         .arg1_type      = ARG_PTR_TO_CTX,
5697         .arg2_type      = ARG_PTR_TO_MEM,
5698         .arg3_type      = ARG_CONST_SIZE,
5699         .arg4_type      = ARG_ANYTHING,
5700         .arg5_type      = ARG_ANYTHING,
5701 };
5702
5703 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5704            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5705 {
5706         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5707                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
5708                                               netns_id, flags);
5709 }
5710
5711 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5712         .func           = bpf_sock_addr_sk_lookup_tcp,
5713         .gpl_only       = false,
5714         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5715         .arg1_type      = ARG_PTR_TO_CTX,
5716         .arg2_type      = ARG_PTR_TO_MEM,
5717         .arg3_type      = ARG_CONST_SIZE,
5718         .arg4_type      = ARG_ANYTHING,
5719         .arg5_type      = ARG_ANYTHING,
5720 };
5721
5722 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5723            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5724 {
5725         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5726                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
5727                                               netns_id, flags);
5728 }
5729
5730 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5731         .func           = bpf_sock_addr_sk_lookup_udp,
5732         .gpl_only       = false,
5733         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5734         .arg1_type      = ARG_PTR_TO_CTX,
5735         .arg2_type      = ARG_PTR_TO_MEM,
5736         .arg3_type      = ARG_CONST_SIZE,
5737         .arg4_type      = ARG_ANYTHING,
5738         .arg5_type      = ARG_ANYTHING,
5739 };
5740
5741 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5742                                   struct bpf_insn_access_aux *info)
5743 {
5744         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5745                                           icsk_retransmits))
5746                 return false;
5747
5748         if (off % size != 0)
5749                 return false;
5750
5751         switch (off) {
5752         case offsetof(struct bpf_tcp_sock, bytes_received):
5753         case offsetof(struct bpf_tcp_sock, bytes_acked):
5754                 return size == sizeof(__u64);
5755         default:
5756                 return size == sizeof(__u32);
5757         }
5758 }
5759
5760 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5761                                     const struct bpf_insn *si,
5762                                     struct bpf_insn *insn_buf,
5763                                     struct bpf_prog *prog, u32 *target_size)
5764 {
5765         struct bpf_insn *insn = insn_buf;
5766
5767 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
5768         do {                                                            \
5769                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
5770                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
5771                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5772                                       si->dst_reg, si->src_reg,         \
5773                                       offsetof(struct tcp_sock, FIELD)); \
5774         } while (0)
5775
5776 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
5777         do {                                                            \
5778                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
5779                                           FIELD) >                      \
5780                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
5781                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
5782                                         struct inet_connection_sock,    \
5783                                         FIELD),                         \
5784                                       si->dst_reg, si->src_reg,         \
5785                                       offsetof(                         \
5786                                         struct inet_connection_sock,    \
5787                                         FIELD));                        \
5788         } while (0)
5789
5790         if (insn > insn_buf)
5791                 return insn - insn_buf;
5792
5793         switch (si->off) {
5794         case offsetof(struct bpf_tcp_sock, rtt_min):
5795                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5796                              sizeof(struct minmax));
5797                 BUILD_BUG_ON(sizeof(struct minmax) <
5798                              sizeof(struct minmax_sample));
5799
5800                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5801                                       offsetof(struct tcp_sock, rtt_min) +
5802                                       offsetof(struct minmax_sample, v));
5803                 break;
5804         case offsetof(struct bpf_tcp_sock, snd_cwnd):
5805                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5806                 break;
5807         case offsetof(struct bpf_tcp_sock, srtt_us):
5808                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
5809                 break;
5810         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5811                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5812                 break;
5813         case offsetof(struct bpf_tcp_sock, rcv_nxt):
5814                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5815                 break;
5816         case offsetof(struct bpf_tcp_sock, snd_nxt):
5817                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5818                 break;
5819         case offsetof(struct bpf_tcp_sock, snd_una):
5820                 BPF_TCP_SOCK_GET_COMMON(snd_una);
5821                 break;
5822         case offsetof(struct bpf_tcp_sock, mss_cache):
5823                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
5824                 break;
5825         case offsetof(struct bpf_tcp_sock, ecn_flags):
5826                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5827                 break;
5828         case offsetof(struct bpf_tcp_sock, rate_delivered):
5829                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5830                 break;
5831         case offsetof(struct bpf_tcp_sock, rate_interval_us):
5832                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5833                 break;
5834         case offsetof(struct bpf_tcp_sock, packets_out):
5835                 BPF_TCP_SOCK_GET_COMMON(packets_out);
5836                 break;
5837         case offsetof(struct bpf_tcp_sock, retrans_out):
5838                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
5839                 break;
5840         case offsetof(struct bpf_tcp_sock, total_retrans):
5841                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
5842                 break;
5843         case offsetof(struct bpf_tcp_sock, segs_in):
5844                 BPF_TCP_SOCK_GET_COMMON(segs_in);
5845                 break;
5846         case offsetof(struct bpf_tcp_sock, data_segs_in):
5847                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5848                 break;
5849         case offsetof(struct bpf_tcp_sock, segs_out):
5850                 BPF_TCP_SOCK_GET_COMMON(segs_out);
5851                 break;
5852         case offsetof(struct bpf_tcp_sock, data_segs_out):
5853                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5854                 break;
5855         case offsetof(struct bpf_tcp_sock, lost_out):
5856                 BPF_TCP_SOCK_GET_COMMON(lost_out);
5857                 break;
5858         case offsetof(struct bpf_tcp_sock, sacked_out):
5859                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
5860                 break;
5861         case offsetof(struct bpf_tcp_sock, bytes_received):
5862                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
5863                 break;
5864         case offsetof(struct bpf_tcp_sock, bytes_acked):
5865                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5866                 break;
5867         case offsetof(struct bpf_tcp_sock, dsack_dups):
5868                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5869                 break;
5870         case offsetof(struct bpf_tcp_sock, delivered):
5871                 BPF_TCP_SOCK_GET_COMMON(delivered);
5872                 break;
5873         case offsetof(struct bpf_tcp_sock, delivered_ce):
5874                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5875                 break;
5876         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5877                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5878                 break;
5879         }
5880
5881         return insn - insn_buf;
5882 }
5883
5884 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5885 {
5886         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5887                 return (unsigned long)sk;
5888
5889         return (unsigned long)NULL;
5890 }
5891
5892 const struct bpf_func_proto bpf_tcp_sock_proto = {
5893         .func           = bpf_tcp_sock,
5894         .gpl_only       = false,
5895         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
5896         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5897 };
5898
5899 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5900 {
5901         sk = sk_to_full_sk(sk);
5902
5903         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5904                 return (unsigned long)sk;
5905
5906         return (unsigned long)NULL;
5907 }
5908
5909 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5910         .func           = bpf_get_listener_sock,
5911         .gpl_only       = false,
5912         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5913         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5914 };
5915
5916 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5917 {
5918         unsigned int iphdr_len;
5919
5920         switch (skb_protocol(skb, true)) {
5921         case cpu_to_be16(ETH_P_IP):
5922                 iphdr_len = sizeof(struct iphdr);
5923                 break;
5924         case cpu_to_be16(ETH_P_IPV6):
5925                 iphdr_len = sizeof(struct ipv6hdr);
5926                 break;
5927         default:
5928                 return 0;
5929         }
5930
5931         if (skb_headlen(skb) < iphdr_len)
5932                 return 0;
5933
5934         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5935                 return 0;
5936
5937         return INET_ECN_set_ce(skb);
5938 }
5939
5940 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5941                                   struct bpf_insn_access_aux *info)
5942 {
5943         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5944                 return false;
5945
5946         if (off % size != 0)
5947                 return false;
5948
5949         switch (off) {
5950         default:
5951                 return size == sizeof(__u32);
5952         }
5953 }
5954
5955 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5956                                     const struct bpf_insn *si,
5957                                     struct bpf_insn *insn_buf,
5958                                     struct bpf_prog *prog, u32 *target_size)
5959 {
5960         struct bpf_insn *insn = insn_buf;
5961
5962 #define BPF_XDP_SOCK_GET(FIELD)                                         \
5963         do {                                                            \
5964                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
5965                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
5966                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5967                                       si->dst_reg, si->src_reg,         \
5968                                       offsetof(struct xdp_sock, FIELD)); \
5969         } while (0)
5970
5971         switch (si->off) {
5972         case offsetof(struct bpf_xdp_sock, queue_id):
5973                 BPF_XDP_SOCK_GET(queue_id);
5974                 break;
5975         }
5976
5977         return insn - insn_buf;
5978 }
5979
5980 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5981         .func           = bpf_skb_ecn_set_ce,
5982         .gpl_only       = false,
5983         .ret_type       = RET_INTEGER,
5984         .arg1_type      = ARG_PTR_TO_CTX,
5985 };
5986
5987 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5988            struct tcphdr *, th, u32, th_len)
5989 {
5990 #ifdef CONFIG_SYN_COOKIES
5991         u32 cookie;
5992         int ret;
5993
5994         if (unlikely(th_len < sizeof(*th)))
5995                 return -EINVAL;
5996
5997         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5998         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5999                 return -EINVAL;
6000
6001         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6002                 return -EINVAL;
6003
6004         if (!th->ack || th->rst || th->syn)
6005                 return -ENOENT;
6006
6007         if (tcp_synq_no_recent_overflow(sk))
6008                 return -ENOENT;
6009
6010         cookie = ntohl(th->ack_seq) - 1;
6011
6012         switch (sk->sk_family) {
6013         case AF_INET:
6014                 if (unlikely(iph_len < sizeof(struct iphdr)))
6015                         return -EINVAL;
6016
6017                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6018                 break;
6019
6020 #if IS_BUILTIN(CONFIG_IPV6)
6021         case AF_INET6:
6022                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6023                         return -EINVAL;
6024
6025                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6026                 break;
6027 #endif /* CONFIG_IPV6 */
6028
6029         default:
6030                 return -EPROTONOSUPPORT;
6031         }
6032
6033         if (ret > 0)
6034                 return 0;
6035
6036         return -ENOENT;
6037 #else
6038         return -ENOTSUPP;
6039 #endif
6040 }
6041
6042 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6043         .func           = bpf_tcp_check_syncookie,
6044         .gpl_only       = true,
6045         .pkt_access     = true,
6046         .ret_type       = RET_INTEGER,
6047         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6048         .arg2_type      = ARG_PTR_TO_MEM,
6049         .arg3_type      = ARG_CONST_SIZE,
6050         .arg4_type      = ARG_PTR_TO_MEM,
6051         .arg5_type      = ARG_CONST_SIZE,
6052 };
6053
6054 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6055            struct tcphdr *, th, u32, th_len)
6056 {
6057 #ifdef CONFIG_SYN_COOKIES
6058         u32 cookie;
6059         u16 mss;
6060
6061         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
6062                 return -EINVAL;
6063
6064         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6065                 return -EINVAL;
6066
6067         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6068                 return -ENOENT;
6069
6070         if (!th->syn || th->ack || th->fin || th->rst)
6071                 return -EINVAL;
6072
6073         if (unlikely(iph_len < sizeof(struct iphdr)))
6074                 return -EINVAL;
6075
6076         /* Both struct iphdr and struct ipv6hdr have the version field at the
6077          * same offset so we can cast to the shorter header (struct iphdr).
6078          */
6079         switch (((struct iphdr *)iph)->version) {
6080         case 4:
6081                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6082                         return -EINVAL;
6083
6084                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6085                 break;
6086
6087 #if IS_BUILTIN(CONFIG_IPV6)
6088         case 6:
6089                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6090                         return -EINVAL;
6091
6092                 if (sk->sk_family != AF_INET6)
6093                         return -EINVAL;
6094
6095                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6096                 break;
6097 #endif /* CONFIG_IPV6 */
6098
6099         default:
6100                 return -EPROTONOSUPPORT;
6101         }
6102         if (mss == 0)
6103                 return -ENOENT;
6104
6105         return cookie | ((u64)mss << 32);
6106 #else
6107         return -EOPNOTSUPP;
6108 #endif /* CONFIG_SYN_COOKIES */
6109 }
6110
6111 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6112         .func           = bpf_tcp_gen_syncookie,
6113         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6114         .pkt_access     = true,
6115         .ret_type       = RET_INTEGER,
6116         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6117         .arg2_type      = ARG_PTR_TO_MEM,
6118         .arg3_type      = ARG_CONST_SIZE,
6119         .arg4_type      = ARG_PTR_TO_MEM,
6120         .arg5_type      = ARG_CONST_SIZE,
6121 };
6122
6123 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6124 {
6125         if (flags != 0)
6126                 return -EINVAL;
6127         if (!skb_at_tc_ingress(skb))
6128                 return -EOPNOTSUPP;
6129         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6130                 return -ENETUNREACH;
6131         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6132                 return -ESOCKTNOSUPPORT;
6133         if (sk_is_refcounted(sk) &&
6134             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6135                 return -ENOENT;
6136
6137         skb_orphan(skb);
6138         skb->sk = sk;
6139         skb->destructor = sock_pfree;
6140
6141         return 0;
6142 }
6143
6144 static const struct bpf_func_proto bpf_sk_assign_proto = {
6145         .func           = bpf_sk_assign,
6146         .gpl_only       = false,
6147         .ret_type       = RET_INTEGER,
6148         .arg1_type      = ARG_PTR_TO_CTX,
6149         .arg2_type      = ARG_PTR_TO_SOCK_COMMON,
6150         .arg3_type      = ARG_ANYTHING,
6151 };
6152
6153 #endif /* CONFIG_INET */
6154
6155 bool bpf_helper_changes_pkt_data(void *func)
6156 {
6157         if (func == bpf_skb_vlan_push ||
6158             func == bpf_skb_vlan_pop ||
6159             func == bpf_skb_store_bytes ||
6160             func == bpf_skb_change_proto ||
6161             func == bpf_skb_change_head ||
6162             func == sk_skb_change_head ||
6163             func == bpf_skb_change_tail ||
6164             func == sk_skb_change_tail ||
6165             func == bpf_skb_adjust_room ||
6166             func == bpf_skb_pull_data ||
6167             func == sk_skb_pull_data ||
6168             func == bpf_clone_redirect ||
6169             func == bpf_l3_csum_replace ||
6170             func == bpf_l4_csum_replace ||
6171             func == bpf_xdp_adjust_head ||
6172             func == bpf_xdp_adjust_meta ||
6173             func == bpf_msg_pull_data ||
6174             func == bpf_msg_push_data ||
6175             func == bpf_msg_pop_data ||
6176             func == bpf_xdp_adjust_tail ||
6177 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6178             func == bpf_lwt_seg6_store_bytes ||
6179             func == bpf_lwt_seg6_adjust_srh ||
6180             func == bpf_lwt_seg6_action ||
6181 #endif
6182             func == bpf_lwt_in_push_encap ||
6183             func == bpf_lwt_xmit_push_encap)
6184                 return true;
6185
6186         return false;
6187 }
6188
6189 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6190 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6191
6192 static const struct bpf_func_proto *
6193 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6194 {
6195         switch (func_id) {
6196         /* inet and inet6 sockets are created in a process
6197          * context so there is always a valid uid/gid
6198          */
6199         case BPF_FUNC_get_current_uid_gid:
6200                 return &bpf_get_current_uid_gid_proto;
6201         case BPF_FUNC_get_local_storage:
6202                 return &bpf_get_local_storage_proto;
6203         case BPF_FUNC_get_socket_cookie:
6204                 return &bpf_get_socket_cookie_sock_proto;
6205         case BPF_FUNC_get_netns_cookie:
6206                 return &bpf_get_netns_cookie_sock_proto;
6207         case BPF_FUNC_perf_event_output:
6208                 return &bpf_event_output_data_proto;
6209         case BPF_FUNC_get_current_pid_tgid:
6210                 return &bpf_get_current_pid_tgid_proto;
6211         case BPF_FUNC_get_current_comm:
6212                 return &bpf_get_current_comm_proto;
6213 #ifdef CONFIG_CGROUPS
6214         case BPF_FUNC_get_current_cgroup_id:
6215                 return &bpf_get_current_cgroup_id_proto;
6216         case BPF_FUNC_get_current_ancestor_cgroup_id:
6217                 return &bpf_get_current_ancestor_cgroup_id_proto;
6218 #endif
6219 #ifdef CONFIG_CGROUP_NET_CLASSID
6220         case BPF_FUNC_get_cgroup_classid:
6221                 return &bpf_get_cgroup_classid_curr_proto;
6222 #endif
6223         case BPF_FUNC_sk_storage_get:
6224                 return &bpf_sk_storage_get_cg_sock_proto;
6225         default:
6226                 return bpf_base_func_proto(func_id);
6227         }
6228 }
6229
6230 static const struct bpf_func_proto *
6231 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6232 {
6233         switch (func_id) {
6234         /* inet and inet6 sockets are created in a process
6235          * context so there is always a valid uid/gid
6236          */
6237         case BPF_FUNC_get_current_uid_gid:
6238                 return &bpf_get_current_uid_gid_proto;
6239         case BPF_FUNC_bind:
6240                 switch (prog->expected_attach_type) {
6241                 case BPF_CGROUP_INET4_CONNECT:
6242                 case BPF_CGROUP_INET6_CONNECT:
6243                         return &bpf_bind_proto;
6244                 default:
6245                         return NULL;
6246                 }
6247         case BPF_FUNC_get_socket_cookie:
6248                 return &bpf_get_socket_cookie_sock_addr_proto;
6249         case BPF_FUNC_get_netns_cookie:
6250                 return &bpf_get_netns_cookie_sock_addr_proto;
6251         case BPF_FUNC_get_local_storage:
6252                 return &bpf_get_local_storage_proto;
6253         case BPF_FUNC_perf_event_output:
6254                 return &bpf_event_output_data_proto;
6255         case BPF_FUNC_get_current_pid_tgid:
6256                 return &bpf_get_current_pid_tgid_proto;
6257         case BPF_FUNC_get_current_comm:
6258                 return &bpf_get_current_comm_proto;
6259 #ifdef CONFIG_CGROUPS
6260         case BPF_FUNC_get_current_cgroup_id:
6261                 return &bpf_get_current_cgroup_id_proto;
6262         case BPF_FUNC_get_current_ancestor_cgroup_id:
6263                 return &bpf_get_current_ancestor_cgroup_id_proto;
6264 #endif
6265 #ifdef CONFIG_CGROUP_NET_CLASSID
6266         case BPF_FUNC_get_cgroup_classid:
6267                 return &bpf_get_cgroup_classid_curr_proto;
6268 #endif
6269 #ifdef CONFIG_INET
6270         case BPF_FUNC_sk_lookup_tcp:
6271                 return &bpf_sock_addr_sk_lookup_tcp_proto;
6272         case BPF_FUNC_sk_lookup_udp:
6273                 return &bpf_sock_addr_sk_lookup_udp_proto;
6274         case BPF_FUNC_sk_release:
6275                 return &bpf_sk_release_proto;
6276         case BPF_FUNC_skc_lookup_tcp:
6277                 return &bpf_sock_addr_skc_lookup_tcp_proto;
6278 #endif /* CONFIG_INET */
6279         case BPF_FUNC_sk_storage_get:
6280                 return &bpf_sk_storage_get_proto;
6281         case BPF_FUNC_sk_storage_delete:
6282                 return &bpf_sk_storage_delete_proto;
6283         case BPF_FUNC_setsockopt:
6284                 switch (prog->expected_attach_type) {
6285                 case BPF_CGROUP_INET4_CONNECT:
6286                 case BPF_CGROUP_INET6_CONNECT:
6287                         return &bpf_sock_addr_setsockopt_proto;
6288                 default:
6289                         return NULL;
6290                 }
6291         case BPF_FUNC_getsockopt:
6292                 switch (prog->expected_attach_type) {
6293                 case BPF_CGROUP_INET4_CONNECT:
6294                 case BPF_CGROUP_INET6_CONNECT:
6295                         return &bpf_sock_addr_getsockopt_proto;
6296                 default:
6297                         return NULL;
6298                 }
6299         default:
6300                 return bpf_base_func_proto(func_id);
6301         }
6302 }
6303
6304 static const struct bpf_func_proto *
6305 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6306 {
6307         switch (func_id) {
6308         case BPF_FUNC_skb_load_bytes:
6309                 return &bpf_skb_load_bytes_proto;
6310         case BPF_FUNC_skb_load_bytes_relative:
6311                 return &bpf_skb_load_bytes_relative_proto;
6312         case BPF_FUNC_get_socket_cookie:
6313                 return &bpf_get_socket_cookie_proto;
6314         case BPF_FUNC_get_socket_uid:
6315                 return &bpf_get_socket_uid_proto;
6316         case BPF_FUNC_perf_event_output:
6317                 return &bpf_skb_event_output_proto;
6318         default:
6319                 return bpf_base_func_proto(func_id);
6320         }
6321 }
6322
6323 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6324 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6325
6326 static const struct bpf_func_proto *
6327 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6328 {
6329         switch (func_id) {
6330         case BPF_FUNC_get_local_storage:
6331                 return &bpf_get_local_storage_proto;
6332         case BPF_FUNC_sk_fullsock:
6333                 return &bpf_sk_fullsock_proto;
6334         case BPF_FUNC_sk_storage_get:
6335                 return &bpf_sk_storage_get_proto;
6336         case BPF_FUNC_sk_storage_delete:
6337                 return &bpf_sk_storage_delete_proto;
6338         case BPF_FUNC_perf_event_output:
6339                 return &bpf_skb_event_output_proto;
6340 #ifdef CONFIG_SOCK_CGROUP_DATA
6341         case BPF_FUNC_skb_cgroup_id:
6342                 return &bpf_skb_cgroup_id_proto;
6343         case BPF_FUNC_skb_ancestor_cgroup_id:
6344                 return &bpf_skb_ancestor_cgroup_id_proto;
6345         case BPF_FUNC_sk_cgroup_id:
6346                 return &bpf_sk_cgroup_id_proto;
6347         case BPF_FUNC_sk_ancestor_cgroup_id:
6348                 return &bpf_sk_ancestor_cgroup_id_proto;
6349 #endif
6350 #ifdef CONFIG_INET
6351         case BPF_FUNC_sk_lookup_tcp:
6352                 return &bpf_sk_lookup_tcp_proto;
6353         case BPF_FUNC_sk_lookup_udp:
6354                 return &bpf_sk_lookup_udp_proto;
6355         case BPF_FUNC_sk_release:
6356                 return &bpf_sk_release_proto;
6357         case BPF_FUNC_skc_lookup_tcp:
6358                 return &bpf_skc_lookup_tcp_proto;
6359         case BPF_FUNC_tcp_sock:
6360                 return &bpf_tcp_sock_proto;
6361         case BPF_FUNC_get_listener_sock:
6362                 return &bpf_get_listener_sock_proto;
6363         case BPF_FUNC_skb_ecn_set_ce:
6364                 return &bpf_skb_ecn_set_ce_proto;
6365 #endif
6366         default:
6367                 return sk_filter_func_proto(func_id, prog);
6368         }
6369 }
6370
6371 static const struct bpf_func_proto *
6372 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6373 {
6374         switch (func_id) {
6375         case BPF_FUNC_skb_store_bytes:
6376                 return &bpf_skb_store_bytes_proto;
6377         case BPF_FUNC_skb_load_bytes:
6378                 return &bpf_skb_load_bytes_proto;
6379         case BPF_FUNC_skb_load_bytes_relative:
6380                 return &bpf_skb_load_bytes_relative_proto;
6381         case BPF_FUNC_skb_pull_data:
6382                 return &bpf_skb_pull_data_proto;
6383         case BPF_FUNC_csum_diff:
6384                 return &bpf_csum_diff_proto;
6385         case BPF_FUNC_csum_update:
6386                 return &bpf_csum_update_proto;
6387         case BPF_FUNC_csum_level:
6388                 return &bpf_csum_level_proto;
6389         case BPF_FUNC_l3_csum_replace:
6390                 return &bpf_l3_csum_replace_proto;
6391         case BPF_FUNC_l4_csum_replace:
6392                 return &bpf_l4_csum_replace_proto;
6393         case BPF_FUNC_clone_redirect:
6394                 return &bpf_clone_redirect_proto;
6395         case BPF_FUNC_get_cgroup_classid:
6396                 return &bpf_get_cgroup_classid_proto;
6397         case BPF_FUNC_skb_vlan_push:
6398                 return &bpf_skb_vlan_push_proto;
6399         case BPF_FUNC_skb_vlan_pop:
6400                 return &bpf_skb_vlan_pop_proto;
6401         case BPF_FUNC_skb_change_proto:
6402                 return &bpf_skb_change_proto_proto;
6403         case BPF_FUNC_skb_change_type:
6404                 return &bpf_skb_change_type_proto;
6405         case BPF_FUNC_skb_adjust_room:
6406                 return &bpf_skb_adjust_room_proto;
6407         case BPF_FUNC_skb_change_tail:
6408                 return &bpf_skb_change_tail_proto;
6409         case BPF_FUNC_skb_change_head:
6410                 return &bpf_skb_change_head_proto;
6411         case BPF_FUNC_skb_get_tunnel_key:
6412                 return &bpf_skb_get_tunnel_key_proto;
6413         case BPF_FUNC_skb_set_tunnel_key:
6414                 return bpf_get_skb_set_tunnel_proto(func_id);
6415         case BPF_FUNC_skb_get_tunnel_opt:
6416                 return &bpf_skb_get_tunnel_opt_proto;
6417         case BPF_FUNC_skb_set_tunnel_opt:
6418                 return bpf_get_skb_set_tunnel_proto(func_id);
6419         case BPF_FUNC_redirect:
6420                 return &bpf_redirect_proto;
6421         case BPF_FUNC_get_route_realm:
6422                 return &bpf_get_route_realm_proto;
6423         case BPF_FUNC_get_hash_recalc:
6424                 return &bpf_get_hash_recalc_proto;
6425         case BPF_FUNC_set_hash_invalid:
6426                 return &bpf_set_hash_invalid_proto;
6427         case BPF_FUNC_set_hash:
6428                 return &bpf_set_hash_proto;
6429         case BPF_FUNC_perf_event_output:
6430                 return &bpf_skb_event_output_proto;
6431         case BPF_FUNC_get_smp_processor_id:
6432                 return &bpf_get_smp_processor_id_proto;
6433         case BPF_FUNC_skb_under_cgroup:
6434                 return &bpf_skb_under_cgroup_proto;
6435         case BPF_FUNC_get_socket_cookie:
6436                 return &bpf_get_socket_cookie_proto;
6437         case BPF_FUNC_get_socket_uid:
6438                 return &bpf_get_socket_uid_proto;
6439         case BPF_FUNC_fib_lookup:
6440                 return &bpf_skb_fib_lookup_proto;
6441         case BPF_FUNC_sk_fullsock:
6442                 return &bpf_sk_fullsock_proto;
6443         case BPF_FUNC_sk_storage_get:
6444                 return &bpf_sk_storage_get_proto;
6445         case BPF_FUNC_sk_storage_delete:
6446                 return &bpf_sk_storage_delete_proto;
6447 #ifdef CONFIG_XFRM
6448         case BPF_FUNC_skb_get_xfrm_state:
6449                 return &bpf_skb_get_xfrm_state_proto;
6450 #endif
6451 #ifdef CONFIG_SOCK_CGROUP_DATA
6452         case BPF_FUNC_skb_cgroup_id:
6453                 return &bpf_skb_cgroup_id_proto;
6454         case BPF_FUNC_skb_ancestor_cgroup_id:
6455                 return &bpf_skb_ancestor_cgroup_id_proto;
6456 #endif
6457 #ifdef CONFIG_INET
6458         case BPF_FUNC_sk_lookup_tcp:
6459                 return &bpf_sk_lookup_tcp_proto;
6460         case BPF_FUNC_sk_lookup_udp:
6461                 return &bpf_sk_lookup_udp_proto;
6462         case BPF_FUNC_sk_release:
6463                 return &bpf_sk_release_proto;
6464         case BPF_FUNC_tcp_sock:
6465                 return &bpf_tcp_sock_proto;
6466         case BPF_FUNC_get_listener_sock:
6467                 return &bpf_get_listener_sock_proto;
6468         case BPF_FUNC_skc_lookup_tcp:
6469                 return &bpf_skc_lookup_tcp_proto;
6470         case BPF_FUNC_tcp_check_syncookie:
6471                 return &bpf_tcp_check_syncookie_proto;
6472         case BPF_FUNC_skb_ecn_set_ce:
6473                 return &bpf_skb_ecn_set_ce_proto;
6474         case BPF_FUNC_tcp_gen_syncookie:
6475                 return &bpf_tcp_gen_syncookie_proto;
6476         case BPF_FUNC_sk_assign:
6477                 return &bpf_sk_assign_proto;
6478 #endif
6479         default:
6480                 return bpf_base_func_proto(func_id);
6481         }
6482 }
6483
6484 static const struct bpf_func_proto *
6485 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6486 {
6487         switch (func_id) {
6488         case BPF_FUNC_perf_event_output:
6489                 return &bpf_xdp_event_output_proto;
6490         case BPF_FUNC_get_smp_processor_id:
6491                 return &bpf_get_smp_processor_id_proto;
6492         case BPF_FUNC_csum_diff:
6493                 return &bpf_csum_diff_proto;
6494         case BPF_FUNC_xdp_adjust_head:
6495                 return &bpf_xdp_adjust_head_proto;
6496         case BPF_FUNC_xdp_adjust_meta:
6497                 return &bpf_xdp_adjust_meta_proto;
6498         case BPF_FUNC_redirect:
6499                 return &bpf_xdp_redirect_proto;
6500         case BPF_FUNC_redirect_map:
6501                 return &bpf_xdp_redirect_map_proto;
6502         case BPF_FUNC_xdp_adjust_tail:
6503                 return &bpf_xdp_adjust_tail_proto;
6504         case BPF_FUNC_fib_lookup:
6505                 return &bpf_xdp_fib_lookup_proto;
6506 #ifdef CONFIG_INET
6507         case BPF_FUNC_sk_lookup_udp:
6508                 return &bpf_xdp_sk_lookup_udp_proto;
6509         case BPF_FUNC_sk_lookup_tcp:
6510                 return &bpf_xdp_sk_lookup_tcp_proto;
6511         case BPF_FUNC_sk_release:
6512                 return &bpf_sk_release_proto;
6513         case BPF_FUNC_skc_lookup_tcp:
6514                 return &bpf_xdp_skc_lookup_tcp_proto;
6515         case BPF_FUNC_tcp_check_syncookie:
6516                 return &bpf_tcp_check_syncookie_proto;
6517         case BPF_FUNC_tcp_gen_syncookie:
6518                 return &bpf_tcp_gen_syncookie_proto;
6519 #endif
6520         default:
6521                 return bpf_base_func_proto(func_id);
6522         }
6523 }
6524
6525 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6526 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6527
6528 static const struct bpf_func_proto *
6529 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6530 {
6531         switch (func_id) {
6532         case BPF_FUNC_setsockopt:
6533                 return &bpf_sock_ops_setsockopt_proto;
6534         case BPF_FUNC_getsockopt:
6535                 return &bpf_sock_ops_getsockopt_proto;
6536         case BPF_FUNC_sock_ops_cb_flags_set:
6537                 return &bpf_sock_ops_cb_flags_set_proto;
6538         case BPF_FUNC_sock_map_update:
6539                 return &bpf_sock_map_update_proto;
6540         case BPF_FUNC_sock_hash_update:
6541                 return &bpf_sock_hash_update_proto;
6542         case BPF_FUNC_get_socket_cookie:
6543                 return &bpf_get_socket_cookie_sock_ops_proto;
6544         case BPF_FUNC_get_local_storage:
6545                 return &bpf_get_local_storage_proto;
6546         case BPF_FUNC_perf_event_output:
6547                 return &bpf_event_output_data_proto;
6548         case BPF_FUNC_sk_storage_get:
6549                 return &bpf_sk_storage_get_proto;
6550         case BPF_FUNC_sk_storage_delete:
6551                 return &bpf_sk_storage_delete_proto;
6552 #ifdef CONFIG_INET
6553         case BPF_FUNC_tcp_sock:
6554                 return &bpf_tcp_sock_proto;
6555 #endif /* CONFIG_INET */
6556         default:
6557                 return bpf_base_func_proto(func_id);
6558         }
6559 }
6560
6561 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6562 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6563
6564 static const struct bpf_func_proto *
6565 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6566 {
6567         switch (func_id) {
6568         case BPF_FUNC_msg_redirect_map:
6569                 return &bpf_msg_redirect_map_proto;
6570         case BPF_FUNC_msg_redirect_hash:
6571                 return &bpf_msg_redirect_hash_proto;
6572         case BPF_FUNC_msg_apply_bytes:
6573                 return &bpf_msg_apply_bytes_proto;
6574         case BPF_FUNC_msg_cork_bytes:
6575                 return &bpf_msg_cork_bytes_proto;
6576         case BPF_FUNC_msg_pull_data:
6577                 return &bpf_msg_pull_data_proto;
6578         case BPF_FUNC_msg_push_data:
6579                 return &bpf_msg_push_data_proto;
6580         case BPF_FUNC_msg_pop_data:
6581                 return &bpf_msg_pop_data_proto;
6582         case BPF_FUNC_perf_event_output:
6583                 return &bpf_event_output_data_proto;
6584         case BPF_FUNC_get_current_uid_gid:
6585                 return &bpf_get_current_uid_gid_proto;
6586         case BPF_FUNC_get_current_pid_tgid:
6587                 return &bpf_get_current_pid_tgid_proto;
6588         case BPF_FUNC_sk_storage_get:
6589                 return &bpf_sk_storage_get_proto;
6590         case BPF_FUNC_sk_storage_delete:
6591                 return &bpf_sk_storage_delete_proto;
6592 #ifdef CONFIG_CGROUPS
6593         case BPF_FUNC_get_current_cgroup_id:
6594                 return &bpf_get_current_cgroup_id_proto;
6595         case BPF_FUNC_get_current_ancestor_cgroup_id:
6596                 return &bpf_get_current_ancestor_cgroup_id_proto;
6597 #endif
6598 #ifdef CONFIG_CGROUP_NET_CLASSID
6599         case BPF_FUNC_get_cgroup_classid:
6600                 return &bpf_get_cgroup_classid_curr_proto;
6601 #endif
6602         default:
6603                 return bpf_base_func_proto(func_id);
6604         }
6605 }
6606
6607 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6608 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6609
6610 static const struct bpf_func_proto *
6611 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6612 {
6613         switch (func_id) {
6614         case BPF_FUNC_skb_store_bytes:
6615                 return &bpf_skb_store_bytes_proto;
6616         case BPF_FUNC_skb_load_bytes:
6617                 return &bpf_skb_load_bytes_proto;
6618         case BPF_FUNC_skb_pull_data:
6619                 return &sk_skb_pull_data_proto;
6620         case BPF_FUNC_skb_change_tail:
6621                 return &sk_skb_change_tail_proto;
6622         case BPF_FUNC_skb_change_head:
6623                 return &sk_skb_change_head_proto;
6624         case BPF_FUNC_get_socket_cookie:
6625                 return &bpf_get_socket_cookie_proto;
6626         case BPF_FUNC_get_socket_uid:
6627                 return &bpf_get_socket_uid_proto;
6628         case BPF_FUNC_sk_redirect_map:
6629                 return &bpf_sk_redirect_map_proto;
6630         case BPF_FUNC_sk_redirect_hash:
6631                 return &bpf_sk_redirect_hash_proto;
6632         case BPF_FUNC_perf_event_output:
6633                 return &bpf_skb_event_output_proto;
6634 #ifdef CONFIG_INET
6635         case BPF_FUNC_sk_lookup_tcp:
6636                 return &bpf_sk_lookup_tcp_proto;
6637         case BPF_FUNC_sk_lookup_udp:
6638                 return &bpf_sk_lookup_udp_proto;
6639         case BPF_FUNC_sk_release:
6640                 return &bpf_sk_release_proto;
6641         case BPF_FUNC_skc_lookup_tcp:
6642                 return &bpf_skc_lookup_tcp_proto;
6643 #endif
6644         default:
6645                 return bpf_base_func_proto(func_id);
6646         }
6647 }
6648
6649 static const struct bpf_func_proto *
6650 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6651 {
6652         switch (func_id) {
6653         case BPF_FUNC_skb_load_bytes:
6654                 return &bpf_flow_dissector_load_bytes_proto;
6655         default:
6656                 return bpf_base_func_proto(func_id);
6657         }
6658 }
6659
6660 static const struct bpf_func_proto *
6661 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6662 {
6663         switch (func_id) {
6664         case BPF_FUNC_skb_load_bytes:
6665                 return &bpf_skb_load_bytes_proto;
6666         case BPF_FUNC_skb_pull_data:
6667                 return &bpf_skb_pull_data_proto;
6668         case BPF_FUNC_csum_diff:
6669                 return &bpf_csum_diff_proto;
6670         case BPF_FUNC_get_cgroup_classid:
6671                 return &bpf_get_cgroup_classid_proto;
6672         case BPF_FUNC_get_route_realm:
6673                 return &bpf_get_route_realm_proto;
6674         case BPF_FUNC_get_hash_recalc:
6675                 return &bpf_get_hash_recalc_proto;
6676         case BPF_FUNC_perf_event_output:
6677                 return &bpf_skb_event_output_proto;
6678         case BPF_FUNC_get_smp_processor_id:
6679                 return &bpf_get_smp_processor_id_proto;
6680         case BPF_FUNC_skb_under_cgroup:
6681                 return &bpf_skb_under_cgroup_proto;
6682         default:
6683                 return bpf_base_func_proto(func_id);
6684         }
6685 }
6686
6687 static const struct bpf_func_proto *
6688 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6689 {
6690         switch (func_id) {
6691         case BPF_FUNC_lwt_push_encap:
6692                 return &bpf_lwt_in_push_encap_proto;
6693         default:
6694                 return lwt_out_func_proto(func_id, prog);
6695         }
6696 }
6697
6698 static const struct bpf_func_proto *
6699 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6700 {
6701         switch (func_id) {
6702         case BPF_FUNC_skb_get_tunnel_key:
6703                 return &bpf_skb_get_tunnel_key_proto;
6704         case BPF_FUNC_skb_set_tunnel_key:
6705                 return bpf_get_skb_set_tunnel_proto(func_id);
6706         case BPF_FUNC_skb_get_tunnel_opt:
6707                 return &bpf_skb_get_tunnel_opt_proto;
6708         case BPF_FUNC_skb_set_tunnel_opt:
6709                 return bpf_get_skb_set_tunnel_proto(func_id);
6710         case BPF_FUNC_redirect:
6711                 return &bpf_redirect_proto;
6712         case BPF_FUNC_clone_redirect:
6713                 return &bpf_clone_redirect_proto;
6714         case BPF_FUNC_skb_change_tail:
6715                 return &bpf_skb_change_tail_proto;
6716         case BPF_FUNC_skb_change_head:
6717                 return &bpf_skb_change_head_proto;
6718         case BPF_FUNC_skb_store_bytes:
6719                 return &bpf_skb_store_bytes_proto;
6720         case BPF_FUNC_csum_update:
6721                 return &bpf_csum_update_proto;
6722         case BPF_FUNC_csum_level:
6723                 return &bpf_csum_level_proto;
6724         case BPF_FUNC_l3_csum_replace:
6725                 return &bpf_l3_csum_replace_proto;
6726         case BPF_FUNC_l4_csum_replace:
6727                 return &bpf_l4_csum_replace_proto;
6728         case BPF_FUNC_set_hash_invalid:
6729                 return &bpf_set_hash_invalid_proto;
6730         case BPF_FUNC_lwt_push_encap:
6731                 return &bpf_lwt_xmit_push_encap_proto;
6732         default:
6733                 return lwt_out_func_proto(func_id, prog);
6734         }
6735 }
6736
6737 static const struct bpf_func_proto *
6738 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6739 {
6740         switch (func_id) {
6741 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6742         case BPF_FUNC_lwt_seg6_store_bytes:
6743                 return &bpf_lwt_seg6_store_bytes_proto;
6744         case BPF_FUNC_lwt_seg6_action:
6745                 return &bpf_lwt_seg6_action_proto;
6746         case BPF_FUNC_lwt_seg6_adjust_srh:
6747                 return &bpf_lwt_seg6_adjust_srh_proto;
6748 #endif
6749         default:
6750                 return lwt_out_func_proto(func_id, prog);
6751         }
6752 }
6753
6754 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6755                                     const struct bpf_prog *prog,
6756                                     struct bpf_insn_access_aux *info)
6757 {
6758         const int size_default = sizeof(__u32);
6759
6760         if (off < 0 || off >= sizeof(struct __sk_buff))
6761                 return false;
6762
6763         /* The verifier guarantees that size > 0. */
6764         if (off % size != 0)
6765                 return false;
6766
6767         switch (off) {
6768         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6769                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
6770                         return false;
6771                 break;
6772         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6773         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6774         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6775         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6776         case bpf_ctx_range(struct __sk_buff, data):
6777         case bpf_ctx_range(struct __sk_buff, data_meta):
6778         case bpf_ctx_range(struct __sk_buff, data_end):
6779                 if (size != size_default)
6780                         return false;
6781                 break;
6782         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6783                 return false;
6784         case bpf_ctx_range(struct __sk_buff, tstamp):
6785                 if (size != sizeof(__u64))
6786                         return false;
6787                 break;
6788         case offsetof(struct __sk_buff, sk):
6789                 if (type == BPF_WRITE || size != sizeof(__u64))
6790                         return false;
6791                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6792                 break;
6793         default:
6794                 /* Only narrow read access allowed for now. */
6795                 if (type == BPF_WRITE) {
6796                         if (size != size_default)
6797                                 return false;
6798                 } else {
6799                         bpf_ctx_record_field_size(info, size_default);
6800                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6801                                 return false;
6802                 }
6803         }
6804
6805         return true;
6806 }
6807
6808 static bool sk_filter_is_valid_access(int off, int size,
6809                                       enum bpf_access_type type,
6810                                       const struct bpf_prog *prog,
6811                                       struct bpf_insn_access_aux *info)
6812 {
6813         switch (off) {
6814         case bpf_ctx_range(struct __sk_buff, tc_classid):
6815         case bpf_ctx_range(struct __sk_buff, data):
6816         case bpf_ctx_range(struct __sk_buff, data_meta):
6817         case bpf_ctx_range(struct __sk_buff, data_end):
6818         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6819         case bpf_ctx_range(struct __sk_buff, tstamp):
6820         case bpf_ctx_range(struct __sk_buff, wire_len):
6821                 return false;
6822         }
6823
6824         if (type == BPF_WRITE) {
6825                 switch (off) {
6826                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6827                         break;
6828                 default:
6829                         return false;
6830                 }
6831         }
6832
6833         return bpf_skb_is_valid_access(off, size, type, prog, info);
6834 }
6835
6836 static bool cg_skb_is_valid_access(int off, int size,
6837                                    enum bpf_access_type type,
6838                                    const struct bpf_prog *prog,
6839                                    struct bpf_insn_access_aux *info)
6840 {
6841         switch (off) {
6842         case bpf_ctx_range(struct __sk_buff, tc_classid):
6843         case bpf_ctx_range(struct __sk_buff, data_meta):
6844         case bpf_ctx_range(struct __sk_buff, wire_len):
6845                 return false;
6846         case bpf_ctx_range(struct __sk_buff, data):
6847         case bpf_ctx_range(struct __sk_buff, data_end):
6848                 if (!bpf_capable())
6849                         return false;
6850                 break;
6851         }
6852
6853         if (type == BPF_WRITE) {
6854                 switch (off) {
6855                 case bpf_ctx_range(struct __sk_buff, mark):
6856                 case bpf_ctx_range(struct __sk_buff, priority):
6857                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6858                         break;
6859                 case bpf_ctx_range(struct __sk_buff, tstamp):
6860                         if (!bpf_capable())
6861                                 return false;
6862                         break;
6863                 default:
6864                         return false;
6865                 }
6866         }
6867
6868         switch (off) {
6869         case bpf_ctx_range(struct __sk_buff, data):
6870                 info->reg_type = PTR_TO_PACKET;
6871                 break;
6872         case bpf_ctx_range(struct __sk_buff, data_end):
6873                 info->reg_type = PTR_TO_PACKET_END;
6874                 break;
6875         }
6876
6877         return bpf_skb_is_valid_access(off, size, type, prog, info);
6878 }
6879
6880 static bool lwt_is_valid_access(int off, int size,
6881                                 enum bpf_access_type type,
6882                                 const struct bpf_prog *prog,
6883                                 struct bpf_insn_access_aux *info)
6884 {
6885         switch (off) {
6886         case bpf_ctx_range(struct __sk_buff, tc_classid):
6887         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6888         case bpf_ctx_range(struct __sk_buff, data_meta):
6889         case bpf_ctx_range(struct __sk_buff, tstamp):
6890         case bpf_ctx_range(struct __sk_buff, wire_len):
6891                 return false;
6892         }
6893
6894         if (type == BPF_WRITE) {
6895                 switch (off) {
6896                 case bpf_ctx_range(struct __sk_buff, mark):
6897                 case bpf_ctx_range(struct __sk_buff, priority):
6898                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6899                         break;
6900                 default:
6901                         return false;
6902                 }
6903         }
6904
6905         switch (off) {
6906         case bpf_ctx_range(struct __sk_buff, data):
6907                 info->reg_type = PTR_TO_PACKET;
6908                 break;
6909         case bpf_ctx_range(struct __sk_buff, data_end):
6910                 info->reg_type = PTR_TO_PACKET_END;
6911                 break;
6912         }
6913
6914         return bpf_skb_is_valid_access(off, size, type, prog, info);
6915 }
6916
6917 /* Attach type specific accesses */
6918 static bool __sock_filter_check_attach_type(int off,
6919                                             enum bpf_access_type access_type,
6920                                             enum bpf_attach_type attach_type)
6921 {
6922         switch (off) {
6923         case offsetof(struct bpf_sock, bound_dev_if):
6924         case offsetof(struct bpf_sock, mark):
6925         case offsetof(struct bpf_sock, priority):
6926                 switch (attach_type) {
6927                 case BPF_CGROUP_INET_SOCK_CREATE:
6928                 case BPF_CGROUP_INET_SOCK_RELEASE:
6929                         goto full_access;
6930                 default:
6931                         return false;
6932                 }
6933         case bpf_ctx_range(struct bpf_sock, src_ip4):
6934                 switch (attach_type) {
6935                 case BPF_CGROUP_INET4_POST_BIND:
6936                         goto read_only;
6937                 default:
6938                         return false;
6939                 }
6940         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6941                 switch (attach_type) {
6942                 case BPF_CGROUP_INET6_POST_BIND:
6943                         goto read_only;
6944                 default:
6945                         return false;
6946                 }
6947         case bpf_ctx_range(struct bpf_sock, src_port):
6948                 switch (attach_type) {
6949                 case BPF_CGROUP_INET4_POST_BIND:
6950                 case BPF_CGROUP_INET6_POST_BIND:
6951                         goto read_only;
6952                 default:
6953                         return false;
6954                 }
6955         }
6956 read_only:
6957         return access_type == BPF_READ;
6958 full_access:
6959         return true;
6960 }
6961
6962 bool bpf_sock_common_is_valid_access(int off, int size,
6963                                      enum bpf_access_type type,
6964                                      struct bpf_insn_access_aux *info)
6965 {
6966         switch (off) {
6967         case bpf_ctx_range_till(struct bpf_sock, type, priority):
6968                 return false;
6969         default:
6970                 return bpf_sock_is_valid_access(off, size, type, info);
6971         }
6972 }
6973
6974 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6975                               struct bpf_insn_access_aux *info)
6976 {
6977         const int size_default = sizeof(__u32);
6978
6979         if (off < 0 || off >= sizeof(struct bpf_sock))
6980                 return false;
6981         if (off % size != 0)
6982                 return false;
6983
6984         switch (off) {
6985         case offsetof(struct bpf_sock, state):
6986         case offsetof(struct bpf_sock, family):
6987         case offsetof(struct bpf_sock, type):
6988         case offsetof(struct bpf_sock, protocol):
6989         case offsetof(struct bpf_sock, dst_port):
6990         case offsetof(struct bpf_sock, src_port):
6991         case offsetof(struct bpf_sock, rx_queue_mapping):
6992         case bpf_ctx_range(struct bpf_sock, src_ip4):
6993         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6994         case bpf_ctx_range(struct bpf_sock, dst_ip4):
6995         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6996                 bpf_ctx_record_field_size(info, size_default);
6997                 return bpf_ctx_narrow_access_ok(off, size, size_default);
6998         }
6999
7000         return size == size_default;
7001 }
7002
7003 static bool sock_filter_is_valid_access(int off, int size,
7004                                         enum bpf_access_type type,
7005                                         const struct bpf_prog *prog,
7006                                         struct bpf_insn_access_aux *info)
7007 {
7008         if (!bpf_sock_is_valid_access(off, size, type, info))
7009                 return false;
7010         return __sock_filter_check_attach_type(off, type,
7011                                                prog->expected_attach_type);
7012 }
7013
7014 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7015                              const struct bpf_prog *prog)
7016 {
7017         /* Neither direct read nor direct write requires any preliminary
7018          * action.
7019          */
7020         return 0;
7021 }
7022
7023 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7024                                 const struct bpf_prog *prog, int drop_verdict)
7025 {
7026         struct bpf_insn *insn = insn_buf;
7027
7028         if (!direct_write)
7029                 return 0;
7030
7031         /* if (!skb->cloned)
7032          *       goto start;
7033          *
7034          * (Fast-path, otherwise approximation that we might be
7035          *  a clone, do the rest in helper.)
7036          */
7037         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7038         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7039         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7040
7041         /* ret = bpf_skb_pull_data(skb, 0); */
7042         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7043         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7044         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7045                                BPF_FUNC_skb_pull_data);
7046         /* if (!ret)
7047          *      goto restore;
7048          * return TC_ACT_SHOT;
7049          */
7050         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7051         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7052         *insn++ = BPF_EXIT_INSN();
7053
7054         /* restore: */
7055         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7056         /* start: */
7057         *insn++ = prog->insnsi[0];
7058
7059         return insn - insn_buf;
7060 }
7061
7062 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7063                           struct bpf_insn *insn_buf)
7064 {
7065         bool indirect = BPF_MODE(orig->code) == BPF_IND;
7066         struct bpf_insn *insn = insn_buf;
7067
7068         /* We're guaranteed here that CTX is in R6. */
7069         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7070         if (!indirect) {
7071                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7072         } else {
7073                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7074                 if (orig->imm)
7075                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7076         }
7077
7078         switch (BPF_SIZE(orig->code)) {
7079         case BPF_B:
7080                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7081                 break;
7082         case BPF_H:
7083                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7084                 break;
7085         case BPF_W:
7086                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7087                 break;
7088         }
7089
7090         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7091         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7092         *insn++ = BPF_EXIT_INSN();
7093
7094         return insn - insn_buf;
7095 }
7096
7097 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7098                                const struct bpf_prog *prog)
7099 {
7100         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7101 }
7102
7103 static bool tc_cls_act_is_valid_access(int off, int size,
7104                                        enum bpf_access_type type,
7105                                        const struct bpf_prog *prog,
7106                                        struct bpf_insn_access_aux *info)
7107 {
7108         if (type == BPF_WRITE) {
7109                 switch (off) {
7110                 case bpf_ctx_range(struct __sk_buff, mark):
7111                 case bpf_ctx_range(struct __sk_buff, tc_index):
7112                 case bpf_ctx_range(struct __sk_buff, priority):
7113                 case bpf_ctx_range(struct __sk_buff, tc_classid):
7114                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7115                 case bpf_ctx_range(struct __sk_buff, tstamp):
7116                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
7117                         break;
7118                 default:
7119                         return false;
7120                 }
7121         }
7122
7123         switch (off) {
7124         case bpf_ctx_range(struct __sk_buff, data):
7125                 info->reg_type = PTR_TO_PACKET;
7126                 break;
7127         case bpf_ctx_range(struct __sk_buff, data_meta):
7128                 info->reg_type = PTR_TO_PACKET_META;
7129                 break;
7130         case bpf_ctx_range(struct __sk_buff, data_end):
7131                 info->reg_type = PTR_TO_PACKET_END;
7132                 break;
7133         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7134                 return false;
7135         }
7136
7137         return bpf_skb_is_valid_access(off, size, type, prog, info);
7138 }
7139
7140 static bool __is_valid_xdp_access(int off, int size)
7141 {
7142         if (off < 0 || off >= sizeof(struct xdp_md))
7143                 return false;
7144         if (off % size != 0)
7145                 return false;
7146         if (size != sizeof(__u32))
7147                 return false;
7148
7149         return true;
7150 }
7151
7152 static bool xdp_is_valid_access(int off, int size,
7153                                 enum bpf_access_type type,
7154                                 const struct bpf_prog *prog,
7155                                 struct bpf_insn_access_aux *info)
7156 {
7157         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7158                 switch (off) {
7159                 case offsetof(struct xdp_md, egress_ifindex):
7160                         return false;
7161                 }
7162         }
7163
7164         if (type == BPF_WRITE) {
7165                 if (bpf_prog_is_dev_bound(prog->aux)) {
7166                         switch (off) {
7167                         case offsetof(struct xdp_md, rx_queue_index):
7168                                 return __is_valid_xdp_access(off, size);
7169                         }
7170                 }
7171                 return false;
7172         }
7173
7174         switch (off) {
7175         case offsetof(struct xdp_md, data):
7176                 info->reg_type = PTR_TO_PACKET;
7177                 break;
7178         case offsetof(struct xdp_md, data_meta):
7179                 info->reg_type = PTR_TO_PACKET_META;
7180                 break;
7181         case offsetof(struct xdp_md, data_end):
7182                 info->reg_type = PTR_TO_PACKET_END;
7183                 break;
7184         }
7185
7186         return __is_valid_xdp_access(off, size);
7187 }
7188
7189 void bpf_warn_invalid_xdp_action(u32 act)
7190 {
7191         const u32 act_max = XDP_REDIRECT;
7192
7193         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7194                   act > act_max ? "Illegal" : "Driver unsupported",
7195                   act);
7196 }
7197 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7198
7199 static bool sock_addr_is_valid_access(int off, int size,
7200                                       enum bpf_access_type type,
7201                                       const struct bpf_prog *prog,
7202                                       struct bpf_insn_access_aux *info)
7203 {
7204         const int size_default = sizeof(__u32);
7205
7206         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7207                 return false;
7208         if (off % size != 0)
7209                 return false;
7210
7211         /* Disallow access to IPv6 fields from IPv4 contex and vise
7212          * versa.
7213          */
7214         switch (off) {
7215         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7216                 switch (prog->expected_attach_type) {
7217                 case BPF_CGROUP_INET4_BIND:
7218                 case BPF_CGROUP_INET4_CONNECT:
7219                 case BPF_CGROUP_INET4_GETPEERNAME:
7220                 case BPF_CGROUP_INET4_GETSOCKNAME:
7221                 case BPF_CGROUP_UDP4_SENDMSG:
7222                 case BPF_CGROUP_UDP4_RECVMSG:
7223                         break;
7224                 default:
7225                         return false;
7226                 }
7227                 break;
7228         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7229                 switch (prog->expected_attach_type) {
7230                 case BPF_CGROUP_INET6_BIND:
7231                 case BPF_CGROUP_INET6_CONNECT:
7232                 case BPF_CGROUP_INET6_GETPEERNAME:
7233                 case BPF_CGROUP_INET6_GETSOCKNAME:
7234                 case BPF_CGROUP_UDP6_SENDMSG:
7235                 case BPF_CGROUP_UDP6_RECVMSG:
7236                         break;
7237                 default:
7238                         return false;
7239                 }
7240                 break;
7241         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7242                 switch (prog->expected_attach_type) {
7243                 case BPF_CGROUP_UDP4_SENDMSG:
7244                         break;
7245                 default:
7246                         return false;
7247                 }
7248                 break;
7249         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7250                                 msg_src_ip6[3]):
7251                 switch (prog->expected_attach_type) {
7252                 case BPF_CGROUP_UDP6_SENDMSG:
7253                         break;
7254                 default:
7255                         return false;
7256                 }
7257                 break;
7258         }
7259
7260         switch (off) {
7261         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7262         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7263         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7264         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7265                                 msg_src_ip6[3]):
7266         case bpf_ctx_range(struct bpf_sock_addr, user_port):
7267                 if (type == BPF_READ) {
7268                         bpf_ctx_record_field_size(info, size_default);
7269
7270                         if (bpf_ctx_wide_access_ok(off, size,
7271                                                    struct bpf_sock_addr,
7272                                                    user_ip6))
7273                                 return true;
7274
7275                         if (bpf_ctx_wide_access_ok(off, size,
7276                                                    struct bpf_sock_addr,
7277                                                    msg_src_ip6))
7278                                 return true;
7279
7280                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7281                                 return false;
7282                 } else {
7283                         if (bpf_ctx_wide_access_ok(off, size,
7284                                                    struct bpf_sock_addr,
7285                                                    user_ip6))
7286                                 return true;
7287
7288                         if (bpf_ctx_wide_access_ok(off, size,
7289                                                    struct bpf_sock_addr,
7290                                                    msg_src_ip6))
7291                                 return true;
7292
7293                         if (size != size_default)
7294                                 return false;
7295                 }
7296                 break;
7297         case offsetof(struct bpf_sock_addr, sk):
7298                 if (type != BPF_READ)
7299                         return false;
7300                 if (size != sizeof(__u64))
7301                         return false;
7302                 info->reg_type = PTR_TO_SOCKET;
7303                 break;
7304         default:
7305                 if (type == BPF_READ) {
7306                         if (size != size_default)
7307                                 return false;
7308                 } else {
7309                         return false;
7310                 }
7311         }
7312
7313         return true;
7314 }
7315
7316 static bool sock_ops_is_valid_access(int off, int size,
7317                                      enum bpf_access_type type,
7318                                      const struct bpf_prog *prog,
7319                                      struct bpf_insn_access_aux *info)
7320 {
7321         const int size_default = sizeof(__u32);
7322
7323         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7324                 return false;
7325
7326         /* The verifier guarantees that size > 0. */
7327         if (off % size != 0)
7328                 return false;
7329
7330         if (type == BPF_WRITE) {
7331                 switch (off) {
7332                 case offsetof(struct bpf_sock_ops, reply):
7333                 case offsetof(struct bpf_sock_ops, sk_txhash):
7334                         if (size != size_default)
7335                                 return false;
7336                         break;
7337                 default:
7338                         return false;
7339                 }
7340         } else {
7341                 switch (off) {
7342                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7343                                         bytes_acked):
7344                         if (size != sizeof(__u64))
7345                                 return false;
7346                         break;
7347                 case offsetof(struct bpf_sock_ops, sk):
7348                         if (size != sizeof(__u64))
7349                                 return false;
7350                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
7351                         break;
7352                 default:
7353                         if (size != size_default)
7354                                 return false;
7355                         break;
7356                 }
7357         }
7358
7359         return true;
7360 }
7361
7362 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7363                            const struct bpf_prog *prog)
7364 {
7365         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7366 }
7367
7368 static bool sk_skb_is_valid_access(int off, int size,
7369                                    enum bpf_access_type type,
7370                                    const struct bpf_prog *prog,
7371                                    struct bpf_insn_access_aux *info)
7372 {
7373         switch (off) {
7374         case bpf_ctx_range(struct __sk_buff, tc_classid):
7375         case bpf_ctx_range(struct __sk_buff, data_meta):
7376         case bpf_ctx_range(struct __sk_buff, tstamp):
7377         case bpf_ctx_range(struct __sk_buff, wire_len):
7378                 return false;
7379         }
7380
7381         if (type == BPF_WRITE) {
7382                 switch (off) {
7383                 case bpf_ctx_range(struct __sk_buff, tc_index):
7384                 case bpf_ctx_range(struct __sk_buff, priority):
7385                         break;
7386                 default:
7387                         return false;
7388                 }
7389         }
7390
7391         switch (off) {
7392         case bpf_ctx_range(struct __sk_buff, mark):
7393                 return false;
7394         case bpf_ctx_range(struct __sk_buff, data):
7395                 info->reg_type = PTR_TO_PACKET;
7396                 break;
7397         case bpf_ctx_range(struct __sk_buff, data_end):
7398                 info->reg_type = PTR_TO_PACKET_END;
7399                 break;
7400         }
7401
7402         return bpf_skb_is_valid_access(off, size, type, prog, info);
7403 }
7404
7405 static bool sk_msg_is_valid_access(int off, int size,
7406                                    enum bpf_access_type type,
7407                                    const struct bpf_prog *prog,
7408                                    struct bpf_insn_access_aux *info)
7409 {
7410         if (type == BPF_WRITE)
7411                 return false;
7412
7413         if (off % size != 0)
7414                 return false;
7415
7416         switch (off) {
7417         case offsetof(struct sk_msg_md, data):
7418                 info->reg_type = PTR_TO_PACKET;
7419                 if (size != sizeof(__u64))
7420                         return false;
7421                 break;
7422         case offsetof(struct sk_msg_md, data_end):
7423                 info->reg_type = PTR_TO_PACKET_END;
7424                 if (size != sizeof(__u64))
7425                         return false;
7426                 break;
7427         case offsetof(struct sk_msg_md, sk):
7428                 if (size != sizeof(__u64))
7429                         return false;
7430                 info->reg_type = PTR_TO_SOCKET;
7431                 break;
7432         case bpf_ctx_range(struct sk_msg_md, family):
7433         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7434         case bpf_ctx_range(struct sk_msg_md, local_ip4):
7435         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7436         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7437         case bpf_ctx_range(struct sk_msg_md, remote_port):
7438         case bpf_ctx_range(struct sk_msg_md, local_port):
7439         case bpf_ctx_range(struct sk_msg_md, size):
7440                 if (size != sizeof(__u32))
7441                         return false;
7442                 break;
7443         default:
7444                 return false;
7445         }
7446         return true;
7447 }
7448
7449 static bool flow_dissector_is_valid_access(int off, int size,
7450                                            enum bpf_access_type type,
7451                                            const struct bpf_prog *prog,
7452                                            struct bpf_insn_access_aux *info)
7453 {
7454         const int size_default = sizeof(__u32);
7455
7456         if (off < 0 || off >= sizeof(struct __sk_buff))
7457                 return false;
7458
7459         if (type == BPF_WRITE)
7460                 return false;
7461
7462         switch (off) {
7463         case bpf_ctx_range(struct __sk_buff, data):
7464                 if (size != size_default)
7465                         return false;
7466                 info->reg_type = PTR_TO_PACKET;
7467                 return true;
7468         case bpf_ctx_range(struct __sk_buff, data_end):
7469                 if (size != size_default)
7470                         return false;
7471                 info->reg_type = PTR_TO_PACKET_END;
7472                 return true;
7473         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7474                 if (size != sizeof(__u64))
7475                         return false;
7476                 info->reg_type = PTR_TO_FLOW_KEYS;
7477                 return true;
7478         default:
7479                 return false;
7480         }
7481 }
7482
7483 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7484                                              const struct bpf_insn *si,
7485                                              struct bpf_insn *insn_buf,
7486                                              struct bpf_prog *prog,
7487                                              u32 *target_size)
7488
7489 {
7490         struct bpf_insn *insn = insn_buf;
7491
7492         switch (si->off) {
7493         case offsetof(struct __sk_buff, data):
7494                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7495                                       si->dst_reg, si->src_reg,
7496                                       offsetof(struct bpf_flow_dissector, data));
7497                 break;
7498
7499         case offsetof(struct __sk_buff, data_end):
7500                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7501                                       si->dst_reg, si->src_reg,
7502                                       offsetof(struct bpf_flow_dissector, data_end));
7503                 break;
7504
7505         case offsetof(struct __sk_buff, flow_keys):
7506                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7507                                       si->dst_reg, si->src_reg,
7508                                       offsetof(struct bpf_flow_dissector, flow_keys));
7509                 break;
7510         }
7511
7512         return insn - insn_buf;
7513 }
7514
7515 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
7516                                                   struct bpf_insn *insn)
7517 {
7518         /* si->dst_reg = skb_shinfo(SKB); */
7519 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7520         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7521                               BPF_REG_AX, si->src_reg,
7522                               offsetof(struct sk_buff, end));
7523         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7524                               si->dst_reg, si->src_reg,
7525                               offsetof(struct sk_buff, head));
7526         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7527 #else
7528         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7529                               si->dst_reg, si->src_reg,
7530                               offsetof(struct sk_buff, end));
7531 #endif
7532
7533         return insn;
7534 }
7535
7536 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7537                                   const struct bpf_insn *si,
7538                                   struct bpf_insn *insn_buf,
7539                                   struct bpf_prog *prog, u32 *target_size)
7540 {
7541         struct bpf_insn *insn = insn_buf;
7542         int off;
7543
7544         switch (si->off) {
7545         case offsetof(struct __sk_buff, len):
7546                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7547                                       bpf_target_off(struct sk_buff, len, 4,
7548                                                      target_size));
7549                 break;
7550
7551         case offsetof(struct __sk_buff, protocol):
7552                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7553                                       bpf_target_off(struct sk_buff, protocol, 2,
7554                                                      target_size));
7555                 break;
7556
7557         case offsetof(struct __sk_buff, vlan_proto):
7558                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7559                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
7560                                                      target_size));
7561                 break;
7562
7563         case offsetof(struct __sk_buff, priority):
7564                 if (type == BPF_WRITE)
7565                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7566                                               bpf_target_off(struct sk_buff, priority, 4,
7567                                                              target_size));
7568                 else
7569                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7570                                               bpf_target_off(struct sk_buff, priority, 4,
7571                                                              target_size));
7572                 break;
7573
7574         case offsetof(struct __sk_buff, ingress_ifindex):
7575                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7576                                       bpf_target_off(struct sk_buff, skb_iif, 4,
7577                                                      target_size));
7578                 break;
7579
7580         case offsetof(struct __sk_buff, ifindex):
7581                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7582                                       si->dst_reg, si->src_reg,
7583                                       offsetof(struct sk_buff, dev));
7584                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7585                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7586                                       bpf_target_off(struct net_device, ifindex, 4,
7587                                                      target_size));
7588                 break;
7589
7590         case offsetof(struct __sk_buff, hash):
7591                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7592                                       bpf_target_off(struct sk_buff, hash, 4,
7593                                                      target_size));
7594                 break;
7595
7596         case offsetof(struct __sk_buff, mark):
7597                 if (type == BPF_WRITE)
7598                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7599                                               bpf_target_off(struct sk_buff, mark, 4,
7600                                                              target_size));
7601                 else
7602                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7603                                               bpf_target_off(struct sk_buff, mark, 4,
7604                                                              target_size));
7605                 break;
7606
7607         case offsetof(struct __sk_buff, pkt_type):
7608                 *target_size = 1;
7609                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7610                                       PKT_TYPE_OFFSET());
7611                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7612 #ifdef __BIG_ENDIAN_BITFIELD
7613                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7614 #endif
7615                 break;
7616
7617         case offsetof(struct __sk_buff, queue_mapping):
7618                 if (type == BPF_WRITE) {
7619                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7620                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7621                                               bpf_target_off(struct sk_buff,
7622                                                              queue_mapping,
7623                                                              2, target_size));
7624                 } else {
7625                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7626                                               bpf_target_off(struct sk_buff,
7627                                                              queue_mapping,
7628                                                              2, target_size));
7629                 }
7630                 break;
7631
7632         case offsetof(struct __sk_buff, vlan_present):
7633                 *target_size = 1;
7634                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7635                                       PKT_VLAN_PRESENT_OFFSET());
7636                 if (PKT_VLAN_PRESENT_BIT)
7637                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7638                 if (PKT_VLAN_PRESENT_BIT < 7)
7639                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7640                 break;
7641
7642         case offsetof(struct __sk_buff, vlan_tci):
7643                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7644                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
7645                                                      target_size));
7646                 break;
7647
7648         case offsetof(struct __sk_buff, cb[0]) ...
7649              offsetofend(struct __sk_buff, cb[4]) - 1:
7650                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7651                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7652                               offsetof(struct qdisc_skb_cb, data)) %
7653                              sizeof(__u64));
7654
7655                 prog->cb_access = 1;
7656                 off  = si->off;
7657                 off -= offsetof(struct __sk_buff, cb[0]);
7658                 off += offsetof(struct sk_buff, cb);
7659                 off += offsetof(struct qdisc_skb_cb, data);
7660                 if (type == BPF_WRITE)
7661                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7662                                               si->src_reg, off);
7663                 else
7664                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7665                                               si->src_reg, off);
7666                 break;
7667
7668         case offsetof(struct __sk_buff, tc_classid):
7669                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7670
7671                 off  = si->off;
7672                 off -= offsetof(struct __sk_buff, tc_classid);
7673                 off += offsetof(struct sk_buff, cb);
7674                 off += offsetof(struct qdisc_skb_cb, tc_classid);
7675                 *target_size = 2;
7676                 if (type == BPF_WRITE)
7677                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7678                                               si->src_reg, off);
7679                 else
7680                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7681                                               si->src_reg, off);
7682                 break;
7683
7684         case offsetof(struct __sk_buff, data):
7685                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7686                                       si->dst_reg, si->src_reg,
7687                                       offsetof(struct sk_buff, data));
7688                 break;
7689
7690         case offsetof(struct __sk_buff, data_meta):
7691                 off  = si->off;
7692                 off -= offsetof(struct __sk_buff, data_meta);
7693                 off += offsetof(struct sk_buff, cb);
7694                 off += offsetof(struct bpf_skb_data_end, data_meta);
7695                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7696                                       si->src_reg, off);
7697                 break;
7698
7699         case offsetof(struct __sk_buff, data_end):
7700                 off  = si->off;
7701                 off -= offsetof(struct __sk_buff, data_end);
7702                 off += offsetof(struct sk_buff, cb);
7703                 off += offsetof(struct bpf_skb_data_end, data_end);
7704                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7705                                       si->src_reg, off);
7706                 break;
7707
7708         case offsetof(struct __sk_buff, tc_index):
7709 #ifdef CONFIG_NET_SCHED
7710                 if (type == BPF_WRITE)
7711                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7712                                               bpf_target_off(struct sk_buff, tc_index, 2,
7713                                                              target_size));
7714                 else
7715                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7716                                               bpf_target_off(struct sk_buff, tc_index, 2,
7717                                                              target_size));
7718 #else
7719                 *target_size = 2;
7720                 if (type == BPF_WRITE)
7721                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7722                 else
7723                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7724 #endif
7725                 break;
7726
7727         case offsetof(struct __sk_buff, napi_id):
7728 #if defined(CONFIG_NET_RX_BUSY_POLL)
7729                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7730                                       bpf_target_off(struct sk_buff, napi_id, 4,
7731                                                      target_size));
7732                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7733                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7734 #else
7735                 *target_size = 4;
7736                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7737 #endif
7738                 break;
7739         case offsetof(struct __sk_buff, family):
7740                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7741
7742                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7743                                       si->dst_reg, si->src_reg,
7744                                       offsetof(struct sk_buff, sk));
7745                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7746                                       bpf_target_off(struct sock_common,
7747                                                      skc_family,
7748                                                      2, target_size));
7749                 break;
7750         case offsetof(struct __sk_buff, remote_ip4):
7751                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7752
7753                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7754                                       si->dst_reg, si->src_reg,
7755                                       offsetof(struct sk_buff, sk));
7756                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7757                                       bpf_target_off(struct sock_common,
7758                                                      skc_daddr,
7759                                                      4, target_size));
7760                 break;
7761         case offsetof(struct __sk_buff, local_ip4):
7762                 BUILD_BUG_ON(sizeof_field(struct sock_common,
7763                                           skc_rcv_saddr) != 4);
7764
7765                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7766                                       si->dst_reg, si->src_reg,
7767                                       offsetof(struct sk_buff, sk));
7768                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7769                                       bpf_target_off(struct sock_common,
7770                                                      skc_rcv_saddr,
7771                                                      4, target_size));
7772                 break;
7773         case offsetof(struct __sk_buff, remote_ip6[0]) ...
7774              offsetof(struct __sk_buff, remote_ip6[3]):
7775 #if IS_ENABLED(CONFIG_IPV6)
7776                 BUILD_BUG_ON(sizeof_field(struct sock_common,
7777                                           skc_v6_daddr.s6_addr32[0]) != 4);
7778
7779                 off = si->off;
7780                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
7781
7782                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7783                                       si->dst_reg, si->src_reg,
7784                                       offsetof(struct sk_buff, sk));
7785                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7786                                       offsetof(struct sock_common,
7787                                                skc_v6_daddr.s6_addr32[0]) +
7788                                       off);
7789 #else
7790                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7791 #endif
7792                 break;
7793         case offsetof(struct __sk_buff, local_ip6[0]) ...
7794              offsetof(struct __sk_buff, local_ip6[3]):
7795 #if IS_ENABLED(CONFIG_IPV6)
7796                 BUILD_BUG_ON(sizeof_field(struct sock_common,
7797                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7798
7799                 off = si->off;
7800                 off -= offsetof(struct __sk_buff, local_ip6[0]);
7801
7802                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7803                                       si->dst_reg, si->src_reg,
7804                                       offsetof(struct sk_buff, sk));
7805                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7806                                       offsetof(struct sock_common,
7807                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7808                                       off);
7809 #else
7810                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7811 #endif
7812                 break;
7813
7814         case offsetof(struct __sk_buff, remote_port):
7815                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7816
7817                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7818                                       si->dst_reg, si->src_reg,
7819                                       offsetof(struct sk_buff, sk));
7820                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7821                                       bpf_target_off(struct sock_common,
7822                                                      skc_dport,
7823                                                      2, target_size));
7824 #ifndef __BIG_ENDIAN_BITFIELD
7825                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7826 #endif
7827                 break;
7828
7829         case offsetof(struct __sk_buff, local_port):
7830                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7831
7832                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7833                                       si->dst_reg, si->src_reg,
7834                                       offsetof(struct sk_buff, sk));
7835                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7836                                       bpf_target_off(struct sock_common,
7837                                                      skc_num, 2, target_size));
7838                 break;
7839
7840         case offsetof(struct __sk_buff, tstamp):
7841                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7842
7843                 if (type == BPF_WRITE)
7844                         *insn++ = BPF_STX_MEM(BPF_DW,
7845                                               si->dst_reg, si->src_reg,
7846                                               bpf_target_off(struct sk_buff,
7847                                                              tstamp, 8,
7848                                                              target_size));
7849                 else
7850                         *insn++ = BPF_LDX_MEM(BPF_DW,
7851                                               si->dst_reg, si->src_reg,
7852                                               bpf_target_off(struct sk_buff,
7853                                                              tstamp, 8,
7854                                                              target_size));
7855                 break;
7856
7857         case offsetof(struct __sk_buff, gso_segs):
7858                 insn = bpf_convert_shinfo_access(si, insn);
7859                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7860                                       si->dst_reg, si->dst_reg,
7861                                       bpf_target_off(struct skb_shared_info,
7862                                                      gso_segs, 2,
7863                                                      target_size));
7864                 break;
7865         case offsetof(struct __sk_buff, gso_size):
7866                 insn = bpf_convert_shinfo_access(si, insn);
7867                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
7868                                       si->dst_reg, si->dst_reg,
7869                                       bpf_target_off(struct skb_shared_info,
7870                                                      gso_size, 2,
7871                                                      target_size));
7872                 break;
7873         case offsetof(struct __sk_buff, wire_len):
7874                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7875
7876                 off = si->off;
7877                 off -= offsetof(struct __sk_buff, wire_len);
7878                 off += offsetof(struct sk_buff, cb);
7879                 off += offsetof(struct qdisc_skb_cb, pkt_len);
7880                 *target_size = 4;
7881                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7882                 break;
7883
7884         case offsetof(struct __sk_buff, sk):
7885                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7886                                       si->dst_reg, si->src_reg,
7887                                       offsetof(struct sk_buff, sk));
7888                 break;
7889         }
7890
7891         return insn - insn_buf;
7892 }
7893
7894 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7895                                 const struct bpf_insn *si,
7896                                 struct bpf_insn *insn_buf,
7897                                 struct bpf_prog *prog, u32 *target_size)
7898 {
7899         struct bpf_insn *insn = insn_buf;
7900         int off;
7901
7902         switch (si->off) {
7903         case offsetof(struct bpf_sock, bound_dev_if):
7904                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7905
7906                 if (type == BPF_WRITE)
7907                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7908                                         offsetof(struct sock, sk_bound_dev_if));
7909                 else
7910                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7911                                       offsetof(struct sock, sk_bound_dev_if));
7912                 break;
7913
7914         case offsetof(struct bpf_sock, mark):
7915                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7916
7917                 if (type == BPF_WRITE)
7918                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7919                                         offsetof(struct sock, sk_mark));
7920                 else
7921                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7922                                       offsetof(struct sock, sk_mark));
7923                 break;
7924
7925         case offsetof(struct bpf_sock, priority):
7926                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7927
7928                 if (type == BPF_WRITE)
7929                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7930                                         offsetof(struct sock, sk_priority));
7931                 else
7932                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7933                                       offsetof(struct sock, sk_priority));
7934                 break;
7935
7936         case offsetof(struct bpf_sock, family):
7937                 *insn++ = BPF_LDX_MEM(
7938                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7939                         si->dst_reg, si->src_reg,
7940                         bpf_target_off(struct sock_common,
7941                                        skc_family,
7942                                        sizeof_field(struct sock_common,
7943                                                     skc_family),
7944                                        target_size));
7945                 break;
7946
7947         case offsetof(struct bpf_sock, type):
7948                 *insn++ = BPF_LDX_MEM(
7949                         BPF_FIELD_SIZEOF(struct sock, sk_type),
7950                         si->dst_reg, si->src_reg,
7951                         bpf_target_off(struct sock, sk_type,
7952                                        sizeof_field(struct sock, sk_type),
7953                                        target_size));
7954                 break;
7955
7956         case offsetof(struct bpf_sock, protocol):
7957                 *insn++ = BPF_LDX_MEM(
7958                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
7959                         si->dst_reg, si->src_reg,
7960                         bpf_target_off(struct sock, sk_protocol,
7961                                        sizeof_field(struct sock, sk_protocol),
7962                                        target_size));
7963                 break;
7964
7965         case offsetof(struct bpf_sock, src_ip4):
7966                 *insn++ = BPF_LDX_MEM(
7967                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7968                         bpf_target_off(struct sock_common, skc_rcv_saddr,
7969                                        sizeof_field(struct sock_common,
7970                                                     skc_rcv_saddr),
7971                                        target_size));
7972                 break;
7973
7974         case offsetof(struct bpf_sock, dst_ip4):
7975                 *insn++ = BPF_LDX_MEM(
7976                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7977                         bpf_target_off(struct sock_common, skc_daddr,
7978                                        sizeof_field(struct sock_common,
7979                                                     skc_daddr),
7980                                        target_size));
7981                 break;
7982
7983         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7984 #if IS_ENABLED(CONFIG_IPV6)
7985                 off = si->off;
7986                 off -= offsetof(struct bpf_sock, src_ip6[0]);
7987                 *insn++ = BPF_LDX_MEM(
7988                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7989                         bpf_target_off(
7990                                 struct sock_common,
7991                                 skc_v6_rcv_saddr.s6_addr32[0],
7992                                 sizeof_field(struct sock_common,
7993                                              skc_v6_rcv_saddr.s6_addr32[0]),
7994                                 target_size) + off);
7995 #else
7996                 (void)off;
7997                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7998 #endif
7999                 break;
8000
8001         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8002 #if IS_ENABLED(CONFIG_IPV6)
8003                 off = si->off;
8004                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
8005                 *insn++ = BPF_LDX_MEM(
8006                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8007                         bpf_target_off(struct sock_common,
8008                                        skc_v6_daddr.s6_addr32[0],
8009                                        sizeof_field(struct sock_common,
8010                                                     skc_v6_daddr.s6_addr32[0]),
8011                                        target_size) + off);
8012 #else
8013                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8014                 *target_size = 4;
8015 #endif
8016                 break;
8017
8018         case offsetof(struct bpf_sock, src_port):
8019                 *insn++ = BPF_LDX_MEM(
8020                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8021                         si->dst_reg, si->src_reg,
8022                         bpf_target_off(struct sock_common, skc_num,
8023                                        sizeof_field(struct sock_common,
8024                                                     skc_num),
8025                                        target_size));
8026                 break;
8027
8028         case offsetof(struct bpf_sock, dst_port):
8029                 *insn++ = BPF_LDX_MEM(
8030                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8031                         si->dst_reg, si->src_reg,
8032                         bpf_target_off(struct sock_common, skc_dport,
8033                                        sizeof_field(struct sock_common,
8034                                                     skc_dport),
8035                                        target_size));
8036                 break;
8037
8038         case offsetof(struct bpf_sock, state):
8039                 *insn++ = BPF_LDX_MEM(
8040                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8041                         si->dst_reg, si->src_reg,
8042                         bpf_target_off(struct sock_common, skc_state,
8043                                        sizeof_field(struct sock_common,
8044                                                     skc_state),
8045                                        target_size));
8046                 break;
8047         case offsetof(struct bpf_sock, rx_queue_mapping):
8048 #ifdef CONFIG_XPS
8049                 *insn++ = BPF_LDX_MEM(
8050                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8051                         si->dst_reg, si->src_reg,
8052                         bpf_target_off(struct sock, sk_rx_queue_mapping,
8053                                        sizeof_field(struct sock,
8054                                                     sk_rx_queue_mapping),
8055                                        target_size));
8056                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8057                                       1);
8058                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8059 #else
8060                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8061                 *target_size = 2;
8062 #endif
8063                 break;
8064         }
8065
8066         return insn - insn_buf;
8067 }
8068
8069 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8070                                          const struct bpf_insn *si,
8071                                          struct bpf_insn *insn_buf,
8072                                          struct bpf_prog *prog, u32 *target_size)
8073 {
8074         struct bpf_insn *insn = insn_buf;
8075
8076         switch (si->off) {
8077         case offsetof(struct __sk_buff, ifindex):
8078                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8079                                       si->dst_reg, si->src_reg,
8080                                       offsetof(struct sk_buff, dev));
8081                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8082                                       bpf_target_off(struct net_device, ifindex, 4,
8083                                                      target_size));
8084                 break;
8085         default:
8086                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8087                                               target_size);
8088         }
8089
8090         return insn - insn_buf;
8091 }
8092
8093 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8094                                   const struct bpf_insn *si,
8095                                   struct bpf_insn *insn_buf,
8096                                   struct bpf_prog *prog, u32 *target_size)
8097 {
8098         struct bpf_insn *insn = insn_buf;
8099
8100         switch (si->off) {
8101         case offsetof(struct xdp_md, data):
8102                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8103                                       si->dst_reg, si->src_reg,
8104                                       offsetof(struct xdp_buff, data));
8105                 break;
8106         case offsetof(struct xdp_md, data_meta):
8107                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8108                                       si->dst_reg, si->src_reg,
8109                                       offsetof(struct xdp_buff, data_meta));
8110                 break;
8111         case offsetof(struct xdp_md, data_end):
8112                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8113                                       si->dst_reg, si->src_reg,
8114                                       offsetof(struct xdp_buff, data_end));
8115                 break;
8116         case offsetof(struct xdp_md, ingress_ifindex):
8117                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8118                                       si->dst_reg, si->src_reg,
8119                                       offsetof(struct xdp_buff, rxq));
8120                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8121                                       si->dst_reg, si->dst_reg,
8122                                       offsetof(struct xdp_rxq_info, dev));
8123                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8124                                       offsetof(struct net_device, ifindex));
8125                 break;
8126         case offsetof(struct xdp_md, rx_queue_index):
8127                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8128                                       si->dst_reg, si->src_reg,
8129                                       offsetof(struct xdp_buff, rxq));
8130                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8131                                       offsetof(struct xdp_rxq_info,
8132                                                queue_index));
8133                 break;
8134         case offsetof(struct xdp_md, egress_ifindex):
8135                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8136                                       si->dst_reg, si->src_reg,
8137                                       offsetof(struct xdp_buff, txq));
8138                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8139                                       si->dst_reg, si->dst_reg,
8140                                       offsetof(struct xdp_txq_info, dev));
8141                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8142                                       offsetof(struct net_device, ifindex));
8143                 break;
8144         }
8145
8146         return insn - insn_buf;
8147 }
8148
8149 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8150  * context Structure, F is Field in context structure that contains a pointer
8151  * to Nested Structure of type NS that has the field NF.
8152  *
8153  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8154  * sure that SIZE is not greater than actual size of S.F.NF.
8155  *
8156  * If offset OFF is provided, the load happens from that offset relative to
8157  * offset of NF.
8158  */
8159 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
8160         do {                                                                   \
8161                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8162                                       si->src_reg, offsetof(S, F));            \
8163                 *insn++ = BPF_LDX_MEM(                                         \
8164                         SIZE, si->dst_reg, si->dst_reg,                        \
8165                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8166                                        target_size)                            \
8167                                 + OFF);                                        \
8168         } while (0)
8169
8170 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
8171         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
8172                                              BPF_FIELD_SIZEOF(NS, NF), 0)
8173
8174 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8175  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8176  *
8177  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8178  * "register" since two registers available in convert_ctx_access are not
8179  * enough: we can't override neither SRC, since it contains value to store, nor
8180  * DST since it contains pointer to context that may be used by later
8181  * instructions. But we need a temporary place to save pointer to nested
8182  * structure whose field we want to store to.
8183  */
8184 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
8185         do {                                                                   \
8186                 int tmp_reg = BPF_REG_9;                                       \
8187                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8188                         --tmp_reg;                                             \
8189                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8190                         --tmp_reg;                                             \
8191                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
8192                                       offsetof(S, TF));                        \
8193                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
8194                                       si->dst_reg, offsetof(S, F));            \
8195                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
8196                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8197                                        target_size)                            \
8198                                 + OFF);                                        \
8199                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
8200                                       offsetof(S, TF));                        \
8201         } while (0)
8202
8203 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8204                                                       TF)                      \
8205         do {                                                                   \
8206                 if (type == BPF_WRITE) {                                       \
8207                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8208                                                          OFF, TF);             \
8209                 } else {                                                       \
8210                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
8211                                 S, NS, F, NF, SIZE, OFF);  \
8212                 }                                                              \
8213         } while (0)
8214
8215 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
8216         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
8217                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8218
8219 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8220                                         const struct bpf_insn *si,
8221                                         struct bpf_insn *insn_buf,
8222                                         struct bpf_prog *prog, u32 *target_size)
8223 {
8224         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8225         struct bpf_insn *insn = insn_buf;
8226
8227         switch (si->off) {
8228         case offsetof(struct bpf_sock_addr, user_family):
8229                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8230                                             struct sockaddr, uaddr, sa_family);
8231                 break;
8232
8233         case offsetof(struct bpf_sock_addr, user_ip4):
8234                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8235                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8236                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8237                 break;
8238
8239         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8240                 off = si->off;
8241                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8242                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8243                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8244                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8245                         tmp_reg);
8246                 break;
8247
8248         case offsetof(struct bpf_sock_addr, user_port):
8249                 /* To get port we need to know sa_family first and then treat
8250                  * sockaddr as either sockaddr_in or sockaddr_in6.
8251                  * Though we can simplify since port field has same offset and
8252                  * size in both structures.
8253                  * Here we check this invariant and use just one of the
8254                  * structures if it's true.
8255                  */
8256                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
8257                              offsetof(struct sockaddr_in6, sin6_port));
8258                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
8259                              sizeof_field(struct sockaddr_in6, sin6_port));
8260                 /* Account for sin6_port being smaller than user_port. */
8261                 port_size = min(port_size, BPF_LDST_BYTES(si));
8262                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8263                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8264                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
8265                 break;
8266
8267         case offsetof(struct bpf_sock_addr, family):
8268                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8269                                             struct sock, sk, sk_family);
8270                 break;
8271
8272         case offsetof(struct bpf_sock_addr, type):
8273                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8274                                             struct sock, sk, sk_type);
8275                 break;
8276
8277         case offsetof(struct bpf_sock_addr, protocol):
8278                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8279                                             struct sock, sk, sk_protocol);
8280                 break;
8281
8282         case offsetof(struct bpf_sock_addr, msg_src_ip4):
8283                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
8284                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8285                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
8286                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
8287                 break;
8288
8289         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8290                                 msg_src_ip6[3]):
8291                 off = si->off;
8292                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
8293                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
8294                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8295                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
8296                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
8297                 break;
8298         case offsetof(struct bpf_sock_addr, sk):
8299                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
8300                                       si->dst_reg, si->src_reg,
8301                                       offsetof(struct bpf_sock_addr_kern, sk));
8302                 break;
8303         }
8304
8305         return insn - insn_buf;
8306 }
8307
8308 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
8309                                        const struct bpf_insn *si,
8310                                        struct bpf_insn *insn_buf,
8311                                        struct bpf_prog *prog,
8312                                        u32 *target_size)
8313 {
8314         struct bpf_insn *insn = insn_buf;
8315         int off;
8316
8317 /* Helper macro for adding read access to tcp_sock or sock fields. */
8318 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
8319         do {                                                                  \
8320                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
8321                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8322                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8323                                                 struct bpf_sock_ops_kern,     \
8324                                                 is_fullsock),                 \
8325                                       si->dst_reg, si->src_reg,               \
8326                                       offsetof(struct bpf_sock_ops_kern,      \
8327                                                is_fullsock));                 \
8328                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
8329                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8330                                                 struct bpf_sock_ops_kern, sk),\
8331                                       si->dst_reg, si->src_reg,               \
8332                                       offsetof(struct bpf_sock_ops_kern, sk));\
8333                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
8334                                                        OBJ_FIELD),            \
8335                                       si->dst_reg, si->dst_reg,               \
8336                                       offsetof(OBJ, OBJ_FIELD));              \
8337         } while (0)
8338
8339 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8340                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8341
8342 /* Helper macro for adding write access to tcp_sock or sock fields.
8343  * The macro is called with two registers, dst_reg which contains a pointer
8344  * to ctx (context) and src_reg which contains the value that should be
8345  * stored. However, we need an additional register since we cannot overwrite
8346  * dst_reg because it may be used later in the program.
8347  * Instead we "borrow" one of the other register. We first save its value
8348  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8349  * it at the end of the macro.
8350  */
8351 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
8352         do {                                                                  \
8353                 int reg = BPF_REG_9;                                          \
8354                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
8355                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8356                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8357                         reg--;                                                \
8358                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8359                         reg--;                                                \
8360                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
8361                                       offsetof(struct bpf_sock_ops_kern,      \
8362                                                temp));                        \
8363                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8364                                                 struct bpf_sock_ops_kern,     \
8365                                                 is_fullsock),                 \
8366                                       reg, si->dst_reg,                       \
8367                                       offsetof(struct bpf_sock_ops_kern,      \
8368                                                is_fullsock));                 \
8369                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
8370                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8371                                                 struct bpf_sock_ops_kern, sk),\
8372                                       reg, si->dst_reg,                       \
8373                                       offsetof(struct bpf_sock_ops_kern, sk));\
8374                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
8375                                       reg, si->src_reg,                       \
8376                                       offsetof(OBJ, OBJ_FIELD));              \
8377                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
8378                                       offsetof(struct bpf_sock_ops_kern,      \
8379                                                temp));                        \
8380         } while (0)
8381
8382 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
8383         do {                                                                  \
8384                 if (TYPE == BPF_WRITE)                                        \
8385                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8386                 else                                                          \
8387                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
8388         } while (0)
8389
8390         if (insn > insn_buf)
8391                 return insn - insn_buf;
8392
8393         switch (si->off) {
8394         case offsetof(struct bpf_sock_ops, op) ...
8395              offsetof(struct bpf_sock_ops, replylong[3]):
8396                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
8397                              sizeof_field(struct bpf_sock_ops_kern, op));
8398                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
8399                              sizeof_field(struct bpf_sock_ops_kern, reply));
8400                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
8401                              sizeof_field(struct bpf_sock_ops_kern, replylong));
8402                 off = si->off;
8403                 off -= offsetof(struct bpf_sock_ops, op);
8404                 off += offsetof(struct bpf_sock_ops_kern, op);
8405                 if (type == BPF_WRITE)
8406                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8407                                               off);
8408                 else
8409                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8410                                               off);
8411                 break;
8412
8413         case offsetof(struct bpf_sock_ops, family):
8414                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8415
8416                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8417                                               struct bpf_sock_ops_kern, sk),
8418                                       si->dst_reg, si->src_reg,
8419                                       offsetof(struct bpf_sock_ops_kern, sk));
8420                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8421                                       offsetof(struct sock_common, skc_family));
8422                 break;
8423
8424         case offsetof(struct bpf_sock_ops, remote_ip4):
8425                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8426
8427                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8428                                                 struct bpf_sock_ops_kern, sk),
8429                                       si->dst_reg, si->src_reg,
8430                                       offsetof(struct bpf_sock_ops_kern, sk));
8431                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8432                                       offsetof(struct sock_common, skc_daddr));
8433                 break;
8434
8435         case offsetof(struct bpf_sock_ops, local_ip4):
8436                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8437                                           skc_rcv_saddr) != 4);
8438
8439                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8440                                               struct bpf_sock_ops_kern, sk),
8441                                       si->dst_reg, si->src_reg,
8442                                       offsetof(struct bpf_sock_ops_kern, sk));
8443                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8444                                       offsetof(struct sock_common,
8445                                                skc_rcv_saddr));
8446                 break;
8447
8448         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8449              offsetof(struct bpf_sock_ops, remote_ip6[3]):
8450 #if IS_ENABLED(CONFIG_IPV6)
8451                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8452                                           skc_v6_daddr.s6_addr32[0]) != 4);
8453
8454                 off = si->off;
8455                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8456                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8457                                                 struct bpf_sock_ops_kern, sk),
8458                                       si->dst_reg, si->src_reg,
8459                                       offsetof(struct bpf_sock_ops_kern, sk));
8460                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8461                                       offsetof(struct sock_common,
8462                                                skc_v6_daddr.s6_addr32[0]) +
8463                                       off);
8464 #else
8465                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8466 #endif
8467                 break;
8468
8469         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8470              offsetof(struct bpf_sock_ops, local_ip6[3]):
8471 #if IS_ENABLED(CONFIG_IPV6)
8472                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8473                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8474
8475                 off = si->off;
8476                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8477                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8478                                                 struct bpf_sock_ops_kern, sk),
8479                                       si->dst_reg, si->src_reg,
8480                                       offsetof(struct bpf_sock_ops_kern, sk));
8481                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8482                                       offsetof(struct sock_common,
8483                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8484                                       off);
8485 #else
8486                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8487 #endif
8488                 break;
8489
8490         case offsetof(struct bpf_sock_ops, remote_port):
8491                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8492
8493                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8494                                                 struct bpf_sock_ops_kern, sk),
8495                                       si->dst_reg, si->src_reg,
8496                                       offsetof(struct bpf_sock_ops_kern, sk));
8497                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8498                                       offsetof(struct sock_common, skc_dport));
8499 #ifndef __BIG_ENDIAN_BITFIELD
8500                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8501 #endif
8502                 break;
8503
8504         case offsetof(struct bpf_sock_ops, local_port):
8505                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8506
8507                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8508                                                 struct bpf_sock_ops_kern, sk),
8509                                       si->dst_reg, si->src_reg,
8510                                       offsetof(struct bpf_sock_ops_kern, sk));
8511                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8512                                       offsetof(struct sock_common, skc_num));
8513                 break;
8514
8515         case offsetof(struct bpf_sock_ops, is_fullsock):
8516                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8517                                                 struct bpf_sock_ops_kern,
8518                                                 is_fullsock),
8519                                       si->dst_reg, si->src_reg,
8520                                       offsetof(struct bpf_sock_ops_kern,
8521                                                is_fullsock));
8522                 break;
8523
8524         case offsetof(struct bpf_sock_ops, state):
8525                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8526
8527                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8528                                                 struct bpf_sock_ops_kern, sk),
8529                                       si->dst_reg, si->src_reg,
8530                                       offsetof(struct bpf_sock_ops_kern, sk));
8531                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8532                                       offsetof(struct sock_common, skc_state));
8533                 break;
8534
8535         case offsetof(struct bpf_sock_ops, rtt_min):
8536                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8537                              sizeof(struct minmax));
8538                 BUILD_BUG_ON(sizeof(struct minmax) <
8539                              sizeof(struct minmax_sample));
8540
8541                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8542                                                 struct bpf_sock_ops_kern, sk),
8543                                       si->dst_reg, si->src_reg,
8544                                       offsetof(struct bpf_sock_ops_kern, sk));
8545                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8546                                       offsetof(struct tcp_sock, rtt_min) +
8547                                       sizeof_field(struct minmax_sample, t));
8548                 break;
8549
8550         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8551                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8552                                    struct tcp_sock);
8553                 break;
8554
8555         case offsetof(struct bpf_sock_ops, sk_txhash):
8556                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8557                                           struct sock, type);
8558                 break;
8559         case offsetof(struct bpf_sock_ops, snd_cwnd):
8560                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8561                 break;
8562         case offsetof(struct bpf_sock_ops, srtt_us):
8563                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8564                 break;
8565         case offsetof(struct bpf_sock_ops, snd_ssthresh):
8566                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8567                 break;
8568         case offsetof(struct bpf_sock_ops, rcv_nxt):
8569                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8570                 break;
8571         case offsetof(struct bpf_sock_ops, snd_nxt):
8572                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8573                 break;
8574         case offsetof(struct bpf_sock_ops, snd_una):
8575                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8576                 break;
8577         case offsetof(struct bpf_sock_ops, mss_cache):
8578                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8579                 break;
8580         case offsetof(struct bpf_sock_ops, ecn_flags):
8581                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8582                 break;
8583         case offsetof(struct bpf_sock_ops, rate_delivered):
8584                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8585                 break;
8586         case offsetof(struct bpf_sock_ops, rate_interval_us):
8587                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8588                 break;
8589         case offsetof(struct bpf_sock_ops, packets_out):
8590                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8591                 break;
8592         case offsetof(struct bpf_sock_ops, retrans_out):
8593                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8594                 break;
8595         case offsetof(struct bpf_sock_ops, total_retrans):
8596                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8597                 break;
8598         case offsetof(struct bpf_sock_ops, segs_in):
8599                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8600                 break;
8601         case offsetof(struct bpf_sock_ops, data_segs_in):
8602                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8603                 break;
8604         case offsetof(struct bpf_sock_ops, segs_out):
8605                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8606                 break;
8607         case offsetof(struct bpf_sock_ops, data_segs_out):
8608                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8609                 break;
8610         case offsetof(struct bpf_sock_ops, lost_out):
8611                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8612                 break;
8613         case offsetof(struct bpf_sock_ops, sacked_out):
8614                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8615                 break;
8616         case offsetof(struct bpf_sock_ops, bytes_received):
8617                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8618                 break;
8619         case offsetof(struct bpf_sock_ops, bytes_acked):
8620                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8621                 break;
8622         case offsetof(struct bpf_sock_ops, sk):
8623                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8624                                                 struct bpf_sock_ops_kern,
8625                                                 is_fullsock),
8626                                       si->dst_reg, si->src_reg,
8627                                       offsetof(struct bpf_sock_ops_kern,
8628                                                is_fullsock));
8629                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8630                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8631                                                 struct bpf_sock_ops_kern, sk),
8632                                       si->dst_reg, si->src_reg,
8633                                       offsetof(struct bpf_sock_ops_kern, sk));
8634                 break;
8635         }
8636         return insn - insn_buf;
8637 }
8638
8639 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8640                                      const struct bpf_insn *si,
8641                                      struct bpf_insn *insn_buf,
8642                                      struct bpf_prog *prog, u32 *target_size)
8643 {
8644         struct bpf_insn *insn = insn_buf;
8645         int off;
8646
8647         switch (si->off) {
8648         case offsetof(struct __sk_buff, data_end):
8649                 off  = si->off;
8650                 off -= offsetof(struct __sk_buff, data_end);
8651                 off += offsetof(struct sk_buff, cb);
8652                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
8653                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8654                                       si->src_reg, off);
8655                 break;
8656         default:
8657                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8658                                               target_size);
8659         }
8660
8661         return insn - insn_buf;
8662 }
8663
8664 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8665                                      const struct bpf_insn *si,
8666                                      struct bpf_insn *insn_buf,
8667                                      struct bpf_prog *prog, u32 *target_size)
8668 {
8669         struct bpf_insn *insn = insn_buf;
8670 #if IS_ENABLED(CONFIG_IPV6)
8671         int off;
8672 #endif
8673
8674         /* convert ctx uses the fact sg element is first in struct */
8675         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8676
8677         switch (si->off) {
8678         case offsetof(struct sk_msg_md, data):
8679                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8680                                       si->dst_reg, si->src_reg,
8681                                       offsetof(struct sk_msg, data));
8682                 break;
8683         case offsetof(struct sk_msg_md, data_end):
8684                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8685                                       si->dst_reg, si->src_reg,
8686                                       offsetof(struct sk_msg, data_end));
8687                 break;
8688         case offsetof(struct sk_msg_md, family):
8689                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8690
8691                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8692                                               struct sk_msg, sk),
8693                                       si->dst_reg, si->src_reg,
8694                                       offsetof(struct sk_msg, sk));
8695                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8696                                       offsetof(struct sock_common, skc_family));
8697                 break;
8698
8699         case offsetof(struct sk_msg_md, remote_ip4):
8700                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8701
8702                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8703                                                 struct sk_msg, sk),
8704                                       si->dst_reg, si->src_reg,
8705                                       offsetof(struct sk_msg, sk));
8706                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8707                                       offsetof(struct sock_common, skc_daddr));
8708                 break;
8709
8710         case offsetof(struct sk_msg_md, local_ip4):
8711                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8712                                           skc_rcv_saddr) != 4);
8713
8714                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8715                                               struct sk_msg, sk),
8716                                       si->dst_reg, si->src_reg,
8717                                       offsetof(struct sk_msg, sk));
8718                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8719                                       offsetof(struct sock_common,
8720                                                skc_rcv_saddr));
8721                 break;
8722
8723         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8724              offsetof(struct sk_msg_md, remote_ip6[3]):
8725 #if IS_ENABLED(CONFIG_IPV6)
8726                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8727                                           skc_v6_daddr.s6_addr32[0]) != 4);
8728
8729                 off = si->off;
8730                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8731                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8732                                                 struct sk_msg, sk),
8733                                       si->dst_reg, si->src_reg,
8734                                       offsetof(struct sk_msg, sk));
8735                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8736                                       offsetof(struct sock_common,
8737                                                skc_v6_daddr.s6_addr32[0]) +
8738                                       off);
8739 #else
8740                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8741 #endif
8742                 break;
8743
8744         case offsetof(struct sk_msg_md, local_ip6[0]) ...
8745              offsetof(struct sk_msg_md, local_ip6[3]):
8746 #if IS_ENABLED(CONFIG_IPV6)
8747                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8748                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8749
8750                 off = si->off;
8751                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
8752                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8753                                                 struct sk_msg, sk),
8754                                       si->dst_reg, si->src_reg,
8755                                       offsetof(struct sk_msg, sk));
8756                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8757                                       offsetof(struct sock_common,
8758                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8759                                       off);
8760 #else
8761                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8762 #endif
8763                 break;
8764
8765         case offsetof(struct sk_msg_md, remote_port):
8766                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8767
8768                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8769                                                 struct sk_msg, sk),
8770                                       si->dst_reg, si->src_reg,
8771                                       offsetof(struct sk_msg, sk));
8772                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8773                                       offsetof(struct sock_common, skc_dport));
8774 #ifndef __BIG_ENDIAN_BITFIELD
8775                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8776 #endif
8777                 break;
8778
8779         case offsetof(struct sk_msg_md, local_port):
8780                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8781
8782                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8783                                                 struct sk_msg, sk),
8784                                       si->dst_reg, si->src_reg,
8785                                       offsetof(struct sk_msg, sk));
8786                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8787                                       offsetof(struct sock_common, skc_num));
8788                 break;
8789
8790         case offsetof(struct sk_msg_md, size):
8791                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8792                                       si->dst_reg, si->src_reg,
8793                                       offsetof(struct sk_msg_sg, size));
8794                 break;
8795
8796         case offsetof(struct sk_msg_md, sk):
8797                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
8798                                       si->dst_reg, si->src_reg,
8799                                       offsetof(struct sk_msg, sk));
8800                 break;
8801         }
8802
8803         return insn - insn_buf;
8804 }
8805
8806 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8807         .get_func_proto         = sk_filter_func_proto,
8808         .is_valid_access        = sk_filter_is_valid_access,
8809         .convert_ctx_access     = bpf_convert_ctx_access,
8810         .gen_ld_abs             = bpf_gen_ld_abs,
8811 };
8812
8813 const struct bpf_prog_ops sk_filter_prog_ops = {
8814         .test_run               = bpf_prog_test_run_skb,
8815 };
8816
8817 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8818         .get_func_proto         = tc_cls_act_func_proto,
8819         .is_valid_access        = tc_cls_act_is_valid_access,
8820         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
8821         .gen_prologue           = tc_cls_act_prologue,
8822         .gen_ld_abs             = bpf_gen_ld_abs,
8823 };
8824
8825 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8826         .test_run               = bpf_prog_test_run_skb,
8827 };
8828
8829 const struct bpf_verifier_ops xdp_verifier_ops = {
8830         .get_func_proto         = xdp_func_proto,
8831         .is_valid_access        = xdp_is_valid_access,
8832         .convert_ctx_access     = xdp_convert_ctx_access,
8833         .gen_prologue           = bpf_noop_prologue,
8834 };
8835
8836 const struct bpf_prog_ops xdp_prog_ops = {
8837         .test_run               = bpf_prog_test_run_xdp,
8838 };
8839
8840 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8841         .get_func_proto         = cg_skb_func_proto,
8842         .is_valid_access        = cg_skb_is_valid_access,
8843         .convert_ctx_access     = bpf_convert_ctx_access,
8844 };
8845
8846 const struct bpf_prog_ops cg_skb_prog_ops = {
8847         .test_run               = bpf_prog_test_run_skb,
8848 };
8849
8850 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8851         .get_func_proto         = lwt_in_func_proto,
8852         .is_valid_access        = lwt_is_valid_access,
8853         .convert_ctx_access     = bpf_convert_ctx_access,
8854 };
8855
8856 const struct bpf_prog_ops lwt_in_prog_ops = {
8857         .test_run               = bpf_prog_test_run_skb,
8858 };
8859
8860 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8861         .get_func_proto         = lwt_out_func_proto,
8862         .is_valid_access        = lwt_is_valid_access,
8863         .convert_ctx_access     = bpf_convert_ctx_access,
8864 };
8865
8866 const struct bpf_prog_ops lwt_out_prog_ops = {
8867         .test_run               = bpf_prog_test_run_skb,
8868 };
8869
8870 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8871         .get_func_proto         = lwt_xmit_func_proto,
8872         .is_valid_access        = lwt_is_valid_access,
8873         .convert_ctx_access     = bpf_convert_ctx_access,
8874         .gen_prologue           = tc_cls_act_prologue,
8875 };
8876
8877 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8878         .test_run               = bpf_prog_test_run_skb,
8879 };
8880
8881 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8882         .get_func_proto         = lwt_seg6local_func_proto,
8883         .is_valid_access        = lwt_is_valid_access,
8884         .convert_ctx_access     = bpf_convert_ctx_access,
8885 };
8886
8887 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8888         .test_run               = bpf_prog_test_run_skb,
8889 };
8890
8891 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8892         .get_func_proto         = sock_filter_func_proto,
8893         .is_valid_access        = sock_filter_is_valid_access,
8894         .convert_ctx_access     = bpf_sock_convert_ctx_access,
8895 };
8896
8897 const struct bpf_prog_ops cg_sock_prog_ops = {
8898 };
8899
8900 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8901         .get_func_proto         = sock_addr_func_proto,
8902         .is_valid_access        = sock_addr_is_valid_access,
8903         .convert_ctx_access     = sock_addr_convert_ctx_access,
8904 };
8905
8906 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8907 };
8908
8909 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8910         .get_func_proto         = sock_ops_func_proto,
8911         .is_valid_access        = sock_ops_is_valid_access,
8912         .convert_ctx_access     = sock_ops_convert_ctx_access,
8913 };
8914
8915 const struct bpf_prog_ops sock_ops_prog_ops = {
8916 };
8917
8918 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8919         .get_func_proto         = sk_skb_func_proto,
8920         .is_valid_access        = sk_skb_is_valid_access,
8921         .convert_ctx_access     = sk_skb_convert_ctx_access,
8922         .gen_prologue           = sk_skb_prologue,
8923 };
8924
8925 const struct bpf_prog_ops sk_skb_prog_ops = {
8926 };
8927
8928 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8929         .get_func_proto         = sk_msg_func_proto,
8930         .is_valid_access        = sk_msg_is_valid_access,
8931         .convert_ctx_access     = sk_msg_convert_ctx_access,
8932         .gen_prologue           = bpf_noop_prologue,
8933 };
8934
8935 const struct bpf_prog_ops sk_msg_prog_ops = {
8936 };
8937
8938 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8939         .get_func_proto         = flow_dissector_func_proto,
8940         .is_valid_access        = flow_dissector_is_valid_access,
8941         .convert_ctx_access     = flow_dissector_convert_ctx_access,
8942 };
8943
8944 const struct bpf_prog_ops flow_dissector_prog_ops = {
8945         .test_run               = bpf_prog_test_run_flow_dissector,
8946 };
8947
8948 int sk_detach_filter(struct sock *sk)
8949 {
8950         int ret = -ENOENT;
8951         struct sk_filter *filter;
8952
8953         if (sock_flag(sk, SOCK_FILTER_LOCKED))
8954                 return -EPERM;
8955
8956         filter = rcu_dereference_protected(sk->sk_filter,
8957                                            lockdep_sock_is_held(sk));
8958         if (filter) {
8959                 RCU_INIT_POINTER(sk->sk_filter, NULL);
8960                 sk_filter_uncharge(sk, filter);
8961                 ret = 0;
8962         }
8963
8964         return ret;
8965 }
8966 EXPORT_SYMBOL_GPL(sk_detach_filter);
8967
8968 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8969                   unsigned int len)
8970 {
8971         struct sock_fprog_kern *fprog;
8972         struct sk_filter *filter;
8973         int ret = 0;
8974
8975         lock_sock(sk);
8976         filter = rcu_dereference_protected(sk->sk_filter,
8977                                            lockdep_sock_is_held(sk));
8978         if (!filter)
8979                 goto out;
8980
8981         /* We're copying the filter that has been originally attached,
8982          * so no conversion/decode needed anymore. eBPF programs that
8983          * have no original program cannot be dumped through this.
8984          */
8985         ret = -EACCES;
8986         fprog = filter->prog->orig_prog;
8987         if (!fprog)
8988                 goto out;
8989
8990         ret = fprog->len;
8991         if (!len)
8992                 /* User space only enquires number of filter blocks. */
8993                 goto out;
8994
8995         ret = -EINVAL;
8996         if (len < fprog->len)
8997                 goto out;
8998
8999         ret = -EFAULT;
9000         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9001                 goto out;
9002
9003         /* Instead of bytes, the API requests to return the number
9004          * of filter blocks.
9005          */
9006         ret = fprog->len;
9007 out:
9008         release_sock(sk);
9009         return ret;
9010 }
9011
9012 #ifdef CONFIG_INET
9013 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9014                                     struct sock_reuseport *reuse,
9015                                     struct sock *sk, struct sk_buff *skb,
9016                                     u32 hash)
9017 {
9018         reuse_kern->skb = skb;
9019         reuse_kern->sk = sk;
9020         reuse_kern->selected_sk = NULL;
9021         reuse_kern->data_end = skb->data + skb_headlen(skb);
9022         reuse_kern->hash = hash;
9023         reuse_kern->reuseport_id = reuse->reuseport_id;
9024         reuse_kern->bind_inany = reuse->bind_inany;
9025 }
9026
9027 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9028                                   struct bpf_prog *prog, struct sk_buff *skb,
9029                                   u32 hash)
9030 {
9031         struct sk_reuseport_kern reuse_kern;
9032         enum sk_action action;
9033
9034         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9035         action = BPF_PROG_RUN(prog, &reuse_kern);
9036
9037         if (action == SK_PASS)
9038                 return reuse_kern.selected_sk;
9039         else
9040                 return ERR_PTR(-ECONNREFUSED);
9041 }
9042
9043 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9044            struct bpf_map *, map, void *, key, u32, flags)
9045 {
9046         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9047         struct sock_reuseport *reuse;
9048         struct sock *selected_sk;
9049
9050         selected_sk = map->ops->map_lookup_elem(map, key);
9051         if (!selected_sk)
9052                 return -ENOENT;
9053
9054         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9055         if (!reuse) {
9056                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9057                 if (sk_is_refcounted(selected_sk))
9058                         sock_put(selected_sk);
9059
9060                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
9061                  * The only (!reuse) case here is - the sk has already been
9062                  * unhashed (e.g. by close()), so treat it as -ENOENT.
9063                  *
9064                  * Other maps (e.g. sock_map) do not provide this guarantee and
9065                  * the sk may never be in the reuseport group to begin with.
9066                  */
9067                 return is_sockarray ? -ENOENT : -EINVAL;
9068         }
9069
9070         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9071                 struct sock *sk = reuse_kern->sk;
9072
9073                 if (sk->sk_protocol != selected_sk->sk_protocol)
9074                         return -EPROTOTYPE;
9075                 else if (sk->sk_family != selected_sk->sk_family)
9076                         return -EAFNOSUPPORT;
9077
9078                 /* Catch all. Likely bound to a different sockaddr. */
9079                 return -EBADFD;
9080         }
9081
9082         reuse_kern->selected_sk = selected_sk;
9083
9084         return 0;
9085 }
9086
9087 static const struct bpf_func_proto sk_select_reuseport_proto = {
9088         .func           = sk_select_reuseport,
9089         .gpl_only       = false,
9090         .ret_type       = RET_INTEGER,
9091         .arg1_type      = ARG_PTR_TO_CTX,
9092         .arg2_type      = ARG_CONST_MAP_PTR,
9093         .arg3_type      = ARG_PTR_TO_MAP_KEY,
9094         .arg4_type      = ARG_ANYTHING,
9095 };
9096
9097 BPF_CALL_4(sk_reuseport_load_bytes,
9098            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9099            void *, to, u32, len)
9100 {
9101         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9102 }
9103
9104 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9105         .func           = sk_reuseport_load_bytes,
9106         .gpl_only       = false,
9107         .ret_type       = RET_INTEGER,
9108         .arg1_type      = ARG_PTR_TO_CTX,
9109         .arg2_type      = ARG_ANYTHING,
9110         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9111         .arg4_type      = ARG_CONST_SIZE,
9112 };
9113
9114 BPF_CALL_5(sk_reuseport_load_bytes_relative,
9115            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9116            void *, to, u32, len, u32, start_header)
9117 {
9118         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9119                                                len, start_header);
9120 }
9121
9122 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9123         .func           = sk_reuseport_load_bytes_relative,
9124         .gpl_only       = false,
9125         .ret_type       = RET_INTEGER,
9126         .arg1_type      = ARG_PTR_TO_CTX,
9127         .arg2_type      = ARG_ANYTHING,
9128         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9129         .arg4_type      = ARG_CONST_SIZE,
9130         .arg5_type      = ARG_ANYTHING,
9131 };
9132
9133 static const struct bpf_func_proto *
9134 sk_reuseport_func_proto(enum bpf_func_id func_id,
9135                         const struct bpf_prog *prog)
9136 {
9137         switch (func_id) {
9138         case BPF_FUNC_sk_select_reuseport:
9139                 return &sk_select_reuseport_proto;
9140         case BPF_FUNC_skb_load_bytes:
9141                 return &sk_reuseport_load_bytes_proto;
9142         case BPF_FUNC_skb_load_bytes_relative:
9143                 return &sk_reuseport_load_bytes_relative_proto;
9144         default:
9145                 return bpf_base_func_proto(func_id);
9146         }
9147 }
9148
9149 static bool
9150 sk_reuseport_is_valid_access(int off, int size,
9151                              enum bpf_access_type type,
9152                              const struct bpf_prog *prog,
9153                              struct bpf_insn_access_aux *info)
9154 {
9155         const u32 size_default = sizeof(__u32);
9156
9157         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
9158             off % size || type != BPF_READ)
9159                 return false;
9160
9161         switch (off) {
9162         case offsetof(struct sk_reuseport_md, data):
9163                 info->reg_type = PTR_TO_PACKET;
9164                 return size == sizeof(__u64);
9165
9166         case offsetof(struct sk_reuseport_md, data_end):
9167                 info->reg_type = PTR_TO_PACKET_END;
9168                 return size == sizeof(__u64);
9169
9170         case offsetof(struct sk_reuseport_md, hash):
9171                 return size == size_default;
9172
9173         /* Fields that allow narrowing */
9174         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
9175                 if (size < sizeof_field(struct sk_buff, protocol))
9176                         return false;
9177                 /* fall through */
9178         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
9179         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
9180         case bpf_ctx_range(struct sk_reuseport_md, len):
9181                 bpf_ctx_record_field_size(info, size_default);
9182                 return bpf_ctx_narrow_access_ok(off, size, size_default);
9183
9184         default:
9185                 return false;
9186         }
9187 }
9188
9189 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
9190         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
9191                               si->dst_reg, si->src_reg,                 \
9192                               bpf_target_off(struct sk_reuseport_kern, F, \
9193                                              sizeof_field(struct sk_reuseport_kern, F), \
9194                                              target_size));             \
9195         })
9196
9197 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
9198         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
9199                                     struct sk_buff,                     \
9200                                     skb,                                \
9201                                     SKB_FIELD)
9202
9203 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
9204         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
9205                                     struct sock,                        \
9206                                     sk,                                 \
9207                                     SK_FIELD)
9208
9209 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
9210                                            const struct bpf_insn *si,
9211                                            struct bpf_insn *insn_buf,
9212                                            struct bpf_prog *prog,
9213                                            u32 *target_size)
9214 {
9215         struct bpf_insn *insn = insn_buf;
9216
9217         switch (si->off) {
9218         case offsetof(struct sk_reuseport_md, data):
9219                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
9220                 break;
9221
9222         case offsetof(struct sk_reuseport_md, len):
9223                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
9224                 break;
9225
9226         case offsetof(struct sk_reuseport_md, eth_protocol):
9227                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
9228                 break;
9229
9230         case offsetof(struct sk_reuseport_md, ip_protocol):
9231                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
9232                 break;
9233
9234         case offsetof(struct sk_reuseport_md, data_end):
9235                 SK_REUSEPORT_LOAD_FIELD(data_end);
9236                 break;
9237
9238         case offsetof(struct sk_reuseport_md, hash):
9239                 SK_REUSEPORT_LOAD_FIELD(hash);
9240                 break;
9241
9242         case offsetof(struct sk_reuseport_md, bind_inany):
9243                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
9244                 break;
9245         }
9246
9247         return insn - insn_buf;
9248 }
9249
9250 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
9251         .get_func_proto         = sk_reuseport_func_proto,
9252         .is_valid_access        = sk_reuseport_is_valid_access,
9253         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
9254 };
9255
9256 const struct bpf_prog_ops sk_reuseport_prog_ops = {
9257 };
9258
9259 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
9260 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
9261
9262 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
9263            struct sock *, sk, u64, flags)
9264 {
9265         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
9266                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
9267                 return -EINVAL;
9268         if (unlikely(sk && sk_is_refcounted(sk)))
9269                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
9270         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
9271                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
9272
9273         /* Check if socket is suitable for packet L3/L4 protocol */
9274         if (sk && sk->sk_protocol != ctx->protocol)
9275                 return -EPROTOTYPE;
9276         if (sk && sk->sk_family != ctx->family &&
9277             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
9278                 return -EAFNOSUPPORT;
9279
9280         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
9281                 return -EEXIST;
9282
9283         /* Select socket as lookup result */
9284         ctx->selected_sk = sk;
9285         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
9286         return 0;
9287 }
9288
9289 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
9290         .func           = bpf_sk_lookup_assign,
9291         .gpl_only       = false,
9292         .ret_type       = RET_INTEGER,
9293         .arg1_type      = ARG_PTR_TO_CTX,
9294         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
9295         .arg3_type      = ARG_ANYTHING,
9296 };
9297
9298 static const struct bpf_func_proto *
9299 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
9300 {
9301         switch (func_id) {
9302         case BPF_FUNC_perf_event_output:
9303                 return &bpf_event_output_data_proto;
9304         case BPF_FUNC_sk_assign:
9305                 return &bpf_sk_lookup_assign_proto;
9306         case BPF_FUNC_sk_release:
9307                 return &bpf_sk_release_proto;
9308         default:
9309                 return bpf_base_func_proto(func_id);
9310         }
9311 }
9312
9313 static bool sk_lookup_is_valid_access(int off, int size,
9314                                       enum bpf_access_type type,
9315                                       const struct bpf_prog *prog,
9316                                       struct bpf_insn_access_aux *info)
9317 {
9318         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
9319                 return false;
9320         if (off % size != 0)
9321                 return false;
9322         if (type != BPF_READ)
9323                 return false;
9324
9325         switch (off) {
9326         case offsetof(struct bpf_sk_lookup, sk):
9327                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9328                 return size == sizeof(__u64);
9329
9330         case bpf_ctx_range(struct bpf_sk_lookup, family):
9331         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
9332         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
9333         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
9334         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
9335         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
9336         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
9337         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
9338                 bpf_ctx_record_field_size(info, sizeof(__u32));
9339                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
9340
9341         default:
9342                 return false;
9343         }
9344 }
9345
9346 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
9347                                         const struct bpf_insn *si,
9348                                         struct bpf_insn *insn_buf,
9349                                         struct bpf_prog *prog,
9350                                         u32 *target_size)
9351 {
9352         struct bpf_insn *insn = insn_buf;
9353
9354         switch (si->off) {
9355         case offsetof(struct bpf_sk_lookup, sk):
9356                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
9357                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
9358                 break;
9359
9360         case offsetof(struct bpf_sk_lookup, family):
9361                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9362                                       bpf_target_off(struct bpf_sk_lookup_kern,
9363                                                      family, 2, target_size));
9364                 break;
9365
9366         case offsetof(struct bpf_sk_lookup, protocol):
9367                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9368                                       bpf_target_off(struct bpf_sk_lookup_kern,
9369                                                      protocol, 2, target_size));
9370                 break;
9371
9372         case offsetof(struct bpf_sk_lookup, remote_ip4):
9373                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9374                                       bpf_target_off(struct bpf_sk_lookup_kern,
9375                                                      v4.saddr, 4, target_size));
9376                 break;
9377
9378         case offsetof(struct bpf_sk_lookup, local_ip4):
9379                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9380                                       bpf_target_off(struct bpf_sk_lookup_kern,
9381                                                      v4.daddr, 4, target_size));
9382                 break;
9383
9384         case bpf_ctx_range_till(struct bpf_sk_lookup,
9385                                 remote_ip6[0], remote_ip6[3]): {
9386 #if IS_ENABLED(CONFIG_IPV6)
9387                 int off = si->off;
9388
9389                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
9390                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
9391                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
9392                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
9393                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9394                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
9395 #else
9396                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9397 #endif
9398                 break;
9399         }
9400         case bpf_ctx_range_till(struct bpf_sk_lookup,
9401                                 local_ip6[0], local_ip6[3]): {
9402 #if IS_ENABLED(CONFIG_IPV6)
9403                 int off = si->off;
9404
9405                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
9406                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
9407                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
9408                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
9409                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9410                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
9411 #else
9412                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9413 #endif
9414                 break;
9415         }
9416         case offsetof(struct bpf_sk_lookup, remote_port):
9417                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9418                                       bpf_target_off(struct bpf_sk_lookup_kern,
9419                                                      sport, 2, target_size));
9420                 break;
9421
9422         case offsetof(struct bpf_sk_lookup, local_port):
9423                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9424                                       bpf_target_off(struct bpf_sk_lookup_kern,
9425                                                      dport, 2, target_size));
9426                 break;
9427         }
9428
9429         return insn - insn_buf;
9430 }
9431
9432 const struct bpf_prog_ops sk_lookup_prog_ops = {
9433 };
9434
9435 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
9436         .get_func_proto         = sk_lookup_func_proto,
9437         .is_valid_access        = sk_lookup_is_valid_access,
9438         .convert_ctx_access     = sk_lookup_convert_ctx_access,
9439 };
9440
9441 #endif /* CONFIG_INET */
9442
9443 DEFINE_BPF_DISPATCHER(xdp)
9444
9445 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
9446 {
9447         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
9448 }
9449
9450 #ifdef CONFIG_DEBUG_INFO_BTF
9451 BTF_ID_LIST_GLOBAL(btf_sock_ids)
9452 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
9453 BTF_SOCK_TYPE_xxx
9454 #undef BTF_SOCK_TYPE
9455 #else
9456 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
9457 #endif
9458
9459 static bool check_arg_btf_id(u32 btf_id, u32 arg)
9460 {
9461         int i;
9462
9463         /* only one argument, no need to check arg */
9464         for (i = 0; i < MAX_BTF_SOCK_TYPE; i++)
9465                 if (btf_sock_ids[i] == btf_id)
9466                         return true;
9467         return false;
9468 }
9469
9470 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
9471 {
9472         /* tcp6_sock type is not generated in dwarf and hence btf,
9473          * trigger an explicit type generation here.
9474          */
9475         BTF_TYPE_EMIT(struct tcp6_sock);
9476         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
9477             sk->sk_family == AF_INET6)
9478                 return (unsigned long)sk;
9479
9480         return (unsigned long)NULL;
9481 }
9482
9483 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
9484         .func                   = bpf_skc_to_tcp6_sock,
9485         .gpl_only               = false,
9486         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9487         .arg1_type              = ARG_PTR_TO_BTF_ID,
9488         .check_btf_id           = check_arg_btf_id,
9489         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
9490 };
9491
9492 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
9493 {
9494         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
9495                 return (unsigned long)sk;
9496
9497         return (unsigned long)NULL;
9498 }
9499
9500 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
9501         .func                   = bpf_skc_to_tcp_sock,
9502         .gpl_only               = false,
9503         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9504         .arg1_type              = ARG_PTR_TO_BTF_ID,
9505         .check_btf_id           = check_arg_btf_id,
9506         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
9507 };
9508
9509 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
9510 {
9511 #ifdef CONFIG_INET
9512         if (sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
9513                 return (unsigned long)sk;
9514 #endif
9515
9516 #if IS_BUILTIN(CONFIG_IPV6)
9517         if (sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
9518                 return (unsigned long)sk;
9519 #endif
9520
9521         return (unsigned long)NULL;
9522 }
9523
9524 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
9525         .func                   = bpf_skc_to_tcp_timewait_sock,
9526         .gpl_only               = false,
9527         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9528         .arg1_type              = ARG_PTR_TO_BTF_ID,
9529         .check_btf_id           = check_arg_btf_id,
9530         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
9531 };
9532
9533 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
9534 {
9535 #ifdef CONFIG_INET
9536         if (sk->sk_prot == &tcp_prot  && sk->sk_state == TCP_NEW_SYN_RECV)
9537                 return (unsigned long)sk;
9538 #endif
9539
9540 #if IS_BUILTIN(CONFIG_IPV6)
9541         if (sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
9542                 return (unsigned long)sk;
9543 #endif
9544
9545         return (unsigned long)NULL;
9546 }
9547
9548 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
9549         .func                   = bpf_skc_to_tcp_request_sock,
9550         .gpl_only               = false,
9551         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9552         .arg1_type              = ARG_PTR_TO_BTF_ID,
9553         .check_btf_id           = check_arg_btf_id,
9554         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
9555 };
9556
9557 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
9558 {
9559         /* udp6_sock type is not generated in dwarf and hence btf,
9560          * trigger an explicit type generation here.
9561          */
9562         BTF_TYPE_EMIT(struct udp6_sock);
9563         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
9564             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
9565                 return (unsigned long)sk;
9566
9567         return (unsigned long)NULL;
9568 }
9569
9570 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
9571         .func                   = bpf_skc_to_udp6_sock,
9572         .gpl_only               = false,
9573         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
9574         .arg1_type              = ARG_PTR_TO_BTF_ID,
9575         .check_btf_id           = check_arg_btf_id,
9576         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
9577 };